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Abstract 
Today, ATM networks are being used to carry bursty data 
traffic with large and highly variable transmission rates, 
and burst sizes ranging from kilobytes to megabytes. 
Obtaining good statistical multiplexing performance for 
this kind of traffic requires much larger buffers than are 
needed for more predictable appIications or for bursty data 
applications with more limited burst transmission rates. 
Large buffers lead to large queueing delays, making it 
necessary for switches to implement more sophisticated 
queueing mechanisms in order to deliver acceptable 
quality of service (QoS). This paper describes a 2.4 Gb/s 
ATM queue management chip that has practically 
unlimited buffer scaling and also supports dynamic per 
VC queueing, an efficiently implementable form of 
weighted round-robin scheduling, a novel packet-level 
discarding algorithm and the ability to support multiple 
output links, We give a detailed description of the 
dynamic queue assignment mechanism, which allows the 
chip to support both virtual path and virtual circuit 
channels. This mechanism is self-configuring, eliminating 
the need to configure the range of VCIs associated with a 
given VPI, and makes optimal use of the chip’s per- 
channel data structures, since these data structures can be 
assigned only when cells are present in the queues. 

1 Introduction 
When ATM network technology was first developed 

in the 1980s, its developers envisioned a comprehensive 
traffic management methodology, with explicit 
reservation of resources, end-to-end pacing of user data 
streams to conform to resource reservations and network- 
level enforcement mechanisms to protect against 
inadvertent or intentional violation of resource 
reservations. In the context of such a methodology, 
efficient statistical multiplexing performance could be 
achieved without large amounts of buffering in the 
network and with very simple queueing mechanisms. 

As ATM was deployed in the 1990s, the original 
expectations for traffic management were found to be 
unrealistic. ATM is now being used largely to support 
internet data traffic which is highly unpredictable and for 
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which the traffic management philosophy of ATM is 
difficult to apply. In the current application context, 
resources are generally not explicitly reserved, end 
systems do not pace their transmissions and most network 
equipment cannot enforce resource usage limits. In this 
environment, to obtain good statistical multiplexing 
performance and high link utilization, one needs large 
buffers. In particular, one needs buffers that are at least 
comparable, and preferably an order of magnitude larger 
than user data bursts, which range in size from kilobytes 
to megabytes. Unfortunately, the use of large buffers with 
simple FIFO queueing disciplines leads to poor 
performance for real-time traffic and allows “greedy” 
applications to appropriate an unfair portion of network 
resources: Providing good quality of service (QoS) to real- 
time applications and fair treatment to bursty data 
applications requires more sophisticated queueing and cell 
scheduling mechanisms [6][7][8] [91[ lo][ 131 [14] [ 151. 

This paper describes a design for an ATM queue 
manager that supports separate queues for each 
application data stream and buffer sizes that are limited 
only by the cost of memory. The design can be 
implemented with a single application-specific integrated 
circuit in 0.35 micron CMOS technology together with 
SRAM components. The design will support a total 
output rate of 2.4 Gb/s and can support either a single OC- 
48 link, or a combination of lower speed links. 

Section 2 provides an overview of the ATM dynamic 
queue management chip, detailing its principle features. 
Section 3 describes the architecture and operation of the 
Dynamic Queue Manager in more detail. Section 4 
contains a detailed description of the dynamic queue 
assignment mechanism, which allows the chip to support 
both VP and VC connections without explicit 
configuration of VCI ranges for individual VPIs. The 
dynamic queue management mechanism also makes 
optimal use of the chip’s per channel data structures, since 
it can assign these data structures to channels only when 
data is present. This makes it possible for the chip to 
support more connections than it has per channel data 
structures. 
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2 Overview of Dynamic Queue Manager 
The Dynamic Queue Manager (DQM) is designed to 

connect to the output side of a high performance ATM 
switch, such as the Washington University Gigabit 
Switch, described in [l]. The major features of the DQM 
chip are listed below: 

Dynamic Queue Assignment -- The DQM 
implements per VC queueing using dynamic assignment, 
which allows the chip to support virtual path and virtual 
circuit connections with arbitrary choices of VPIs and 
VCIs and no explicit configuration of VCI ranges to 
particular VPIs. This greatly simplifies the use of the chip 
and enables optimal use of the chip’s per channel data 
structures, 

Unlimited Buffer Scaling -- The DQM chip is 
designed so that the cell buffer can be scaled up to very 
large sizes without increasing the chip complexity 
significantly. Both the cell buffer and all information to 
maintain the cell buffer (that is, all the links for the linked 
list queues and the free slot list) are stored in external 
memory. The only constraint that the DQM chip places on 
the buffer capacity is through the choice of pointers. With 
20 bit pointers, the chip can support buffer sizes over 50 
Mbytes, 24 bit pointers would allow for up to 800 Mbytes. 
For all practical purposes, the buffer capacity is not 
constrained by the DQM chip. 

Efficient Implementation of Weighted Round- 
Robin Scheduling -- The DQM chip implements 
weighted round robin scheduling [2] using a novel 
approach we call the Binary Scheduling Wheels (BSW) 
algorithm [17]. The BSW algorithm is well-suited to 
hardware implementation and allows cells to be scheduled 
and forwarded in essentially constant time. Binary 
weights can be assigned to individual virtual circuit 
connections. These weights determine the relative 
frequency with which cells are forwarded, allowing link 
bandwidth to be allocated appropriately during congestion 
periods. With 32 distinct weights, the BSW algorithm can 
assign bandwidth in amounts ranging from 2.4 Gb/s to 
less than one bit per second. Unlike naive 
implementations of weighted round-robin scheduling, the 
BSW algorithm interleaves cells from different channels 
as much as possible, minimizing the burstiness of the 
output data streams. The algorithm can be implemented in 
a very cost-effective way, requiring just a small increment 
in cost over a simple two priority level design. 

Packet Level Discarding for Per VC Queues -- To 
preserve packet integrity during overload, ATM switches 
often use packet level discard mechanisms such as Early 
Packet Discard [3][4], which were designed for use with 
FIFO queues. New algorithms are needed for per VC 
queueing, to minimize memory usage and preserve 

fairness and QoS properties of output scheduling 
algorithms. The DQM chip incorporates a new packet 
level discarding scheme for per VC queues, called the 
Weighted Fair Goodput (WFG) algorithm. The 
combination of WFG and BSW allows all virtual circuits 
to forward cells at reserved rates during overload periods 
and ensures that “well-behaved” virtual circuits (those 
that do not exceed their allocated rate) do not lose any 
data, and that data is discarded from “misbehaving” 
virtual circuits on a packet-by-packet basis, avoiding 
wasted link capacity during overload periods. 

Efficient Maintenance of Free Space List in 
External Memory -- At gigabit speeds, the bandwidth of 
the external memory used by the DQM to store cells is a 
precious resource. A certain portion of this bandwidth 
must be used to manage the free space list that is stored in 
the external memory, along with the waiting cells. The 
DQM chip incorporates an on-chip cache that allows the 
free space list to be maintained using only memory cycles 
that would otherwise go unused. This cache stores the 
location of a number of available cell storage slots. 
Storage slots can usually be assigned to arriving cells 
from the cache and departing cells can usually return their 
cell slots to the cache, rather than accessing the off-chip 
free space list. The off-chip list is only accessed to refresh 
or free up space in the cache, but these operations can be 
performed during periods when there are guaranteed to be 
unused memory cycles available. 

3 Operation of Dynamic Queue Manager 

I- Dynamic Queue Manager 

Figure 1 Block Diagram of the Dynamic Queue Manager 

Figure 5 shows a block diagram of the DQM chip and 
its associated memory. The solid line illustrates the data 
flow from the switch fabric to the output links. ATM cells 
are received on a 32-bit wide interface, sirhilslr to the 
UTOPIA interface, used for connecting ATM devices to 
SONET transmission circuits [5]. The DQM stores cells 



in the external memory and forwards them to one of 
possibly several output links. To support the required 
output bandwidth of 2.4 Gb/s, the chip operates with an 
internal clock speed of 120 MHz. This allows cells to be 
received at a rate that is roughly 1.5 times the cell rate of 
an OC-48 link. 

There are nine funlctional blocks: the Queue Selector, 
the Queue Manager, the Output Scheduler, the Free Slot 
Manager, the Cell Store, the Free Slot List, the Input 
Master, the Output Master, and the Memory Controller. 
The Queue Selector dynamically assigns queues to virtual 
circuits. The Queue Manager maintains a list of all 
queues, keeping track of the first and the last cell in each 
queue. The Output Scheduler schedules the transmission 
of cells from various channels and allocates the chip’s 
output bandwidth among different output links. The Cell 
Store buffers all inconling cells before transmission. The 
Free Slot List stores unused cell slots in the Cell Store and 
the Free Slot Manager maintains an on-chip cache and 
manages the Free Slot List. The Input Master receives 
cells from the switch and retrieves control information. 
The Memory Controller interfaces to the external memory 
and handles the necessary format conversions, needed to 
map cells into memory. The Output Master forwards cells 
to the output links. The major blocks are described below. 

3.1 Queue Selector (QSEL) 
The Queue Selector (QSEL) maps the VPI and VCI 

fields of incoming cells to dynamically assigned queue 
identifiers. It contains a Queue Lookup Table (QLT), 
which operates like a Content-Addressable Memory 
(CAM). Logically, one can think of the QLT as a set of 
entries, each containing a (VP1,VCI) and a queue 
identifier. When a cell arrives, the VPI and VCI fields of 
the cell are compared to the stored entries. If a matching 
entry is found, the queue identifier in the entry gives the 
number of the queue that the cell is to be appended to. If 
there is no matching entry, a free queue is allocated and a 
new entry is created, and initialized with the VPI and VCI 
of the incoming cell and the identifier of the queue just 
allocated. 

Figure 2 illustrates the Queue Selector data structures. 
In addition to the QLT, the Queue Selector contains a 
Free Queue List and an Address Map. Queues are 
allocated from the Free Queue List as needed. When the 
transmission of a cell by the Queue Manager causes a 
queue to become empty, the identifier for that queue is 
returned to the Queue Selector, which adds it back into the 
Free Queue List. The Address Map specifies the QLT 
entry where a specified queue identifier is stored. It is 
used to remove an entry from the QLT when a queue 
becomes empty. Specifically, whenever a queue identifier 

is returned to the Free Queue List, the Queue Selector 
uses the queue identifier to select an entry from the 
Address Map. The value returnlcd is then used to 
deallocate the specified QLT entry. To make the 
implementation more cost-effec h e ,  the QLT is 
implemented not with a CAM, but with a Set-Associative 
Memory (SAM). The implementation and its performance 
are described in detail, in Section 4. 

I AddressMap Queue Lookup Table 

QID VPI, VCI Queue ID 0 
1 (294) I 0 
1 1  I I 

4 
5 Free Queue List 

Figure 2 Queue Selector D;%ta Structures 

3.2 Queue Manager (QMGR) 
The Queue Manager (QMGR) )maintains a queue list 

for every. possible virtual path queue and virtual circuit 
queue by keeping pointers to the head and tail of the 
queues. The actual queues are organized as linked lists 
and are stored in the external memory (Cell Store). Each 
cell slot in the Cell Store contains one cell and a pointer to 
the next cell in the queue. In order lo simplify the design, 

I Queue Manager 

Figure 3 Queues Maintained by 1:he Queue Manager 

the last cell in the queue always points to an empty cell 
slot in the Cell Store. Figure 11 shows the queues 
maintained by the QMGR for a scaled-down configuration. 
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The queue identifiers generated by the Queue Selector 
are used to index the queue list. For an incoming cell, the 
QMGR informs the Cell Store to store the cell in the cell 
slot which the last cell in the queue points to. The QMGR 
also obtains a free slot from the Free Slot Manager and 
updates its queue list. The free slot number is written into 
the Cell Store along with the cell. For an outgoing cell, the 
QMGR sends the cell slot number of the first cell in the 
queue to the Cell Store. The pointer stored with the 
outgoing cell is used to update the queue list. 

3.3 Output Scheduler (QSCHL) 
The Output Scheduler (OSCHL) determines the order 

in which different non-empty queues are selected for 
transmission. Because the chip is designed to support 
multiple outputs (up to 16 OC-3 interfaces, in some 
configurations), the Output Scheduler has separate 
scheduling data structures for each output. Each queue is 
assigned a weight from a fixed set of binary weights. For 
each output, the OSCHL maintains an array of scheduling 
lists, with one list for each weight. This is illustrated in 
Figure 4, which shows a scaled-down version of the 
OSCHL data structures, configured for four outputs and 
four weights. The actual chip supports up to 16 outputs 
and 32 weights. 

I 3 Nil Nil 
output 0 

e 
e 

Nil Nil output 3 

Weight 3 2 1 0 

Figure 4 Scheduling Wheels in the Output Scheduler 

The scheduling lists are organized cyclically and are 
referred to as scheduling wheels. The weights for the 
different scheduling wheels determine the relative 
frequency with which the queues are scheduled. Queues 
on the weight 0 wheel are visited twice as often as queues 
on the weight 1 wheel, four times as often as queues on 
the weight 2 wheel, and so forth. The scheduling 
algorithm used by the OSCHL is called the Binary 
Scheduling Wheels algorithm and is described in detail in 
~ 7 1 .  

4 Dynamic Queue Assignment 

The ATM cell format allows for as many as 228 
distinct virtual circuit connections on a single ATM link. 
Real switches implement only a small fraction of the full 
spectrum of possibilities, and often impose limitations on 
the choices of VPIs and VCIs. Many switches support 
only VP or only VC connections and those that only 
support VC connections usually restrict the VPI to be 
zero. In switches that support VC connections with 
different VPIs, it is generally necessary to configure the 
switches to specify which VCIs may be used with a given 
VPI. The DQM avoids this by using set associative 
lookup to assign queues to channels identified by the 
combination of a VPI and a VCI. 

4.1 Set-Associative Lookup 
To obtain the most cost-effective implementation, the 

Queue Lookup Table (QLT) in the Queue Selector is 
implemented using a Set-Associative Memory or SAM. 
SAM’s can be implemented with conventional SRAM 
and some auxiliary logic, making them a good deal 
cheaper than CAMS. Given a VPI and a VCI, the set- 
associative memory in the Queue Selector returns a set of 
entries, any one of which could be used for storing 
information relating to that VPI and VCI combination. A 
set of entries is selected using a subset of the bits of the 
VPI and VCI. Each entry contains a valid bit, a tag and a 
queue identifier. The tag is formed from the bits of the 
VPI and VCI not used to select the set. 

When a cell is received by the DQM, its VPI and VCI 
are passed to the Queue Selector, which retrieves a set of 
entries from the set-associative memory. The tag of the 
incoming cell is compared to the tag fields of all entries of 
the set in parallel. If the tag field of some valid entry in 
the set matches the tag of the incoming cell, the queue 
identifier stored in that entry identifies the queue that the 
cell should be appended to. If there is no tag match, it 
means that no cell belonging to this combination of VPI/ 
VCI is currently stored in the DQM’s memory, and so an 
unused queue identifier should be assigned. To perform 
this assignment, the Queue Selector picks an unused entry 
from the set returned by the set-associative memory and 
obtains an unused queue identifier from the list of free 
queue identifiers that it maintains. It then copies the tag of 
the cell and the number of the allocated queue into the 
selected entry, sets its valid bit and writes it back to the 
set associative memory. 

When the DQM transmits the last cell from some 
queue, the number of that queue is passed to the Queue 
Selector which returns the queue to its list of available 
queues and clears the valid bit in the corresponding entry 
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of the set-associative memory. Thus, both queues and 
entries in the set-associative memory are used only for 
those connections for which the DQM is storing cells. 

4.2 Overflow Handling 
When a cell is received by the DQM, it is possible 

that the set-associative lookup will yield a set of entries, 
all of which are in use (have the valid bit set) and none of 
which have matching tags. In this case, the cell must be 
discarded. This is referred to as overflow. We can make 
overflow less frequent by augmenting the set associative 
memory with a small Content Addressable Memory 
(CAM). The entire VPI: and VCI are used as the key field 
for the CAM. In the value field, we store the queue 
identifier that is assigned to the virtual circuit. Figure 5 
shows the set-associative lookup with CAM. 

QID. Queue Identifier 
VPI VCI 

I 

Set-Associative 
 looku up . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ - - - - - - - - - - - - - -  

I 

Figure 5 Set-Associative Lookup with CAM 

When a cell enters the DQM, a CAM lookup is 
performed in parallel with the set-associative lookup 
described earlier. There are several cases that can then 
arise: If the set returned by the set-associative memory has 
a matching entry, it is used as previously described. If the 
set has no matching entry, but the CAM contains a 
matching entry, then the queue identified in the matching 
CAM entry is used for the arriving cell. In this case, if the 
set returned from the set-associative memory has an 
unused entry, the information in the CAM entry is 
transferred from the CAM entry to the entry in the set- 
associative memory, freeing up the CAM entry. If neither 
the set returned by the set-associative memory, nor the 
CAM has a matching entry, then a new queue is allocated. 

If the set has one or more free entries, one of them is 
allocated. Otherwise an entry in the CAM is allocated. 

The inclusion of the CAM makes overflow less likely, 
since it can occur only if there is no room in the selected 
set nor in the CAM. In the next subsection, we study the 
overflow process and determine how to configure the 
SAM and CAM to make the probability of overflow 
acceptably small. 

4.3 Design Analysis 
4.3.1 Overflow Probability 

To complete the design of the queue selector, we need 
to understand how the configuration of the SAM and 
CAM affects the probability of cell loss due to overflows. 
Let n be the number of queues supported by the DQM. 
Let p be the ratio of n to the numb1:r of storage locations 
in the SAM. This quantity bounds the fraction of the 
SAM entries that can be in use at one time, and is called 
the Zoudfuctor. Let s be the number of entries in each set 

of the SAM, let r = be the number of sets in the SAM 

and let c be the number of entries in the overflow CAM. 
We define the overflow probability to be the 

probability that when a cell A arrives on a “new 
connection” (one for which no queue is currently 
allocated), there is no available entry in either the set- 
associative memory or the CAM. 

To calculate the probability of overflow, we must 
make some assumption about the number and distribution 
of “in-use’’ entries in the set-associative memory and the 
CAM, at the time cell A arrives. We will assume that the 
“in-use” entries are randomly distriliuted in the following 
way. Let the set-associative memory and the CAM be 
empty initially. Now suppose thal n cells arrive on n 
different virtual circuits. Assume that each of the arriving 
cells is equally likely to be mapped to any of the sets in 
the set-associative memory and that all arrivals are 
independent. Now, define xi to be the number of virtual 
circuits (out of the original n)  that are mapped to set i in 
the set associative memory but spill over into the CAM. 

Ps 

i = O  

andfor 1 I h l n - s  , 

P r { x i  = h }  = ph) . ( ; ) s + h .  ( 1  -;)”’”” 
Let y be the total number of virtual circuits that spill 

over from their sets in the set-asso-iative memory to the 
CAM. Clearly y = x1 + ... + x r  . We can get a 
conservative upper bound on y hy treating the xi as 
independent random variables. In pitrticular, if we let z be 



the random variable whose distribution is obtained by 
taking the convolution of the distributions for xl, . . ., x,. , 
then P r { z > c }  2 P r { y 2 c }  . 

20 

10 

mean-.5(std drv ) 

n = 2048 
- 

- n = 1024 

10 20 30 40 50 60 70 80 90 100 
Set Size (s) 

Figure 6 Recommended CAM Size 

Figure 6 shows how z varies with s and the load factor 
p . The plot includes curves showing the mean value of z 
and the mean plus five standard deviations. These were 
calculated numerically using the probability distribution 
of xi  to obtain its mean and standard deviation, then 

multiplying these by r and n/; to obtain the mean and 
standard deviation of z. These curves allow us to 
determine the values of c, s and p that will lead to good 
performance. For example, we can see that if we want to 
operate with a load factor of 0.8, then with a set size of s, 
we need a CAM size of at least 25 and more realistically, 
about 75 to keep overflows acceptably rare. If we want to 
operate with a higher load factor, we must increase s, c or 
both. With a lower load factor, we can reduce s and c, at 
the cost of more memory. 

Pr  {xi > 0, z > c} = P r  { x i  > 0 )  P r { z  > clxi > 0} 

The overflow probability is no more than 

= P r  { z  > c} Pr{xi  > Olz > c }  

I min P r { x i  > 0} , P r  { z  > c }  [ 
By the central limit theorem, we can estimate z using 

a normal distribution. Let p and cs denote the mean and 
standard deviation of xi.  For any positive number y, 

1 -&2 < - - - . e  
Y& 

Figure 7 plots the value of this last quantity, as a 
function of load factor, for several different choices of s 
and c. With a set size and CAM size of 32, the estimated 

ovefflow probability is less than one in a million when the 
number of storage locations in the SAM is ( U 0 . 6 5 ) ~  If 
both are increased to 64, a load factor of nearly 0.8 yields 
the same ovefflow probability. For n=8192 ,  a load 
factor of 0.8 implies 10,240 SAM entries. With s=64, 
this implies r = 160. 

0.35 0.45 0.55 0.65 0.75 0.85 0.95 

Load Factor 

Figure 7 Overflow Probability 

4.3.2 Memory Estimation 

80 

815 0.L ols 0 . k  017 0.75 ols 0.A 019 0.95 J 
Load Factor 

Figure 8 Memory Size for Dynamic Queue Assignment 

The chip complexity is mainly driven by the on-chip 
memory. The memory required to implement dynamic 
queue assignment is shown in Figure 8. The calculation 
includes the SAM, the Free Queue List and the Address 
Map. For n = 8192, a load factor of 0.8 gives a memory 
requirement of about 60 Kbytes, while a load factor of 0.5 
gives a memory requirement of 80 Kbytes. Note that the 
load factor affects only the SAM, but not the Free Queue 
List or the Address Map. When the load factor is 0.5, the 
memory required for the SAM is 1/3 of the total. 
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Figure 7 shows tht: memory area estimation for a 0.35 
micron CMOS process. Combining the results in Figure 8 
and Figure7, with 10:24 queues and a load factor of 0.8, 
the chip area consumed by dynamic queue assignment is 
less than 2 mm2. For 8192 queues, the area is 
approximately 17 mm2, or less than 20% of the area of a 
100 mm2 chip. The analysis indicates that the number of 
queues could be increased to 16K without consuming an 
excessive fraction of the chip area. 64K queues can be 
supported in a 0.18 micron process. 

221 ' 1 

4t / 1 
z - '  I 
0 IO 20 30 40 50 60 70 80 

Memory Size (KByte) 

Figure 9 Memory Area Estimation (0.35 Micron) 

4.4 Overbooking of Queue Data Structures 
Because the DQM assigns queues to virtual circuits 

dynamically, it is possible to support a larger number of 
virtual circuits than could be supported if queues were 
statically bound to specific virtual circuit identifiers. That 
is, we can overbook the DQM's data structures, taking a 
risk that on occasion we will not have an available queue 
to handle an arriving cell, forcing the cell to be discarded. 
In order to exploit the potential for overbooking, it is 
important to understand how many virtual circuits can be 
supported with a given number of queues. Here, we make 
some basic observations, leaving a detailed analysis of 
overbooking to a future: study. 

Note first that if a DQM supports n queues, there will 
always be an available queue if the number of queued 
cells is < n  . For non-bursty traffic, the queue length 
rarely exceeds even 100 cells for traffic loads of 95% or 
less. Thus, for n = 8192, the probability is exceedingly 
small that an arriving cell will not find an available queue, 
even if the number of virtual circuits using the link is over 
one million. 

For bursty traffic, it is also possible to overbook the 
queues extensively. Suppose we have m identical 

independent on-off bursty source:; with m > n  and an 
average time of T between the start of successive bursts 
(from any single source). If the input traffic (averaged 
over periods longer than 7') is less than the link rate, then 
the average rate from each individual source is the link 
rate divided by m, which is small if n is reasonably large. 
Typical virtual circuits have peak rates of perhaps 20 
times the average rate. For n = 8192, this results in virtual 
circuit peak rates that are less than 0.25% of the link rate. 
For such traffic, the queue rarely accumulates a 
significant backlog of cells, so again, an arriving cell will 
generally find an available queue. 

Suppose however, that we have sources with peak 
rates that are much larger than their average rates. In 
particular, assume that bursts arrive independently and 
instantaneously, with an exponentially distributed time 
between bursts from any specific source. Also, assume 
that burst lengths are exponentially distributed and that 
each burst is assigned a separate queue (even two bursts 
coming from the same source), and that all non-empty 
queues are drained at a rate that is inversely proportional 
to the number of non-empty queues (modeling a round- 
robin queue scheduler). This queueing system can be 
modeled by a birth-and-death process, in which the state 
index corresponds to the number 01' non-empty queues. If 
we let the number of sources go to infinity, while keeping 
the time between successive burst arrivals constant, this 
birth-and-death process becomes identical to that for the 
MM/1 queue. This implies (among other things) that the 
probability that there are more than j non-empty queues is 
p '+ l ,  where p is the normalized traffic intensity for the 
queueing system. For p = 0.95, this probability is less 
than for all j > 268. These results show that the 
DQM queues can be overbooked by a large factor, if n is 
sufficiently large. With smaller n, the potential for 
overbooking is reduced somewhat, but even with as few 
as 1024, we are unlikely to run out of queues under any 
realistic traffic conditions. 

5 Summary 
In this paper, we have described a dynamic queue 

manager for gigabit ATM networks and presented a 
detailed design and analysis of the dynamic queue 
selection component. The queue selection uses a set- 
associative memory and overflow CAM to enable flexible 
assignment of virtual path and virtual circuit connections 
to queues. This eliminates the need to explicitly configure 
which VCIs can be used with which VPIs and allows the 
DQM chip to make optimal use of its per channel data 
structures. This in turn, makes it feasible to overbook of 
the DQM's queue data structures. 
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