
Terabit Burst Switching
Progress Report (9/98–12/98)

Jonathan S. Turner
jst@cs.wustl.edu

WUCS-98-31

March 28, 1999

Department of Computer Science
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

Abstract

This report summarizes progress on Washington University’s Terabit Burst Switching Project, sup-
ported by DARPA and Rome Air Force Laboratory. This project seeks to demonstrate the feasibility
of Burst Switching, a new data communication service which can more effectively exploit the large
bandwidths becoming available in WDM transmission systems, than conventional communication
technologies like ATM and IP-based packet switching. Burst switching systems dynamically assign
data bursts to channels in optical data links, using routing information carried in parallel control
channels. The project will lead to the construction of a demonstration switch with throughput
exceeding 200 Gb/s and scalable to over 10 Tb/s.

0This work is supported by the Advanced Research Projects Agency and Rome Laboratory (contract F30602-97-1-
0273).

Terabit Burst Switching
Progress Report (9/98–12/98)

Jonathan S. Turner
jst@cs.wustl.edu

This report summarizes progress on the Terabit Burst Switching Project at Washington Univer-
sity for the period from September 15, 1998 through December 15, 1998.

1. Improved Link Scheduling

One of the key issues in the design of a burst switch is scheduling the transmission of bursts on
outgoing channels. Previously, we have concentrated on a technique called horizon scheduling.
In horizon scheduling, the link scheduler maintains a time horizon for each of the channels of an
outgoing link. The horizon is defined as the earliest time after which there is no planned use of the
channel. The horizon scheduler assigns arriving bursts to the channel with the latest horizon that is
earlier than the arrival time of the burst, if there is such a channel. If there is no such channel, the
behavior depends on whether the system supports burst storage or not. In a system that does not
support burst storage, the scheduler simply discards the burst. In a system that does support storage,
the burst is assigned to the channel with the smallest horizon and is delayed until that channel
becomes available. Horizon scheduling is straightforward to implement in hardware, but because
it does not keep track of time periods before a channel’s horizon when the channel is unused, it
cannot insert bursts into these open spaces.

Figure 1 illustrates the operation of a horizon scheduler. The diagram shows an arriving burst
that needs to be assigned to an outgoing channel. The burst header cell arrives at time t with the
start of the burst arriving at t+∆1 and the end of the burst arriving at t+∆2. The right hand part of
the figure shows bursts that arrived earlier that were assigned to channels by the horizon scheduler.
The thick lines indicate time periods during which the various channels are scheduled to be in use
and the shaded region shows those time periods that are currently unavailable to new bursts. The
box in the center highlights the time period during which the arriving burst will need an outgoing
channel and the check marks at the right indicate those channels that it could be assigned to. Since
the horizon scheduler prefers the viable channel with the latest horizon, it will select the bottom
channel.

In some situations, the horizon scheduler can provide good performance. Let b1; : : : ; bn be a
sequence of bursts, where bi is characterized by a triple (ri; ti; `i) and ri is the time at which the link
scheduler receives the burst header cell informing it of the imminent arrival of the burst, ti is the

1

Jonathan Turner 2

$UULYLQJ�%XUVW
%+&

GDWD

WW+∆1W+∆2

9

W W+∆1 W+∆2

+RUL]RQ�6FKHGXOH

9

9

Figure 1: Horizon Link Scheduling

arrival time of the burst and `i is the length (time duration) of the burst. For convenience, assume
that for i < j, ri � rj; that is, the bursts are listed in the order in which the burst header cells arrive.
Define the width W (B) of a burst sequence B, to be the size of the largest subset of bursts which
all overlap in time with one another (that is, the earliest burst ending time in the set is later than the
latest burst starting time in the set). A sequence of bursts B can be scheduled without delaying any
burst if and only if the number of channels on the link is at least equal to W (B). We would like
to have a link scheduling algorithm that would schedule a sequence of bursts without delaying any
burst, so long as W (B) is no larger than the number of available channels.

A horizon scheduler can schedule a burst sequenceB = fb1 = (r1; t1; `1); : : : ; bn = (rn; tn; `n)g
using no more than W (B) channels if the bursts arrive in the same order as the burst header cells.
However, we can allow some misordering of bursts and still achieve this level of performance. In
particular, the horizon scheduler uses at most W (B) channels if for all i < j, ti < tj + `j . That
is, we get good performance if no burst bj precedes another burst bi with i < j by more than the
length of bj . In a burst switching system that does not provide any burst storage, this condition can
usually be satisfied, making horizon scheduling a good approach for such systems. On the other
hand, the condition can be violated in systems where bursts are stored, in order to avoid discarding.

These observations suggest an alternative that can perform better than horizon scheduling in
more general situations. Rather than process bursts as soon as their burst header cells arrive, one
can delay the scheduling of bursts, and then process them in the order of expected burst arrival,
rather than the order in which the burst header cells arrive. Essentially, as the burst header cells
arrive, we insert them into a resequencing buffer, in the order in which the bursts are to arrive.
A horizon scheduler then processes requests from the resequencing buffer. The processing of a
request is delayed until shortly before the burst is to arrive, reducing the probability that we later
receive a burst header cell for a burst that will arrive before any of the bursts that have already been
scheduled. More precisely, we define a parameter ∆ and schedule a burst with arrival time ti at time
ti � ∆. Resequencing buffers developed for ATM switching can be used for this purpose. See, for
example, references [1, 2]. Figure 2 illustrates this approach.

By processing the requests out-of-order, we can get good performance, for a much wider class

Jonathan Turner 3

9

,QLWLDO 6FKHGXOH

9

9

6WDQGDUG +RUL]RQ 6FKHGXOH

%+& %XUVW

+RUL]RQ 6FKHGXOH ZLWK 5HRUGHULQJ

%+& %XUVW

Figure 2: Horizon Scheduling with Reordering

of burst sequences than we can with an ordinary horizon scheduler. In particular, we can schedule
a sequence B = fb1 = (r1; t1; `1); : : : ; bn = (rn; tn; `n)g using no more than W (B) channels so
long as for all i < j, either ti < tj + `j or sj � ti�∆; that is, the request for burst bj arrives before
burst bi is scheduled.

While out-of-order scheduling of bursts allows us to improve on the performance of horizon
scheduling, it has an unfortunate side-effect. Since the scheduler does not assign bursts to channels
until shortly before the bursts are to go out, we cannot know if a burst will be accepted or not until
long after the burst header cell’s arrival. In some situations, this information is needed in order to
make other resource allocation decisions. What is needed, in these situations, is a way of deciding
ahead of time, when a burst can be transmitted, while delaying the actual assignment of the burst to
a particular channel.

This leads to a split processing algorithm that separates burst scheduling from channel assign-
ment. First, the algorithm decides when an arriving burst should go out. It then makes an entry for
that burst in a reordering buffer which is processed in the order in which the bursts are to be sent to
the output link. Entries in the reordering buffer are processed shortly before bursts are to go out,
using horizon scheduling to assign bursts to specific channels. This approach allows us to schedule
bursts using a minimum number of channels, but also enables other resource allocation decisions to
be made at the time a burst header cell arrives, rather than delaying them until the burst is about to be
forwarded. This is critical in multistage networks, where it is important to forward burst scheduling

Jonathan Turner 4

WLPH

FK
DQ

Q
HO

X
VD
JH

WLPH

FK
DQ

Q
HO
V

VFKHGXOLQJ FKDQQHO DVVLJQPHQW

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

WLPH
∆EXI
∆PD[

GLIIHUHQWLDO
VHDUFK WUHH

�)RU HYHU\ ILHOG X LQ D OHDI� WKH
YDOXH RI WKH FKDQQHO XVDJH FXUYH
VWDUWLQJ DW WLPH�X� HTXDOV WKH VXP
RI WKH ∆EXI YDOXHV IURP X WR WKH
URRW�

�)RU HYHU\ ILHOG X� WKH PD[LPXP
FKDQQHO XVDJH LQ WKH VXEWUHH
EHORZ X HTXDOV ∆PD[SOXV WKH
VXP RI WKH ∆EXI YDOXHV IURP X WR
WKH URRW�

FKDQQHO XVDJH IURP WLPH �
XQWLO WLPH �� LV ����� �

PD[FKDQQHO XVDJH IURP WLPH �
XQWLO WLPH �� LV ����� �

Figure 3: Split Processing Algorithm for Link Scheduling

requests from stage to stage when the request first comes in, so that the downstream burst switch
elements can allocate the resources they need to accommodate the burst.

To implement the burst scheduling step, we use a data structure that represents the link usage
curve, which specifies the number of channels that are scheduled to be in use at every future time.
When a burst header cell arrives, the algorithm consults the link usage curve to determine if the
link is completely occupied at any time between the arrival of the burst and its completion. If not,
the burst can be forwarded directly to the output, as soon as it arrives. Otherwise it will have to
be delayed. The link usage curve is represented with a differential search tree, as illustrated in
Figure 3. (This data structure is a slightly simplified version of the data structure that we plan to
use to manage memory for burst storage. This was described in our previous progress report [6].)

Even with split processing, we still need a mechanism to decide when to schedule the transmis-
sion of a burst that must be delayed. Ideally, if an arriving burst must be delayed, we would like
to insert it into the schedule at the earliest possible time. That is, we need to find the earliest time
interval that is at least as long as the arriving burst duration and during which the buffer usage curve
is always less than the number of channels on the link. It is possible to find this earliest time interval
using the differential search tree, but it is difficult to do it quickly. Indeed, in the worst-case one
may have to examine the entire search tree in order to find the earliest time at which the burst will
fit. Moreover, there does not appear to be an alternative data structure that would allow an arriving
burst to be quickly mapped to the earliest schedule gap that could accommodate it.

Jonathan Turner 5

6.8&

;%$5
����[����

6.8&

&RQWURO

%68

6.8&

6.8&

��

���

��

6.8&

;%$5
����[����

6.8&

&RQWURO

6.8&

6.8&

��

���

���

,Q
S
X
WV

2XWSXWV

&7/ &7/ &7/ &7/ &7/ &7/ &7/ &7/

Figure 4: Crossbar for Burst Switch Data Path

A simple alternative is to maintain a single horizon variable for the entire outgoing link. The
value of this variable is the latest time when the channel usage curve is equal to the number of
channels on the link. When a burst arrives, we first use the differential search tree to determine
if it can be scheduled for transmission without delay. If it cannot, we schedule it for transmission
starting at the time given by the horizon variable. Since we know that the link is never completely
used following the horizon value, it will always be possible to schedule the burst starting at that
time. We then update the differential search tree and the horizon value.

This approach to scheduling bursts for transmission can produce suboptimal results if there are
multiple time intervals where all the channels are in use, separated by time intervals when not all
the channels are in use. However, it appears likely that for typical traffic this approach will yield
results that are almost as good as can be obtained with an ideal scheduling algorithm. We plan to
test this hypothesis using simulation. If the results do show a significant difference between these
two alternatives, we will also explore intermediate options in which the scheduling algorithm keeps
a separate record of some small constant number of maximal time intervals during which the link is
not fully occupied. This will allow scheduling of arriving bursts in these non-full periods. So long
as the number of such periods that must be tracked is kept small, a hardware scheduler can do the
necessary matching operations in parallel, allowing a fast and practical implementation.

Jonathan Turner 6

2. Crossbar Design

The burst switch element in the prototype burst switch supports seven inputs and outputs, with 32
channels each, where the channels operate at 1 Gb/s. It also provides the ability to route up to 32
bursts at a time into and out of its shared burst storage unit. This requires a 256� 256 crossbar.

To provide the requisite switching capability, we are currently designing a crossbar component
with 256 inputs and 128 outputs. A pair of these chips can be used together to form a 256 � 256
crossbar. To achieve the required 1 Gb/s link rate, we are using nine such pairs operating in parallel
at a clock rate of 150 MHz. The chips are to be fabricated in a .25 micron CMOS process using a
laser programmable gate array fabrication technique.

The crossbar components incorporate some specific features, not found in commercial crossbar
components but required for the burst switch prototype application. The first of these features
is a per-input skew compensation circuit that automatically compensates for data and clock skew
between different components in the system. The approach used is very robust, and simple enough
that 256 copies of the skew compensation circuitry can be incorporated in a single chip without
consuming an excessive amount of the chip area. A transmitting circuit formats the data to be sent
as a sequence of 32 bit words, preceded by a two bit start pattern (10) and followed by one or more
0 bits. When the receiving skew compensation circuit detects the start pattern for a word, it passes
the arriving data through one of three alternative delay paths in order to align the data with the
local clock to ensure that the arriving data bits are sampled when the values are stable. An unusual
feature of the skew compensation circuit is that it chooses one delay path for use following rising
data transitions and another for use following falling data transitions. By explicitly accounting for
the difference in rise and fall times typical of CMOS circuits, it can select the best sampling point
for each, allowing significantly better performance than if the same sampling point is used for both
rising and falling transitions.

The second unusual feature of the crossbar design is that it divides the control circuitry used to
configure the crossbar, to enable the different Burst Processors in the control section of the Burst
Switch Element to operate independently of one another. Specifically, for each group of 32 outputs
of a crossbar chip, there is a separate control circuit. Using this control circuit, a Burst Processor
can connect any of the 256 crossbar inputs to any of the outputs in this set of 32.

Figure 4 shows the pair of crossbar chips used to implement the required 256 � 256 crossbar,
along with the Burst Storage Unit and associated memory chips at the upper left of the diagram.

References

[1] Henrion, Michel A. R. “Resequencing System for a Switching Node,” U.S. Patent #5,127,000,
August 1990.

[2] Turner, Jonathan S. “Data Packet Resequencer for a High Speed Data Switch,” U.S. Patent
#5,339,311, August 1994 and U.S. Patent #5,260,935, November 1993.

[3] Turner, Jonathan S. “Terabit Burst Switching,” Washington University Technical Report,
WUCS-98-17, 1998.

Jonathan Turner 7

[4] Turner, Jonathan S. “Terabit Burst Switching Progress Report (12/97-3/98),” Washington
University Technical Report, WUCS-98-16, 1998.

[5] Turner, Jonathan S. “Terabit Burst Switching Progress Report (3/98-6/98),” Washington Uni-
versity Technical Report, WUCS-98-22, 1998.

[6] Turner, Jonathan S. “Terabit Burst Switching Progress Report (6/98-9/98),” Washington Uni-
versity Technical Report, WUCS-98-30, 1998.

