
Design Issues for High Performance
Active Routers

Tilman Wolf, Jonathan Turner
fwolf,jstg@arl.wustl.edu

Abstract

Active networking is a general approach to incorporating general-purpose computational capabilities
within the communications infrastructure of data networks. This paper proposes a design of a scalable,
high performance active router. This is used as a vehicle for studying the key design issues that must be
resolved to allow active networking to become a mainstream technology.

1 Introduction

The growing sophistication of networked applications and the need for more complex network services
to support them are creating a growing demand for programmable network components. At the same
time, continuing advances in integrated circuit technology are making it possible to implement several
complete processor subsystems on a single chip. Active networking is one response to this convergence
of application pull and technology push [8]. By increasing the programmability of network components,
it promises to dramatically simplify the deployment of new protocols and new network services.

In active networks employing the capsule model, each data packet carries the instruction code that is
used to process and forward the packet. Augmenting every packet with processing instructions enables
flexible handling of the packet at every node. Active packets can contain code that process th payload in
some fashion or which influences the way the network routes or schedules the packet for transmission.
The capsule model for active networking raises signficant security questions, which are typically handled
using interpretive execution. An alternative model for active networking [3] allows execution of compiled
code obtained from trusted code servers, enabling substantially faster processing. Both models for active
networking require substantial computational capabilities to keep pace with ever faster networks.

Developments in data transmission and switching technology indicate that link speeds and router
capacities will keep growing rapidly. Terabit capacity routers with 2.4 and 10 Gb/s links are becoming
commercially available now. Active routers must provide comparable performance levels, in order
to keep pace with the rapid growth in bandwidth. Routers capable of substantial amounts of active
processing will need extensive computational resources and will need to be able to apply those resources
flexibly and with high efficiency. To put things in perspective, a 32 bit processor capable of executing
500 million instructions per second, can perform about 100 instructions per word when processing data
from a 150 Mb/s link. While processor speeds will continue to improve, it is clear that to support active
processing for even one 2.4 or 10 Gb/s link it will take many processors working in parallel. To support
large numbers of gigabit links, we must combine many active processing clusters with a scalable, high
performance interconnection network.

This paper explores issues associated with the design of high performance active routers, capable of
supporting large numbers of gigabit links. To enable a concrete examination of these issues, we propose
a specific design for an active router that can support hundreds of 2.4 Gb/s links. This is used as a vehicle
for understanding complexity and performance issues, and as a basis for extrapolation into the future.

1

APC

TI

QM

PP

Switch Fabric

PP PP

SC

PCQFM

APC

M

M
. . .

Figure 1: System Organization of Active Router

2 System Organization

A baseline design for a high performance active router is shown in Figure 1. The router is based on a
scalable cell switching fabric which connects to external links through active Port Processors (PP). The
switching fabric can be implemented in a variety of ways. For concreteness, we assume a multistage
network such as described in [2]. That system supports external link rates up to 2.4 Gb/s and can be
configured to support hundreds or even thousands of such ports. The active router’s Port Processors
perform packet classification, active processing and fair queueing. The Switch Controller (SC) provides
a control and management interface to the outside world and implements routing algorithms and other
high level operations.

Packets belonging to passive flows (that is, flows that do not require active processing), are passed
directly from the input port at which they first arrive to the output port where they are to be forwarded.
Such packets encounter no added overhead or delay, compared to a convcntional router. Packets belonging
to active flows will typically be queued for processing at the input port where they arrive, then after
processing will be forwarded to the proper output port. Active processing can also be performed at the
output, if appropriate. To provide the maximum flexibility, packets may be sent from the input ports
where they arrive to another port for active processing, before ultimately being fowarded to the desired
outgoing link. This allows system-wide load balancing.

As seen in Figure 1, the Port Processor consists of several components. The Transmission Interface
(TI) includes the optoelectronic and transmission formatting components. The Packet Classification
and Queueing chip (PCQ) performs classification of arriving packets, to determine how they are to be
processed and where they are to be sent. It also manages queues on both the input and output sides of
the system. Packets can be assigned to queues in a fully flexible fashion (e.g. per flow or aggregate).
The queues can be rate-controlled to provide guaranteed Quality of Service. The PCQ has two memory
interfaces, one to a Filter Memory (FM) used for packet classification and one to a Queue Memory (QM)
used to store packets awaiting processing or transmission.

Active processing is provided by one or more Active Processor Chips (APC), each containing several
on-chip processors with local memory. Each APC also has an external memory interface, providing
access to additional memory which is shared by the processors on the chip. The APC processors retrieve
active packets from the QM, process them and write them back out to the proper outgoing queue. They
are arranged in a daisy-chain configuration to eliminate the need for multiple APC interfaces to the PCQ.
Since the bandwidth required between the QCTL and the entire set of APC chips can be bounded by the
link bandwidth (assuming each active packet passes from the QCTL chip to an APC once and is returned
once), this arrangement does not create a bandwidth bottleneck.

2

to/from Transmission Interface

PCQFM

QM

. . .

IO
C

DRAM

P+MC
C

DRAM

P+MC
C

DRAM

P+MC
C

DRAM

P+MC
C

P
C

Q
C

T
L

to/from Switch Fabric

DRAM

extension port

Figure 2: Port Processor

A more detailed picture of the Port Processor is shown in Figure 2. As packets are received from
the Transmission Interface, the headers are passed to the Packet Classifier (PC) which performs flow
classification and assigns a tag to the packet. At the same time, the entire packet is passed to the Queue
Controller (QCTL) which segments the packet into cells and adds it to the appropriate queue. Either
per flow or aggregate queues may be used, depending on the QoS requirements. The filter database
determines whether flows are aggregated or handled separately. To provide the required flexibility, a fast
general flow classification algorithm is required, such as the one described in [7].

The design can be scaled in a couple ways. First, the number of ports can be increased by configuring
the multistage interconnection network to have a larger number of stages. For the design in [2], a three
stage network can support up to 64 ports and has an aggregate capacity of 154 Gb/s, while a five stage
network can support up to 512 ports and has an aggregate capacity of 1.2 Tb/s. One can increase (or
decrease) the active processing capacity by incorporating more or fewer APC chips at each port. For
systems with only a small amount of active processing, APCs can be omitted from most ports, and
packets requiring active processing can be forwarded from the ports at which they arrive to one of the
ports containing an APC.

A key design variable for any router is the amount of memory to provide for queues and how to use
that memory to best effect. The usual rule of thumb is that the buffer size should equal the bandwidth
of the link times the expected round trip time for packets going through the network. For 2.4 Gb/s
links in wide area networks, this leads to buffer dimensions of roughly 100 MB. Such large buffers are
needed in IP networks because of the synchronous oscillations in network traffic produced by TCP flow
control. In the context of large buffers, per flow queueing and sophisticated queueing algorithms are
needed to ensure fairness and/or provide quality of service. Flow control is also needed within a router
which has hundreds of high speed ports. Without flow control, output links can experience overloads
that are severe enough to cause congestion within the switch fabric, interfering with traffic destined for
uncongested outputs. Fortunately, the large buffers required by routers make it possible for cross-switch
flow control to be implemented with a relatively coarse time granularity (1-10 ms). Using explicit rate
control, output PPs can regulate the rate at which different input PPs send them traffic, so as to avoid
exceeding the bandwidth of the interface between the switch fabric and the output PP. By adjusting the
rates in response to periodic rate adjustment requests from the input PPs, the output PPs can provide fair
access to the output link on a system-wide basis or can allocate the bandwidth so as to satisfy quality of
service guarantees.

3

Year 1999 2002 2005 2008
Feature size (�m) 0.25 0.18 0.12 0.09 0.06 0.045 0.03
No. of APUs 4 4 8 8 16 16 32
Cache Size (KB) 32 64 64 128 128 256 256
DRAM Size (MB) 1 2 2 4 4 8 8
P+MC area (mm2) 10 5.2 2.3 1.3 0.6 0.3 0.14
SRAM area/MB 175 90 40 23 10 5.7 2.5
DRAM area/MB 25 13 5.8 3.2 1.4 0.8 0.4
Total APU Area (mm2) 162 148 131 137 122 132 117
Processor clock frequency (MHz) 400 556 833 1,111 1,667 2,222 3,333
External Memory Bandwidth (MB/s) 500 694 2,083 2,778 8,333 11,111 33,333
Instructions per word for 2.4 Gb/s link 21 30 90 120 360 470 1,400

Figure 3: APC Technology Scaling

3 Active Processing Chip

The Active Processing Chip provides the general purpose computational resources needed to implement
active networking applications. In order to arrive at a suitable design for the APC, it is important to
understand the relative complexity of the different design elements that go into the APC. In current
production CMOS technology (.25 �m), a single RISC CPU core can be implemented in an area of 2-4
square millimeters [1, 4]. This represents just 1-2% of a chip with a core area of 200 mm2, a fairly typical
size for high performance ASICs. However, processors require memory for storage of programs and
data. In .25 micron technology, dynamic RAM requires about 25 mm2 per Mbyte, while SRAM requires
about 175 mm2 per Mbyte.

For efficient processing of active flows, the processors should have enough memory to store both
a small operating system kernel and the code for the active applications being used. In addition, they
need to be able to store per flow state information for perhaps a few hundred flows, and the packets
currently being processed. Since the packets can be brought in from the Queue Memory as needed, then
promptly written back out, not too much on-chip memory is needed for the packets themselves, but the
program code and per flow state could easily consume hundreds of kilobytes of memory. This suggests a
minimum memory configuration per processor of 1 MB of DRAM. To allow the processor to operate at
peak efficiency, this should be augmented by a a cache implemented with SRAM. A 1 MB DRAM and a
32 KB cache together consume about 30 mm2 of area. Adding a processor and memory controller yields
an area of 35-40 mm2 for an entire Active Processing Unit (APU). This allows four to be combined on a
single chip in .25 �m technology.

The required IO bandwidth is another key consideration. As noted above, the bandwidth required
for the interface to/from the PCQ can be bounded by the link bandwidth. For 2.4 Gb/s links, this implies
a bandwidth of 300 MB/s in each direction. To allow for loss of efficiency due to packet fragmentation
effects (caused by packets being divided into cells) and to reduce contention at this interface, it is
advisable to increase the bandwidth at this interface to 1 GB/s. This can be achieved with a 32 bit
interface in each direction, operating at a clock rate of 250 MHz, which is feasible in .25 �m technology.
This bandwidth will need to increase only based on increases in the external link bandwidth.

The bandwidth required between an APC and its external memory is determined by the number of
APUs on the chip, the instruction-processing rate of those APUs and the fraction of instructions that
generate requests to the external memory. For example, assuming four 32 bit processors operating at a
clock rate of 400 MHz with each APU requiring an average of one external memory access for every
twenty clock ticks, we get an external memory bandwidth of 320 MB/s. To reduce contention at this
interface, this should be increased to say 500 MB/s. Currently, high performance memory interfaces
such as RAMBUS [5] can provide a bandwidth of 1.6 GB/s using just 30 pins.

Figure 3 shows how continuing technology improvements can be expected to contribute to further
increases in density and performance. This assumes that processor clock frequency increases in inverse
proportion to feature size. The table shows that by 2005, it should be possible for a single APC to provide

4

application description code (lines) obj. code (bytes) instructions/word
DES data encryption 700 16,500 480
ZIP data compression 2,000 72,500 640
JPEG image compression 7,000 100,000 250
Reed-Solomon forward error correction 250 5,000 1,950
IP packet forwarding 2,000 25,000 60
Radix-Tree routing table lookup 1,100 17,500 145

Figure 4: Representative Applications

sufficient processing power to execute hundreds of instructions for every 32 bit word received from the
external link, allowing implementation of fairly complex active processing.

Our baseline APC design contains four APUs, as shown in Figure 2. Each APU includes a Processor
(P), a Memory Controller (MC), a Cache (C) and an on-chip Dynamic RAM (DRAM). These are linked to
the PCQ and each other through an IO Channel (IOC). The IOC also provides an interface to an external
DRAM and an extension interface, used for linking multiple APCs in a daisy-chain configuration. This
design can be readily scaled to larger numbers of processors, as technology improvements make this
feasible.

The IO Channel is a crucial element of the APC. As discussed above, it should support 1 GB/s data
transfers to and from the QCTL chip. This leads natuarally to a design comprising a crossbar with eight
inputs and outputs, each of which is 32 bits wide and clocked at 250 MHz. A central arbiter accepts
connection requests from the various “clients” of the crossbar and schedules the requested data transfers
to deliver optimal performance. To allow clients to quickly send short control messages to one another,
the IOC includes a separate signal dispatcher that accepts four byte “signals” from clients and transfers
them to per client output queues, where they can be read by the destination client as it is ready. When
the destination client reads a signal from its queue, the sending client is informed. This allows clients to
regulate the flow of signals to avoid exceeding the capacity of a destination client’s queue. Signals are
used by the QCTL chip to inform an APU that new data has arrived for it. They are also used by APUs
to request transfers of data from the QCTL chip.

4 Preliminary Application Benchmark

We have assembled a small set of applications to serve as a benchmark for active processing. They
range from fairly complex encryption and compression programs, to simple packet forwarding and IP
address lookup. Figure 4 lists the programs in the benchmark set, along with some characteristic data.
The column labeled code, gives the number of lines of code after stripping comments and blank lines.
The column labeled instructions/word gives the number of instructions executed per 32 bit word of data,
when processing a 1 Mbyte file. The instruction counts exclude instructions associated with input and
output, to better focus on the core computations. More details on the benchmark can be found in [9].

The table shows that some of the programs are fairly large and will consume a significant part of an
APU’s on-chip memory space. This suggests that it may be necessary to “specialize” the different APUs,
by limiting each one to a small set of distinct programs. The table also shows that these programs are
computationally demanding. DES, for example, requires nearly 500 instructions per word. Consulting
Figure 3 we see that this implies that a single APC will be able to encrypt all the data on a 2.4 Gb/s link only
sometime after 2005. Even this is based on the combined efforts of 16 APUs. Of course, versions of these
applications tailored specifically for the active network environment, could well provide significantly
better performance. However, it seems clear that to support substantial amounts of active processing,
routers will need to configured with enough computational power to excute hundreds of instructions per
word of data processed, a fairly demanding requirement for current technology.

The benchmark has also been used to make a preliminary assessment of the mix of machine in-
structions that might be expected for active applications. Figure 5 compares the instruction mix for our
benchmark against the SPECint92 benchmark, commonly used for comparing processor performance.

5

��

��

���

���

���

���

���

OR
D
G

VW
R
UH

D
G
G
�
VX

E

OR
J
LF

VK
LI
W

FR
P
S
D
UH

FR
Q
G
E
UD
Q
FK

OR
D
G
LP

P

VD
Y
H�

UH
VW
R
UH

MP
S
O

FD
OO

P
X
OW

R
WK
HU

1HW%HQFK

63(&LQW��

Figure 5: Comparison of Networking Applications to SPECint92 Benchmark

Compared to the SPEC benchmark, our “NetBench” benchmark has a somewhat lower fraction of load
and store operations and a somewhat higher fraction of arithmetic and logic operations. A more detailed
examination of the results shows that the execution is dominated by a fairly small number of instructions.
During the entire NetBench measurement run, only 67 instruction out of the 242 available were ever
executed (the experiments were run on a SPARC Ultra). Just 30 instructions were responsible for 95%
of all executed instructions. Floating point instructions played a negligible role. These results support
the use of a relatively simple RISC processor core, with a fairly limited instruction set. However, further
study is needed to determine if certain specialized instructions could be beneficial in this environment.
In particular, one expects that support for short vector processing (e.g. Intel’s MMX extensions) might
be beneficial for applications like encryption and multimedia.

5 Closing Remarks

Active networking is an important new direction in networking research and potentially for commercial
networks. This paper is a first attempt at determining how a practical high performance active router
might be built. Our proposed design provides a concrete reference point that can help focus more
detailed studies of specific design issues. It also provides a useful basis for extrapolation, as underlying
IC technologies continue their inexorable progress to ever smaller geometries and higher performance
levels.

References

[1] ARC Inc. [1999]. “ARC Architecture,” http://www.arccores.com/products/.

[2] Chaney, T., Fingerhut, A., Flucke, M., Turner, J. [1997]. “Design of a Gigabit ATM Switch,” Proc.
of INFOCOM 97, IEEE, Kobe, Japan.

[3] Decasper, D., Plattner, B. [1998]. “DAN - Distributed Code Caching for Active Networks,” Proc.
of INFOCOM 98, IEEE, San Francisco.

[4] IBM Microelectronics Division [1998]. “The PowerPC 405TM Core,” http://www.chips.ibm.com
/products/powerpc/cores/405cr wp.pdf.

[5] Rambus Inc. [1999]. “Rambus(R) Technology Overview,” http://www.rambus.com/docs
/techover.pdf/

6

[6] Shreedhar, M., Varghese, G. [1995]. “Efficient Fair Queueing using Deficit Round Robin,” Proc.
of SIGCOMM 95, ACM, Cambridge, Mass.

[7] Srinivasan, V., Suri, S., Varghese, G. [1999]. “Packet Classification using Tuple Space Search,” to
appear in Proc. of SIGCOMM 99, ACM, Cambridge, Mass.

[8] Tennenhouse, D., Smith, J., Sincoskie, W., Wetherall, D., Minden, G. [1997]. “A Survey of Active
Network Research,” IEEE Communications, 35:1, 80-86.

[9] Wolf, T. [1999]. “NetBench - A Benchmark for Active Networks,” to be submitted to Allerton
Conference on Communications, Control, and Computing, Illinois.

7

Summary
Active networking is a general approach to incorporating computational capabilities within the com-

munications infrastructure of data networks. By increasing the programmability of network components,
it promises to dramatically simplify the deployment of new protocols and new network services. This
paper explores issues associated with the design of high performance active routers, capable of supporting
large numbers of gigabit links. To enable a concrete examination of these issues, we propose a specific
design for a scalable, high performance active router. This is used as a vehicle for examining complexity
and performance issues, and as a basis for extrapolation into the future. The design includes multiple
Active Processing Units (APU) at each port of an active router, in a scalable configuration that allows
ports to be configured with as many APUs as required by the application mix. The design is organized
to take advantage of expected improvements in technology, that will allow higher levels of integration
and better performance. Our analysis shows that using current technology, active routers capable of sup-
porting large numbers of 2.4 Gb/s links can be practical, but that it will take 5–10 active processor chips
per link if most of the traffic on the link requires a substantial amount of active processing. However, we
project that by 2005, a single active processor chip should be able to execute hundreds of instructions
per 32 bit word received from a 2.4 Gb/s link. This would allow, for example, DES encryption of all the
data sent on such a link.

