
Dynamic Flow Switching
A New Communication Service for ATM Networks

Qiyong Bian, Kohei Shiomoto, Jonathan Turner
 {bian,shiomoto,jst}@cs.wustl.edu

Washington University

ABSTRACT
This paper presents a new communication service for ATM
networks that provides one-way, adjustable rate, on-demand
communication channels. The proposed dynamic flow service is
designed to operate within a multi-service cell switched network
that supports both conventional switched virtual circuits and IP
packet routing and is designed to complement those services. It
is particularly well suited to applications that transmit
substantial amounts of data (a few tens of kilobytes or more) in
fairly short time periods (up to a few seconds). Much of the
current world-wide web traffic falls within this domain. Like IP
packet networks, the new service permits the transmission of
data without prior end-to-end connection establishment. It uses
a variant of ATM resource management cells to carry dynamic
flow setup information along with the data, including an IP
destination address and burst transmission rate. Switches along
the path select next an outgoing link dynamically using the burst
rate to guide the routing decision. The dynamic flow setup
protocol is based on soft-state control and is designed to
facilitate the use of buffers that are shared across all ports of a
switch, minimizing per port memory costs.

1. Introduction
The last decade has seen a rapid explosion in the growth of

the World Wide Web and related applications. These services
have converted the Internet from a tool for technical
sophisticates to a mass market phenomenon. One consequence
of the growth of the web has been to create a rapid increase in
the number of interactive communication sessions that last for
very short periods of time, less than a second in many cases.
This is a direct consequence of the linked hypertext structure of
information on the web, which allows a document to reference
documents on other computers, down the hall or on the other
side of the world. Often these remote references result in a single
page being transferred, leading to a high ratio of control
overhead to data transferred. ATM networks are not currently
well engineered to handle large numbers of short-lived sessions.
The overhead associated with establishing a virtual circuit in
ATM networks is high enough that a traffic mix which includes
a large proportion of such short lived sessions will be
unavoidably expensive, in both bandwidth usage and control
load. TCP/IP is also less than ideal for this class of traffic. The

TCP setup overhead is excessive for short sessions, and IP
routers must perform a lot of redundant work to forward the
many packets that may be present in a single transfer.

Another problem with the use of current methods for
handling World Wide Web traffic is that resource reservations
are difficult to make on a session basis. While it may be
reasonable to select a maximum data transfer rate for a web
session, there is little basis for selecting an average rate for such
a session. Even if one had good statistical data for web traffic,
the average data rate over a population of sessions is not that
helpful in predicting what will happen during the course of an
individual session. The variations are simply too great, and
attempting to force individual users to conform to population
averages, as ATM usage parameter controls (and similar
mechanisms being introduced into IP) seek to do, is counter-
productive. The use of rate-based congestion control
mechanisms [7] can be helpful in this regard, but these
mechanisms are only effective for data bursts that have a
duration that is many times the round-trip delay associated with
a given session. For web traffic, this condition frequently
doesn’t hold. This is an even greater problem for the adaptive
windowing methods used in TCP that have even longer reaction
times.

This paper proposes a new communication service that can
efficiently handle short-lived sessions with minimal control
overhead and little or no wasted bandwidth. This service, called
dynamic flow establishment or dynaflow for short, allows data
transfer without advance virtual circuit establishment. Dynamic
flows provide a best effort sort of service, similar in philosophy
to IP packet switching, but suitable for efficiently transferring
larger volumes of data and enabling more effective allocation of
network bandwidth than is possible with datagrams.

To provide effective support of short-lived sessions, the
dynaflow service allows users to send data without advance end-
to-end virtual circuit establishment. This type of service is
sometimes referred to as “send-and-pray” since there can be no
guarantee that the resources needed for a given data transfer will
be available to it. We feel that such guarantees are inherently in
conflict with the nature of short-lived sessions and hence must
be sacrificed if we are to serve such sessions more effectively.
However, while we can’t provide guarantees, we can improve

Appears in Proceedings of Infocom, March 1998, Copyright held by IEEE.

the probability of successful transmission, converting send-and-
pray to “send-while-fixing-the-odds.”

The dynaflow concept is designed to take advantage of the
fundamental behavior of queuing systems subjected to bursty
traffic, as typified by the contour plot showed in Figure 1. This
plot shows cell loss rate for a simulated queue with on-off bursty
traffic having a peak-to-average ratio of 10:1, exponentially
distributed burst lengths and imposing an offered load of 60% of
the link’s capacity. The two axes give the ratio of the link rate to
the peak rate of the individual virtual circuits and the ratio of
the buffer size to the burst length. (For queues that use an
effective frame-level discarding technique, such as early packet
discard, the packet loss rate equals the cell loss rate.) These two
parameters are the primary tools available for improving
queuing performance. Note that while increasing either ratio by
itself has a strong impact on the cell loss rate, in combination
they are extremely powerful and can drive cell loss rates to
infinitesimally small values. Similar results are observed for
heavy-tailed distributions, such as the Pareto distribution. The
chief difference is that the contours intersect the horizontal axis
further to the right. There is no significant change to the
intersections of the contours with the vertical axis.

There are two ways to maintain a high ratio of link rates to
virtual circuit peak rates. First, use the highest speed links
feasible in the network, and second keep the virtual circuit peak
rate as low as possible, while still giving satisfactory
performance. For interactive data applications, the primary
criterion for satisfactory performance is providing fast response
to user requests. The typical performance target is about one
second and there is usually little value in reducing response time
to much under one second. Knowing the amount of data to be
transferred, the sender (e.g. a web server) can easily calculate
the data rate at which data must be transferred to achieve a
transfer time of say 0.5 seconds, leaving another 0.5 seconds for
other components of the response time. By sending data at this

rate, the sender minimizes the probability of congestion-induced
data loss and the subsequent need for retransmission. In a
network with backbone links operating at 2.4 Gb/s, a link-to-
peak ratio of 64:1 still allows data transfers of 37.5 Mb/s, fast
enough to transfer an uncoded full-screen 24 bit image in under
one second. The vast majority of web transfers are much smaller
than this and can be sent in a fraction of a second at data rates of
.1 to 10 Mb/s.

However, we can’t always rely exclusively on a high ratio
of link rate to virtual circuit peak rate. Some applications do
require high rates, not all networks links operate at gigabit rates
and links may experience high average loads for extended
periods of time. Thus, it’s also important to have large amounts
of storage available for buffering bursty data. Unfortunately,
data storage can be costly in high performance networks and
since memory provided to accommodate bursty data is not in use
most of the time, there are powerful motivations to minimize the
amount of storage that must be built into switches. Fortunately,
this conflict can be resolved effectively by sharing the memory
required among all the links in a large switch. Using this
approach, it becomes possible to have ample storage available to
all links in a system, while amortizing the cost of that storage
across the links.

Dynamic flow switching can be viewed as a logical
evolution of a class of fast reservation protocols for ATM
[1,6,8,10]. These papers discuss burst-level bandwidth
reservation on previously established virtual circuits. In some
cases, the protocols require end-to-end reservation, while others
operate in a contention mode with reservations made on-the-fly.
Because the bandwidth reservation is made over established
virtual circuits, there is no opportunity to dynamically select the
route on a burst basis, as advocated here. Suzuki and Tobagi [9]
show that this lack of routing flexibility can limit statistical
multiplexing efficiency when the peak transmission rate is a
substantial fraction of the link rate. They propose setting up

1

2

4

8

16

32

64

0.1 1 1000
00

0
00

00
0

00
00

0
00

00
0

00
00

0
00

00
0

00
00

0
00

00
0

00
00

1

link rate/
peak rate

buffer size/burst size

cell loss = 0.1

0.01

1E-7

0.001

Figure 1. Contour Plot for Cell Loss Rate
 (offered load =0.6, peak-to-average ratio=10)

multiple virtual circuits and
reserving bandwidth prior to
data transmission by either
sequentially or in parallel,
sending reservation requests
along the different paths.
Cidon, Rom and Shavitt [4]
also make the case for routing
flexibility and in [3] describe
methods for obtaining such
routing flexibility in one-way
reservation algorithms, using
multiple established virtual
circuits. The dynaflow service
described here, eliminates the
requirement for prior
establishment of a fixed
number of paths, eliminating
the associated control
overhead and providing more
flexible route selection.

2. Dynaflow
Communication
Service

The dynaflow
communication service
provides dynamic
establishment of one-way,
adjustable rate channels. To
use the dynaflow service, a
sending host selects an unused
virtual circuit identifier on its
access link and begins
transmitting its data, preceded
by a dynaflow setup cell,
encoded with an ATM
payload type of 1102. (This is
the payload type used by
ATM resource management

cells. It also can serve as a general mechanism for defining new
communication services.) The setup cell specifies the destination
host and the rate at which data is being transferred. Switches in
the network use this information to select an outgoing link,
allocate bandwidth to the flow and if necessary, to react to
congestion. During data transmission, setup cells are sent
periodically to guard against loss of the original setup cell, and
at the end of the transmission, an end cell is sent, releasing
resources previously reserved. Release of resources can also be
triggered by expiration of a time-out, so a lost end cell cannot
leave resources allocated indefinitely.

The format of the dynaflow setup cell is shown in Figure 2.
The first byte of the payload is the dynaflow protocol identifier
which distinguishes dynaflow cells from other cells with a
payload type of 1102. The options field is used to specify what is
to be done, if when a burst arrives, none of the outgoing links

that could be used to reach the destination have sufficient
bandwidth available to handle the new flow. The options include
the following

• Discard burst discards the entire transmission.

• Discard until next setup discards arriving cells until the
next setup cell is received and then retries.

• Buffer until required bandwidth available directs a
congested switch to buffer the data until there is an
appropriate outgoing link with sufficient unused
bandwidth.

• Best effort forwarding directs a congested switch to
forward the data at whatever rate it can, buffering
excess data as need be.

• Re-routing allowed permits a switch to route a burst to
a different outgoing link in the middle of the burst if re-
routing would allow data to be sent at the requested
rate.

The sending host increments the Epoch field in the setup cell
whenever the value of one or more fields in the cell has changed
from previous transmissions. This facilitates hardware filtering
of setup cells in switches so that the control processors need
only handle setup cells that reflect new information. The
Sending Rate field specifies the rate at which the sending host is
transmitting data. If the two bytes of the field are x and y, the

rate in bits per second is x y⋅ 2 . The Forwarding Rate field
specifies the rate at which an intermediate switch is forwarding a
given data stream and may differ from the original sending rate
as a result of congestion. The source and destination addresses
are specified using the IPv6 address format. The Reserved field
is reserved for the use of switches along the path for internal
control purposes, but has no significance outside a switch. The
length field gives the length of a burst in bytes using the two
byte floating point format mentioned above, with 0 used to
indicate that the burst has indeterminate length.

3. Implementation of the Dynaflow Service
Figure 3 shows an ATM switch that implements the

dynaflow service. It is based on the Washington University
Gigabit Switch [2,12], which uses a highly scaleable architecture
and supports link speeds of up to 2.4 Gb/s. The Input Port
Processors (IPP) for any input link supporting the dynaflow
service must be modified to recognize dynaflow setups cell and
handle them appropriately. In particular, when a setup cell is
received on a previously unused VCI, the IPP forwards the setup
cell to one of a number of dynaflow control processors and then
buffers data arriving on that virtual circuit in a per VC buffer
until the control processor makes its switching decision. When a
dynaflow control processor receives a setup cell, it performs a
routing operation to determine which links can be used to reach
the destination, and selects a link from this set that has sufficient
unused bandwidth to accommodate the new flow. It then
forwards the setup cell on the selected link using a previously
idle virtual circuit and sends a control cell to the IPP, modifying

ATM Header

DYN_PROT_ID
Options

Destination
Address

Source
Address

Epoch

Send Rate

Fwd Rate

Length

CRC

Reserved

Figure 2. Dynaflow Setup
 Cell Format

its virtual circuit table entry so that it forwards cells to the
proper output link and virtual circuit. If no outgoing links to the
destination have sufficient unused bandwidth to accommodate
the new flow, the control processor handles the flow according
to the options specified in the setup cell. If buffering is called
for, the burst is forwarded to one of a set of burst stores, which
maintain separate queues for each data flow passing through
them and can forward cells from those queues at rates
determined by the control processor. The diversion of a flow
into the burst store is implemented through control cells sent by
the control processor through the switching network to the IPP
and to the selected burst store itself.

Note that the resource allocation decision that must be made
by the control processors implementing the dynaflow service is
straightforward; they simply keep track of the rate of all flows
using a given output link and allow a new flow so long as the
sum of its rate and the rates of the current flows is no more than
the outgoing link bandwidth (or portion of that bandwidth
allocated to the dynaflow service, if the link is shared with non-
dynaflow traffic). This allows high link utilization to be
achieved with no congestion at switch output ports. Similarly, if
a flow must be diverted to a buffer, the rate of data flow into the
buffer can be tracked to ensure that the bandwidth of the
interface between the switching network and the buffer is not
exceeded. The simplicity of dynaflow bandwidth allocation is
due to the fact that the sending host specifies only the rate at
which data is being sent right now rather than specifying some
statistical prediction of its transmission rate in the future.

To enable large numbers of dynaflow-capable links in a
switch, multiple dynaflow control processors may be needed.
The next section explores this and other performance issues in
more detail. Based on this analysis, we estimate that a system
with 256 external links of 2.4 Gb/s can be implemented using a
control complex comprising two shared memory multiprocessors
with between 8 and 16 processors each and network interfaces
capable of sustained data transfer rates of 1 Gb/s or more. An
example design for the control complex is shown in Figure 4.
This design uses a two port ATM network interface called the

APIC (ATM Port Interconnect Chip) capable of gigabit data
transfer rates [5]. Here, the second port is used to link the two
multiprocessors together, providing a low latency path for the
exchange of status information.

There is a variety of possible ways to distribute the dynaflow
processing among the different processors. The key issue here is
deciding how to allocate the control over the outgoing link
resources (both bandwidth and virtual circuit identifiers). Here
we focus on an approach which is particularly suitable in the
case of two multiprocessors. First, we define a link group as a
set of links that share the same pair of endpoints. When
forwarding a dynaflow to a particular next hop, any link in the
link group can be used (of course, a link group may consist of
just a single link). The outgoing virtual circuit identifiers in a
link group are ordered over all the links in the group and the two
multiprocessors allocate virtual circuit identifiers from opposite
ends of this range. A moveable boundary is defined within the
range to prevent conflicting allocation of any single virtual
circuit. A similar approach is taken with respect to the
bandwidth of the link group, with one multiprocessor controlling
the “lower half” of the bandwidth range and the other controlling
the “upper half.” Of course this approach does allow
fragmentation of resources with respect to both bandwidth and
VCIs, but has the advantage of requiring little or no
communication between the multiprocessors during the
processing of setup cells. Responsibility for input links and
virtual circuits is also divided between the two multiprocessors,
but the division need not be the same as for the outgoing links.
Within each multiprocessor, all state information is accessible to
the processors in shared data structures. The processor handling
a given setup cell uses the shared data structures to allocate an
outgoing virtual circuit identifier and bandwidth, updating the
data structures appropriately and also sending control cells to the
Input Port Processor to initiate forwarding of data.

Each burst store implements a collection of queues (one per
dynaflow using the burst store) using a large common memory.
Each of the queues implemented by a burst store has its own
output link, VCI and forwarding rate. The queue controller

DCP

IPP

IPP

OPP

OPP

. .
 .

. .
 .

. . .

. .
 .

burst stores . . .

Figure 3. Dynaflow Switching Architecture

includes a cell scheduler to pace cell transmissions individually
for each dynaflow. When a burst is first diverted to a burst
store, the control processor either disables forwarding or selects
a forwarding rate that is less than the arriving rate. If the link
that a given dynaflow is being forwarded to later becomes
uncongested, the forwarding rate from the burst store can be
increased. In particular it may be increased to some rate higher
than the rate at which the original sender is transmitting, causing
the queue in the burst store to drain. In such a case, when the
queue in the burst store is empty, the flow is re-switched to
bypass the burst store and proceed directly to the output link.
This can be accomplished using the transitional time-stamping
technique described in [12] for re-switching multicast virtual
circuits. Using this mechanism, cells sent from an input port
directly to an output port, immediately following a re-switching
operation are delayed at the output port allowing cells following
the path through the burst store to catch up and be correctly
sequenced at the output. The rate at which a burst is forwarded
during the period that the burst store queue is draining is
constrained by the bandwidth available on the outgoing link and
by the need to avoid excessively increasing the burstiness that
downstream switches are subjected to. To match the bandwidth
of the switch in [2], each burst store requires a memory
bandwidth of about 1 gigabyte per second. This can be achieved
using eight SRAM chips with 16 data pins and 16 ns cycle times.
Assuming 4 Mb chips, this yields 4 MB per burst store. Of
course, the buffer dimension will also depend on queuing
considerations, which are examined in the next section

4. Performance Considerations
In this section, we explore the performance issues associated

with dynaflow switching. In particular, we focus on the
performance of the burst stores, and the dynaflow control
processors. In order to assess the feasibility of large-scale use of
the dynaflow service, we consider the performance of a large
ATM switch with 256 external links of 2.4 Gb/s each, in which
dynaflow traffic is the only traffic type. While in practice, we
would expect traffic to be divided among several services
(including conventional IP datagrams and ATM VCs), the
dynaflow-only assumption allows assessment of the system’s

ability to support the dynaflow service under the most extreme
conditions.

4.1. Burst Store Performance
In this section, we evaluate the potential for cell loss in the

burst stores. There are two cell loss mechanisms to consider.
First, cells may be lost because at the time a dynaflow becomes
active, there is no burst store with sufficient unused input
bandwidth to handle the additional traffic. Second, cells may be
lost because a burst store runs out of room to store arriving cells.
In our analysis, we assume that a particular dynaflow can only
use a single burst store, meaning that cells can be lost even when
there is storage available in other burst stores. While it is
certainly possible to improve cell loss performance by allowing
cells from a given dynaflow to use more than one burst store,
we don’t consider that possibility here. Our analysis also does
not explicitly model the positive effect of routing flexibility on
the queuing performance. That is, we assume that each arriving
flow has only one outgoing link that it can use. This is a worst-
case situation. Certainly, in a network backbone environment,
we would expect both parallel links between switches and the
availability of multiple alternate routes, which would lead to
better performance.

4.1.1. Analysis of cell loss due to insufficient input bandwidth at
burst stores

Let xr denote the random variable for the number of excess
flows associated with output r. Equivalently, xr is the number of
flows addressed to output r that are using a burst store. To
evaluate cell loss due to burst store input bandwidth limits, we
first determine the distribution of the sum of the xr s. This will be
conservatively approximated by taking the convolution of the
distributions of the xr s. For uniform traffic the xr s are identically
distributed and we can calculate the distribution using a Markov
chain analysis. Each output link is assumed to carry on-off
bursty traffic from m end-to-end application sessions, each with
a peak-to-average ratio of β and a peak data rate equal to 1/k
times the link rate where k is an integer.

Assuming exponentially distributed burst lengths and inter-
burst times, we can model this as a two-dimensional continuous

APIC

CPU MemoryCPU. . .

APIC

CPU MemoryCPU. . .

IPP
O

PP

IPP
O

PP

Figure 4. Dynaflow Control Processors

time Markov chain with states indexed by two integers i and j,
where i denotes the number of active sessions sending data
directly to the output (so 0 ≤ ≤i k) and j denotes the number of
active sessions sending data to a burst store (so 0 ≤ ≤ −j m k).

When i>0, there is a transition from state (i,j) to state (i−1,j)
with rate i/kB where B is the average burst length. Similarly,
when j>0, there is a transition from state (i,j) to state (i,j−1) with
rate j/kB. When i<k, there is a transition from state (i,j) to state

(i+1,j) with rate (()) / ()m i j kB− + −β 1 . Finally, when i=k

and j<m−k there is a transition from state (i,j) to state (i,j+1)
with rate (()) / ()m k j kB− + −β 1 . We can find the steady

state probabilities πi,j of the chain numerically and

then ∑==
i jir jx ,}Pr{ π .

Results from this analysis are shown in Figure 5. For flows
whose peak rate is at most one eighth the link rate (300 Mb/s
with 2.4 Gb/s links), acceptable loss rates can be achieved with
fewer than 16 burst stores. For peak rates of one fourth the link
rate, the number of burst stores must be increased to close to 30.

4.1.2. Cell loss due to burst store overflow

To determine the cell loss due to burst store overflow, we
performed a series of simulations, again for on-off bursty traffic.
In these simulations, new dynamic flows arriving for congested
links were sent to the burst store with the lowest input traffic
rate. Data stored in burst stores was forwarded to the target
output link using the bandwidth left unused by flows passing
straight through the switch to the output, with this residual
bandwidth shared equally among all bursts waiting for that
output. Selected results from the simulations are shown in Figure
6. To achieve small loss rates (at the given offered load of 60%)
with small ratios of link rate to peak rate requires buffer sizes of
one or more bursts per output link. For larger ratios of link rate
to peak rate, the amount of buffering needed can be a fraction of
a burst per output link. For the case of a link-to-peak ratio of
eight, we need about .6 bursts worth of buffering per output.
Since this is distributed over 16 burst stores and there are 256
output links, each individual burst store requires enough
buffering for about 10 bursts in this case. So a burst store of 4

Mbytes could handle average burst sizes up to about 400 Kbytes
and a burst store of 16 Mbytes could handle average burst sizes
of about 1.6 Mbytes.

Burst store performance can be affected by the policy used
to select the burst store to receive a given burst. We briefly
discuss the issues here and summarize results from a preliminary
comparison of the different approaches. Several burst store
selection policies are listed below.

• Least-loaded input. One of the simplest policies to
implement (and the one assumed in the simulations reported
above) is to select the burst store with the lightest input load.
That is, the one with the smallest rate of arriving traffic.

• Slowest buffer growth rate. In this policy, we select a burst
store from among those with sufficient input bandwidth to
handle the new burst and which has the smallest buffer
growth rate from among these burst stores. The buffer
growth rate is simply the difference between the arriving cell
rate and the total outgoing traffic rate.

• Longest time to overflow. In this policy, we use both the
buffer-growth rate and the current buffer level to estimate at
what time in the future each burst store will overflow and
route the new burst to the burst store whose overflow time is
furthest in the future. If there is one or more burst stores
whose buffers are currently draining, we route the new burst
to the burst store that is projected to become empty earliest.

The first two policies are easy to implement, since they require
only information that the DCP has at its immediate disposal. The
third policy also requires the current buffer level which the DCP
would either have to retrieve from the burst stores or estimate,
making its implementation somewhat problematical. If burst
lengths are known in advance, one can actually project the
longest time to overflow precisely, rather than simply estimating
it, based on rates and current buffer level. This optimal policy is
impractical to implement, but provides a useful benchmark for
evaluating the simpler policies. We have found that at heavy
loads, the least-loaded input policy can lead to up to ten times
the cell loss experienced with the optimal policy. The slowest
buffer growth rate policy did slightly better and the longest time
to overflow policy was better yet. However, the differences
among the three practical policies were all fairly small (at most a
factor of two in cell loss rate).

There are two other aspects of the burst store operation
that can affect cell loss performance. The first one is the burst
diversion policy, which determines which bursts get diverted to
the burst store when an output link becomes overloaded. The
simplest approach (and the one used in the simulations above), is
a first-come-first-served policy which diverts those bursts that
arrive when the output link they need is congested. Another
policy is to divert to a burst store those bursts that are sending at
the highest rates. This improves the service received by low rate
bursts and tends to penalize those bursts that are contributing
most to the congestion condition. It also has the additional
benefit that fewer high speed bursts must be diverted to reduce
traffic to the output link, thereby reducing the amount of work
that must be done by the BCP to divert bursts to burst stores.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 11 21 31
Number of Burst Stores

C
el

l L
o

ss
 R

at
e

link-to-peak rate ratio=4

16

8

offered load=0.6
peak-to-avg ratio=10

Figure 5. Cell Loss Due to Burst Store Input Bandwidth Limits

Cell loss performance can also be affected by the forwarding
policy that determines the rate at which data is forwarded for
bursts that have been diverted through burst stores. The policy
used in the simulations reported above, simply shares the
bandwidth left over from those bursts not diverted to a burst
store, equally among all bursts that are diverted. When the link
becomes uncongested, this can lead to high forwarding rates
from the bursts still passing through burst stores, increasing the
burstiness of traffic forwarded to downstream switches. This
effect can be avoided by limiting the forwarding rate to the
original sending rate, or something slightly larger (say 10%
more). Our preliminary studies of this show that limiting the
forwarding rate has very little effect on the cell loss rate
experienced by the burst stores.

4.1.3. Other Issues

While our analysis does not explicitly model the effect of
routing, one can infer something about the special case in which
links are grouped, with all links in a given group going to the
same next hop. If there are p links in each group, then we can
treat the group as a single link with a high bandwidth and hence
a higher link-to-peak rate ratio. By this reasoning, Figure 5 can
be re-interpreted for a system with 256 link groups. To perform
this re-interpretation, replace the “link-to-peak rate ratio” label
with “link group-to-peak rate ratio” and multiply the horizontal
axis labels by p. For Figure 6, we can perform a similar
adjustment by replacing “link-to-peak rate ratio” with “link
group-to-peak rate ratio”, multiplying the number of burst stores
by p and interpreting n as the number of distinct link groups.

4.2. Dynaflow Control Processor Performance
Perhaps the most crucial performance issue for the

dynaflow service concerns the dynaflow setup latency, since
input port processors must buffer arriving data cells while the
control processors handle the setup cell. To limit the IPP buffer
requirements, we would like to keep the setup cell latency low
and highly predictable. The setup cell latency will depend on
how the workload from arriving setup cells is handled by the

different processors within each multiprocessor. In the simplest
case, each processor has its own input queue and arriving setup
cells are simply distributed randomly to one the queues. This can
be modeled by an M/D/1 queue. Figure 7 shows the response
time distribution for an M/D/1 queue. For an average load of
50% on the control processor, the probability of the response
exceeding 12 times the amount of time needed to actually
process the setup cell, is about 10-6. If the time to process a setup
cell is 10 µs and the time for a cell to go from an input port
processor to the control processor is also at most 10 µs, then
with high probability the input port processor will need to buffer
cells for a newly active flow for no more than about 140 µs. At
2.4 Gb/s, this corresponds to 42 Kbytes of storage. If an arriving
setup cell finds the control processor idle, the amount of data
that can accumulate while the setup cell is being processed drops
to about 9 Kbytes in the example scenario. We can make this
best case behavior common, if instead of randomly distributing
arriving setup cells to processors, we place them in a common
queue which can be serviced by any idle processor.

To determine the number of processors needed to handle a
given system, we must determine the time required to process a
burst setup cell. We assume a model in which the APIC transfers
cells directly into a circular list in the BCP’s memory and the
multiple CPUs poll this list to retrieve incoming setup cells and
process them directly. To minimize overhead for gaining access
to shared data structures, all BCP processing is done by kernel-
resident programs using hardware test-and-set instructions for
mutual exclusion. With these assumptions, we can outline the
steps involved in processing a setup.

1. Scan APIC buffer list to find a new setup cell that is not
already being processed by another processor. Exclusive
access to buffers is implemented using a per buffer lock.

2. Lock input link table for link on which setup cell was first
received. Transfer information from setup cell to entry in
input link table for the virtual circuit specified in setup cell.
Mark virtual circuit entry to indicate that a setup is in

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.25 0.5 0.75 1 1.25
Buffer Size/nB

C
el

l L
o

ss
 R

at
e

offered load=0.6
peak-to-average ratio=10

link-to-peak ratio=4
number of burst stores=32

8
16

16
4

Figure 6. Cell Loss Due to Burst Store Overflow

progress and unlock input link table (this allows other CPUs
to access other virtual circuit entries in the input link table).

3. Perform an IP routing lookup using the destination address
in the setup cell. This results in a link group, or possibly a
list of link groups which can be used to reach the
destination.

4. Scan the links in the link group (or groups) for one with
sufficient available bandwidth. If a suitable link is found,
lock the output link table for that link and update the field
that specifies the amount of bandwidth still available. Select
an unused outgoing VCI and enter the information
identifying the input link and VCI that are assigned to that
outgoing VCI in its table entry. Unlock output link table.

5. Enter the selected output link and VCI in the input link table
entry associated with the input VCI.

6. Queue a copy of the burst setup cell for transmission by the
APIC and forwarding through the switch and out on the
selected output link and VCI.

7. Format a control cell and queue it for transmission by the
APIC for delivery through the switch to the IPP. This
control cell will cause the output link and VCI information
to be written into the IPP’s routing table and will enable the
flow of cells from the IPP to the outgoing link. The IPP
returns the control cell as an acknowledgement.

8. Verify that the control cell has been acknowledged.

Locking at the granularity of individual input or output link
tables ensures that lock contention is rare. To avoid a long delay
in step 8, processors should not wait for the control cell
acknowledgement, but continue processing new setup cells and
check back between successive setup cells to verify reception of
expected acknowledgements. Using this approach, we estimate
that a processor can fully process one burst setup cell in no more
than 1,000 instructions.

Given a target processor utilization and an estimated
instruction count for setup cell processing, we can estimate the
number of control processors needed in the sample system.
Assume that each processor has an effective instruction
processing rate of 100 million instructions per second and that
one out of every 1,000 cells on each of the 256 input links is a
setup cell that must be processed by a control processor. This
leads to one setup cell on each 2.4 Gb/s input link every 177 µs
or rough 1.5 setup cells per microsecond overall. At a target
processor utilization of 50%, each processor can handle an
average of one setup cell every 20 microseconds, so about 30
processors are needed overall to handle this load. This is about
one for every eight external links. Obviously, the number of
processors required scales linearly with all of the various
parameters. For fully loaded external links, the offered load of
one setup cell in every 1,000 cells corresponds to burst sizes of

about 50 Kbytes. This is an indication that while the dynaflow
service can be very efficient for burst sizes on the order of tens
of kilobytes, it may be less attractive for smaller burst lengths.

6. Summary
This paper has introduced a new communication service for

ATM networks that provides greater flexibility and efficiency
for bursty data traffic, particularly when session durations are
short, as is often the case for web browsing and similar
applications. The dynaflow service achieves these advantages by
allocating resources only at burst transmission time, which for
many data applications is the earliest time at which the resource
requirements are known. The dynaflow service is designed to
operate efficiently in an open-loop mode initially, but end-to-end
congestion control mechanisms at either the ATM level or the
transport protocol layer can also be used in combination with the
dynaflow service for data transmissions that last for long enough
to make these mechanisms effective. The service operates most
effectively when there is a high ratio of link (or link group)
bandwidth to dynaflow virtual circuit bandwidth and/or the
switches have buffers that are substantially larger than the
average burst size. In situations where there is ample routing
diversity, higher data rates can be accommodated. Given, the
increasingly large data bursts associated with interactive
services, the use of a shared buffer pool can be important for
keeping system costs low. The dynaflow service makes it
possible to implement shared queuing using independent burst
stores whose behavior are under the control of the dynaflow
control processors. The performance evaluation given here is
preliminary. Its purpose has been to provide an initial
assessment of the viability of a dynaflow service and identify the
various issues that need more detailed examination. We believe
these studies have shown that a dynaflow service has some
promise. More detailed studies are needed to determine how
best to engineer various components and to determine the
effective limits of operation. The issue of how dynaflow’s
routing flexibility affects its performance is a particularly
interesting one to explore.

We view the dynaflow service as providing one service
within a multi-service cell-switched network. Such a network
would also provide conventional ATM virtual circuits, which are
well-suited to applications with session durations of more than a
few tens of seconds, and IP packet switching, which is ideal for
transaction-type traffic, which typically involves simple query
and response pairs, with relatively little data exchanged
(typically, a few hundred bytes). The same hardware (and much
of the software) infrastructure that supports the dynaflow service
can also be used to support IP forwarding and for ATM virtual
circuit establishment

References

1. Boyer, Pierre E. and Didier P. Tranchier. “A Reservation
Principle with Applications to ATM Traffic Control,”
Computer Networks and ISDN Systems, 1992, 321-334.

2. Chaney, Tom, J. Andrew Fingerhut, Margaret Flucke,
Jonathan Turner. “Design of a Gigabit ATM Switch,”
Proceedings of Infocom, 4/97.

3. Cidon, Israel, Raphael Rom and Yuval Shavitt. “A Fast
Bypass Algorithm for High Speed Networks,” Proceedings
of Infocom, 1995, 1214-1221.

4. Cidon, Israel, Raphael Rom and Yuval Shavitt. “Analysis of
One-Way Reservation Algorithms,” Proceedings of
Infocom, 1995, 1256-1263.

5. Dittia, Zubin, Jerome R. Cox, Jr. and Guru Parulkar. “A
High Performance ATM Host-Network Interface Chip,”
Proceedings of Infocom, 1995.

6. Hui, J. Y. “Resource Allocation for Broadband Networks,”
IEEE Journal on Selected Areas in Communications, 1988,
1528-1608.

7. Jain, Raj. “Congestion Control and Traffic Management in
ATM Networks: Recent Advances and a Survey,”
Computer Networks and ISDN Systems, 10/96.

8. Ohnishi, H., T. Okada and K. Noguchi. “Flow Control
Schemes and Delay Tradeoffs in ATM Networks,” IEEE
Journal on Selected Areas in Communications, 1988, 1528-
1608.

9. Suzuki, Hiroshi and Fouad A. Tobagi. “Fast Bandwidth
Reservation Scheme with Multi-Link and Multi-Path
Routing in ATM Networks,” Proceedings of Infocom, 1992,
2233-2240.

10. Jonathan Turner. “Managing Bandwidth in ATM Networks
with Bursty Traffic,” IEEE Network, vol. 6, no. 5,
September 1992, 50-58.

11. Jonathan Turner. “An Optimal Nonblocking Multicast
Virtual Circuit Switch,” Proceedings of Infocom, June
1994, pp. 298-305.

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 3 5 7 9 11 13 15 17 19

t (in units of service time)

P
ro

b
ab

ili
ty

 D
el

ay
 E

xc
ee

d
s

t

offered load =.2 .3 .4
.5

.6

.7

.8

.9

Figure 7. Control Processor Delay Distribution

