
Constraint Based Design of ATM

Networks, an Experimental Study

Hongzhou Ma, Inderjeet Singh, Jonathan Turner

wucs-97-15

April 97

Department of Computer Science
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

Abstract

This paper describes an experimental study of constraint-based network design. We used a
novel network design tool, implemented in Java, to design representative networks joining
major U.S. cities. The cost of three topologies: Best Star, Minimum Spanning Tree (MST),
and Delaunay Triangulation, are compared, with and without localized tra�c constraints.
The best star network gives near optimal result when the tra�c is only constrained by source
and sink capacity of switches (at tra�c constraints). With localized tra�c constraints, the
most cost e�ective network has a structure similar to the MST. The cheapest network has a
tree structure when there are only at tra�c constraints, but can have cycles when localized
tra�c constraints are present.

Constraint Based Design of ATM Networks, an

Experimental Study

Hongzhou Ma Inderjeet Singh Jonathan Turner
hma@dworkin.wustl.edu inder@dworkin.wustl.edu jst@arl.wustl.edu

1. Introduction

Integrated network technologies, such as ATM, support multimedia applications with vastly di�erent
bandwidth needs, connection request rates, and holding patterns. Because of the lack of reliable
data, such as distribution of bandwidth, holding times, size and behavior of multicast calls, and the
di�culty of predicting future change, the classical telecommunication network planning techniques[1]
are less relevant to this new generation of networks.

A constraint-based network design model is proposed. It creates networks that can handle any
combination of tra�c that lies within user-speci�ed constraints, is less sensitive to assumptions, and
yields greater con�dence in resulting designs. The traditional network design model, which takes
tra�c requirement between switch pairs as input, is a special case of the constraint-based model.

Previous research on at tra�c constraints (the only constraint is that the tra�c in and out
of a switch cannot exceed the sink and source capacity of that switch) [2, 4, 3], showed that when
the link cost is linear to capacity, the problem of �nding a minimum cost, nonblocking network is
NP-Complete even for symmetric source and sink capacities. When link costs satisfy the triangle
inequality, the ratio between the cost of a cheapest nonblocking star and an optimal network is at

most 2 if the switch capacities are symmetric, and at most 2+ max(A;Z)
min(A;Z) in general, where A =

P
�i,

Z =
P

!i.

A constraint-based network design tool has been implemented in Java, which allows network
designers try out di�erent network topologies and compare their costs to a calculated lower bound.
This tool is used here to design nonblocking ATM networks for major metropolitan areas of the
United States.

This paper has six sections. Section 2 introduces the constraint-based network design model.
Section 3 introduces Decaf, the Java tool for constraint-based design. Section 4 characterizes the
data set of metropolitan areas. Section 5 presents numerical results of nonblocking networks for
three cases: the twenty largest metropolitan areas, the �fty largest metropolitan areas, and the
north-eastern metropolitan areas. Section 6 gives directions for future work.

2. Constraint-Based Network Design Model

In most previous work on network design, tra�c requirements are given in the form of a tra�c
matrix, which is a table in which each row corresponds to the tra�c originating at a particular

1

2

node, and each column corresponds to the tra�c received at a particular node. Generating such
a table can often be di�cult or even impossible. For example, in an environment where tra�c is
primarily world wide web tra�c, it is possible to specify the amount of tra�c a workstation receives
but it is very hard to apriori �x the source of that tra�c.

Our formulation of the network design problem consists of a complete directed graph G = (V;E),
where each vertex represents a switch and each directed edge represents a link [3].

� Switch u has a source capacity �(u) and a sink capacity !(u), representing the maximum
tra�c rate that can originate from or terminate at u.

� Each vertex pair (u; v) has a function (u; v; x) representing the cost of constructing a link of
capacity x from u to v. 1

� The general form of a constraint is a switch set pair. For two sets of switches, S = fS1; S2; : : :g
and D = fD1; D2; : : :g, �(S;D) is the upper bound on tra�c from S to D.

� A connection request R = (S;D;w) comprises a set of source nodes S, a set of destination
nodes D and a weight w. A set of connection requests is valid if it does not violate the
constraints. In particular, the sum of the weights of the requests containing switch u as their
source and sink node, respectively, must not exceed �(u) and !(u).

� A route T for a request R is a subgraph of G for which there is a directed path from every
vetex in S to every vertex in D. A collection of routes C places a connection weight �C(u; v)
on an edge (u; v), which is de�ned as the sum of the weights of all routes that include the edge
(u; v).

� A state of a network is a valid set of routes.

� A routing algorithm is a procedure that maintains a valid set of routes under the following
four operations:

1. add a new route satisfying a speci�ed connection request;

2. remove an existing route;

3. add new nodes to either the source set, the destination set, or both for some route in the
current state;

4. remove nodes from either the source set, the destination set, or both for some route in
the current state.

� The reachable states for a routing algorithm on a network with speci�ed link capacities is the
set of all states that can be reached by sequences of the four operations given above, starting
from the empty state.

� A network is nonblocking with regard to a routing algorithm A if for every state reachable under
A, no valid request can block.

� The link cost of a network is de�ned as
P

(u;v)2E (u; v; x), where x is the capacity on the

link. The link cost of a state is de�ned as
P

(u;v)2E (u; v; �C(u; v)), where �C(u; v) is the

connection weight placed on edge (u; v), as de�ned earlier.

� The cost of the most expensive valid state is a Lower bound on the link cost of a nonblocking

network.

1We require that the costs satisfy the triangle inequality, meaning that the direct path of any given capacity

between two vertices is never more expensive than an indirect path with the same capacity.

3

The nonblocking network design problem is to determine a set of link capacities that will yield
a nonblocking network of least link cost under a speci�ed routing algorithm. In the following
discussion, we will ignore the cost of switches in the network (they can be absorbed into the cost of
links). So, when we say \the cost of a network" we really mean \the link cost of the network".

There are several classes of tra�c constraints that we will focus on:

at tra�c. Only source-sink constraints are present.

hierarchical clustering. Clusters of switches are de�ned and intra-cluster and inter-cluster tra�c
constraints are speci�ed.

localized. Amount of tra�c a switch sends to another switch is a (decreasing) function of the
distance between the two switches.

pairwise percentage. For any two switches u and v, let f(u; v) = !vP
w 6=u

!w
, g(u; v) = �uP

w 6=v
�w

.

Restrict the tra�c from switch u to switch v to at most �(u; v) = c�min(f(u; v)�u; g(u; v)!v).
Here c is a constant. When c � 1, the complete graph is the cheapest. When c is large enough
that �(u; v) � �u; !v, these constraints can be neglected. c is called the relaxation factor.

Even the at tra�c constraint case is already proved to be NP-Complete [3]. Approximate
algorithms can be used for designing nonblocking networks of provably small cost. It has been
proved that under at tra�c constraints, when link cost is linear, the ratio between the cost of a
cheapest nonblocking star and an optimal network is at most 2 if the switch capacities are symmetric

(�(u) = !(u) for all u); and at most 2 + max(A;Z)
min(A;Z) in general, where A =

P
�i; Z =

P
!i. [3].

Given a set of switches, with tra�c constraints, the steps of network design are:

1. create links connecting all the switches.

2. select a routing algorithm to route tra�c on the links under the constraints.

3. dimension the capacity of links to the maximumvalue of all possible combination of tra�c put
by the routing algorithm on the link.

4. get link cost of this network by summing up the cost of all links.

5. repeat step 1 to 4, compare the costs of di�erent topologies, until a network meets the need is
found.

The Delaunay triangulation [5] can be useful in the design of nonblocking networks. The Delau-
nay triangulation is closely related to the Voronoi diagram.

Let P = fp1; p2; � � � ; png be a set of points in the two-dimensional Euclidean plane. These are
called the sites. Partition the plane by assigning every point in the plane to its nearest site. All
those points assigned to pi form the Voronoi region V (pi). V (pi) consists of all the points at least
as close to pi as to any other site:

V (pi) = fx : jpi � xj � jpj � xj; 8j 6= ig

Some point do not have a unique nearest site. The set of all points that have more than one nearest
neighbor form the Voronoi diagram V(P) for the set of sites.

Delaunay triangulation D(P) is the straight-line dual of V(P). The dual of a plane graph G
assigns a node to each face and an arc for each edge between adjacent faces. The faces of V(P)
are called Delaunay triangles. The bounding circle of a Delaunay triangle contains no other sites.
A minimum spanning tree is a subset of the Delaunay triangulation. The Delaunay triangulation

maximizes the smallest angle among all triangulations. In a non-strict sense, it minimizes the number
of parallel links.

4

3. A Tool for Constraint-Based Design

A network design tool, targeted to network planners who want to deploy ATM networks, and, in the
process, want to design and evaluate di�erent network topologies, was written in Java. The initial
version, called Decaf, is available at http://www.cs.wustl.edu/�javagrp/network-design-tool.html. It
was implemented in JDK 1.0.2. The second version, called Cappuccino, using JDK 1.1.1, is still
under development.

3.1. Functionalities of the Tool

Figure 1: A snap shot of Decaf

In Decaf, all switches are located on a 2D plane, with x and y coordinates speci�ed. The link cost is
linear to capacity and also linear to the length. The length is calculated as the Euclidean distance
between two switches, but can be overridden by the user. First, a set of links is created connecting

5

all the switches; second, a routing algorithm is selected to route tra�c on the links; last, capacities
of links are calculated using linear programming, and cost is obtained.

In link creation, some useful topologies, such as best star, minimum spanning tree (MST), De-
launay triangulation [5] are provided. Best star returns a cheapest star network, so link capacities
are also calculated. Delaunay triangulation is a useful topology in that it provides redundant routes
between switches and is fail safe. The user can add, remove links by using the mouse. A secondary
set of links can be used to adjust an initial set of links. A link in the secondary set is added to the
initial graph if by adding it, the distance between two switches in the initial graph can be reduced
by a pre-speci�ed factor.

Two routing algorithms are provided: shortest path routing and distributed routing. Shortest
path routing uses the shortest path between two switches on the given links. Distributed routing
�nds the N disjoint shortest paths between two switches on the given links; users can specify the
number of di�erent routes to use, the maximum ratio of longest route to shortest route in use,
and the distribution of tra�c on di�erent routes. Shortest path routing is just a special case of
distributed routing.

Link dimension and lower bound calculation are done with linear programming.

The tool can take a �le as input, which speci�es the switches, links, and constraints. The �le
format is:

NetworkName
hSwitchName, x, y, alpha, omegai
...
[LinkName, LeftSwitch, RightSwitch, length]
...
fConstraintName, fSwitchSetAg, fSwitchSetBg(optional), out, ing
...

The tool also provides support for manual network creation.

3.2. Design of Decaf

Decaf was implemented in Java using JavaSoft's Java Development Kit (JDK 1.0.2). It is available
both as a java applet and a java application. The tool consists of some bootstrapping code and four
core packages, each of which implements a relatively independent functionality of the tool. Both
applet and application share these packages but have di�erent bootstrapping classes.

LaunchPad is the main bootstrapping class. It implements the main() method which implements
the stand-alone version of the tool. LaunchPad also derives from the applet class and displays a
button on the webpage which can be used to create multiple windows containing Decaf.

gui This package implements the graphical user interface of the tool. The class GUIManager is the
main driver of the tool. It handles all the menu bar commands(including those for creating a
network and applying algorithms to it) and manages a canvas on which the current network
is displayed. Some menu options also result in the creation of pop-up dialog boxes each of
which fully handles the operations de�ned in them. It also creates and passes an instance of
a GeneralProperties data structure. It contains global information like strings for help URLs,
handlers to main canvas, current network etc.

6

general This package contains some general data structures and utility classes. It also provides
facilities for posting to and retrieving data from a CGI script. It also de�nes a data structure
called GeneralProperties which can be used as a repository of arbitrary information indexed by
strings.

network This package contains classes for representing a switch, link, network and constraints.
Each of these classes implements methods for its serialization to �les. The classes for di-
mensioning links and calculating lower bounds are derived from Thread so that these can be
launched in their own threads.

lp The lp package implements a linear program solver in Java. This is a Java adaptation of an
existing C program. This package is currently not being used in the tool because of anticipated
slow execution of Java code. Instead, the program posts the linear programming problems to a
CGI script (which uses the original C program to solve the problem) and receives the solution.

4. Characteristics of Data Sets

In 1994, the total population of the United States was some 260 million 2. Among them, 149 million
people resided in the 50 largest metropolitan areas, accounting for 57.3% of the total. So, it's of
great signi�cance to design ATM networks connecting these metro areas. Constraint based ATM
network design was applied to these metropolitan areas.

Since the tool models switch locations as points in a Cartesian coordinate system, it was necessary
to compute coordinates from latitude and longitude using planar projection. The results are shown
in table 1.

θ

π/4−θ/2

P’

PKC

Figure 2: projection of a point from sphere to the plane

The continental part of the United States is within longitude 70o to 125o, and latitude 30o to
48o. So the point with longitude �0 = 97o, latitude �0 = 39o(near Kansas City) is the geographical
center of the United States. Think of the Earth as a sphere, and put it on a plane, with Kansas City

2World Almanac 1997, p 385

7

Metro Areas population(M) latitude longitude x coord(Km) y coord(Km)
New York 19.80 40o470 73o580 1935 -451
Los Angeles 15.30 34o030 118o150 -1962 332

Chicago 8.53 41o500 87o370 778 -357
Washington 7.05 38o530 77o020 1727 -178
San Francisco 6.51 37o470 122o260 -2232 -177

Philadelphia 5.96 39o570 75o100 1858 -333
Boston 5.50 42o210 71o050 2123 -691
Detroit 5.26 42o200 83o030 1147 -463

Dallas 4.36 32o460 96o460 22 695
Houston 4.10 29o450 95o210 161 1031
Miami 3.41 25o460 80o120 1708 1344

Atlanta 3.33 33o450 84o230 1170 508
Seattle 3.23 47o370 122o200 -1898 -1254
Cleveland 2.90 41o280 81o370 1282 -386
Minneapolis 2.69 44o590 93o140 297 -673

San Diego 2.63 32o420 117o100 -1894 504
St Louis 2.54 38o350 90o120 592 24
Phoenix 2.47 33o290 112o040 -1402 505

Pittsburgh 2.40 40o270 79o570 1442 -300
Denver 2.19 39o450 105o000 -684 -114
Tampa 2.16 27o570 82o270 1445 1132

Portland 1.98 45o310 122o410 -1997 -1033
Cincinnati 1.89 39o080 84o300 1079 -89
Kansas City 1.65 39o060 94o350 209 -14

Milwaukee 1.64 43o020 87o550 740 -488
Sacramento 1.59 38o350 121o300 -2126 -243
Virginia Beach 1.53 36o510 75o580 1871 26

Indianapolis 1.46 39o460 86o100 926 -141
San Antonio 1.44 29o230 98o330 -151 1072
Columbus 1.42 40o000 83o010 1191 -204

Orlando 1.36 28o300 81o220 1543 1054
New Orleans 1.31 29o570 90o040 673 986
Charlotte 1.26 35o140 80o500 1471 293

Bu�alo 1.19 42o550 78o500 1479 -591
Salt Lake City 1.18 40o460 111o540 -1255 -302
Hartford 1.15 41o480 72o440 2007 -591

Providence 1.13 41o500 71o240 2115 -627
Greensboro 1.11 36o050 79o500 1544 183
Rochester 1.09 43o100 77o370 1571 -640

Las Vegas 1.08 36o100 115o120 -1635 156
Nashville 1.07 36o100 86o470 918 265
Memphis 1.06 35o090 90o030 633 406

Oklahoma 1.01 35o260 97o280 -42 397
Grand Rapids 0.99 42o580 85o400 923 -502
Louisville 0.98 38o150 85o460 982 23
Jacksonville 0.97 30o220 81o400 1481 849

Raleigh 0.97 35o460 78o390 1657 197
Austin 0.96 30o160 97o440 -71 974
Dayton 0.96 39o470 84o120 1094 -165

West Palm Beach 0.96 26o420 80o030 1707 1236

Table 1: the 21 Metro Areas in the United States

8

at the bottom. This will also be the origin of the plane. The new longitude and latitude values of a
point on the sphere, �0 and �0, are related to the old values, � and �, by the following equations:

sin�0 = cos �0 cos (� � �0) cos (� � �0) + sin�0 sin (�� �0)

cos�0 sin �0 = cos (�� �0) sin (� � �0)

cos �0 cos �0 = cos (�� �0) sin�0 cos (� � �0)� sin (�� �0) cos�0

A point P 0 on the sphere is projected onto the plane by drawing a straight line from N 0 (point
on the globe opposite to Kansas City) to P 0, and extending the line until it meets the plane at P .
If P 0 has a latitude of �, then P will be 2r tan(�=4� �=2) away from the origin.

The new latitude(�0) coordinate values of the continental part of the United States is between 70o

to 90o, so the error introduced by this projection is within 1%. 6378.14Km is used as the radius of
the Earth. The Euclidean distance between any two cities calculated from the X and Y coordinates
is within 3% from the distance on Earth.

A single switch is located in each metropolitan area. The source and sink capacities are propor-
tional to the population in the area, assuming that the bandwidth requirement for each person is
1Mb/s. So the switch in St. Louis would have total capacity of 2540Gb/s. It is also assumed that
the link cost is $20 per kilometer per 100Mb/s. This is a reasonable assumption if 2.4Gbps links are
used.

5. Numerical Results

Three cases are studied: twenty largest metropolitan areas, metropolitan areas in the north eastern
part of the United States, and �fty largest metropolitan areas.

Table 2: Cost of nonblocking ATM networks for 20 largest metropolitan areas relative to lower
bound (lower bound with at tra�c constraint is 64 billion dollars, with localized tra�c constraints
is 23 billion dollars)

80% tra�c
no constraint within 1000 Km

Best Star 1.01 2.76
Minimum Spanning Tree 1.35 1.63
Delaunay triangulation 2.55 2.56
Delaunay(distributed routing) 2.13 2.23
Hand Crafted 1.11 1.58
Hand Crafted (distributed routing) 1.13 1.61

For the twenty largest metropolitan areas, we study the impact of localized tra�c constraints
�rst. The cost of di�erent network topologies are computed and compared, with and without
localized tra�c constraints. The localized tra�c constraints specify that 80% of tra�c in and out of
a switch are limited within a circle with radius of 1000 kilometers. If the circle takes in fewer than
3 neighboring metro areas, then the radius is increased until there are exactly 3 neighboring metro
areas within the circle. If the default circle takes in more than 10 neighboring metro areas, then the
radius is reduced until it takes in exactly 10.

9

San Francisco

Los Angeles

San Diego

Phoenix

Denver

St. Louis

Dallas

Miami

Boston

Atlanta

Philadelphia

Seattle

Houston

Chicago

Minneapolis

Detroit

Washington DC

New YorkCleveland

Pittsburg

Figure 3: the Best Star Network for 20 largest metro areas

San Francisco

Los Angeles

San Diego

Phoenix

Denver

St. Louis

Dallas

Miami

Boston

Atlanta

Philadelphia

Seattle

Houston

Chicago

Minneapolis

Detroit

Washington DC

New YorkCleveland

Pittsburg

Figure 4: the Minimum Spanning Tree for 20 largest metro areas

10

San Francisco

Los Angeles

San Diego

Phoenix

Denver

St. Louis

Dallas

Miami

Boston

Atlanta

Philadelphia

Seattle

Houston

Chicago

Minneapolis

Detroit

Washington DC

New YorkCleveland

Pittsburg

Figure 5: the Delaunay Triangulation for 20 largest metro areas

San Francisco

Los Angeles

Phoenix

Denver

St. Louis

Dallas

Miami

Boston

Atlanta

Philadelphia

Seattle

Houston

Chicago

Minneapolis

Detroit
New YorkCleveland

Pittsburg

San Diego

3.23

6.51
4.89

6.36

5.91

2.47

15.41

7.57
Washington DC15.41

15.41

6.24

23.86

5.50

3.41

15.41

5.26

11.84

4.10

3.72

13.21

2.472.63

Figure 6: Hand crafted network for 20 largest metro areas with link capacities (unit: Tb/s, under
distance tra�c constraint)

11

In distributed routing for Delaunay triangulation, three shortest routes are chosen for any two
switches, but any route longer than twice the length of the shortest route is discarded. The tra�c
distribution among the three routes are 2:1:1 when three routes are available. For example, the three
shortest routes from St. Louis to Miami are St. Louis ! Atlanta ! Miami, St. Louis ! Dallas
! Houston ! Miami, and St. Louis ! Cleveland ! Pittsburg ! Washington D.C. ! Miami.
The length of the last one is more than twice the shortest route, so it is not used. The distribution
of tra�c is 2:1:1, but because the third route is not used, it's 2:1 on the two routes; 67% of the
tra�c goes through the shortest route, 33% of the tra�c goes through the second shortest route.
In distributed routing for the hand crafted network, only two shortest routes are chosen, and the
tra�c distribution is 2:1.

The center of the best star network for the 20 largest metro areas is Chicago, with or without
localized tra�c constraints. When there are only at tra�c constraints, the best star network has a
cost close to the lower bound(within 1%). When the tra�c is localized, the lower bound is reduced,
but the cost of star network is almost unchanged, since even local tra�c still has to go through the
center. The cost of the star network is even more expensive than the Delaunay triangulation in this
case.

The Delaunay triangulation provides alternative routes between switches, and is a useful topology
for designing fail-safe cost-e�ective networks. Its relative cost to the lower bound is almost unchanged
with or without localized tra�c constraints. Distributing tra�c on di�erent routes reduces the cost.

With localized tra�c, the MST is a good starting point for constructing a least cost network,
because it keeps lots of short links connecting neighboring metro areas. But the MST gives every
switch the same weight, no matter what their source and sink capacities are. A better solution could
be obtained if links connecting major cities are given preference. In the case of the 20 largest metro
areas, there is a lot of tra�c goes between Los Angeles and New York, and the MST gives a zig-zag
path between them. By constructing the backbone connecting Los Angeles ! Denver ! Chicago
! Cleveland! New York, then augmenting this backbone into a tree, and adding one link in south
western and north eastern areas, the cheapest nonblocking network with localized tra�c constraints
is obtained.

Divide and conquer is very useful in constructing a least cost network. Here, metro areas are
natually divided into several regions, such as the West (west of Denver), the Northeast (east of
Chicago, north of Washington DC). We can �rst construct least cost networks for these regions,
then connect them together. When designing for the West, all cities east of Denver are remote to
this region, we can put all their capacities into one single city, such as St. Louis, then connect
Denver and St. Louis, and try to �nd the best topology connecting all the other cities. The size of
the network is much smaller than the original one, and di�erent topologies can easily be tried out.

Table 3: Cost of nonblocking ATM networks for 20 largest metro areas relative to the lower bound,
with pairwise percentage tra�c constraints

relaxation factor c 1 1.2 1.6 2 4 10
Lower Bound(in billion dollars) 44.8 51.4 59.2 62.0 63.1 63.8
Best Star(Chicago) 1.38 1.26 1.09 1.04 1.03 1.01
Complete Graph 1.00 1.05 1.21 1.45 2.84 5.35
Minimum Spanning Tree 1.40 1.43 1.44 1.39 1.37 1.35
Delaunay triangulation 1.05 1.10 1.25 1.43 2.06 2.39
Delaunay(distributed) 1.16 1.21 1.33 1.44 1.78 2.02
Hand Crafted 1.21 1.21 1.16 1.10 1.12 1.11

The impact of the pairwise percentage tra�c constraints (as de�ned in Section 2) was also
studied. The complete graph is the best when relaxation factor c = 1, but it increases linearly with

12

relaxation factor c. The best star is the cheapest network for c � 2. The real cost of the best star
network is almost not changed with di�erent c, but the lower bound changes. Delaunay has a cost
about the same as the complete graph when c � 2, and is much better than complete graph when
c � 4, so it is worthy of consideration. The relative cost of the MST and the hand crafted network
have the nice feature that they are almost constant with regard to c.

Table 4: Cost of nonblocking ATM networks for north eastern metropolitan areas relative to lower
bound (lower bound with no constraint is 3.1 billion dollars, with distance constraint is 1.3 billion
dollars)

80% tra�c
no constraint within 200 Km

Best Star(New York) 1.000 2.106
Minimum Spanning Tree 1.234 1.574
Delaunay triangulation 1.858 1.868
Delaunay(distributed routing) 2.100 1.969

For the north-eastern metropolitan areas, networks with and without localized tra�c constraints
are studied. Here, the radius for localized tra�c constraints is taken to be 200 Km, and because
there are only nine metro areas in this case, the minimum and maximum number of neighbors are
taken to be 2 and 3. Here, the best network with localized tra�c constraints is the MST, and the
best star is centered on New York. Distributed routing for Delaunay triangulation is even more
expensive than shortest path routing, suggesting that distributed routing is only good for networks
with larger numbers of switches.

Figure 7: the Minimum Spanning Tree for north eastern metro areas

Networks for the 50 largest metro areas were also studied under the same condition as for the
north-eastern areas. The center of the best star is Indianapolis, and distributed routing is much bet-
ter than shortest path routing, further con�rming our previous observation that distributed routing

13

Figure 8: the Delaunay triangulation for north eastern largest metro areas

Table 5: Cost of nonblocking ATM networks for 50 largest metropolitan areas relative to lower
bound (lower bound with no constraint is 81 billion dollars, with distance constraint is 27 billion
dollars)

80% tra�c
no constraint within 1000 Km

Best Star(Indianapolis) 1.003 2.99
Minimum Spanning Tree 1.377 1.78
Delaunay triangulation 3.597 3.28
Delaunay(distributed routing) 2.799 2.69
Hand Crafted 1.243 1.67

14

is good for large networks. The hand crafted network, optimized for localized tra�c constraints,
has a backbone similar to the case for the 20 largest metro areas, but moved a little bit towards the
south, and there is only one cycle in the northeast.

Figure 9: the Minimum Spanning Tree for 50 largest metro areas

Figure 10: the Delaunay Triangulation for 50 largest metro areas

15

Figure 11: Hand crafted network for 50 largest metro areas

Figure 12: Hand crafted network for 50 largest metro areas (details of northeast)

16

Simulation shows that, if tra�c is not localized, acyclic networks are always cheaper than cyclic
networks. This implies that tree structure is the least expensive, and it's proved that star is best
among trees [2], so the star network is almost the cheapest among all nonblocking networks. In
the three cases studied, the closeness of the cost of the best star to the lower bound, also supports
this observation. With local tra�c constraints, cycles can help to reduce cost, as observed in the
northeastern and southwestern regions in the case of twenty largest metro areas.

The experimental results suggest that di�erent topologies are preferred, based on the relative
strength of distance and pairwise constraints. This indicated qualitatively in the diagram shown in
Fig. 5.

graph Delaunay Triangulation

Star

MST

complete

relaxed pairwise constraint

re
la

xe
d

lo
ca

liz
ed

 c
on

st
ra

in
t

Figure 13: Topologies with the lowest cost in di�erent situations

6. Closing Remarks

A constraint-based network design tool was implemented in Java, and used to construct ATM
networks for the largest metro areas of the United States. The star network is best with at tra�c
constraints. When tra�c is localized, the MST is much better than the star. To design low cost
networks, it is also important to minimize pathes between major nodes. To derive candidate link sets,
topologies having more features, such as Euclidean spanner [6], a spanning tree that simultaneously
approximates a shortest-path tree and a minimum spanning tree [7] could be helpful. Looking
at the pairings that are generated by the con�guration for the lower bound and create network
topologies start from the pathes connecting these pairs may be another approach. The impact of
other constraints, such as hierarchical clustering, should also be studied. Another direction for future
work is make the network design tool more realistic, such as include link cost models other than
linear model.

This project is built upon previous work done by J.A. Fingerhut and Subash Suri. J.A. Fingerhut
contributed lots of ideas on the design of Decaf, and Subash Suri provided some of the algorithms.

References

[1] Kershenbaum, Aaron. Telecommunications Network Design Algorithms,McGraw-Hill, Inc. 1993.

17

[2] Fingerhut, J. Andrew. Approximation Algorithms for Con�guring Nonblocking Communication

Networks, Washington University Computer Science Department doctoral dissertation, 5/94.

[3] Fingerhut, J. Andrew, Subash Suri, Jon Turner. Design Minimum Cost Nonblocking Communi-

cation Networks, WUCS-96-06, 2/96.

[4] Fingerhut, J. Andrew, Rob Jackson, Subash Suri, Jon Turner. Design of Nonblocking ATM

Networks, WUCS-96-03, 2/96.

[5] O'Rourke, Joseph. Computational Geometry in C, Cambridge University Press 1994.

[6] Arya, Sunil, GautamDas, David M. Mount, Je�rey S. Salowe, Michiel Smid.Euclidean Spanners:

Short, Thin, and Lanky

[7] Khuller, Samir, Balaji Raghavachari, Balancing Minimum Sapnning Trees and Shortest-Path

Trees

