
Dynamic Queue Assignment in a VC Queue Manager

for Gigabit ATM Networks

Yuhua Chen
yuhua@ arl. wus tl.edu

Department of Electrical Engineering
Washington University
St. Louis, MO 63130

Abstract
Today, ATM networks are being used to carry bursty data
traffic with large and highly variable transmission rates,
and burst sizes ranging from kilobytes to megabytes.
Obtaining good statistical multiplexing performance for
this kind of traffic requires much larger buffers than are
needed for more predictable appIications or for bursty data
applications with more limited burst transmission rates.
Large buffers lead to large queueing delays, making it
necessary for switches to implement more sophisticated
queueing mechanisms in order to deliver acceptable
quality of service (QoS). This paper describes a 2.4 Gb/s
ATM queue management chip that has practically
unlimited buffer scaling and also supports dynamic per
VC queueing, an efficiently implementable form of
weighted round-robin scheduling, a novel packet-level
discarding algorithm and the ability to support multiple
output links, We give a detailed description of the
dynamic queue assignment mechanism, which allows the
chip to support both virtual path and virtual circuit
channels. This mechanism is self-configuring, eliminating
the need to configure the range of VCIs associated with a
given VPI, and makes optimal use of the chip’s per-
channel data structures, since these data structures can be
assigned only when cells are present in the queues.

1 Introduction
When ATM network technology was first developed

in the 1980s, its developers envisioned a comprehensive
traffic management methodology, with explicit
reservation of resources, end-to-end pacing of user data
streams to conform to resource reservations and network-
level enforcement mechanisms to protect against
inadvertent or intentional violation of resource
reservations. In the context of such a methodology,
efficient statistical multiplexing performance could be
achieved without large amounts of buffering in the
network and with very simple queueing mechanisms.

As ATM was deployed in the 1990s, the original
expectations for traffic management were found to be
unrealistic. ATM is now being used largely to support
internet data traffic which is highly unpredictable and for

Jonathan S. Turner
jst @cs. wustl.edu

Washington University
St. Louis, MO 63130

Department of Computer Science

which the traffic management philosophy of ATM is
difficult to apply. In the current application context,
resources are generally not explicitly reserved, end
systems do not pace their transmissions and most network
equipment cannot enforce resource usage limits. In this
environment, to obtain good statistical multiplexing
performance and high link utilization, one needs large
buffers. In particular, one needs buffers that are at least
comparable, and preferably an order of magnitude larger
than user data bursts, which range in size from kilobytes
to megabytes. Unfortunately, the use of large buffers with
simple FIFO queueing disciplines leads to poor
performance for real-time traffic and allows “greedy”
applications to appropriate an unfair portion of network
resources: Providing good quality of service (QoS) to real-
time applications and fair treatment to bursty data
applications requires more sophisticated queueing and cell
scheduling mechanisms [6][7][8] [91[lo][131 [14] [151.

This paper describes a design for an ATM queue
manager that supports separate queues for each
application data stream and buffer sizes that are limited
only by the cost of memory. The design can be
implemented with a single application-specific integrated
circuit in 0.35 micron CMOS technology together with
SRAM components. The design will support a total
output rate of 2.4 Gb/s and can support either a single OC-
48 link, or a combination of lower speed links.

Section 2 provides an overview of the ATM dynamic
queue management chip, detailing its principle features.
Section 3 describes the architecture and operation of the
Dynamic Queue Manager in more detail. Section 4
contains a detailed description of the dynamic queue
assignment mechanism, which allows the chip to support
both VP and VC connections without explicit
configuration of VCI ranges for individual VPIs. The
dynamic queue management mechanism also makes
optimal use of the chip’s per channel data structures, since
it can assign these data structures to channels only when
data is present. This makes it possible for the chip to
support more connections than it has per channel data
structures.

0-7003-4074-5l90/$10.00 0 1998 IEEE. 3

http://wustl.edu

2 Overview of Dynamic Queue Manager
The Dynamic Queue Manager (DQM) is designed to

connect to the output side of a high performance ATM
switch, such as the Washington University Gigabit
Switch, described in [l]. The major features of the DQM
chip are listed below:

Dynamic Queue Assignment -- The DQM
implements per VC queueing using dynamic assignment,
which allows the chip to support virtual path and virtual
circuit connections with arbitrary choices of VPIs and
VCIs and no explicit configuration of VCI ranges to
particular VPIs. This greatly simplifies the use of the chip
and enables optimal use of the chip’s per channel data
structures,

Unlimited Buffer Scaling -- The DQM chip is
designed so that the cell buffer can be scaled up to very
large sizes without increasing the chip complexity
significantly. Both the cell buffer and all information to
maintain the cell buffer (that is, all the links for the linked
list queues and the free slot list) are stored in external
memory. The only constraint that the DQM chip places on
the buffer capacity is through the choice of pointers. With
20 bit pointers, the chip can support buffer sizes over 50
Mbytes, 24 bit pointers would allow for up to 800 Mbytes.
For all practical purposes, the buffer capacity is not
constrained by the DQM chip.

Efficient Implementation of Weighted Round-
Robin Scheduling -- The DQM chip implements
weighted round robin scheduling [2] using a novel
approach we call the Binary Scheduling Wheels (BSW)
algorithm [17]. The BSW algorithm is well-suited to
hardware implementation and allows cells to be scheduled
and forwarded in essentially constant time. Binary
weights can be assigned to individual virtual circuit
connections. These weights determine the relative
frequency with which cells are forwarded, allowing link
bandwidth to be allocated appropriately during congestion
periods. With 32 distinct weights, the BSW algorithm can
assign bandwidth in amounts ranging from 2.4 Gb/s to
less than one bit per second. Unlike naive
implementations of weighted round-robin scheduling, the
BSW algorithm interleaves cells from different channels
as much as possible, minimizing the burstiness of the
output data streams. The algorithm can be implemented in
a very cost-effective way, requiring just a small increment
in cost over a simple two priority level design.

Packet Level Discarding for Per VC Queues -- To
preserve packet integrity during overload, ATM switches
often use packet level discard mechanisms such as Early
Packet Discard [3][4], which were designed for use with
FIFO queues. New algorithms are needed for per VC
queueing, to minimize memory usage and preserve

fairness and QoS properties of output scheduling
algorithms. The DQM chip incorporates a new packet
level discarding scheme for per VC queues, called the
Weighted Fair Goodput (WFG) algorithm. The
combination of WFG and BSW allows all virtual circuits
to forward cells at reserved rates during overload periods
and ensures that “well-behaved” virtual circuits (those
that do not exceed their allocated rate) do not lose any
data, and that data is discarded from “misbehaving”
virtual circuits on a packet-by-packet basis, avoiding
wasted link capacity during overload periods.

Efficient Maintenance of Free Space List in
External Memory -- At gigabit speeds, the bandwidth of
the external memory used by the DQM to store cells is a
precious resource. A certain portion of this bandwidth
must be used to manage the free space list that is stored in
the external memory, along with the waiting cells. The
DQM chip incorporates an on-chip cache that allows the
free space list to be maintained using only memory cycles
that would otherwise go unused. This cache stores the
location of a number of available cell storage slots.
Storage slots can usually be assigned to arriving cells
from the cache and departing cells can usually return their
cell slots to the cache, rather than accessing the off-chip
free space list. The off-chip list is only accessed to refresh
or free up space in the cache, but these operations can be
performed during periods when there are guaranteed to be
unused memory cycles available.

3 Operation of Dynamic Queue Manager

I- Dynamic Queue Manager

Figure 1 Block Diagram of the Dynamic Queue Manager

Figure 5 shows a block diagram of the DQM chip and
its associated memory. The solid line illustrates the data
flow from the switch fabric to the output links. ATM cells
are received on a 32-bit wide interface, sirhilslr to the
UTOPIA interface, used for connecting ATM devices to
SONET transmission circuits [5]. The DQM stores cells

in the external memory and forwards them to one of
possibly several output links. To support the required
output bandwidth of 2.4 Gb/s, the chip operates with an
internal clock speed of 120 MHz. This allows cells to be
received at a rate that is roughly 1.5 times the cell rate of
an OC-48 link.

There are nine funlctional blocks: the Queue Selector,
the Queue Manager, the Output Scheduler, the Free Slot
Manager, the Cell Store, the Free Slot List, the Input
Master, the Output Master, and the Memory Controller.
The Queue Selector dynamically assigns queues to virtual
circuits. The Queue Manager maintains a list of all
queues, keeping track of the first and the last cell in each
queue. The Output Scheduler schedules the transmission
of cells from various channels and allocates the chip’s
output bandwidth among different output links. The Cell
Store buffers all inconling cells before transmission. The
Free Slot List stores unused cell slots in the Cell Store and
the Free Slot Manager maintains an on-chip cache and
manages the Free Slot List. The Input Master receives
cells from the switch and retrieves control information.
The Memory Controller interfaces to the external memory
and handles the necessary format conversions, needed to
map cells into memory. The Output Master forwards cells
to the output links. The major blocks are described below.

3.1 Queue Selector (QSEL)
The Queue Selector (QSEL) maps the VPI and VCI

fields of incoming cells to dynamically assigned queue
identifiers. It contains a Queue Lookup Table (QLT),
which operates like a Content-Addressable Memory
(CAM). Logically, one can think of the QLT as a set of
entries, each containing a (VP1,VCI) and a queue
identifier. When a cell arrives, the VPI and VCI fields of
the cell are compared to the stored entries. If a matching
entry is found, the queue identifier in the entry gives the
number of the queue that the cell is to be appended to. If
there is no matching entry, a free queue is allocated and a
new entry is created, and initialized with the VPI and VCI
of the incoming cell and the identifier of the queue just
allocated.

Figure 2 illustrates the Queue Selector data structures.
In addition to the QLT, the Queue Selector contains a
Free Queue List and an Address Map. Queues are
allocated from the Free Queue List as needed. When the
transmission of a cell by the Queue Manager causes a
queue to become empty, the identifier for that queue is
returned to the Queue Selector, which adds it back into the
Free Queue List. The Address Map specifies the QLT
entry where a specified queue identifier is stored. It is
used to remove an entry from the QLT when a queue
becomes empty. Specifically, whenever a queue identifier

is returned to the Free Queue List, the Queue Selector
uses the queue identifier to select an entry from the
Address Map. The value returnlcd is then used to
deallocate the specified QLT entry. To make the
implementation more cost-effec h e , the QLT is
implemented not with a CAM, but with a Set-Associative
Memory (SAM). The implementation and its performance
are described in detail, in Section 4.

I AddressMap Queue Lookup Table

QID VPI, VCI Queue ID 0
1 (294) I 0
1 1 I I

4
5 Free Queue List

Figure 2 Queue Selector D;%ta Structures

3.2 Queue Manager (QMGR)
The Queue Manager (QMGR))maintains a queue list

for every. possible virtual path queue and virtual circuit
queue by keeping pointers to the head and tail of the
queues. The actual queues are organized as linked lists
and are stored in the external memory (Cell Store). Each
cell slot in the Cell Store contains one cell and a pointer to
the next cell in the queue. In order lo simplify the design,

I Queue Manager

Figure 3 Queues Maintained by 1:he Queue Manager

the last cell in the queue always points to an empty cell
slot in the Cell Store. Figure 11 shows the queues
maintained by the QMGR for a scaled-down configuration.

5

The queue identifiers generated by the Queue Selector
are used to index the queue list. For an incoming cell, the
QMGR informs the Cell Store to store the cell in the cell
slot which the last cell in the queue points to. The QMGR
also obtains a free slot from the Free Slot Manager and
updates its queue list. The free slot number is written into
the Cell Store along with the cell. For an outgoing cell, the
QMGR sends the cell slot number of the first cell in the
queue to the Cell Store. The pointer stored with the
outgoing cell is used to update the queue list.

3.3 Output Scheduler (QSCHL)
The Output Scheduler (OSCHL) determines the order

in which different non-empty queues are selected for
transmission. Because the chip is designed to support
multiple outputs (up to 16 OC-3 interfaces, in some
configurations), the Output Scheduler has separate
scheduling data structures for each output. Each queue is
assigned a weight from a fixed set of binary weights. For
each output, the OSCHL maintains an array of scheduling
lists, with one list for each weight. This is illustrated in
Figure 4, which shows a scaled-down version of the
OSCHL data structures, configured for four outputs and
four weights. The actual chip supports up to 16 outputs
and 32 weights.

I 3 Nil Nil
output 0

e
e

Nil Nil output 3

Weight 3 2 1 0

Figure 4 Scheduling Wheels in the Output Scheduler

The scheduling lists are organized cyclically and are
referred to as scheduling wheels. The weights for the
different scheduling wheels determine the relative
frequency with which the queues are scheduled. Queues
on the weight 0 wheel are visited twice as often as queues
on the weight 1 wheel, four times as often as queues on
the weight 2 wheel, and so forth. The scheduling
algorithm used by the OSCHL is called the Binary
Scheduling Wheels algorithm and is described in detail in
~ 7 1 .

4 Dynamic Queue Assignment

The ATM cell format allows for as many as 228
distinct virtual circuit connections on a single ATM link.
Real switches implement only a small fraction of the full
spectrum of possibilities, and often impose limitations on
the choices of VPIs and VCIs. Many switches support
only VP or only VC connections and those that only
support VC connections usually restrict the VPI to be
zero. In switches that support VC connections with
different VPIs, it is generally necessary to configure the
switches to specify which VCIs may be used with a given
VPI. The DQM avoids this by using set associative
lookup to assign queues to channels identified by the
combination of a VPI and a VCI.

4.1 Set-Associative Lookup
To obtain the most cost-effective implementation, the

Queue Lookup Table (QLT) in the Queue Selector is
implemented using a Set-Associative Memory or SAM.
SAM’s can be implemented with conventional SRAM
and some auxiliary logic, making them a good deal
cheaper than CAMS. Given a VPI and a VCI, the set-
associative memory in the Queue Selector returns a set of
entries, any one of which could be used for storing
information relating to that VPI and VCI combination. A
set of entries is selected using a subset of the bits of the
VPI and VCI. Each entry contains a valid bit, a tag and a
queue identifier. The tag is formed from the bits of the
VPI and VCI not used to select the set.

When a cell is received by the DQM, its VPI and VCI
are passed to the Queue Selector, which retrieves a set of
entries from the set-associative memory. The tag of the
incoming cell is compared to the tag fields of all entries of
the set in parallel. If the tag field of some valid entry in
the set matches the tag of the incoming cell, the queue
identifier stored in that entry identifies the queue that the
cell should be appended to. If there is no tag match, it
means that no cell belonging to this combination of VPI/
VCI is currently stored in the DQM’s memory, and so an
unused queue identifier should be assigned. To perform
this assignment, the Queue Selector picks an unused entry
from the set returned by the set-associative memory and
obtains an unused queue identifier from the list of free
queue identifiers that it maintains. It then copies the tag of
the cell and the number of the allocated queue into the
selected entry, sets its valid bit and writes it back to the
set associative memory.

When the DQM transmits the last cell from some
queue, the number of that queue is passed to the Queue
Selector which returns the queue to its list of available
queues and clears the valid bit in the corresponding entry

6.

of the set-associative memory. Thus, both queues and
entries in the set-associative memory are used only for
those connections for which the DQM is storing cells.

4.2 Overflow Handling
When a cell is received by the DQM, it is possible

that the set-associative lookup will yield a set of entries,
all of which are in use (have the valid bit set) and none of
which have matching tags. In this case, the cell must be
discarded. This is referred to as overflow. We can make
overflow less frequent by augmenting the set associative
memory with a small Content Addressable Memory
(CAM). The entire VPI: and VCI are used as the key field
for the CAM. In the value field, we store the queue
identifier that is assigned to the virtual circuit. Figure 5
shows the set-associative lookup with CAM.

QID. Queue Identifier
VPI VCI

I

Set-Associative
 looku up . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ - - - - - - - - - - - - - -

I

Figure 5 Set-Associative Lookup with CAM

When a cell enters the DQM, a CAM lookup is
performed in parallel with the set-associative lookup
described earlier. There are several cases that can then
arise: If the set returned by the set-associative memory has
a matching entry, it is used as previously described. If the
set has no matching entry, but the CAM contains a
matching entry, then the queue identified in the matching
CAM entry is used for the arriving cell. In this case, if the
set returned from the set-associative memory has an
unused entry, the information in the CAM entry is
transferred from the CAM entry to the entry in the set-
associative memory, freeing up the CAM entry. If neither
the set returned by the set-associative memory, nor the
CAM has a matching entry, then a new queue is allocated.

If the set has one or more free entries, one of them is
allocated. Otherwise an entry in the CAM is allocated.

The inclusion of the CAM makes overflow less likely,
since it can occur only if there is no room in the selected
set nor in the CAM. In the next subsection, we study the
overflow process and determine how to configure the
SAM and CAM to make the probability of overflow
acceptably small.

4.3 Design Analysis
4.3.1 Overflow Probability

To complete the design of the queue selector, we need
to understand how the configuration of the SAM and
CAM affects the probability of cell loss due to overflows.
Let n be the number of queues supported by the DQM.
Let p be the ratio of n to the numb1:r of storage locations
in the SAM. This quantity bounds the fraction of the
SAM entries that can be in use at one time, and is called
the Zoudfuctor. Let s be the number of entries in each set

of the SAM, let r = be the number of sets in the SAM

and let c be the number of entries in the overflow CAM.
We define the overflow probability to be the

probability that when a cell A arrives on a “new
connection” (one for which no queue is currently
allocated), there is no available entry in either the set-
associative memory or the CAM.

To calculate the probability of overflow, we must
make some assumption about the number and distribution
of “in-use’’ entries in the set-associative memory and the
CAM, at the time cell A arrives. We will assume that the
“in-use” entries are randomly distriliuted in the following
way. Let the set-associative memory and the CAM be
empty initially. Now suppose thal n cells arrive on n
different virtual circuits. Assume that each of the arriving
cells is equally likely to be mapped to any of the sets in
the set-associative memory and that all arrivals are
independent. Now, define xi to be the number of virtual
circuits (out of the original n) that are mapped to set i in
the set associative memory but spill over into the CAM.

Ps

i = O

andfor 1 I h l n - s ,

P r { x i = h } = ph) . (;) s + h . (1 -;)”’””
Let y be the total number of virtual circuits that spill

over from their sets in the set-asso-iative memory to the
CAM. Clearly y = x1 + ... + x r . We can get a
conservative upper bound on y hy treating the xi as
independent random variables. In pitrticular, if we let z be

the random variable whose distribution is obtained by
taking the convolution of the distributions for xl, . . ., x,. ,
then P r { z > c } 2 P r { y 2 c } .

20

10

mean-.5(std drv)

n = 2048
-

- n = 1024

10 20 30 40 50 60 70 80 90 100
Set Size (s)

Figure 6 Recommended CAM Size

Figure 6 shows how z varies with s and the load factor
p . The plot includes curves showing the mean value of z
and the mean plus five standard deviations. These were
calculated numerically using the probability distribution
of xi to obtain its mean and standard deviation, then

multiplying these by r and n/; to obtain the mean and
standard deviation of z. These curves allow us to
determine the values of c, s and p that will lead to good
performance. For example, we can see that if we want to
operate with a load factor of 0.8, then with a set size of s,
we need a CAM size of at least 25 and more realistically,
about 75 to keep overflows acceptably rare. If we want to
operate with a higher load factor, we must increase s, c or
both. With a lower load factor, we can reduce s and c, at
the cost of more memory.

Pr {xi > 0, z > c} = P r { x i > 0) P r { z > clxi > 0}

The overflow probability is no more than

= P r { z > c} Pr{xi > Olz > c }

I min P r { x i > 0} , P r { z > c } [
By the central limit theorem, we can estimate z using

a normal distribution. Let p and cs denote the mean and
standard deviation of xi. For any positive number y,

1 -&2 < - - - . e
Y&

Figure 7 plots the value of this last quantity, as a
function of load factor, for several different choices of s
and c. With a set size and CAM size of 32, the estimated

ovefflow probability is less than one in a million when the
number of storage locations in the SAM is (U 0 . 6 5) ~ If
both are increased to 64, a load factor of nearly 0.8 yields
the same ovefflow probability. For n=8192 , a load
factor of 0.8 implies 10,240 SAM entries. With s=64,
this implies r = 160.

0.35 0.45 0.55 0.65 0.75 0.85 0.95

Load Factor

Figure 7 Overflow Probability

4.3.2 Memory Estimation

80

815 0.L ols 0 . k 017 0.75 ols 0.A 019 0.95 J
Load Factor

Figure 8 Memory Size for Dynamic Queue Assignment

The chip complexity is mainly driven by the on-chip
memory. The memory required to implement dynamic
queue assignment is shown in Figure 8. The calculation
includes the SAM, the Free Queue List and the Address
Map. For n = 8192, a load factor of 0.8 gives a memory
requirement of about 60 Kbytes, while a load factor of 0.5
gives a memory requirement of 80 Kbytes. Note that the
load factor affects only the SAM, but not the Free Queue
List or the Address Map. When the load factor is 0.5, the
memory required for the SAM is 1/3 of the total.

8

Figure 7 shows tht: memory area estimation for a 0.35
micron CMOS process. Combining the results in Figure 8
and Figure7, with 10:24 queues and a load factor of 0.8,
the chip area consumed by dynamic queue assignment is
less than 2 mm2. For 8192 queues, the area is
approximately 17 mm2, or less than 20% of the area of a
100 mm2 chip. The analysis indicates that the number of
queues could be increased to 16K without consuming an
excessive fraction of the chip area. 64K queues can be
supported in a 0.18 micron process.

221 ' 1

4t / 1
z - ' I
0 IO 20 30 40 50 60 70 80

Memory Size (KByte)

Figure 9 Memory Area Estimation (0.35 Micron)

4.4 Overbooking of Queue Data Structures
Because the DQM assigns queues to virtual circuits

dynamically, it is possible to support a larger number of
virtual circuits than could be supported if queues were
statically bound to specific virtual circuit identifiers. That
is, we can overbook the DQM's data structures, taking a
risk that on occasion we will not have an available queue
to handle an arriving cell, forcing the cell to be discarded.
In order to exploit the potential for overbooking, it is
important to understand how many virtual circuits can be
supported with a given number of queues. Here, we make
some basic observations, leaving a detailed analysis of
overbooking to a future: study.

Note first that if a DQM supports n queues, there will
always be an available queue if the number of queued
cells is < n . For non-bursty traffic, the queue length
rarely exceeds even 100 cells for traffic loads of 95% or
less. Thus, for n = 8192, the probability is exceedingly
small that an arriving cell will not find an available queue,
even if the number of virtual circuits using the link is over
one million.

For bursty traffic, it is also possible to overbook the
queues extensively. Suppose we have m identical

independent on-off bursty source:; with m > n and an
average time of T between the start of successive bursts
(from any single source). If the input traffic (averaged
over periods longer than 7') is less than the link rate, then
the average rate from each individual source is the link
rate divided by m, which is small if n is reasonably large.
Typical virtual circuits have peak rates of perhaps 20
times the average rate. For n = 8192, this results in virtual
circuit peak rates that are less than 0.25% of the link rate.
For such traffic, the queue rarely accumulates a
significant backlog of cells, so again, an arriving cell will
generally find an available queue.

Suppose however, that we have sources with peak
rates that are much larger than their average rates. In
particular, assume that bursts arrive independently and
instantaneously, with an exponentially distributed time
between bursts from any specific source. Also, assume
that burst lengths are exponentially distributed and that
each burst is assigned a separate queue (even two bursts
coming from the same source), and that all non-empty
queues are drained at a rate that is inversely proportional
to the number of non-empty queues (modeling a round-
robin queue scheduler). This queueing system can be
modeled by a birth-and-death process, in which the state
index corresponds to the number 01' non-empty queues. If
we let the number of sources go to infinity, while keeping
the time between successive burst arrivals constant, this
birth-and-death process becomes identical to that for the
MM/1 queue. This implies (among other things) that the
probability that there are more than j non-empty queues is
p '+ l , where p is the normalized traffic intensity for the
queueing system. For p = 0.95, this probability is less
than for all j > 268. These results show that the
DQM queues can be overbooked by a large factor, if n is
sufficiently large. With smaller n, the potential for
overbooking is reduced somewhat, but even with as few
as 1024, we are unlikely to run out of queues under any
realistic traffic conditions.

5 Summary
In this paper, we have described a dynamic queue

manager for gigabit ATM networks and presented a
detailed design and analysis of the dynamic queue
selection component. The queue selection uses a set-
associative memory and overflow CAM to enable flexible
assignment of virtual path and virtual circuit connections
to queues. This eliminates the need to explicitly configure
which VCIs can be used with which VPIs and allows the
DQM chip to make optimal use of its per channel data
structures. This in turn, makes it feasible to overbook of
the DQM's queue data structures.

9

References [I61 A. A. Lazar, A. Temple, and R. Gidron, “A Metropol-
itan Area Network Based on Asynchronous Time
Sharing,” IEEE ICC, June 1989, pp. 630-634.

[171 Yuhua Chen, J. S. Turner, “Design of a Weighted Fair
Queueing Cell Scheduler for ATM Networks,” sub-
mitted to GLOBECOM ’98, 1998.

Tom Chaney, J. Andrew Fingerhut, Margaret Flucke,
J. S. Turner, “Design of a Gigabit ATM Switch”,
INFOCOM 1997.

Manolis Katevenis, Stefanos Sidiropoulos, and Costas
Courcoubetis, “Weighted Round-Robin Cell Multi-
plexing in a General-purpose ATM Switch Chip,”
IEEE Journal on Selected Areas in Communication,

Allyn Romanow, Sally Floyd, “Dynamics of TCP
Traffic over ATM Networks,” IEEE Journal on
Selected Areas in Communications, vol. 13, no. 4,
May 1995, pp, 633-641.
J. S. Tumer, “Maintaining High Throughput During
Overload in ATM Switches,” INFOCOM’96, pp.

The ATM Forum Technical Committee, “UTOPIA
Level 2, v l .U’, af-phy-0039.000.
Haoran Dum, J. W. Lockwood, et al., “A High-Per-
formance OC- 12/0C-48 Queue Design Prototype for
Input -Buffered ATM Switches,” INFOCOM’97.

J. C. R. Bennett, D. C. Stephens and H. Zhang, “High
Speed, Scalable, and Accurate Implementation of
Packet Fair Queueing Algorithms in ATM Net-
works”, Proceedings of ICNP’97, pp7-14.
Dallas E. Wrege, Jorg Liebeherr, “A Near-Optimal
Packet Scheduler for QoS Networks,” INFO-
COM’97.

Yoshihiro Ohba, “QLWFQ: A Queue Length Based
Weighted Fair Queueing Algorithm in ATM net-
works,” INFOCOM’ 97.
H. Jonathan Chao, “An ATM Queue Manager Han-
dling Multiple Delay and Loss Priorities,” IEEE/
ACM Tran. on Networking, vol. 3, no. 6, Dec. 1995,

Maurizio Casoni, J. S. Turner, “Improved Analysis of
Early Packet Discard,” Proceedings of the Intema-
tional Teletraffic Congress,
R. Chipalkatti, J. F. Kurose, and D. Towsley, “Sched-
uling Policies for Real-Time and Non-real-Time
Traffic in a Statistical Multiplexer,” Proc. 1989
GLOBECOM conf., 1989, pp 774-783.
Massoud R. Hashemi, Albert0 Leon-Garcia, “A Gen-
eral Purpose Cell SequencedScheduler for ATM
Switches,” INFOCOM’97.
Paul Landsberg, Charles Zukowski, “Generic Queue
Scheduling: Concepts and VLSI,” INFOCOM’94,

Yoshihiro Ohba, “QLWFQ: A Queue Length Based
Weighted Fair Queueing Algorithm in ATM net-
works ,” INFOCOM’ 97.

vol. 9, NO. 8, Oct. 1991, pp. 1265-1279.

287-295.

pp 652-659.

pp. 1438-1445.

10

