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ABSTRACT

We describe a simple and efficient heuristic algorithm for the graph coloring
problem and show that for all £ > 1, it finds an optimal coloring for almost
all k-colorable graphs. We also show that an algorithm proposed by Brélaz
and justified on experimental grounds optimally colors almost all k-colorable
graphs. Efficient implementations of both algorithms are given. The first one
runs in O(n+ mlog k) time where n is the number of vertices and m the number
of edges. The new implementation of Brélaz’s algorithm runs in O(mlogn)
time. We observe that the popular greedy heuristic works poorly on k-colorable
graphs.
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1. Introduction

Let G = (V, F) be a simple undirected graph. A k-coloring of G is a mapping ¢ : V —
{1,2,...,k}; cis a proper coloring if ¢(u) # ¢(v) for all {u, v} € E. The chromatic number of
G, denoted x((G), is defined as the smallest positive integer k for which a proper k-coloring
exists. The graph coloring problem is to determine for a given graph GG and an integer k, if

X(G) < k.

The graph coloring problem has a long, interesting history and arises in a variety of ap-
plications. Karp [10] showed that the problem is NP-complete. Stockmeyer [12],[5] strength-
ened this by showing that it remains NP-complete for any fixed k£ > 3. This has led many
researchers to seek approximation algorithms capable of producing colorings that don’t use
too many extra colors. Garey and Johnson [6] proved that unless P = NP, no polynomial
time approximation algorithm can guarantee the use of fewer than 2x(G') colors. Further-
more, Johnson [9] showed that for many popular heuristics, there are 3-colorable graphs
on n vertices for which the heuristics require ©(n) colors. Johnson also described a new
algorithm using at most O(n/logn) colors on any 3-colorable graph. This stood as the
best worst-case result for graph coloring until Wigderson [14] discovered an algorithm that
colors any 3-colorable graph using at most 3[/n| colors and any k-colorable graph using

at most 2k [nl_l/(l_’ﬂ colors.

The disappointing nature of the worst-case results for graph coloring suggests that prob-
abilistic analysis may provide a more effective way of evaluating candidate algorithms.
Grimmet and McDiarmid [7] took the first step in this direction by showing that for almost
all graphs on n vertices, x(G) > (1— €)n/(210g1/(1_p) n), where p is a fixed edge probability
in the usual random graph model, and € is any positive constant. (In the usual random
graph model, edges are generated independently with probability p between each pair of
vertices. We say that a property holds for almost all random graphs if the probability of the
property holding approaches one as n — 00.) They also showed that a well-known greedy
heuristic uses < (1 + €)n/logy_,)n colors.

Grimmet and McDiarmid’s results are interesting for what they tell us about random
graphs; it’s less clear what they tell us about the merits of the greedy heuristic. The naive
conclusion one can draw is that the greedy algorithm is a good one for graph coloring.
A less obvious, but perhaps more accurate interpretation is that these results cast doubt
on the usefulness of a probabilistic analysis based on the usual random graph model for
comparing graph coloring algorithms. They suggest that the usual model is too ‘easy’ a
distribution, since it makes even the most simple-minded algorithm look good. In order to
obtain meaningful comparative information, we should try to select a more difficult prob-
ability distribution, one that poses some challenges for candidate algorithms to overcome.
The analysis of a backtrack search algorithm given in [15] and [2] reinforces this interpre-
tation. These authors show that the expected size of the backtrack search tree explored
by their algorithm is O(1), when graphs are selected using the usual random graph model,
suggesting once again that the usual model is too easy.

The set of k-colorable graphs on n vertices is the set of all » vertex graphs that can be
colored with k or fewer colors. Let () be a predicate defined on graphs and G* be selected



at random from the set of k-colorable graphs on n vertices. We say that ¢) holds for almost

all k-colorable graphs if lim,_.., Pr(Q(G})) =1

In section 2, we introduce a simple heuristic coloring algorithm and define a natural
probability distribution over the set of k-colorable graphs. We then show that for graphs
selected from this distribution, the algorithm finds an optimal coloring with high probability.
In section 3, we show that this algorithm finds an optimal coloring for almost all k-colorable
graphs. In section 4, we give similar results for Brélaz’s algorithm. Section 5 gives efficient
implementations of both algorithms. Section 6 gives experimental results that provide more
detailed information on the performance of the two algorithms. Section 7 gives evidence that
the popular greedy heuristic performs poorly on k-colorable graphs and section 8 contains
closing remarks.

2. The No-Choice Algorithm

Let n,k be positive integers, 0 < p < 1 and let G = (V, F) be the graph defined by the
following experiment.

o Let V=A1,...,n}.
o Lor each u € V' let ¢(u) be a random integer in [1, k].

o Lor each pair uw,v € V such that ¢(u) # ¢(v), include the edge {u,v} in F with
probability p.

The probability distribution defined by this experiment is denoted X,,(k, p) and the notation
G € X, (k,p) means that G is a random graph generated in this way.

The probability distribution X, (k,p) assigns non-zero probability to every k-colorable
graph on n vertices, and zero probability to to every graph requiring more than k colors.
However, the k-colorable graphs are not assigned equal probability; even for p = 1/2, some
graphs are more likely than others (roughly speaking, graphs possessing many k-colorings
are most likely). This distribution is however, closely related to the uniform probability
distribution, which assigns equal probability to each k-colorable graph on n vertices. That

relationship will be made clear in the next section. For the moment, we focus on the
distribution X, (k,p).

Let 0 < p < 1 be fixed and let k = k(n) be an integer function that satisfies 2 < k < n.
Let () be a predicate defined on graphs and let Pr(Q((G)) be the probability that Q(G') is true
for G € X, (k,p). We say that ) holds for almost all G € X,,(k,p)if lim,_.., Pr(Q(G)) = 1.

In this section we present a heuristic coloring algorithm, which for constant p and &
growing slowly with n finds a k-coloring for almost all G € X,,(k,p). In the next section,
we will use this result to show that the algorithm successfully colors almost all k-colorable
graphs.

Define a partial coloring of a graph G = (V, ) to be a mapping ¢ : V. — [0,n]. The
algorithms we will study start by constructing the partial coloring defined by ¢(z) = 0 for



all z € V and then attempt to convert this to a complete proper coloring. Given a partial
coloring ¢, we can define for each vertex z, a set avail.(z) ={i|1 <i<nA({z,y} € F =
c(y) # i)} If 2 is currently uncolored (¢(z) = 0), avail(z) is the set of colors that are
available for coloring z. We will write avail(z) without the subscript whenever the coloring
function is clear from the context.

Our algorithm attempts to find a k-coloring of a graph G' = (V, F'), where k is assumed
to be an input parameter. The algorithm has two phases. In the first phase it attempts to
find a k-clique by repeating the following step k times.

Clique Finding Step. Select a vertex x adjacent to all previously selected vertices.

If it finds a clique, it colors each of the vertices in the clique with a distinct color in [1, k]
and starts the second phase which consists of repeated applications of the following rule.

Coloring Rule 1. Select an uncolored vertex z for which |avail(z)N[1,k]| =1
and let ¢(z) = min avail(z).

We refer to this as the no-choice algorithm since it succeeds only if it can color all the
vertices without making any arbitrary choices (after coloring the initial k-clique). The
algorithm can fail to produce a k-coloring if it is unable to find a k-clique or if at some
point |avail(z)N[1,k]| # 1 for all uncolored vertices . We will show that when £ is not
too large, the no-choice algorithm succeeds with high probability for G’ € X,,(k,p).

Define A,(c) = =22 Note that A,(c) > 0 when 0 < ¢ < L and n > 1, ™) = L and

Inc*

lim,, oo Ap(€) = oo for fixed ¢ € (0,1). We will usually write A(¢) instead of A, (¢).

THEOREM 2.1. Let 0 < € < 1,0 < p < 1 be fixed, n — 00 and 2 < k < (1 — ¢)A(p). For
almost all G € X, (k,p), the no-choice algorithm finds a k-coloring.

We say that a graph is uniquely k-colorable if all proper k-colorings induce the same partition
on the vertex set. Since the no-choice algorithm makes no arbitrary decisions with the
exception of coloring the initial clique, the graphs it colors successfully are uniquely k-
colorable.

COROLLARY 2.1. Let 0 < e < 1,0 < p < 1 be fixed, n — o0 and 2 < k < (1 — €)A(p).
Almost all G € X, (k,p) are uniquely k-colorable.

To prove Theorem 2.1, we first define a class of graphs which we call easily colorable
graphs and observe that the no-choice algorithm succeeds for all easily colorable graphs.
We then present a series of lemmas which together imply that almost all G € X, (k,p) are
easily colorable.

We say that a k-colorable graph G satisfies the cligue property if for every r < k, all
cliques on r vertices can be extended to r + 1 vertices.



Let G be a k-colorable graph containing at least one k-clique and let {zy,..., 25} be
any k-clique in GG. We define

Ai(zq,..o2r) = {yeV|{y,z;} € Eforall j#i}
Bi(z1,...,2x) = {y €V |yis adjacent to some z; € A;(zq,...,21) for all j # ¢}
Ci(x1,...,2k)

Note that z; € A;(21,...,2k) C Bi(z1,...,25) C Ci(x1,...,2) for all ¢.

{y € V' ]y is adjacent to some z; € B;(z1,...,z) for all j # i}

We say that a k-colorable graph G is easily colorable if the clique property holds and for
all cliques {zq,..., 21},
Uf:lci(xlv .. '7$k) =V

It’s easy to see that the no-choice algorithm will succeed for any easily colorable graph. It
remains to show that almost all G € X,,(k, p) are easily colorable.

The following proposition (Angluin and Valiant [1]) is used in the proofs of several of
the lemmas which follow. Let B(n,p) denote the binomial distribution. By definition, if
@ € B(n,p) then P(z = k) = ()p*(1 - p)"~*.

PROPOSITION 2.1. If 2 € B(n,p) then for all @, 0 < a < 1, P(z < (1 — a)np) < e~ /2
and P(z > (14 a)np) < e~ /3,

For G € X,,(k,p) we define ¢ to be the randomly selected k-coloring used to generate G
and we let
Vi={ueV]e(u)=1i} n; = |Vj mzlrglélkni

Our first lemma puts a lower bound on |V].

LemMa 2.1, Let 0 < € < 1,0 < p < 1 be fixed, n — 00 and 2 < k < (1 — ¢)A(p). For
almost all G € X, (k,p), n; = |Vi| > n/2k for all .

proof. Each n; is a random variable drawn from B(n,1/k). By Proposition 2.1, the proba-
bility that a particular n; is less than n/2k is < e~"/% and the probability that any of the
n; is less than n/2k is < ke™"/8% — 0, since k = O(logn). O

LemMMA 2.2, Let 0 < ¢ < 1,0 < p < 1 be fixed, n — o0 and 2 < k < (1 — ¢)A(p). For
almost all G € X, (k,p), the clique property holds.

proof. By Lemma 2.1, the probability that m < n/2k vanishes for large n. Assume then
that m > n/2k. Let K, be any clique of size r < k. The probability that there is no vertex
y adjacent to all the vertices in K, is < (1 — pT)m(k_T). There are at most n” ways to select
K., so the probability that there is an r-clique which cannot be extended is

k-1
< Z n" (1 —p ) h=r) < fnk (1 — pkyn/2k < fenk et /2 < explnk + klnn — n°/2k] — 0

r=1

since k = O(logn). O



LEMMA 2.3, Let 0 < € < 1,0 < p < 1 be fixed, n — oo and 2 < k
For almost all G € X, (k,p), if 1,...,2k is any k-clique with z; € V; (1
|Ai(z1,...,2)| > (1 — €)nc/2k for all 1.

proof. By Lemma 2.1, the probability that m < n/2k vanishes for large n. Assume then
that m > n/2k. From this and the bound on k, we obtain nipht > n¢/2k for all i. Let
si = |Ai(z1, ..., zg)| for a particular choice of 21, ..., 2. Using Proposition 2.1, we obtain

P(s; < (1—e)n)2k) < P(s; < (1—enp" 1) < e T2 =t/ ak

Since x1,...,2; can be chosen in at most n* ways, the probability that there is any choice
of z1,...,x; for which some s; is smaller than (1 — €)n¢/2k is

< knFe </ = expllnk + klnn — #n/4k] — 0
since k = O(logn). O

LEMMA 2.4, Let 0 < € < 1, 0 < p < 1 be fixed, n — oo and 2 < k
For almost all G € X, (k,p), if 1,...,2k is any k-clique with z; € V; (1
|Bi(z1,...,2)| > n; — kA1 — p) for all .

(1 = )Alp).
1 < k) then

VANV
IN

~—r

proof. Suppose G satisfies the following property
(*) For every choice of Uy,...,U; where U; C V; and |U;| = r > kA1 — p), each U;
contains a vertex y; having a neighbor in each U; (5 # ¢).
If in addition, |A;(#1,...,2x)| > EX(1 — p) for all 7, then it follows that |B;(xq,...,2x)| >
n; — kA(1 —p) for all 7. By Lemma 2.3, almost all G satisfy |A;(z1,...,2%)] > kA(1 —p) for
all 4, so it suffices to show that (*) holds for almost all G.

Consider a particular choice of Uy,..., Uy and let y € U;. The probability that there
is a j € [2,k] such that U; has no neighbor of y is < k(1 — p)". The probability that U
contains no vertex with neighbors in each of Us, ..., Uy is < (k(1—p)")". Since U; C V; and
the V; partition V', each choice of Uy, ..., Uy corresponds to a distinct choice of kr elements
from V. Hence, the probability that G does not satisfy (*) is

< k(,j )(k(l oy <k (S 0 < (L) < (e

since r = Q(logn). O

LEMMA 2.5, Let 0 < € < 1,0 < p < 1 be fixed, n — oo and 2 < k
For almost all G € X, (k,p), if 1,...,2k is any k-clique with z; € V; (1
UleCi(xl,...,xk) =V.

(1 = )Alp).
1 < k) then

VANV
IN

~—r

proof. Suppose G satisfies the following property.
(**) u e V;Aj# ¢ = uhas at least (1 — ¢)np/2k neighbors in V.



Ifin addition, | B;(#1,...,25)| > n;—(1—€)np/2k for all 7, then it follows that C;(z1,...,2%) =
V; for all i. By Lemma 2.4, almost all G satisfy |B;(z1,...,25)| > n; — (1 — €)np/2k for all
i, so it suffices to show that (**) holds for almost all G.

By Lemma 2.1, the probability that m < n/2k vanishes for large n. Assume then that
m > n/2k. Let d;(z) be the number of neighbors vertex « has in V;. Clearly, d;(z) € B(n;,p)
for ¢ V;. By Proposition 2.1,

P(d(z) < (1= €e)np/2k) < P(di(z) < (1 —¢)n;p) < o€ nip/2 < e— < np/4k

So the probability that G does not satisfy (**)is < kne=<mp/4k _ . O

This completes the proof of Theorem 2.1.

3. Most k-Colorable Graphs are Easily Colorable

In this section we show that almost all k-colorable graphs are easily colorable. The proof
is indirect and depends on a careful examination of the process by which graphs G €
Xn(k,1/2) are generated. We view this process as a random walk in a certain graph which
we now define.

Let O be the set of all k-colorings for m vertex graphs. Let ®F be the set of all
k-colorable graphs on n vertices. We define T* = (W, F') to be a directed graph in which

W = {u}uefuekr
F o= {[u,c]lce © YU {[e,G]|ce OF NG € ®F Acis a proper k-coloring for G}

The structure of Y% is illustrated in Figure 1. The process by which graphs in X, (k,1/2)
are generated can be viewed as a two step random walk in T¥ starting at vertex u. We first
select a coloring, giving each one equal probability of selection. We then select a graph for
which the selected coloring is proper, giving equal probability to each such graph.

Let # C OF contain all colorings that assign each color to at least n/2k vertices. We
refer to these as balanced colorings. Let ¢ C ®F contain all easily colorable graphs that can
be colored using a balanced coloring. Also, let § = ©F — 9 and ¢ = ®* — ¢. With these
definitions we can give a more detailed picture of T as shown in Figure 2. Note that all
edges leaving # terminate in ¢.

We claim that |6|/|¢| — 0 as n» — oo. By Corollary 2.1 each (G € ¢ has exactly k!
incoming edges. Also, note that each G € ¢ has at least k! incoming edges. Hence, we can
prove our claim by showing that the ratio of the number edges entering ¢ to the number of
edges entering ¢ vanishes.

Let d(6¢) be the number of edges joining § and ¢. Define d(6¢) and d(f ¢) similarly.

We will prove our claim by showing that

d(69) + d(8 )
d(69)

— 0



First, note that Lemmas 2.1-2.5 together imply that given any balanced coloring, almost all
graphs for which that coloring is proper are easily colorable. Hence, d(6¢)/d(6¢) vanishes.
It remains to show that d(f ¢)/d(f¢) vanishes. We can do this by establishing the following
sub-claims.

e |0]/16] — 0
o The expected out-degree of a randomly selected vertex in 6 is less than the expected

out-degree of a randomly selected vertex from 6.

The first sub-claim follows immediately from Lemma 2.1. We now prove the second. For
any coloring k-coloring ¢ on n vertices, let n; be the number of vertices assigned color ¢
(1 << k) and define

a(c) = Zk: (2) and  6(c) = 2(3)=7()

Note that 6(c) is exactly the number of graphs for which ¢ is proper. Let ¢, be a randomly
selected coloring in 6 U @, ¢, be a randomly selected coloring in  and ¢, be a randomly
selected coloring in 6. We wish to show that E(6(c,)) < E(8(cp)), which we do by showing
that E(6(cy)) < E(6(c,))

Aside. If x is any random variable defined on a discrete sample space A and B C A

then E(z|B) < E(z) & E(z|B) < E(z|A - B).

Note first, that

n

2(3)=Elee) < Fi(6(c,))

by Jensen’s inequality [4, 8]. Next, note that if a is a lower bound for o(¢,), then
B(6(c,)) < 2(2)=

So it suffices to find an appropriate bound a and show that a > E(o(¢,)).
We start by calculating E(o(e,)).

Before we determine «, we note that for any convex function f,

@yt an) k) < (flen) + -+ flag)/k



(see [8, page 72]). For example,

S(5)=() (]

Since in any unbalanced coloring, at least one of the n; is no larger that n/2k, o(c,) >

MiNg<,<p 2k §(7) Where
olx) = (2) 4 (- 1)((" e ”)

The function g(«) has a single global minimum at # = n/k. Its minimum value in the interval
[0,n/2k] occurs at n/2k Therefore, o(c,) > a = g(n/2k). A straightforward calculation

yields
1/{n n n
a:E(Q) +ﬂ[m_(k_l)]

The expression in brackets is non-negative when n > 4(k — 1)2. Consequently, E(é(c,)) <
E(6(cp)), when n > 4(k — 1) and we have the following theorem.

THEOREM 3.1. Let 0 < ¢ < 1 be fixed, n — o0 and 2 < k < (1 — €)logyn. Almost all
k-colorable graphs are easily colorable.

COROLLARY 3.1. Let 0 < € < 1 be fixed, n — 00 and 2 < k < (1 — ¢)logy, n. For almost
k-colorable graphs the no-choice algorithm produces a k-coloring.

4. Brélaz’s Algorithm

The no-choice algorithm is similar to one proposed by Brélaz [3] and justified on experimen-
tal grounds. Brélaz’s algorithm can be described as a repeated application of the following
rule.

Coloring Rule 2. Select an uncolored vertex x that minimizes |avail(z)| and let
c(z) = minavail(z). If there are several vertices available for selection, select
one with maximum degree in the uncolored subgraph.

Consider the behavior of Brélaz’s algorithm on a k-colorable graph G on n vertices that is
easily colorable. Because G satisfies the clique property, the first k vertices colored will form
a k-clique. Once the first k£ vertices have been colored, the algorithm repeatedly selects a
vertex z for which |avail(z)| = n — k 4 1; that is, it mimics the no-choice algorithm. These
observations yield the following theorem.

THEOREM 4.1. Let 0 < € < 1,0 < p <1 be fixed, n — o0 and k < (1 — ¢)A(p). For almost
all G € X,,(k,p), Brélaz’s algorithm produces a k-coloring.

CoROLLARY 4.1. Let 0 < € < 1 be fixed, n — 00 and 2 < k < (1 — ¢)logyn. For almost
k-colorable graphs Brélaz’s algorithm produces a k-coloring.



5. Efficient Implementations of Coloring Algorithms

A program implementing the no-choice algorithm is shown in Figure 3. (The algorithmic
notation is adapted from Tarjan [13].) Vertices are represented by integers in [1,n] and
the graph is represented by an array of vertex sets called neighbors. For each vertex z,
neighbors(z) is a list containing all vertices adjacent to z in increasing order. Vertices that
are ready to be colored are placed in a queue. Fach iteration of the algorithm’s main loop
removes a vertex from the queue, colors it, then examines its neighbors, adding them to
the queue if possible. Initially each vertex is assigned a color of —1. When a vertex is
added to the queue, its color is changed to 0. The subroutine shown in Figure 4 is used to
find a clique. The clique program can be implemented to run in linear time, if the set 5 is
represented as a bit vector and a supplementary list of vertices ordered by degree is used to
determine z on each iteration. (This supplementary list can be sorted in linear time using a
radix sort.) The key to efficient implementation of the main program is the data structure
used to represent the sets avail(z). The simplest approach is to use a bit vector for each
set. This leads to an O(kn+ m) running time for a graph with n vertices and m edges. We
can improve on this by using a special variety of binary search tree described below. (Note
that a standard search tree won’t help here since initializing n search trees to represent the

set {1,...,k} takes Q(knlogk) time.)

We define a shrinking set to be an abstract data type representing a set of positive
integers on which the following operations can be performed.
makeset(lo, hi) Return a new set consisting of the integers in the interval [lo, h1].

select(s) Return an arbitrary element from s.
selectmin(s) Return the smallest element in s.

delete(x,s) Delete the integer x from s.
The operations on shrinking sets are defined in terms of another abstract data structure,
which we call an interval set. An interval set represents a set of disjoint intervals on the
positive integers on which the following operations are defined.
makeintervalset(?) Return a new set consisting of the interval 7.

member(z,s) Return the interval in s that contains the integer z. If there is no such
interval, return [].

select(s) Return an arbitrary integer contained in some interval in s.
selectmin(s) Return the smallest integer contained in some interval in s.
insertinterval(?,s) Insert the interval ¢ in s (¢ must be disjoint from intervals already in s).

deleteinterval(z,s) Delete the interval ¢ from s.

An interval set can be implemented efficiently using any standard balanced search tree
structure. Each node of the search tree represents an interval. This yields an O(logn)
running time per operation, where n is the number of intervals in the set. The operation
makeset(lo, hi) on a shrinking set is implemented simply as makeintervalset([lo, hi]) on
the underlying interval set. The select and selectmin operations on a shrinking set are
implemented as the corresponding interval set operations. Finally, the operation delete(x, s)
on a shrinking set is implemented by the program fragment in Figure 5. Thus, all the
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operations on a shrinking set can be implemented to run in O(logk) time, where k is the
size of the set when it is initialized. These observations yield the following theorem.

THEOREM 5.1. The no-choice algorithm can be implemented to run in O(n+mlogk) time
on graphs with n vertices and m edges.

Note that this is superior to the obvious implementation only when the graph is quite
sparse. However, the same technique also yields a substantial improvement to Brélaz’s
algorithm for all but the densest graphs.

In [3] Brélaz claims an O(n?) time bound for his algorithm, which is easily proved. In
fact, Brélaz’s algorithm can be implemented to run in time O(mlogn) for a graph with
n vertices and m edges. The program in Figure 6 illustrates this. The heap contains
the uncolored vertices. For the purposes of the heap operations, vertex z is smaller than
vertex y if |avail(z)| < |avail(y)| or |avail(z)| = |avail(y)| and deg(x) > deg(y). The siftup
operation restores the order of items in the heap after the changes to avail(y) and deg(y).
See [13] for details. As in the program for the no-choice algorithm, the key to an efficient
implementation is the data structure used to implement the sets avail(x). If a bit vector
is used, the running time is O(n?). However, using the shrinking set data structure each
initialization operation can be done constant time, the selection of a minimum can be done
in O(logn) time as can the deletion operation. These observations yield,

THEOREM 5.2. Brélaz’s algorithm can be implemented to run in O(mlogn) time on graphs
with n vertices and m edges.

6. Experimental Results

A series of experiments were run to provide more detailed information on the performance
of the no-choice algorithm. One hundred random graphs in X, (k,.5) were generated for
each of several values of » and k. The no-choice algorithm was then run on each graph. The
results are summarized in Figure 7. For each value of n and k the figure shows the number
of graphs for which a k-coloring was constructed. The figure shows that the algorithm
works well when k is small, but as k gets larger its performance deteriorates abruptly. This
is consistent with the analysis given in section 2. As n increases, the breakdown point also
increases. Let §,(p) be the smallest k for which the probability of success on graphs in
Xn(k,p) is less than 1/2. We can estimate (3,,(p) by observing where the curves in Figure 7
cross the dashed line. The data suggest that f125(.5) = 6, fa56(.5) = 7, F512(.5) = 8, and
B1024(.5) = 9. This is consistent with Theorem 2.1, which suggests that §,(p) grows in
proportion to logn.

Figure 8 shows the results of a series of experiments, which provide more detailed infor-
mation on the performance of Brélaz’s algorithm. One hundred random graphs in X, (k,.5)
were generated for each of several values of n and k, and Brélaz’s algorithm was run on each
graph. The plot shows the ratio of the average number of colors used to k. As with the
no-choice algorithm, the performance is quite good for small k, but deteriorates abruptly as
k gets large. The point at which the breakdown occurs appears to increase logarithmically
with » as one would expect from Theorem 4.1.

11



7. The Greedy Algorithm

The greedy algorithm for graph coloring is a simple and popular heuristic. It can be
described as follows.

For each z € [1,n], let ¢(2) = min avail(z).

Grimmet and McDiarmid [7] have shown that for almost all random graphs (in the usual
model), the greedy algorithm uses no more than about twice the optimal number of colors.
In this section, we study the performance of the greedy algorithm for graphs in X, (k,p)
and conclude that it performs poorly unless k is quite small.

Let G = (V,E) € X, (k,p). Let ¢ be the coloring used to generate GG and let ¢’ be the
coloring computed by the greedy algorithm. We are interested in the probability that ¢ is
a k-coloring. Since almost all G are uniquely k-colorable, this probability is approximately
k! times the probability that ¢/ = ¢, for large enough n.

Let Si(r)={1<z<r|e(z)=¢(2) =i} for 1 <i<kandlet P(ny,ng,...,n;) be the
probability that |9;(r)| = n; for all ¢ € [1, k], where r = Zle n;. P satisfies the following
recurrence.

P0,...,0) = 1
P(ny,....,nx) = 0 if any n; <0
1 h—1
P(ny,....ng) = EZP(nl,...,nh_l,nh—1,nh+1,...,nk)Ha(nj) otherwise
h=1 7=1

where a(z) = 1 — (1 — p)*. (We adopt the convention that an empty product is equal to
1.) Now, let Q(r) be the probability that ¢(z) = ¢/(2) for 1 < z < r and ¢(r) # /(7).

E h—1
Q(r+1) = Z P(ny,...,ng) [1— %Z H a("j)]
Ny, >0 4

mb g =

Now, the probability that ¢/ # ¢ is > r—; Q(r). This yields the following theorem.

THEOREM 7.1. Let 0 < p < 1,k > 1 be fixed and let G € X, (k,p). As n — oo, the proba-
bility that the greedy algorithm produces a k-coloring of G approaches k! (1 — 3 7_1 Q(r)).

The terms in >°7'_; Q(r) decline rapidly, so for small &k, we can use Theorem 7.1 to estimate
the probability that the greedy algorithm produces a k-coloring. We illustrate the procedure
for the case, kK = 2. The general equations reduce to

P(ni,ny) = %[P(nl —1ng)+ Plnang — 1) (1= (1= p)™)]
Qr+1) = % Z_: Plnr,r— ny)(1— p)™

12



Using these equations and Theorem 7.1 we estimate that for large n, the probability of the
greedy algorithm successfully 2-coloring a graph in X,,(2,.5) is approximately .42. In the
same way, we estimate that the probability of the greedy algorithm successfully 3-coloring
a graph in X,,(3,.5) is approximately .091, and the probability of it successfully 4-coloring
a graph in X, (4,.5) is approximately .044. We conclude that unless k is quite small, we
cannot expect the greedy algorithm to find optimal colorings for random k-colorable graphs.

Of course, the above results don’t rule out the possibility of the greedy algorithm pro-
ducing good but sub-optimal colorings. Experimental methods were used to address this
issue. One hundred random graphs in X, (k,.5) were generated for each of several values
of n and k. Figure 9 shows the average number of colors used by the greedy algorithm in
these experiments. For any given k, the number of colors used increases with n. The rate of
growth is moderate when k is small, but fairly large for £ = 6. For £k = 6 and n = 100, the
greedy algorithm uses almost three times the optimal number of colors. The data indicate
that except for very small k, the greedy algorithm can be expected to produce colorings
that differ from optimal by an arbitrarily large factor.

8. Closing Remarks

In this paper, we have shown that when k is not too large relative to n, almost all k-colorable
graphs are easily colorable. For larger values of k, all the algorithms discussed here perform

poorly. One open problem is to find algorithms that work well when £ is as large as say,
n'/2,

Theorem 3.1 implies that the complexity of recognizing k-colorable graphs is caused
by a relatively small number of “pathological cases.” Similar results may hold for other
NP-complete problems. Indeed it may be possible to classify NpP-complete sets as hard or
easy based on whether or not they contain large subsets whose members can be efficiently
identified. The current work represents a first step in such a classification.
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Figure 1: Structure of T%
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Figure 2: Detailed Structure of T
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function bit nochoice(integer k,n, graph neighbors, modifies array c);
integer ¢, nc; vertex x,y; list (); set X;
array|[l ..n] of set avail;
for v € [1..n] — c(x) « —1; avail(z) — {1,..., k}; rof;
X « clique(k,n, neighbors);
if | X| # k — return false fi;
i« 1;for x € X — ¢(x) «—1; 01— 1+ 1; rof;

Q « [I;
forz e X —
for y € neighbors(x) —
avail(y) «— avail(y) — c(x);
if c(y ) = —1 and |cwml y)|
fi;
rof;
rof;
ne «— k;
do @ #[] —
QU Q — Q2.

if |avail(z)] # 1 — return false fi;
¢(x) «— min avail(x); ne « nc+ 1;
for y € neighbors(z) —
avail(y) «— avail(y) — c(x);
if ¢(y) = —1 and |avail(y)| =1 —
Q — Q&[yl; c(y) « 0;
fi;

rof;

od;
return nc = n;

end;

Figure 3: Program Implementing the No Choice Algorithm
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set function clique(integer k,n; graph neighbors);
set S, K;
S—{l,...,n}k;
K « {;
do S#0 —
Select x € 5 of maximum degree.
K« KU{x};
S« SN neighbors(x);
od;

return K;

end;

Figure 4: Subroutine for Finding a Clique
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i «+ member(z, s);
ifi £[] —
deleteinterval(z, s);
if i.lo < @ — insertinterval([i.lo, 2 — 1], s) fi;
if i.hi > © — insertinterval([x + 1,4.hi], s) fi;
ﬁ.

?

Figure 5: Program Fragment Implementing the Delete Operation
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procedure brelaz(integer k,n, graph neighbors, modifies array c);
vertex z,y; heap h;
array|[l ..n] of set avail;
array[l ..n] of integer deg;
forxel..n] —
c(x) « 0;
avail(z) «— {1,...,n};
deg(x) «— |neighbors(x)|;
rof;
h «— makeheap({1,...,n});
do h # —
x «— deletemin(h);
c(x) «— min avail(2);
for y € neighbors(z) —
if c(y)=0—
avail (y) — avail(y) — c(x);
deg(y) « deg(y) — 1;
siftup(y, h);
fi;
rof;

od:

end:

Figure 6: Program Implementing Brélaz’s Algorithm
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Figure 7: Success Rate of No Choice Algorithm for Graphs in X, (k,.5)
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Figure 8: Average Performance Ratio of Brélaz’s Algorithm for Graphs in X, (k,.5)
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