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ABSTRACT

We describe a simple and e	cient heuristic algorithm for the graph coloring
problem and show that for all k � �� it 
nds an optimal coloring for almost
all k�colorable graphs� We also show that an algorithm proposed by Br�elaz
and justi
ed on experimental grounds optimally colors almost all k�colorable
graphs� E	cient implementations of both algorithms are given� The 
rst one
runs in On�m log k� time where n is the number of vertices and m the number
of edges� The new implementation of Br�elaz�s algorithm runs in Om logn�
time� We observe that the popular greedy heuristic works poorly on k�colorable
graphs�

�� This research supported in part by the National Science Foundation� grant number DCR�������	


�



�� Introduction

Let G � V�E� be a simple undirected graph� A k�coloring of G is a mapping c � V �
f�� �� � � � � kg� c is a proper coloring if cu� �� cv� for all fu� vg � E� The chromatic number of
G� denoted �G�� is de
ned as the smallest positive integer k for which a proper k�coloring
exists� The graph coloring problem is to determine for a given graph G and an integer k� if
�G� � k�

The graph coloring problem has a long� interesting history and arises in a variety of ap�
plications� Karp ���� showed that the problem is np�complete� Stockmeyer �������� strength�
ened this by showing that it remains np�complete for any 
xed k � �� This has led many
researchers to seek approximation algorithms capable of producing colorings that don�t use
too many extra colors� Garey and Johnson ��� proved that unless p � np� no polynomial
time approximation algorithm can guarantee the use of fewer than ��G� colors� Further�
more� Johnson ��� showed that for many popular heuristics� there are ��colorable graphs
on n vertices for which the heuristics require �n� colors� Johnson also described a new
algorithm using at most On� logn� colors on any ��colorable graph� This stood as the
best worst�case result for graph coloring until Wigderson ���� discovered an algorithm that
colors any ��colorable graph using at most �dpne colors and any k�colorable graph using
at most �k

l
n�������k�

m
colors�

The disappointing nature of the worst�case results for graph coloring suggests that prob�
abilistic analysis may provide a more e�ective way of evaluating candidate algorithms�
Grimmet and McDiarmid ��� took the 
rst step in this direction by showing that for almost
all graphs on n vertices� �G� � �� ��n�� log�����p�n�� where p is a 
xed edge probability
in the usual random graph model� and � is any positive constant� In the usual random
graph model� edges are generated independently with probability p between each pair of
vertices� We say that a property holds for almost all random graphs if the probability of the
property holding approaches one as n � ��� They also showed that a well�known greedy
heuristic uses � � � ��n� log�����p�n colors�

Grimmet and McDiarmid�s results are interesting for what they tell us about random
graphs� it�s less clear what they tell us about the merits of the greedy heuristic� The naive
conclusion one can draw is that the greedy algorithm is a good one for graph coloring�
A less obvious� but perhaps more accurate interpretation is that these results cast doubt
on the usefulness of a probabilistic analysis based on the usual random graph model for
comparing graph coloring algorithms� They suggest that the usual model is too �easy� a
distribution� since it makes even the most simple�minded algorithm look good� In order to
obtain meaningful comparative information� we should try to select a more di	cult prob�
ability distribution� one that poses some challenges for candidate algorithms to overcome�
The analysis of a backtrack search algorithm given in ���� and ��� reinforces this interpre�
tation� These authors show that the expected size of the backtrack search tree explored
by their algorithm is O��� when graphs are selected using the usual random graph model�
suggesting once again that the usual model is too easy�

The set of k�colorable graphs on n vertices is the set of all n vertex graphs that can be
colored with k or fewer colors� Let Q be a predicate de
ned on graphs and Gk

n be selected
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at random from the set of k�colorable graphs on n vertices� We say that Q holds for almost
all k�colorable graphs if limn�� PrQG

n
k�� � ��

In section �� we introduce a simple heuristic coloring algorithm and de
ne a natural
probability distribution over the set of k�colorable graphs� We then show that for graphs
selected from this distribution� the algorithm 
nds an optimal coloring with high probability�
In section �� we show that this algorithm 
nds an optimal coloring for almost all k�colorable
graphs� In section �� we give similar results for Br�elaz�s algorithm� Section � gives e	cient
implementations of both algorithms� Section � gives experimental results that provide more
detailed information on the performance of the two algorithms� Section � gives evidence that
the popular greedy heuristic performs poorly on k�colorable graphs and section � contains
closing remarks�

�� The No�Choice Algorithm

Let n� k be positive integers� � � p � � and let G � V�E� be the graph de
ned by the
following experiment�

� Let V � f�� � � � � ng�
� For each u � V let cu� be a random integer in ��� k��

� For each pair u� v � V such that cu� �� cv�� include the edge fu� vg in E with
probability p�

The probability distribution de
ned by this experiment is denoted Xnk� p� and the notation
G � Xnk� p� means that G is a random graph generated in this way�

The probability distribution Xnk� p� assigns non�zero probability to every k�colorable
graph on n vertices� and zero probability to to every graph requiring more than k colors�
However� the k�colorable graphs are not assigned equal probability� even for p � ���� some
graphs are more likely than others roughly speaking� graphs possessing many k�colorings
are most likely�� This distribution is however� closely related to the uniform probability
distribution� which assigns equal probability to each k�colorable graph on n vertices� That
relationship will be made clear in the next section� For the moment� we focus on the
distribution Xnk� p��

Let � � p � � be 
xed and let k � kn� be an integer function that satis
es � � k � n�
Let Q be a predicate de
ned on graphs and let PrQG�� be the probability thatQG� is true
for G � Xnk� p�� We say that Q holds for almost all G � Xnk� p� if limn�� PrQG�� � ��

In this section we present a heuristic coloring algorithm� which for constant p and k

growing slowly with n 
nds a k�coloring for almost all G � Xnk� p�� In the next section�
we will use this result to show that the algorithm successfully colors almost all k�colorable
graphs�

De
ne a partial coloring of a graph G � V�E� to be a mapping c � V � ��� n�� The
algorithms we will study start by constructing the partial coloring de
ned by cx� � � for
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all x � V and then attempt to convert this to a complete proper coloring� Given a partial
coloring c� we can de
ne for each vertex x� a set availcx� � fi j � � i � n 	 fx� yg � E 

cy� �� i�g� If x is currently uncolored cx� � ��� availcx� is the set of colors that are
available for coloring x� We will write availx� without the subscript whenever the coloring
function is clear from the context�

Our algorithm attempts to 
nd a k�coloring of a graph G � V�E�� where k is assumed
to be an input parameter� The algorithm has two phases� In the 
rst phase it attempts to

nd a k�clique by repeating the following step k times�

Clique Finding Step� Select a vertex x adjacent to all previously selected vertices�

If it 
nds a clique� it colors each of the vertices in the clique with a distinct color in ��� k�
and starts the second phase which consists of repeated applications of the following rule�

Coloring Rule �� Select an uncolored vertex x for which javailx�� ��� k�j � �
and let cx� � min availx��

We refer to this as the no�choice algorithm since it succeeds only if it can color all the
vertices without making any arbitrary choices after coloring the initial k�clique�� The
algorithm can fail to produce a k�coloring if it is unable to 
nd a k�clique or if at some
point javailx�� ��� k�j �� � for all uncolored vertices x� We will show that when k is not
too large� the no�choice algorithm succeeds with high probability for G � Xnk� p��

De
ne �nc� � � lnn
ln c � Note that �nc� 	 � when � � c � � and n 	 �� c�n�c� � �

n and
limn�� �nc� �� for 
xed c � �� ��� We will usually write �c� instead of �nc��

Theorem ���� Let � � � � �� � � p � � be �xed� n � � and � � k � � � ���p�� For

almost all G � Xnk� p�� the no�choice algorithm �nds a k�coloring�

We say that a graph is uniquely k�colorable if all proper k�colorings induce the same partition
on the vertex set� Since the no�choice algorithm makes no arbitrary decisions with the
exception of coloring the initial clique� the graphs it colors successfully are uniquely k�
colorable�

Corollary ���� Let � � � � �� � � p � � be �xed� n � � and � � k � � � ���p��
Almost all G � Xnk� p� are uniquely k�colorable�

To prove Theorem ���� we 
rst de
ne a class of graphs which we call easily colorable

graphs and observe that the no�choice algorithm succeeds for all easily colorable graphs�
We then present a series of lemmas which together imply that almost all G � Xnk� p� are
easily colorable�

We say that a k�colorable graph G satis
es the clique property if for every r � k� all
cliques on r vertices can be extended to r � � vertices�
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Let G be a k�colorable graph containing at least one k�clique and let fx�� � � � � xkg be
any k�clique in G� We de
ne

Aix�� � � � � xk� � fy � V j fy� xjg � E for all j �� ig
Bix�� � � � � xk� � fy � V j y is adjacent to some zj � Ajx�� � � � � xk� for all j �� ig
Cix�� � � � � xk� � fy � V j y is adjacent to some zj � Bjx�� � � � � xk� for all j �� ig

Note that xi � Aix�� � � � � xk� � Bix�� � � � � xk� � Cix�� � � � � xk� for all i�

We say that a k�colorable graph G is easily colorable if the clique property holds and for
all cliques fx�� � � � � xkg�

ki��Cix�� � � � � xk� � V�

It�s easy to see that the no�choice algorithm will succeed for any easily colorable graph� It
remains to show that almost all G � Xnk� p� are easily colorable�

The following proposition Angluin and Valiant ���� is used in the proofs of several of
the lemmas which follow� Let Bn� p� denote the binomial distribution� By de
nition� if
x � Bn� p� then P x � k� �

�n
k

�
pk�� p�n�k �

Proposition ���� If x � Bn� p� then for all 
� � � 
 � �� P x � � � 
�np� � e��
�np��

and P x � � � 
�np� � e��
�np���

For G � Xnk� p� we de
ne c to be the randomly selected k�coloring used to generate G
and we let

Vi � fu � V j cu� � ig ni � jVij m � min
��i�k

ni

Our 
rst lemma puts a lower bound on jVij�

Lemma ���� Let � � � � �� � � p � � be �xed� n � � and � � k � � � ���p�� For

almost all G � Xnk� p�� ni � jVij � n��k for all i�

proof� Each ni is a random variable drawn from Bn� ��k�� By Proposition ���� the proba�
bility that a particular ni is less than n��k is � e�n��k and the probability that any of the
ni is less than n��k is � ke�n��k � �� since k � Ologn�� �

Lemma ���� Let � � � � �� � � p � � be �xed� n � � and � � k � � � ���p�� For

almost all G � Xnk� p�� the clique property holds�

proof� By Lemma ���� the probability that m � n��k vanishes for large n� Assume then
that m � n��k� Let Kr be any clique of size r � k� The probability that there is no vertex
y adjacent to all the vertices in Kr is � �� pr�m�k�r�� There are at most nr ways to select
Kr� so the probability that there is an r�clique which cannot be extended is

�
k��X
r��

nr�� pr�m�k�r� � knk�� pk�n��k � knke�np
k��k � exp�ln k � k ln n� n���k�� �

since k � Ologn�� �
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Lemma ���� Let � � � � �� � � p � � be �xed� n � � and � � k � � � ���p��
For almost all G � Xnk� p�� if x�� � � � � xk is any k�clique with xi � Vi � � i � k� then
jAix�� � � � � xk�j � �� ��n���k for all i�

proof� By Lemma ���� the probability that m � n��k vanishes for large n� Assume then
that m � n��k� From this and the bound on k� we obtain nip

k�� � n���k for all i� Let
si � jAix�� � � � � xk�j for a particular choice of x�� � � � � xk� Using Proposition ���� we obtain

P si � �� ��n���k� � P si � �� ��nip
k��� � e��

�nip
k���� � e��

�n���k

Since x�� � � � � xk can be chosen in at most n
k ways� the probability that there is any choice

of x�� � � � � xk for which some si is smaller than �� ��n���k is

� knke��
�n���k � exp�ln k � k lnn � ��n���k�� �

since k � Ologn�� �

Lemma ���� Let � � � � �� � � p � � be �xed� n � � and � � k � � � ���p��
For almost all G � Xnk� p�� if x�� � � � � xk is any k�clique with xi � Vi � � i � k� then
jBix�� � � � � xk�j � ni � k��� p� for all i�

proof� Suppose G satis
es the following property

�� For every choice of U�� � � � � Uk where Ui � Vi and jUij � r � k�� � p�� each Ui

contains a vertex yi having a neighbor in each Uj j �� i��

If in addition� jAix�� � � � � xk�j � k��� p� for all i� then it follows that jBix�� � � � � xk�j �
ni� k��� p� for all i� By Lemma ���� almost all G satisfy jAix�� � � � � xk�j � k��� p� for
all i� so it su	ces to show that �� holds for almost all G�

Consider a particular choice of U�� � � � � Uk and let y � U�� The probability that there
is a j � ��� k� such that Uj has no neighbor of y is � k� � p�r� The probability that U�

contains no vertex with neighbors in each of U�� � � � � Uk is � k�� p�r�r� Since Ui � Vi and
the Vi partition V � each choice of U�� � � � � Uk corresponds to a distinct choice of kr elements
from V � Hence� the probability that G does not satisfy �� is

� k

�
n

kr

�
k�� p�r�r � kr	�

�
en

kr

�kr
�� p�r

� �
�
en

r
�� p�r�k

�kr

� e�r�kr � �

since r � �logn�� �

Lemma ���� Let � � � � �� � � p � � be �xed� n � � and � � k � � � ���p��
For almost all G � Xnk� p�� if x�� � � � � xk is any k�clique with xi � Vi � � i � k� then
ki��Cix�� � � � � xk� � V �

proof� Suppose G satis
es the following property�

��� u � Vi 	 j �� i 
 u has at least �� ��np��k neighbors in Vj�
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If in addition� jBix�� � � � � xk�j 	 ni�����np��k for all i� then it follows thatCix�� � � � � xk� �
Vi for all i� By Lemma ���� almost all G satisfy jBix�� � � � � xk�j 	 ni � �� ��np��k for all
i� so it su	ces to show that ��� holds for almost all G�

By Lemma ���� the probability that m � n��k vanishes for large n� Assume then that
m � n��k� Let dix� be the number of neighbors vertex x has in Vi� Clearly� dix� � Bni� p�
for x �� Vi� By Proposition ����

P dix� � �� ��np��k� � P dix� � �� ��nip� � e��
�nip�� � e��

�np��k

So the probability that G does not satisfy ��� is � kne��
�np��k � �� �

This completes the proof of Theorem ����

�� Most k�Colorable Graphs are Easily Colorable

In this section we show that almost all k�colorable graphs are easily colorable� The proof
is indirect and depends on a careful examination of the process by which graphs G �
Xnk� ���� are generated� We view this process as a random walk in a certain graph which
we now de
ne�

Let �k
n be the set of all k�colorings for n vertex graphs� Let  k

n be the set of all
k�colorable graphs on n vertices� We de
ne !k

n � W�F � to be a directed graph in which

W � fug �k
n   k

n

F � f�u� c� j c � �k
ng  f�c� G� j c� �k

n 	G �  k
n 	 c is a proper k�coloring for Gg

The structure of !k
n is illustrated in Figure �� The process by which graphs in Xnk� ����

are generated can be viewed as a two step random walk in !k
n starting at vertex u� We 
rst

select a coloring� giving each one equal probability of selection� We then select a graph for
which the selected coloring is proper� giving equal probability to each such graph�

Let � � �k
n contain all colorings that assign each color to at least n��k vertices� We

refer to these as balanced colorings� Let � �  k
n contain all easily colorable graphs that can

be colored using a balanced coloring� Also� let � � �k
n � � and � �  k

n � �� With these
de
nitions we can give a more detailed picture of !k

n as shown in Figure �� Note that all
edges leaving � terminate in ��

We claim that j�j�j�j � � as n � �� By Corollary ��� each G � � has exactly k"
incoming edges� Also� note that each G � � has at least k" incoming edges� Hence� we can
prove our claim by showing that the ratio of the number edges entering � to the number of
edges entering � vanishes�

Let d��� be the number of edges joining � and �� De
ne d��� and d� �� similarly�
We will prove our claim by showing that

d��� � d� ��

d���
� �

�



First� note that Lemmas ���#��� together imply that given any balanced coloring� almost all
graphs for which that coloring is proper are easily colorable� Hence� d����d��� vanishes�
It remains to show that d� ���d��� vanishes� We can do this by establishing the following
sub�claims�

� j�j�j�j � �

� The expected out�degree of a randomly selected vertex in � is less than the expected
out�degree of a randomly selected vertex from ��

The 
rst sub�claim follows immediately from Lemma ���� We now prove the second� For
any coloring k�coloring c on n vertices� let ni be the number of vertices assigned color i
� � i � k� and de
ne

c� �
kX

i��

�
ni
�

�
and �c� � �

n

�
����c�

Note that �c� is exactly the number of graphs for which c is proper� Let ca be a randomly
selected coloring in �  �� cb be a randomly selected coloring in � and cu be a randomly
selected coloring in �� We wish to show that E�cu�� � E�cb��� which we do by showing
that E�cu�� � E�ca��

Aside� If x is any random variable de
ned on a discrete sample space A and B � A
then ExjB� � Ex�� ExjB� � ExjA� B��

Note 
rst� that

�
n

�
��E���ca�� � E�ca��

by Jensen�s inequality ��� ��� Next� note that if 
 is a lower bound for cu�� then

E�cu�� � �
n

�
���

So it su	ces to 
nd an appropriate bound 
 and show that 
 � Eca���
We start by calculating Eca���

Eca�� �
�

�

kX
i��

En�i �� Eni��

Since in this case� Eni� � n�k and En�i � � n�k� � nn� ���k�� it follows that

ES� �
�

k

�
n

�

�

Before we determine 
� we note that for any convex function f �

fx� � � � �� xk��k� � fx�� � � � �� fxk���k
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see ��� page ����� For example�

kX
i��

�
ni
�

�
� k

�
n�k

�

�
so ca� � k

�
n�k

�

�

Since in any unbalanced coloring� at least one of the ni is no larger that n��k� cu� �
min
�x�n��k gx� where

gx� �

�
x

�

�
� k � ��

�
n� x��k � ��

�

�

The function gx� has a single global minimum at x � n�k� Its minimum value in the interval
��� n��k� occurs at n��k Therefore� cu� � 
 � gn��k�� A straightforward calculation
yields


 �
�

k

�
n

�

�
�

n

�k

�
n

�k� �� � k� ��
	

The expression in brackets is non�negative when n � �k � ���� Consequently� E�cu�� �
E�cb��� when n � �k� ��� and we have the following theorem�

Theorem ���� Let � � � � � be �xed� n � � and � � k � � � �� log� n� Almost all

k�colorable graphs are easily colorable�

Corollary ���� Let � � � � � be �xed� n � � and � � k � � � �� log� n� For almost

k�colorable graphs the no�choice algorithm produces a k�coloring�

�� Br�elaz�s Algorithm

The no�choice algorithm is similar to one proposed by Br�elaz ��� and justi
ed on experimen�
tal grounds� Br�elaz�s algorithm can be described as a repeated application of the following
rule�

Coloring Rule �� Select an uncolored vertex x that minimizes javailx�j and let
cx� � min availx�� If there are several vertices available for selection� select
one with maximum degree in the uncolored subgraph�

Consider the behavior of Br�elaz�s algorithm on a k�colorable graph G on n vertices that is
easily colorable� Because G satis
es the clique property� the 
rst k vertices colored will form
a k�clique� Once the 
rst k vertices have been colored� the algorithm repeatedly selects a
vertex x for which javailx�j � n� k� �� that is� it mimics the no�choice algorithm� These
observations yield the following theorem�

Theorem ���� Let � � � � �� � � p � � be �xed� n�� and k � �� ���p�� For almost

all G � Xnk� p�� Br�elaz�s algorithm produces a k�coloring�

Corollary ���� Let � � � � � be �xed� n � � and � � k � � � �� log� n� For almost

k�colorable graphs Br�elaz�s algorithm produces a k�coloring�
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	� E
cient Implementations of Coloring Algorithms

A program implementing the no�choice algorithm is shown in Figure �� The algorithmic
notation is adapted from Tarjan ������ Vertices are represented by integers in ��� n� and
the graph is represented by an array of vertex sets called neighbors� For each vertex x�
neighborsx� is a list containing all vertices adjacent to x in increasing order� Vertices that
are ready to be colored are placed in a queue� Each iteration of the algorithm�s main loop
removes a vertex from the queue� colors it� then examines its neighbors� adding them to
the queue if possible� Initially each vertex is assigned a color of ��� When a vertex is
added to the queue� its color is changed to �� The subroutine shown in Figure � is used to

nd a clique� The clique program can be implemented to run in linear time� if the set S is
represented as a bit vector and a supplementary list of vertices ordered by degree is used to
determine x on each iteration� This supplementary list can be sorted in linear time using a
radix sort�� The key to e	cient implementation of the main program is the data structure
used to represent the sets availx�� The simplest approach is to use a bit vector for each
set� This leads to an Okn�m� running time for a graph with n vertices and m edges� We
can improve on this by using a special variety of binary search tree described below� Note
that a standard search tree won�t help here since initializing n search trees to represent the
set f�� � � � � kg takes �kn log k� time��

We de
ne a shrinking set to be an abstract data type representing a set of positive
integers on which the following operations can be performed�

makesetlo� hi� Return a new set consisting of the integers in the interval �lo� hi��

selects� Return an arbitrary element from s�

selectmins� Return the smallest element in s�

deletex� s� Delete the integer x from s�

The operations on shrinking sets are de
ned in terms of another abstract data structure�
which we call an interval set� An interval set represents a set of disjoint intervals on the
positive integers on which the following operations are de
ned�

makeintervalseti� Return a new set consisting of the interval i�

memberx� s� Return the interval in s that contains the integer x� If there is no such
interval� return � ��

selects� Return an arbitrary integer contained in some interval in s�

selectmins� Return the smallest integer contained in some interval in s�

insertintervali� s� Insert the interval i in s i must be disjoint from intervals already in s��

deleteintervalx� s� Delete the interval i from s�

An interval set can be implemented e	ciently using any standard balanced search tree
structure� Each node of the search tree represents an interval� This yields an Ologn�
running time per operation� where n is the number of intervals in the set� The operation
makesetlo� hi� on a shrinking set is implemented simply as makeintervalset�lo� hi�� on
the underlying interval set� The select and selectmin operations on a shrinking set are
implemented as the corresponding interval set operations� Finally� the operation deletex� s�
on a shrinking set is implemented by the program fragment in Figure �� Thus� all the

��



operations on a shrinking set can be implemented to run in Olog k� time� where k is the
size of the set when it is initialized� These observations yield the following theorem�

Theorem ���� The no�choice algorithm can be implemented to run in On�m log k� time

on graphs with n vertices and m edges�

Note that this is superior to the obvious implementation only when the graph is quite
sparse� However� the same technique also yields a substantial improvement to Br�elaz�s
algorithm for all but the densest graphs�

In ��� Br�elaz claims an On�� time bound for his algorithm� which is easily proved� In
fact� Br�elaz�s algorithm can be implemented to run in time Om logn� for a graph with
n vertices and m edges� The program in Figure � illustrates this� The heap contains
the uncolored vertices� For the purposes of the heap operations� vertex x is smaller than
vertex y if javailx�j � javaily�j or javailx�j � javaily�j and degx� 	 degy�� The siftup
operation restores the order of items in the heap after the changes to availy� and degy��
See ���� for details� As in the program for the no�choice algorithm� the key to an e	cient
implementation is the data structure used to implement the sets availx�� If a bit vector
is used� the running time is On��� However� using the shrinking set data structure each
initialization operation can be done constant time� the selection of a minimum can be done
in Ologn� time as can the deletion operation� These observations yield�

Theorem ���� Br�elaz�s algorithm can be implemented to run in Om logn� time on graphs

with n vertices and m edges�

�� Experimental Results

A series of experiments were run to provide more detailed information on the performance
of the no�choice algorithm� One hundred random graphs in Xnk� ��� were generated for
each of several values of n and k� The no�choice algorithm was then run on each graph� The
results are summarized in Figure �� For each value of n and k the 
gure shows the number
of graphs for which a k�coloring was constructed� The 
gure shows that the algorithm
works well when k is small� but as k gets larger its performance deteriorates abruptly� This
is consistent with the analysis given in section �� As n increases� the breakdown point also
increases� Let �np� be the smallest k for which the probability of success on graphs in
Xnk� p� is less than ���� We can estimate �np� by observing where the curves in Figure �
cross the dashed line� The data suggest that ������� � �� ������� � �� ������� � �� and
��
����� � �� This is consistent with Theorem ���� which suggests that �np� grows in
proportion to logn�

Figure � shows the results of a series of experiments� which provide more detailed infor�
mation on the performance of Br�elaz�s algorithm� One hundred random graphs in Xnk� ���
were generated for each of several values of n and k� and Br�elaz�s algorithm was run on each
graph� The plot shows the ratio of the average number of colors used to k� As with the
no�choice algorithm� the performance is quite good for small k� but deteriorates abruptly as
k gets large� The point at which the breakdown occurs appears to increase logarithmically
with n as one would expect from Theorem ����
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�� The Greedy Algorithm

The greedy algorithm for graph coloring is a simple and popular heuristic� It can be
described as follows�

For each x � ��� n�� let cx� � min availx��

Grimmet and McDiarmid ��� have shown that for almost all random graphs in the usual
model�� the greedy algorithm uses no more than about twice the optimal number of colors�
In this section� we study the performance of the greedy algorithm for graphs in Xnk� p�
and conclude that it performs poorly unless k is quite small�

Let G � V�E� � Xnk� p�� Let c be the coloring used to generate G and let c� be the
coloring computed by the greedy algorithm� We are interested in the probability that c� is
a k�coloring� Since almost all G are uniquely k�colorable� this probability is approximately
k" times the probability that c� � c� for large enough n�

Let Sir� � f� � z � r j cz� � c�z� � ig for � � i � k and let P n�� n�� � � � � nk� be the
probability that jSir�j � ni for all i � ��� k�� where r � Pk

i�� ni� P satis
es the following
recurrence�

P �� � � � � �� � �

P n�� � � � � nk� � � if any ni � �

P n�� � � � � nk� �
�

k

kX
h��

P n�� � � � � nh��� nh � �� nh	�� � � � � nk�
h��Y
j��


nj� otherwise

where 
x� � � � �� p�x� We adopt the convention that an empty product is equal to
��� Now� let Qr� be the probability that cz� � c�z� for � � z � r and cr� �� c�r��

Qr� �� �
X

n�� � � � � nk � �
n� � � � �� nk � r

P n�� � � � � nk�



��� �

k

kX
h��

h��Y
j��


nj�

�


Now� the probability that c� �� c is
Pn

r��Qr�� This yields the following theorem�

Theorem ���� Let � � p � �� k � � be �xed and let G � Xnk� p�� As n��� the proba�

bility that the greedy algorithm produces a k�coloring of G approaches k" ��Pn
r��Qr���

The terms in
Pn

r��Qr� decline rapidly� so for small k� we can use Theorem ��� to estimate
the probability that the greedy algorithm produces a k�coloring� We illustrate the procedure
for the case� k � �� The general equations reduce to

P n�� n�� �
�

�
�P n� � �� n�� � P n�� n� � �� �� �� p�n���

Qr � �� �
�

�

rX
n��


P n�� r� n���� p�n�

��



Using these equations and Theorem ��� we estimate that for large n� the probability of the
greedy algorithm successfully ��coloring a graph in Xn�� ��� is approximately ���� In the
same way� we estimate that the probability of the greedy algorithm successfully ��coloring
a graph in Xn�� ��� is approximately ����� and the probability of it successfully ��coloring
a graph in Xn�� ��� is approximately ����� We conclude that unless k is quite small� we
cannot expect the greedy algorithm to 
nd optimal colorings for random k�colorable graphs�

Of course� the above results don�t rule out the possibility of the greedy algorithm pro�
ducing good but sub�optimal colorings� Experimental methods were used to address this
issue� One hundred random graphs in Xnk� ��� were generated for each of several values
of n and k� Figure � shows the average number of colors used by the greedy algorithm in
these experiments� For any given k� the number of colors used increases with n� The rate of
growth is moderate when k is small� but fairly large for k � �� For k � � and n � ���� the
greedy algorithm uses almost three times the optimal number of colors� The data indicate
that except for very small k� the greedy algorithm can be expected to produce colorings
that di�er from optimal by an arbitrarily large factor�

� Closing Remarks

In this paper� we have shown that when k is not too large relative to n� almost all k�colorable
graphs are easily colorable� For larger values of k� all the algorithms discussed here perform
poorly� One open problem is to 
nd algorithms that work well when k is as large as say�
n����

Theorem ��� implies that the complexity of recognizing k�colorable graphs is caused
by a relatively small number of $pathological cases�% Similar results may hold for other
np�complete problems� Indeed it may be possible to classify np�complete sets as hard or
easy based on whether or not they contain large subsets whose members can be e	ciently
identi
ed� The current work represents a 
rst step in such a classi
cation�
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Figure �� Detailed Structure of !k
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function bit nochoice�integer k� n� graph neighbors� modi�es array c��
integer i� nc� vertex x� y� list Q� set X�
array�� � � n� of set avail�

for x � �� � � n� � c�x�� ��� avail �x�� f�� � � � � kg� rof�
X � clique�k� n� neighbors��
if jXj �	 k � return false ��
i� �� for x � X � c�x�� i� i� i
 �� rof�

Q� � ��
for x � X �

for y � neighbors�x� �
avail�y�� avail �y�� c�x��

if c�y� 	 �� and javail�y�j 	 � �
Q� Q� �y�� c�y�� ��

��
rof�

rof�
nc� k�
do Q �	 � � �

x� Q���� Q� Q� � ���
if javail �x�j �	 � � return false ��
c�x�� minavail �x�� nc� nc
 ��
for y � neighbors�x� �

avail�y�� avail �y�� c�x��
if c�y� 	 �� and javail�y�j 	 � �

Q� Q� �y�� c�y�� ��
��

rof�
od�
return nc 	 n�

end�

Figure �� Program Implementing the No Choice Algorithm
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set function clique�integer k� n� graph neighbors��

set S�K�
S � f�� � � � � ng�
K � ��
do S �	 � �

Select x � S of maximum degree�
K � K � fxg�
S � S � neighbors�x��

od�

return K�
end�

Figure �� Subroutine for Finding a Clique
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i� member�x� s��

if i �	 � � �
deleteinterval�i� s��
if i �lo � x � insertinterval��i�lo� x� ��� s� ��
if i �hi � x � insertinterval��x
 �� i�hi�� s� ��

��

Figure �� Program Fragment Implementing the Delete Operation
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procedure brelaz�integer k� n� graph neighbors� modi�es array c��

vertex x� y� heap h�
array�� � � n� of set avail�
array�� � � n� of integer deg�
for x � �� � � n� �

c�x�� ��
avail �x�� f�� � � � � ng�
deg�x�� jneighbors�x�j�

rof�

h� makeheap�f�� � � � � ng��
do h �	 �

x� deletemin�h��

c�x�� minavail �i��
for y � neighbors�x� �

if c�y� 	 � �
avail �y�� avail �y�� c�x��

deg�y�� deg�y�� ��
siftup�y� h��

��
rof�

od�
end�

Figure �� Program Implementing Br�elaz�s Algorithm
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