
Terabit Burst Switching
Progress Report (3/98–6/98)

Jonathan S. Turner
jst@cs.wustl.edu

WUCS-98-22

December 29, 1998

Department of Computer Science
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

Abstract

This report summarizes progress on Washington University’s Terabit Burst Switching Project, sup-
ported by DARPA and Rome Air Force Laboratory. This project seeks to demonstrate the feasibility
of Burst Switching, a new data communication service which can more effectively exploit the large
bandwidths becoming available in WDM transmission systems, than conventional communication
technologies like ATM and IP-based packet switching. Burst switching systems dynamically assign
data bursts to channels in optical data links, using routing information carried in parallel control
channels. The project will lead to the construction of a demonstration switch with throughput
exceeding 200 Gb/s and scalable to over 10 Tb/s.

0This work is supported by the Advanced Research Projects Agency and Rome Laboratory (contract F30602-97-1-
0273).

Terabit Burst Switching
Progress Report (3/98–6/98)

Jonathan S. Turner
jst@cs.wustl.edu

This report summarizes progress on the Terabit Burst Switching Project at Washington Univer-
sity for the period from March 15, 1998 through June 15, 1998. Efforts during this period have
concentrated on developing a detailed understanding of the control issues associated with the burst
handling process. We have also continued the engineering efforts on the ATM switch and begun to
address the interconnection of ATM and burst switches.

1. Prototype Burst Switch Plans

Figure 1 shows the planned configuration for the burst switch prototype. The system will include
six I/O modules each capable of terminating a burst data link with 32 channels. For budgetary
reasons, the different channels will be carried on separate fibers rather than on WDM channels
in a single fiber. However, the prototype will treat the collection of fibers constituting a single
“link” exactly as it would if they were carried on a single fiber. Each I/O module will contain the
optics and transmission electronics for terminating 32 channels. We have tentatively selected 12
channel VCSEL-based components from Siemens for the optics, and a four channel transmission
component from Vitesse (compatible with Fibre Channel) for the transmission line coding and clock
recovery functions. In addition to these components, the I/O module will contain a four channel
synchronization chip whose principal function is to delay data received from the link for a fixed
time period before forwarding it to the interconnection network. The control section of the I/O
module includes a Time Stamp Component, an ATM Input Port Processor, an ATM Output Port
Processor and a Burst Processor.

The interconnection network for the prototype will contain a single Burst Switch Element (BSE)
with seven input and output ports. The BSE is being designed to support multistage configurations,
allowing for systems with total capacities of tens of Tb/s. The data path portion of the BSE contains
a 256 � 256 crossbar, which is bit-sliced in order to provide the required aggregate throughput of
256 Gb/s. The data path also includes a Burst Storage Unit which provides shared storage space
for bursts that cannot be immediately switched through to the proper output channel. The BSU will
provide 16 MB of aggregate storage capacity. The control portion of the BSE contains an ATM
Switch Element (ASE), a set of seven Burst Processors (BP) and a Burst Storage Manager (BSM).
These components collectively control the switching of bursts, including diverting bursts to the
BSU as necessary.

1

Jonathan Turner 2

$6(

;%$5

%68

%3

%3

%3

%3

%3

%3

%3

%60

,33 %3

233

76

2(

6<1&7,

6<1&7,

6<1&7,

2(

6<1&7,

6<1&7,

6<1&7,

2(

6<1&7,

6<1&7,

,�2
0RGXOH

,33 %3

233

63&2(7,

&RQWURO 0RGXOH

$70
,QWI�
0RG�

Figure 1: Prototype Burst Switch Architecture

The prototype will also include an ATM interface card that will allow data from an ATM
network to be propagated through the burst switch. The interface will form cells from different
virtual circuits into bursts for transmission through a burst network, and will convert the data back
to an ATM cell stream on the output side.

To provide high level control of the burst switch, a control module containing a general purpose
processor will also be provided. The software provided for this processor will provide a simple
network management interface that can be used to configure the system.

2. Burst Header Cell Format

Figure 2 shows the planned format of the Burst Header Cell (BHC) that will be used in the prototype
burst switch. To enable use of existing ATM components in the control section of the switch, a
standard ATM cell format will be used. Burst switching control cells will all have an ATM Payload
Type of 1102 (the resource management cell type) and the first byte of the payload will be used to
distinguish burst protocol cells from other ATM resource management cells. A one byte options
field will be used to distinguish different routing options, including virtual circuit routing, IPv4

Jonathan Turner 3

1RWHV

O 6WDQGDUG $70 FHOO KHDGHU ZLWK 37, ���
�
IRU EXUVW FRQWURO FHOOV

O %XUVW SURWRFRO LGHQWLILHU � LGHQWLILHV EXUVW FRQWURO FHOOV
O 2SWLRQV � EXUVW KDQGOLQJ RSWLRQV �YLUWXDO FLUFXLW� ,3Y�� ,3Y��
O /HQJWK � EXUVW OHQJWK LQ �� E\WH ZRUGV �� 0% PD[�
O 2IIVHW � QXPEHU RI QV IURP ILUVW ELW RI %+& WR ILUVW ELW RI EXUVW
O +RS &RXQW �+&� � DOORZHG QXPEHU RI KRSV UHPDLQLQJ WR
GHVWLQDWLRQ

O 2SWLFDO &KDQQHO 1XPEHU �2&1� � FKDQQHO XVHG E\ GDWD EXUVW
O 5HVHUYHG ILHOG XVHG E\ EXUVW VZLWFKHV IRU ORFDO FRQWURO
O $FFHVV UDWH �$5� JLYHV UDWH DW ZKLFK EXUVW ZDV UHFHLYHG DW HQWU\ WR
EXUVW QHWZRUN� XVHG WR SDFH EXUVW ZKHQ IRUZDUGHG WR DFFHVV QHW�

O ,3 LQIRUPDWLRQ ILHOG
ª IRU ,3Y� LQFOXGHV VRXUFH DQG GHVWLQDWLRQ DGGUHVVHV� SRUW QXPEHUV DQG
SURWRFRO ILHOG

ª IRU ,3Y� LQFOXGHV VRXUFH DQG GHVWLQDWLRQ DGGUHVVHV

O 8VHU ILHOG � DYDLODEOH IRU HQG�WR�HQG LQIRUPDWLRQ �� %�

��

37, &
+(&

,3 ,QIR�

%XUVW 3URW� ,G�
2SWLRQV

/HQJWK

2IIVHW

$FF� 5DWH

93,

9&,

&5&
��

+&
2&1

5HVHUYHG

Figure 2: Burst Header Cell Format

routing and IPv6 routing. At this time, we are not planning to implement the IP routing options,
but are making provisions in the cell format to facilitate later addition of these options.

The Length field gives the length of the burst in multiples of 16 bytes and allows for a maximum
burst length of 1 MB. The Offset field specifies the number of nanoseconds between the first bit of
the BHC and the first bit of its associated burst. The offset field is adjusted by various components
within burst switches to reflect variations in control delay in different components. In general, a
component updates the offset field to give its best estimate of the actual offset as it forwards a
BHC to the next component either within a switch or in a subsequent switch. Each component in a
burst network is responsible for making adjustments necessitated by differences in the delay of the
control and data channels leading from an upstream component, as well as any local differences in
the delay.

3. Scheduling Future Operations

To handle short bursts with acceptable efficiency, the control mechanisms in burst switches must be
capable of assigning channels to bursts for periods as short as a few microseconds. Since queueing

Jonathan Turner 4

delays within the control portion of a burst switch may be as large as 10 �s, burst switches must
have the ability to schedule the allocation of resources at future times. These resources include
both channels within communication links and memory used to store bursts that can’t be forwarded
immediately.

This type of resource allocation is very different from the usual resource allocation done within
computer systems and networks. In typical systems today, the resource allocation mechanisms only
keep track of what resources are currently in use or currently idle, and assign resources when a
resource request is made. This is completely satisfactory in situations where resources are used as
soon as they are allocated, or where the time period between allocation and use is much smaller the
period during which the resource is used. In burst switching however, these conditions do not hold.
The time period over which a resource is used may be comparable or even smaller than the time
between the arrival of a burst header cell (when an allocation decision must be made) and the arrival
of the burst. In situations like this, the resource allocation mechanisms must project resource usage
into the future, so that they can determine if resources will be available at the time a burst actually
arrives. In burst switches with 2.4 Gb/s channels, scheduling decisions must be made within the
time it takes to receive a single cell (roughly 170 ns). This requires invention of new algorithms
and mechanisms for resource scheduling.

3.1. Scheduling Channels in Burst Switch Data Links

The assignment of bursts to channels within a burst switching system turns out to be the most
straightforward of the scheduling operations that must be performed in a burst switch. A Burst
Processor (BP) must maintain a schedule for each of its output channels, that describes those time
periods when the channel will be busy and those when it will be free. When a Burst Header Cell
(BHC) comes in, the BP uses the offset information stored in the cell to determine when, relative to
the current time, the burst will arrive. It also uses the burst length field to calculate when the end of
the burst will arrive. It then consults the schedules for all of its channels to determine if any of them
will be free during the entire time period that the burst needs a channel. If it finds that a channel is
available, it assigns the burst to that channel and modifies the channel data structure appropriately
to reflect the allocation of resources.

While the general scheduling operation is conceptually straightforward, it is difficult to see how
to make it fast enough to handle high performance burst switching. To support fast scheduling, it
appears necessary to trade off scheduling accuracy for speed. This can be done by reducing the
amount of schedule information that is maintained and making scheduling decisions in relation to
this approximate schedule. Instead of keeping track of every single busy and idle interval for every
channel, we can keep track of only a subset of the idle intervals for each channel, and assume that
in all other time periods, the channel is busy.

The simplest version of this approach is called horizon scheduling. Here, the schedule for
channel i consists of a single number �i which denotes the latest time in the future at which the
channel is busy. An arriving burst can be assigned to channel i, if and only if the burst will not
arrive until after �i. If the burst is assigned to channel i, then �i is changed to the time at which the
burst will finish. This algorithm is simple enough for a fast hardware implementation. To minimize
wasted channel bandwidth, the controller can select the last channel to become available after the
burst arrival time.

Jonathan Turner 5

Because horizon scheduling does not keep track of idle periods before the horizon, it can waste
channel bandwidth unnecessarily. We can improve its performance by adding back more scheduling
information. In single gap scheduling, the schedule keeps track of both the horizon and one idle
period before the horizon. This keeps the total scheduling information small enough to make fast
hardware implementations feasible, and may produce significant performance benefits. In single
gap scheduling, when a burst is scheduled to a channel, the controller must decide which new idle
period to keep track of, selecting larger idle periods over smaller ones, but also giving preference
to later idle periods over earlier ones (since later idle periods are more likely to be used than earlier
ones). Clearly, single gap scheduling can be extended to two or more gaps. Simulation studies are
needed to fully determine the cost/benefit trade-offs associated with large numbers of gaps.

There is another approach to approximate scheduling that is worthy of consideration. In this
approach, the scheduler maintains a data structure containing triples of the form [i; t1; t2]. Each
such triple means that channel i is idle from t1 to t2. To schedule an arriving burst, we need to be
able to quickly determine if the time period during which the burst needs a channel will fit within
any of the available idle periods. One way to do this is to first partition the triples according to their
length. Within each subset, the triples can be organized into a search tree data structure that is sorted
according to the start time of the idle period. When a BHC is received, we search all of the search
trees corresponding to time intervals that are at least as long as the time interval needed for the
arriving burst. The worst-case time required for the search is O((#ofsets)log(#ofidleperiods)).
To reduce the running time, the intervals can be partitioned into just a small number of sets. A good
partitioning strategy is to partition the intervals into time periods of exponentially increasing length.
The implementation of this approach requires a small random access memory. For a system with
OC-48 channels, there will be time to perform only about 20-30 memory accesses per scheduling
operation. This may be sufficient, but more detailed study is needed to determine if this approach
is practical and if its complexity is justified by the performance benefits.

3.2. Burst Storage Scheduling

In addition to the link resources, a burst switch must also manage the allocation of burst storage
resources. This is somewhat more complex because there are two dimensions to consider, time
and storage space. The upper left portion of Figure 3 shows a plot of buffer usage vs. time for a
burst storage unit that is receiving and forwarding bursts. As new bursts come in, they consume
additional storage space releasing the storage later as they are forwarded to the output. The plot
shows how a new burst arrival modifies the buffer usage curve. One way to schedule a burst storage
unit is to maintain a data structure that effectively describes the buffer usage curve for the burst
store. For high performance, we need a data structure that supports fast incremental updating in
response to new burst arrivals.

This can be done by extending a search tree data structure such as a 2-3 tree (2-3 trees are
a special case of B-trees [2]). The upper right hand portion of Figure 3 shows a 2-3 tree that
represents the buffer usage curve at the top left. The leaves in this search tree contain pairs of
numbers that define the left endpoints of the horizontal segments of the buffer usage curve. Each
interior node of the search tree contains a time value equal to the largest time value appearing in any
of its descendant leaves. These time values allow one to determine the range of times represented
by a given subtree without explicitly examining all the nodes in the subtree.

Jonathan Turner 6

�� �� ��� WLPH

E
X
II
HU

X
VD
J
H

HIIHFW RI QHZ EXUVW

�

��

��

�

��

�

�

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

�

�

�

�

�

�

�

�

��

�

��

�

��

�

HIIHFW RI DGGLQJ QHZ EXUVW

��

�

��

�

�

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

��

�

�

�

�

�

�

�

�

�

��

�

VHDUFK WUHH ZLWK
GLIIHUHQWLDO UHSUHVHQWDWLRQ

GLIIHUHQWLDO
EXIIHU XVDJH

�� ��

� �� �� ��

��

�

��

�

��

�

��

�

��

�

��

�

��

��

�

�

�

�

�

�

�

�

�

��

�

EDVLF VHDUFK WUHH

WLPH XVDJH

Figure 3: Burst Store Occupancy vs. Time

To allow fast incremental updating of the 2-3 tree when adding a new burst, the basic structure
needs to be extended by using a differential representation for the buffer usage values. This is
illustrated at the bottom left of Figure 3 which shows a search tree that represents the same buffer
usage curve. In this search tree, buffer usage must be computed by summing the values along the
path from the root of the tree to a value-pair at a leaf. Consider for example, the three value-pairs
that are highlighted in the figure. The sum of the buffer usage values along this path is equal to 4,
which equals the buffer usage of the corresponding value-pair at the “bottom” of the original search
tree.

The differential representation is useful because it allows rapid incremental updating in response
to a new burst arrival. This is illustrated at the bottom right of Figure 3. Here, two new value-pairs
(highlighted) have been added to reflect the addition of the burst indicated in the top left portion
of the figure. Note that two buffer usage values in the righthand child of the tree root have also
been modified (these values are underlined) to reflect the addition of the new burst. Using this sort
of differential representation, the data structure can be modified to reflect an additional burst in
O(logn) time, as opposed to O(n) time with the original representation.

Unfortunately, to test if a newly arriving burst can be stored without exceeding the available
storage space, we may still need examine a large portion of the search tree, resulting in unacceptably
large processing times. However, this extra processing time can be avoided if we are willing to
accept some loss in the efficiency with which the buffer is used. Let t1 be the minimum time

Jonathan Turner 7

between the arrival of a BHC and its corresponding burst and let t2 be the maximum time between a
BHC and its corresponding burst. For scheduling purposes, we can ignore the portion of the buffer
usage curve that precedes the current time plus t1. More significantly, the buffer usage curve is
monotonically non-increasing for all values of t greater than the current time plus t2. If t1 = t2

then we can completely ignore the non-monotonic part of the buffer usage curve and focus only on
the monotonic part (so in the example curve in Figure 3, we can ignore the portion before time 28
if the minimum and maximum offsets are equal).

These observations suggest a scheduling algorithm that maintains a monotonic approximation
to the buffer usage curve and uses this approximation to make scheduling decisions. The use of this
approximation will occasionally cause bursts to be discarded that could safely be stored. However,
so long as the gap between the minimum and maximum offsets is small compared to the typical
“dwell time” of stored bursts, these occurrences should be rare.

With a monotonic buffer usage curve it is easy to determine if an arriving burst can be ac-
commodated. If there will be enough storage space to handle the “head” of the burst then we are
guaranteed that there will be enough to handle the remainder (since the approximate buffer usage
curve never increases). Thus, we only need to perform a single comparison to check if an arriving
burst can be handled. Once we’ve determined that a burst can be safely handled, the incremental
updating can occur in O(logn) time, as described above.

To achieve gigabit processing rates for large numbers of stored bursts, 2-3 tree may be too slow.
Substantial additional speedup can be obtained using a general B-tree. In a B tree [2], each node
can have between B and 2B�1 children, allowing a substantial reduction in the depth of the search
tree. In a Burst Storage Manager using a B-tree to manage the storage space, hardware mechanisms
can be used to enable parallel processing of individual B-tree nodes.

4. Skew Management for High Efficiency Burst Switching

To operate a burst-switched network efficiently, it’s important to maintain tight control over the
skew between a Burst Header Cell and its associated burst. Uncertainty in the relative timing of
the BHC and the burst translates directly into overhead, since switches must make take the timing
uncertainty into account when making connections, so as to avoid clipping user data from the start
or end of a burst.

When a user terminal has a burst to send, it first sends a BHC on the control channel of its access
link and shortly afterwards, it sends the burst. The BHC includes an offset field that specifies the
time between the transmission of the first bit of the BHC and the first bit of the burst. When BHCs
are processed in burst switches, they are subject to variable processing delays, due to contention
within the control subsystem of the burst switch. To compensate for the delays experienced by
control cells, the data bursts must also be delayed. A fixed delay can be inserted into the data path
by simply routing the incoming data channels through an extra length of fiber. To maintain a precise
timing relationship between control and data, BHCs are time-stamped within burst switches. The
timestamps are used as the burst progresses through the switch to help keep track of variable delays.
The offset field is updated at various points to reflect these variations in delay.

Jonathan Turner 8

As a burst progresses through a burst network, there is some inevitable loss of precision in
the offset information. Timing uncertainty arises from two principal sources. First, signals using
different wavelengths of a WDM link travel at different speeds down the fiber. While the absolute
magnitudes of these differences are not large (under 1 �s for links of 1000 km), they are significant
enough to be a concern. Fortunately, they can be compensated at the receiving end of a link, if
the approximate length of the fiber is known. Given the length information, the difference in the
delay between the control channel and each of the data channels can be calculated and the receiving
control circuitry can adjust the offset associated with an arriving burst, accordingly. Note, that
this does not require inserting optical delays in the data channel. The control subsystem, simply
adjusts the offset value in the BHC to reflect the differences in delay across channels. While this
compensation is not perfect, it can be made accurate enough to keep timing uncertainties due to this
cause under 100 ns on an end-to-end basis in a wide area network.

Another source of timing uncertainty is clock synchronization at burst switches along the path
in a network. When data is received on the control channel at a burst switch, the arriving bit stream
must be synchronized to the local timing reference of the burst switch. There is some inherent
timing uncertainty in this synchronization process, but the magnitude of the uncertainty can be
reduced to very small values using synchronizers with closely-spaced taps. Even with fairly simple
synchronizer designs, it can be limited to well under 10 ns per switch. In an end-to-end connection
with ten switches, this results in an end-to-end timing uncertainty of 100 ns.

Within switches, it’s possible to avoid significant loss of timing precision, since all control
operations within a switch can be synchronized to a common clock, and since the data path delays
in a switch are fixed and can be determined with high precision. Thus, the end-to-end timing
uncertainty is essentially the sum of the uncertainty due to uncompensated channel-to-channel
delay variation on links and the uncertainty due to synchronization. If the end-to-end uncertainty is
limited to 200 ns then bursts with durations of 2 �s can be handled efficiently. This corresponds to
600 bytes at 2.4 Gb/s.

It’s possible to avoid the necessity for tight end-to-end timing control if the switches interpret
the information sent on the data channels so that they can explicitly identify the first and last bit of
a burst. While this is reasonable to do in electronic implementations, it is more difficult in systems
with optical data paths. In addition, it constrains the format of data that can be sent on the data
paths, at least to some degree.

References

[1] Chaney, Tom, J. Andrew Fingerhut, Margaret Flucke and Jonathan Turner. “Design of a
Gigabit ATM Switch,” Proceedings of Infocom, April 1997.

[2] Cormen, Thomas, Charles Leiserson, Ron Rivest. Introduction to Algorithms, MIT Press,
1990.

[3] Siemens Semiconductor Group. “Parallel Optical Link (PAROLI) Family,”
http://w2.siemens.de /semiconductor/products/37/3767.htm, 1998.

Jonathan Turner 9

[4] Turner, Jonathan S. “Terabit Burst Switching,” Washington University Technical Report,
WUCS-98-17, 1998.

