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1. ABSTRACT

Field Programmable Gate Arrays (FPGAs) are being
used to provide fast Internet Protocol (IP) packet rout-
ing and advanced queuing in a highly scalable network
switch. A new module, called the Field-programmable
Port Extender (FPX), is being built to augment the
Washington University Gigabit Switch (WUGS) with
reprogrammable logic.

FPX modules reside at the edge of the WUGS switch-
ing fabric. Physically, the module is inserted between
an optical line card and the WUGS gigabit switch back-
plane. The hardware used for this project allows ports
of the switch populated with an FPX to operate at rates
up to 2.4 Gigabits/second. The aggregate throughput
of the system scales with the number of switch ports.

Logic on the FPX module is implemented with two
FPGA devices. The first device is used to interface
between the switch and the line card, while the sec-
ond is used to prototype new networking functions and
protocols. The logic on the second FPGA can be re-
programmed dynamically via control cells sent over the
network.
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Figure 1: FPX between Line Card and WUGS

The flexibility of the FPX has made the card of in-
terest for several networking applications. This year,
fifty FPX hardware modules will be fabricated and dis-
tributed to researchers at eight universities around the
country who are interested in experimenting with repro-
grammable networks and per-flow queuing mechanisms.
The FPX hardware will first be used to implement fast
IP lookup algorithms and distributed input queueing.

2. BACKGROUND

The growth of the Internet has affected the design of
network switches in two major ways. First, the com-
plexity of packet processing algorithms have increased
in order to provide better network utilization. Second,
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Figure 2: Original configuration of WUGS backplane with line card (side view)
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Figure 3: New configuration of WUGS backplane, FPX, and line card (side view)

2.1 FPGA Queuing Module

Field Programmable Gate Arrays have proven to be
highly effective for some aspects of networking hard-
ware. In the development of the iPOINT testbed, a
complete Asynchrounous Transfer Mode (ATM) switch
was built using FPGAs [1]. This system utilized a Xil-
inx 4013 FPGA to implement a single-stage switch [2]
and multiple Xilinx 4005 FPGAs to implement queuing
modules at each of the inputs of the switch [3].

Simple queuing mechanisms, such as First-In-First-Out
(FIFO), would typically prevent this type of an input
queuing system from achieving full network utilization
[4]. To overcome this performance barrier, the Illinois
Input Queue (iiQueue) was implemented to improve the
performance of distributed input queue by sorted pack-
ets according to their flow, destination, and priority. A
prototype of this system was implemented using Xilinx
X(C4013 FPGAs [5].

The benefit of using reprogrammable logic in the iiQueue
was that complex algorithms for queuing data could
be tuned by simply reprogramming the FPGA logic.
Further, the reprogrammable logic enabled additional
packet processing features to be integrated into the same
FPGA devices that controlled the queuing circuits.

2.2 WUGS ScalableSwitch

A critical feature for a switch involves it’s ability to scale
with the number of ports. The Benes structure enables
switching elements to be combined efficiently to imple-
ment a multi-stage switch. The gate-count complexity
of this type of switch grows only as O(N log N) with the
number of switch ports [6].

Through a separate research program, ASICs were fabri-
cated to implement the functionality of the Benes switch-

ing element. These chips were used to build complete
network switches. An eight-port implementation of the
WUGS switch has been built that provides 20 Giga-
bits/second of throughout. Over this past year, fifty of
these these kits were built and distributed to researchers
at over thirty univerities around the world [7].

A multi-stage implementation of this switch is currently
being developed that provides 160 Gbps of aggregate
throughput. In a larger configuration, the switching
components of the system could be arranged to provide
as many as 4096 ports for an aggregate throughput of
9.8 Terabits/second.

2.3 Combined System

By joining the flexible FPGA-based queuing circuitry
of the iiQueue with the highly scalable switching fabric
of the WUGS, a combined network router can be built
that can provide flexibile packet processing and scale to
provide high throughput.

By conforming to standard Utopia interfaces between
the WUGS backplane and the switch, the FPX is de-
signed to require no modifications to existing switch
hardware. In the original configuration, a line card di-
rectly attaches to the WUGS backplane, as shown in
Figure 2. In the new configuration, an FPX module
is inserted between the line card and the WUGS back-
plane, as shown in Figure 3.

As with the iiQueue, the use of FPGAs at the switch
input allows the system to implement flexible packet
processing. It was a goal of the FPX design to provide
a reprogrammable module optmized that was optimized
for both flexiblity and performance.



&

vy

; (backside)
3 NID

Network
. Interface
Device

PCB Trace Density

|
Sk SDRAM
OCCC .
o bR 'n_n (backside)
S ke N
£ PR S .
3 b 2
o Reprogrammable
P14 H H
8 ped Application
< B9 o 5 . Device
c P19 | N
o | =
st D ERE
3 ;85; ! (backside)
§ 3::3 3 SDRAM
= B ‘

OC3/0C12/0C48 Linecard Connector

1.8V
(backside)

Figure 4: FPX Printed Circuit Board

3. THE FPXMODULE

The logic for the FPX is implemented using two FPGA

devices, the Network Interface Device (NID) and the

Reprogrammable Application Device (RAD). These com-
ponents are mounted on the 20 cm X 10.5 cm printed

circuit board shown in Figure 4.

The RAD is implemented with a Virtex 1000Efg680
FPGA, while the NID is implemented with a Virtex
400bgh60 FPGA. The NID FPGA contains sufficient
logic to interface to the switch and line card, while the
larger RAD FPGA was chosen to provide sufficient logic
density in order to implement complex IP routing and
queuing functions.

3.1 FPX Memory Configuration

To enable high-speed, bi-directional cell queuing and
cell buffering operations, the FPX module provides four
independent banks of memory. All memory devices op-
erate at a frequency of 100 MHz.

Two banks of 32-bit wide SRAM are provided to main-
tain pointers and data structures in a low-latency con-
trol memory. This memory utilizes Zero Bus Turn-
around (ZBT) SRAMs to provide full-throughput access
to memory.

Two banks of 64-bit wide Synchronous Dynamic Ran-
dom Access Memory (SDRAM) are provided to buffer
data from the network. At Gigabit/second rates, sev-
eral Megabytes of memory can be required to buffer a
large burst of data.

3.2 FPX Memory Analysis

The total number of memory operations that can be
used to process a packet depend on the Line Card rate
and the length of the packet. The faster the link, the
fewer the number of cycles: Fifty-six bytes is the small-
est packet that would be processed by the WUGS switch-
/router. This size is slightly larger than the 53-byte size
of an Asynchrounous Transfer Mode (ATM) cell.

For line cards that operate at OC3 rates (155 Mbits/sec-
ond), each memory provides 53 * 8/155M = 273 opera-
tions per cell. The four parallel banks of memory can,
therefore, perform a total of 273 ¥4 = 1092 memory op-
erations within the time period of a cell slot. At OC12
(622 Mbits/second), the same hardware can implement
273 operations. At OC48 (2.4 Gbits/second), the FPX
provides 68 memory operations per slot period. Of these
operations, 56/8 = 7 writes to the SDRAM memory
are used to enqueue a cell, and 56/8 = 7 reads from
the SDRAM are used to dequeue a cell. All remain-
ing memory operations can be used to implement the
routing and buffer management functions.
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Figure 5: Configuration of FPX as IP Router

4. |P ROUTING

Given the exponential growth of the Internet, the need
exists for fast Internet Protocol (IP) lookup engines to
eliminate bottlenecks in high performance routers. The
FPX provides an excellent platform for implementing
IP routing functions at the port of a WUGS.

A router configuration using a WUGS equipped with
FPX modules is shown in Figure 5. Each FPX hardware
module implements two functions: one at the ingress
(input) of the switch and the other at the egress (out-
put) of the switch. The ingress functionality of the
FPX performs the IP lookup function. The result of
the lookup is used by the WUGS switch to deliver the
packet to the appropriate egress port. The egress func-
tion of the FPX re-assembles segments of packets before
they are transmitted on the outgoing link.

4.1 IP Lookup Functions

One algorithm capable of performing IP lookups at link
speed in the FPX is the Tree Bitmap algorithm [8]. The
Tree Bitmap algorithm is a hardware based algorithm
that employs multibit trie data structures to perform
IP lookups with efficient use of memory.

An IP lookup consists of finding the longest matching
prefix stored in the routing table for the given 32-bit
IPv4 destination address and retrieving the associated
next hop for the IP packet. As shown in Figure 6, the
unicast IP address is compared to the stored prefixes
starting with the left-most bit. Once the longest match-
ing prefix is found, the packet is forwarded to the spec-
ified next hop by modifying the packet header with the
stored next hop information.

To efficiently perform this lookup function in hardware,
the Tree Bitmap algorithm starts by storing the prefixes
in a binary trie as shown in Figure 7. The shaded nodes
denote a stored prefix. A search is conducted by using
the IP address bits to traverse the trie. To speed up this
searching process, subtrees of the binary trie are com-
bined into single nodes, reducing the number of memory
accesses needed to perform a lookup. The depth of the
subtrees combined to form a single node is called the

Prefix ~ Next Hop
* 4 32-bit IP Address
10* 7 0101 1011 ... 0001
o1* 2 Next Hop
110* 9 5
1011* 1
0001* 0
01011* 5
00110* 3

Figure 6: IP prefix lookup table of next hops. Next
hops for IP packets are found using the longest matching
prefix in the table for the unicast destination address of
the IP packet.

32-bit IP Address
0101 1011 ... 0001

Figure 7: IP lookup table represented as a binary trie.
Stored prefixes are denoted by shaded nodes. Next hops
are found by traversing the trie.



32-bit IP Address
0101 1011 ... 0001

Figure 8: IP lookup table represented as a multibit trie.
A stride, 4-bits, of the unicast destination address of
the IP packet are compared at once, speeding up the
lookup process.

stride. An example of a multibit trie using 4-bit strides
is shown in Figure 8. The Tree Bitmap algorithm codes
information associated with each subtree as a node con-
taining two bitmaps. The internal bitmap identifies the
nodes of the original binary tree corresponding to the
prefixes. the external bitmap identifies the “exit points”
of each subtree that correspond to actual edges. An
example is shown in Figure 9.

By requiring that all child nodes of a single parent be
stored contiguously in memory, the address of a child
node can be calculated using a pointer to the array of
child nodes and an index into that array computed from
the external bitmap. The 4-bit stride example is shown
as a Tree Bitmap data structure in Figure 10. When
there are no valid extending paths, the longest matching
prefix is used to fetch the next hop information which
is stored in a separate table.

4.2 FPX DesignConstraints

The FPX architecture places several constraints on the
implementation of the Tree Bitmap algorithm. Within
the context of the FPX Module, the Tree Bitmap algo-
rithm will simply be referred to as the Fast IP Lookup
Engine (FIPLE). To allow for packet reassembly and
other active processing functions requiring memory re-
sources, the FIPLE has access to one of the 8 Mbit ZBT
(Zero Bus Turnaround) SRAMs which provide a 32-bit
data path with 2-clock cycle latency. Since this mem-
ory is ”off-chip” both the address and data lines must
be latched at the pads of the FPGA, providing for a
total latency to memory of 4 clock cycles. The 32-bit
data path width and 4 clock cycle latency of the memory
suggest an optimal stride length of 4 bits. With a 4-bit
stride, external bitmaps are 16-bits long occupying a
half-word of memory, leaving the second 2 bytes free for

32-bit IP Address
0101 1011 ... 0001

)

0 1 0 10 1

Internal Prefix Bitmap: 1 00 0110 00000010
Extending Paths Bitmap: 0101 0100 0001 0000

Figure 9: Bitmap coding of a multibit trie node. The in-
ternal bitmap represents the stored prefixes in the node
while the extending paths bitmap represents the child
nodes of the current node.

1000110 0000 0010

0100 0000 0001 000G

Y

1 00 0000 0000 0000| 0 10 0000 0000 0000| 0 01 0000 0000 0000| 1 00 0000 0000 0000

0000 0000 0000 0009 0000 0000 0000 000 0000 0000 0000 000G 0000 0000 0000 000!

Figure 10: IP lookup table represented as a Tree
Bitmap. Child nodes are stored contiguously so that
a single pointer and an index may be used to locate any
child node in the the data structure.
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a memory address pointer to the child node array. With
both the external bitmap and child node array pointer
stored in a single memory word, the address of the next
child node may be resolved in a single clock cycle. The
remaining three clock cycles of memory latency may be
used to examine the internal bitmap of the node data
structure, compute the longest matching prefix and the
address of the corresponding next hop entry in the ta-
ble. By pipelining the fetching of child nodes, a worst
case lookup using 4-bit strides would require examining
8-nodes to find the longest matching prefix. Combined
with the cycles needed to fetch the next hop informa-
tion, a single lookup would require (8*4)+6 = 38 clock
cycles.

Since the FPGAs and SRAMs run on synchronous 100-
MHz clocks, all single cycle calculations must be com-
pleted in less than 10ns. As expected, the critical path
in the FIPLE design is the next node address calcula-
tion. In order to resolve this address, the number of
ones in the extending path bitmap to the left of an in-
dex supplied by the stride of the IP address must be
summed. This sum must be added to the 16-bit child
node array address pointer. Finally, the result must be
shifted to form the 18-bit physical address of the next
node to be fetched. Current FPGA technology performs
16-bit adds in 5 ns or less. However, the lookup table
used to generate a 16-bit mask for the summing of ones
in a bitmap requires approximately 7ns. Obviously, all
of the calculations necessary to resolve the physical ad-
dress cannot be performed one clock cycle and more
extensive pipelining of the algorithm is necessary. On
chip memory may also be used as a cache for the first
two levels of nodes to minimize memory latencies and
decrease the total time per lookup.

4.3 Critical Path

If the critical paths can be eliminated to achieve a 10ns
clock period, this IP lookup engine is capable of per-
forming a lookup every 380ns. Minimum length IPv4
packets fit in one ATM cell. An FPX programmed
with the Tree Bitmap algorithm could perform lookups
within one cell time for links operating at or below OC12
rates. Increasing the link speed to OC48 would result
in approximately one lookup every two cell times, given
nominal delay between cells. Overlapping the lookup
of two IP packets would fill the pipeline gaps and en-
able full system throughput, even with minimum-length
packets.

4.4 Other IP Routing Algorithms

In addition to the Tree Bitmap algorithm being designed
at Washington University, another design team is cur-
rently working on adapting the work presented in [9]
onto the FPX. Instead of linearly increasing the pre-
fix length searched through, this algorithm uses binary
search over the prefix lengths, with all the prefixes of a
given length stored in a hash table.
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Figure 11: Configuration of FPX for Distributed In-
put/Output Queuing

5. DISTRIBUTED QUEUEING

The FPX also enables research and experimentation
on a broad class of algorithms that provide distributed
queuing. The logical configuration of the WUGS with
multiple FPX modules is shown in Figure 11. By utiliz-
ing one pair of SRAM/SDRAM for input queuing and
the other for output queuing, the FPX can implement
Combined Input Output Queueing (CIOQ). Each queue
represents one half of an FPX module (the FPX module
processes both the ingress and egress data).

5.1 Input Cell Scheduling

Complex queuing circuits are required in order to fully
utilize the throughput of an input buffered switch. Cells
must be selected so that no more than one cell is read
from an ingress module and no more than one cell is
written to an egress module. At any given time, an
ingress module may be buffering cells destined for any
permutation of output ports. The optimal selection of
these cells from the input of a switch is an active topic
of research.

For systems utilizing simple First-In-First-Out (FIFO)
memories, cells can only be transmitted from the head
of each queue. Cells behind the head of the queue are
blocked—regardless of whether or not their destination
port is available. For unicast traffic with Poisson ar-
rivals, Head-of-Line (HOL) blocking limits the through-
put of an input-buffered FIFO switch to 58% [4].

Queuing by destination port can eliminate HOL block-
ing. It allows the scheduling algorithm to evaluate all
possible flows from the ingress module to the egress
module. Each ingress module maintains an N-queue
virtual output queue structure that sorts by destination
port.

Optimal performance can be found by solving Maximum
Weighted Matching (MWM) of a bipartite graph. In the
MWM graph, one node partition is assigned to the input
ports and the other to the output ports. Edges between
inputs and outputs are assigned an edge weight repre-
senting the availability of cells from the input to the
output. While the solution is optimal, the O(N*log N)



running time makes it impractical to implement [10].

5.2 ReducingCircuit Complexity

Several approaches have been taken to reduce the run-
ning time of the selection algorithm. In the Matrix
Unit Cell Scheduler (MUCS) [11], a scheduler reads each
port’s destination vector to determine which cells await
delivery to which output port. The algorithm iterates
on the matrix to select a maximum set of cells that can
be transmitted. By first selecting ports that have the
least flexibility, the aggregate throughput of the switch
nearly equals that of the output buffered switch.

Other heuristic algorithms exist to optimize the trans-
mission of cells from an input port. For the Longest Port
First (LPF) method, the scheduler first finds the input
port and output port pairs that can transmit maximum
number of packets, i.e. a set of maximum size matches.
Based on this set, the scheduler then selects the trans-
mission matches that can maximize total weight. The
LPF algorithm can achieve 100% utilization with a re-
duced complexity of O(N*®). By avoiding compari-
son operations in the critical path of the algorithm, it
also has an advantage in hardware implementation [12].
Fast, input-buffered scheduling techniques are the basis
for the Tiny Tera switch [13].

6. RESEARCH TESTBED

The reprogrammable logic in the FPX module enabled
it to serve as a common hardware platform for net-
working research. There are currently several research
projects planned that will utilize the FPX to implement
new networking features in hardware. While the fea-
tures are different, they can all be implemented using
the same FPX hardware at the edges of the WUGS.
Some of the projects outside of Washington University
that plan to utilize the FPX are listed below.

[ Site | PI

| Project |

Georgia Karsten Schwan | Packet scheduling
Tech
Rice Edward Knightly | Traffic shaping
Wisconsin | Parmesh QoS for
Ramanathan Internet traffic
UCS/ISI | Jon Touch Active network
congestion control
UCSB PM Many-to-many
Melliar-Smith multicast
Oakland Ronald Srodawa | Video queuing for
distance learning

6.1 FPX Reprogrammability

As a research tool for prototyping new algorithms in
hardware, the FPX has been designed to simplify re-
programming steps. To enable the system to remain
fully operational even while it is being reprogrammed,
the system has been designed to operate throughout the
reprogramming cycle.

When the system first boots, an EPROM is used to
fetch a static configuration for the NID. By default the
NID is programmed to pass-through data between the
line card and the switch.

The FPX programs the RAD by reading configuration
data over the network. Once the NID is programmed, it
waits for control cells on VCI=34 to arrive that contain
the configuration data for the RAD. As each sequen-
tial cell arrives, the contents of the cell are buffered in
the FIFO. When the final byte of RAD configuration is
loaded, the contents of the FIFO are used to program
the RAD.

After configuration, the NID continues to listen for con-
trol cells. The switch controller (a software entity run-
ning elsewhere in the network), can dynamically repro-
gram the RAD by sending a new bitstream over the
network. Again, after the last cell arrives, a final confir-
mation cell can be issued to reprogram the RAD with
the new configuration.

The FPX module is wired to enable partial reprogram-
ming the RAD. By using the NID to control the RAD’s
JTAG pins, it is possible to reprogram only a portion of
the logic on the RAD. Rather than download the entire
chip configuration, the NID transfers only those parts of
the design that have changed. This feature enables the
RAD (not just the NID) to continue processing packets
through a design modfication. It is hoped that improved
software support for partial reprogrammability will be
forthcoming in a way that allows open access between
the tools and the devices [14] [15].

6.2 Web-basedloolkit

To enable sharing of designs, a web-site has been cre-
ated which holds configuration files for the RAD. Com-
plete bitfiles that implement the IP routing function for
the RAD will be made available on the project website,
along with synthesizable cores and VHDL source code
for commonly-used network functions. The web-site for
this project is:
http://www.arl.wustl.edu/arl/projects/fpx.

7. CONCLUSIONS

Field Programmable Gate Arrays have been used to im-
plement a key component in the FPX/WUGS router.
They provide the IP packet forwarding and queueing
functions at the edge of the highly scalable switch.

The FPX provides a common hardware platform for re-
search, developement, and experimentation on network-
ing algorithms in hardware. By using reprogrammable
logic, designs can be implemented without traditional
design cycle delays.

This spring, fifty FPX modules will be fabricated and
distributed to several research universities throughout
the country. The hardware designs developed for this
project will be maintained on the project website.

The performance of the FPX module enables it to per-



form IP routing and per-flow queuing at a rate of 2.4
Gigabits/second. When used in an eight-port WUGS-
20 switch, the system provides an aggregate throughput
of 20 Gigabits/second. The distributed topology of the
router and the scalable nature of the switch enable much
larger configurations. A router with 4096 ports would
provide an aggregate throughput of 9.8 Terabits/second.
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