
1

Design of a Weighted Fair Queueing Cell Scheduler
 for ATM Networks

Yuhua Chen Jonathan S. Turner
 Department of Electrical Engineering Department of Computer Science
 Washington University Washington University
 St. Louis, MO 63130 St. Louis, MO 63130
 Tel: (314) 935-5579 Tel: (314) 935-8552
 E-mail: yuhua@arl.wustl.edu E-mail: jst@cs.wustl.edu
 Fax: (314) 935-7302 Fax: (314)935-7302

Abstract
Today, ATM networks are being used to carry bursty data traffic with large and highly variable
rates, and burst sizes ranging from kilobytes to megabytes. Obtaining good statistical
multiplexing performance for this kind of traffic requires much larger buffers than are needed
for more predictable applications or for bursty data applications with more limited burst
transmission rates. Large buffers leads to large queueing delays, making it necessary for
switches to implement more sophisticated queueing mechanisms in order to deliver acceptable
quality of service. This paper describes a 2.4 Gb/s ATM queue management chip that has
practically unlimited buffer scaling and which supports dynamic per VC queueing, an efficiently
implementable form of weighted round-robin scheduling, a novel packet-level discarding
algorithm and the ability to support multiple output links. We give a detailed description of our
weighted round-robin scheduling method, which we call the Binary Scheduling Wheels (BSW)
algorithm. The BSW algorithm is well-suited to hardware implementation. It allows cells to be
scheduled in essentially constant time, and only requires a small increment in cost over a simple
two level priority design.

1 Introduction
When ATM network technology was first developed in the 1980s, its developers envisioned

a comprehensive traffic management methodology, with explicit reservation of resources, end-
to-end pacing of user data streams to conform to resource reservations and network-level
enforcement mechanisms to protect against inadvertent or intentional violation of resource
reservations. In the context of such a methodology, efficient statistical multiplexing performance
could be achieved without large amounts of buffering in the network and with very simple
queueing mechanisms.

As ATM was deployed in the 1990s, the original expectations for traffic management were
found to be unrealistic. ATM is now being used largely to support internet data traffic which is
highly unpredictable and for which the traffic management philosophy of ATM is difficult to
apply. In the current application context, resources are generally not explicitly reserved, end
systems do not pace their transmissions and most network equipment cannot enforce resource
usage limits. In this environment, to obtain good statistical multiplexing performance and high
link utilization, one needs large buffers. In particular, one needs buffers that are at least
comparable, and preferably an order of magnitude larger than user data bursts, which range in
size from kilobytes to megabytes. Unfortunately, the use of large buffers with simple FIFO
queueing disciplines leads to poor performance for real-time traffic and allows "greedy"
applications to appropriate an unfair portion of network resources. Providing good quality of

2

service (QoS) to real-time applications and fair treatment to bursty data applications requires
more sophisticated queueing and cell scheduling mechanisms [6][7][8][9][10].

This paper describes a design for an ATM queue manager that supports separate queues for
each application data stream and buffer sizes that are limited only by the cost of memory. The
design can be implemented with a single application-specific integrated circuit in 0.35 micron
CMOS technology together with SRAM components. The design will support a total output rate
of 2.4 Gb/s and can support either a single OC-48 link, or a combination of lower speed links.

Section 2 provides an overview of the ATM queue management chip, detailing its principle
features and its overall architecture and operation. Section 3 contains a detailed description of
our novel implementation of weighted round-robin scheduling called the Binary Scheduling
Wheels (BSW) algorithm. The BSW algorithm is well-suited to hardware implementation and
requires only a small increment in hardware complexity over a simple two priority design. It
schedules and forward cells in essentially constant time, and can accommodate a large range of
weights.

2 Overview of the Dynamic Queue Manager
The Dynamic Queue Manager (DQM) is designed to connect to the output side of a high

performance ATM switch, such as the Washington University Gigabit Switch, described in [1].
The major features of the DQM chip are listed below:

Dynamic Queue Assignment -- The DQM implements per VC queueing using dynamic
assignment, which allows the chip to support virtual path and virtual circuit connections with
arbitrary choices of VPIs and VCIs and no explicit configuration of VCI ranges to particular
VPIs. This greatly simplifies the use of the chip and enables optimal use of the chip’s per
channel data structures. Details can be found in [11].

Unlimited Buffer Scaling -- The DQM chip is designed so that the cell buffer can be scaled
up to very large sizes without increasing the chip complexity significantly. Both the cell buffer
and all information to maintain the cell buffer (that is, all the links for the linked list queues and
the free slot list) are stored in external memory. The only constraint that the DQM chip places
on the buffer capacity is through the choice of pointers. With 20 bit pointers, the chip can
support buffer sizes over 50 Mbytes, 24 bit pointers would allow for up to 800 Mbytes. For all
practical purposes, the buffer capacity is not constrained by the DQM chip.

Efficient Implementation of Weighted Round-Robin Scheduling -- The DQM chip
implements weighted round robin scheduling [2] using a novel approach we call the Binary
Scheduling Wheels (BSW) algorithm. The BSW algorithm is allows cells to be scheduled and
forwarded in essentially constant time. Power of 2 weights can be assigned to individual virtual
circuit connections. These weights determine the relative frequency with which cells are
forwarded, allowing link bandwidth to be allocated appropriately during congestion periods.
With 32 distinct weights, the BSW algorithm can assign bandwidth in amounts ranging from 2.4
Gb/s to less than one bit per second. Unlike naive implementations of weighted round-robin
scheduling, the BSW algorithm interleaves cells from different channels as much as possible,
minimizing the burstiness of the output data streams. The algorithm can be implemented in
hardware in a very cost-effective way, requiring just a small increment in cost over a simple two
level priority design.

Packet Level Discarding for per VC queues -- To preserve packet integrity during
overload, ATM switches often use packet level discard mechanisms such as Early Packet

3

Discard [3][4], which were designed for use with FIFO queues. New algorithms are needed for
per VC queueing, to minimize memory usage and preserve fairness and QoS properties of
output scheduling algorithms. The DQM chip incorporates a new packet level discarding
scheme for per VC queues, called the Weighted Fair Goodput algorithm (WFG). The
combination of the WFG and the BSW allows all virtual circuits to forward cells at reserved
rates during overload periods and ensures that “well-behaved” virtual circuits (those that do not
exceed their allocated rate) do not lose any data, and that data is discarded from “misbehaving”
virtual circuits on a packet-by-packet basis, avoiding wasted link capacity during overload
periods.

Zero Overhead Memory Management -- At gigabit speeds, the bandwidth of the external
memory used by the DQM to store cells is a precious resource. A certain portion this bandwidth
must be used to manage the free space list that is stored in the external memory, along with the
waiting cells. The DQM chip incorporates an on-chip cache that allows the free space list to be
maintained using only memory cycles that would otherwise go unused. This cache stores the
location of a number of available cell storage slots. Storage slots can usually be assigned to
arriving cells from the cache and departing cells can usually return their cell slots to the cache,
rather than accessing the off-chip free space list. The off-chip list is only accessed to refresh or
free up space in the cache, but these operations can be performed during periods when there are
guaranteed to be unused memory cycles available.

Figure 1 is a block diagram of the DQM chip and its associated memory. ATM cells are
received on a 32 bit wide interface, similar to the Utopia interface, used for connecting ATM
devices to SONET transmission circuits [5]. The DQM stores cells in the external memory and
forwards them to one of possibly several output links. To support the required output bandwidth
of 2.4 Gb/s, the chip operates with an internal clock speed of 120 MHz. This allows cells to be
received at a rate that is roughly 1.5 times the cell rate of an OC-48 link.

There are six major functional blocks: the Queue Selector, the Queue Manager, the Output
Scheduler, the Free Slot Manager, the Cell Store, and the Free Slot List. The Queue Selector
dynamically assigns queues to virtual circuits. The Queue Manager maintains a list of all
queues, keeping track of the first and the last cell in each queue. The Output Scheduler
schedules the transmission of cells from the various channels and allocates the chip’s output
bandwidth among the different output links. The Cell Store buffers all incoming cells before
transmission. The Free Slot List stores unused cell slots in the Cell Store and the Free Slot
Manager manages the Free Slot List.

Queue
Selector

Queue

Manager

Free Slot
Manager

Output
Scheduler

Cell Store Free Slot List

External Memory

Dynamic Queue Manager

To Link

From
Switch

 Figure 1 Simplified Block Diagram of Dynamic Queue Manager

4

3 Binary Scheduling Wheels Algorithm
 Two priority levels can be used to distinguish real-time traffic from non-real-time traffic,

and minimize delay for real-time traffic. However, we may require greater flexibility in
allocating bandwidth among virtual circuits. In this case, weighted round-robin scheduling can
be used to allocate bandwidth among virtual circuits. The Binary Scheduling Wheels (BSW)
algorithm used in the DQM implements weighted round-robin scheduling at minimal cost,
providing a wide range of rate options. In addition, because bursty virtual circuits with high
peak-to-average ratio are more likely to cause congestion in the downstream switches, the BSW
algorithm distributes cells from the same channel evenly, minimizing the burstiness of the
output streams.

3.1 Binary Scheduling Wheels
 The Output Scheduler uses the per VC based Binary Scheduling Wheels algorithm to

implement weighted round-robin scheduling in a very cost efficient way. All virtual circuits
have power of 2 weights and during overload periods, share the link bandwidth in proportion to
their weights. Instead of forwarding as many cells as specified by the weight once a queue is
selected, the BSW algorithm places queues on scheduling wheels with different weights and
alternates among wheels.

For implementation efficiency, we restrict weights to be powers of 2. Suppose we support W

different weights: . We construct W binary scheduling wheels, one for each
weight factor. Each VC queue is placed on a corresponding scheduling wheel. The scheduling

wheel with weight 20 is visited twice as frequently as the scheduling wheel with weight 21, four

times as frequently as the one with weight 22, and so forth. W power of 2 weights can be coded
using bits.

Figure 2 shows an example with W binary scheduling wheels. Each little box in the figure
represents a list node containing a queue identifier that identifies a non-empty per virtual circuit
queue. Once a scheduling wheel is selected, all queues on that scheduling wheel can forward
one cell to the output.

A W-bit binary counter can be used to select binary scheduling wheels with W weights. In a
W-bit binary counter, the least significant bit of a binary counter changes twice as fast as the
next lowest order bit, four times as fast as the next bit, and so forth. This property matches
nicely with our scheduling wheel selection procedure.

Suppose the counter value is . When the counter advances, a change in bit

i triggers servicing of the scheduling wheel with weight 2i. We organize the transmission
schedule into a series of passes. At the start of each pass, the counter is incremented. During the

2
0

2
1

2
2 … 2

W 1–, , , ,

Wlog

Weights 2W-1 22 21 20

 Figure 2 Binary Scheduling Wheels

C cW 1– …c1c0=

5

pass, all scheduling wheels corresponding to changing counter bits are serviced.

3.2 Fast Forward Mechanism
The binary counter used in the above implementation is increased by one at the start of a

scheduling pass. However, if all scheduling wheels that are enabled in a given pass are empty,
we must increment the counter again to find a queue from which to send. In the worst-case it
may take many increment steps to find a non-empty queue and during these steps, link
bandwidth may be lost. To avoid this, we introduce a fast forward mechanism for the counter.

The idea is to increment the counter with a carry-in at the position of the right-most non-
empty scheduling wheel. We keep a mask register to indicate non-empty wheels that have not
been served. We also keep a carry-in register with only one bit set at the position corresponding
to the least significant ‘1’ bit of the mask register. After each pass, the value the carry-in register
is added to the counter. The resulting right-most changing bit always corresponds to a non-
empty scheduling wheel. The fast forward algorithm is shown below.

Initially,
PreviousCounter = 0;
CurrentCounter = 0;
Mask: Bit i is set to ‘1’ if scheduling wheel i is non-empty, ‘0’ if scheduling wheel

i is empty;
Loop:

CarryIn = Position of the least significant ‘1’ bit of (Mask);
PreviousCounter = CurrentCounter;
CurrentCounter = CurrentCounter + CarryIn;
ChangingBits = PreviousCounter XOR CurrentCounter;
CurrentMask = Mask;
While ((CurrentMask & ChangingBits) != 0)

 CurrentWheel = Position of the least significant ‘1’ bit of (CurrentMask &
ChangingBits);

Serve all queues in the scheduling wheel CurrentWheel;
CurrentMask[CurrentWheel] = 0;
If (scheduling wheel CurrentWheel becomes empty)

Mask[CurrentWheel] = 0;
If (New queue is added to an empty scheduling wheel j)

Mask[j] = 1;
The following example shows how the algorithm works. Table 1 gives the parameter values

of the fast forward counter at the beginning of a pass. Table 2 shows the selection process.

Table 1: Parameters of the Fast Forward Counter

Current
Counter

Previous
Counter

Changing
Bit

Mask CarryIn

0100 0011 0111 1011 0001

6

The value of the mask register Mask is (1011)2, which means only Wheel 2 is empty. So the
carry-in register CarryIn has the value (0001)2. The previous value of the counter is (0011)2.
The current value of the counter is equal to the sum of the previous value and the carry-in
value, which is (0100)2. The ‘1’ bits in the register ChangingBit indicate the changing bits of
the counter. CurrentMask is set to the value of Mask initially. (CurrentMask & ChangingBit)
gives all scheduling wheels to be served in a pass. Since only one wheel can be visited at a
time, CurrentWheel specifies the current scheduling wheel to be served. When a scheduling
wheels is visited, all the queues on that wheel can send one cell to the outgoing link. After a
scheduling wheel is served, the corresponding bit in CurrentMask is then cleared. This process
continues until all selected scheduling wheels have been served once.

With the fast forward mechanism, the selection time becomes essentially independent of the
total number of weights. While the time to select the least significant ‘1’ bit does require more
than constant time, hardware implementation can easily be made fast enough that this does not
becomes an issue for realistic values of W. Consequently, cells can be selected and forwarded
in essentially constant time.

3.3 Design Analysis
We need to understand how the number of weights and the number of virtual circuits in the

system affect the hardware complexity. Figure 3 shows the structures in the Output Scheduler
that implement the Binary Scheduling Wheels algorithm. Let N be the number of queues
supported by the DQM. Let W be the number of weight levels. The DQM implements the BSW
at multiple outputs. Let m be the number of outputs.

At each output, we construct W scheduling wheels. We need a queue list with N entries to
represent the queues in scheduling wheels. Since a virtual circuit has only one destination, a
queue can only be placed on one of the scheduling wheels. Therefore, the queue list can be
shared by all output wheels. The actual scheduling wheels are constructed by linking
corresponding entries in the queue list. An additional bit is added to entries in the queue list to
distinguish the first queue in a wheel. To access the scheduling wheels, a wheel table is used to
store the pointers to the scheduling wheels. Both the queue list and the wheel table are
implemented as on-chip SRAM. The memory requirement for the BSW for m outputs is

.

Table 2: Binary Scheduling Wheel Selection Process

Current
Counter

Current Mask
CurrentMask

&
ChangingBit

CurrentWheel

0100 1011 0011 0001

0100 1010 0010 0010

0100 1000 0000 -

N mW+() 1 Nlog+()

7

Figure 4 shows the memory size for various parameters with . Note that only the
wheel table depends on the number of weights. The increment in memory size to implement 64
weights over a simple two priority design is less than 2 KBytes. 32 distinct power of 2 weights
are sufficient to specify bandwidths ranging from 2.4 Gb/s to less than one bit per second. Even
with 8192 virtual circuits in the system, the total memory requirement for the scheduler is less
than 15 KBytes. Therefore, the BSW algorithm implements the weighted round-robin
scheduling in a very efficient way.

Because a VC queue only belongs to one scheduling wheel, adding and removing a queue
from a scheduling wheel can be done in constant time. This is the major reason for restricting
weights to be powers of 2. The algorithm can be extended to more general weights by allowing
each queue to appear in multiple wheels. If a queue can appear in j wheels, the ratio between

successive weights is , but both the scheduling time and the size of the queue list increase

by a factor of j.

1+logNbits

m entries

0 1Wheel

N entries

1+logN bits

Queue

List

 Figure 3Structures in the Output Scheduler

1+logNbits

Wheel Table

W-1

m 16=

2
j

2
j

1–

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70
0

5

10

15

N=8192

N=4096

N=1024

W=64

W=2

Number of Weights

M
em

or
y

Si
ze

 (
K

B
yt

es
)

M
em

or
y

Si
ze

 (
K

B
yt

es
)

Number of Virtual Circuits

 Figure 4 Memory Required for Cell Scheduling

8

4 Summary
In this paper, we have described a dynamic queue manager for gigabit ATM networks and

presented a detailed description of the Binary Scheduling Wheels (BSW) algorithm used in the
design. The BSW algorithm implements weighted round-robin scheduling in a cost efficient
way. VC queues are placed on different scheduling wheels based on power of 2 weights. A fast
forward mechanism allows cells to be scheduled in essentially constant time. The BSW
algorithm only requires a small increment in hardware cost over a two priority design, and is
suitable for hardware implementation.

References
[1] Tom Chaney, J. Andrew Fingerhut, Margaret Flucke, J. S. Turner, “Design of a Gigabit ATM

Switch”, INFOCOM 1997.
[2] Manolis Katevenis, Stefanos Sidiropoulos, and Costas Courcoubetis, “Weighted Round-Robin

Cell Multiplexing in a General-Purpose ATM Switch Chip,” IEEE Journal on Selected Areas
in Communication, vol. 9, No. 8, Oct. 1991, pp. 1265-1279.

[3] Allyn Romanow, Sally Floyd, “Dynamics of TCP Traffic over ATM Networks,” IEEE Journal
on Selected Areas in Communications, vol. 13, no. 4, May 1995, pp. 633-641.

[4] J. S. Turner, “Maintaining High Throughput During Overload in ATM Switches,” INFO-
COM ’96, pp. 287-295.

[5] The ATM Forum Technical Committee, UTOPIA Level 2, v1.0, af-phy-0039.000.
[6] Haoran Duan, J. W. Lockwood, et al., “A High-Performance OC-12/OC-48 Queue Design

Prototype for Input -Buffered ATM Switches,” INFOCOM ’97.
[7] J. C. R. Bennett, D. C. Stephens and H. Zhang, "High Speed, Scalable, and Accurate Imple-

mentation of Packet Fair Queueing Algorithms in ATM Networks", Proceedings of ICNP ’97,
pp7-14.

[8] Dallas E. Wrege, Jorg Liebeherr, “A Near-Optimal Packet Scheduler for QoS Networks,”
INFOCOM ’97.

[9] Yoshihiro Ohba, “QLWFQ: A Queue Length Based Weighted Fair Queueing Algorithm in
ATM networks,” INFOCOM ’97.

[10] H. Jonathan Chao, “An ATM Queue Manager Handling Multiple Delay and Loss Priorities,”
IEEE/ACM Tran. on Networking, vol. 3, no. 6, Dec. 1995, pp 652-659.

[11] Yuhua Chen, Jonathan S. Turner, “Dynamic Queue Assignment in a VC Queue Manager for
Gigabit ATM Networks,” submitted to IEEE ATM ‘98 Workshop.

