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Abstract

This paper presents the Dynamic Hardware Plugins (DHP) architecture for imple-
menting multiple networking applications in hardware at programmable routers.
By enabling multiple applications to be dynamically loaded into a single hardware
device, the DHP architecture provides a scalable mechanism for implementing high-
performance programmable routers. The DHP architecture is presented within the
context of a programmable router architecture which processes flows in both soft-
ware and hardware. Implementation options are described as well as the prototype
testbed at Washington University in Saint Louis which utilizes the partial reconfig-
uration capability of modern FPGAs.
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1 Introduction

As researchers vigorously develop advanced control and processing schemes for
programmable networks [1], there exists a need for a scalable router architec-
ture capable of robust flow-specific processing at optical line speeds without
prohibitively high per-port costs. As the quantity and diversity of streaming
data and computationally intensive applications continues to increase, router
architectures must respond with greater flexibility, processing capacity, and
performance. With next-generation routers containing hundreds of ports, pro-
cessing mechanisms must scale at a reasonable per-port cost.

Existing router architectures that provide sufficient flexibility and per-flow
processing employ software processing environments containing multiple Re-
duced Instruction Set Computer (RISC) cores. Existing high- performance
router architectures capable of data processing at optical line speeds employ
Application Specific Integrated Circuits (ASICs) to perform parallel compu-
tations in hardware. However, these architectures often provide limited flexi-
bility for deployment of new applications or protocols, and necessitate longer
design cycles and higher costs than software-based solutions. Clearly, an op-
timal router architecture must exhibit the flexibility available in software and
the performance offered by hardware.

The diversity of networking applications and data flows suggests that dynami-
cally reprogrammable processing environment is needed to cover the potential
design space. While some applications performing limited processing at low
data rates readily lend themselves to software implementation, a vast array
of applications map well to hardware implementation due to high data rates,
data regularities, and parallel operations. This implies that a viable solution
to the programmable router problem should employ both software and re-
configurable hardware to process data flows. With the development of several
multi-RISC core processor architectures and implementations, the problem of
providing a scalable software processing environment is well investigated. The
problem of adding a flexible and scalable hardware processing environment
remains.

Traditionally used for low-volume prototyping and testing purposes, the re-
configurable hardware employed in Field Programmable Gate Arrays (FP-
GAs) provides a flexible hardware platform. Recently, reconfigurable hardware
technology has made several compelling performance advances, identifying it
as a possible solution for the programmable router node problem. New re-
configurable hardware devices tout approximately 1 million application logic
gates, internal clock rates up to 200 MHz, over 100KB of on-chip memory,
and partial-reconfiguration capability [2]. More impressive than the current
technical statistics is the rate of progress due to architectural optimizations



and silicon fabrication improvements: usable logic gate count increased by
10 times in two years; system clock frequency doubled in one year; I/O band-
width quadrupled in two years; block and distributed on-chip memory capacity
quadrupled in one year [3]. Reconfigurable hardware devices are clearly posi-
tioning themselves as viable options for flexible, high-performance systems.

The Dynamic Hardware Plugins (DHP) architecture employs reconfigurable
hardware to provide a flexible hardware processing environment for programmable,
multi-port routers. DHP allows multiple hardware applications, or plugins, to
be dynamically loaded into a single device and run in parallel, providing a
substantial amount of per-flow processing. With dedicated on-chip logic and
memory resources provisioned for each plugin as well as arbitrated access to
two types of off-chip memory resources, DHP supports a broad spectrum of
applications. Results of several case studies of Advanced Encryption Standard
(AES) implementations in software, FPGAs, and ASICs are used to show the
potential performance and flexibility gains of the DHP architecture for net-
working applications in programmable routers.

2 Background and Related Work

Several schemes exist for delivering applications to a programmable router.
Applications may be deployed at session setup via signalling protocols. Other
schemes allow applications to be requested by incoming packets [4] or car-
ried by the packet for execution on the programmable router [5]. With the
exception of implementation details, the programmable router architecture
discussion is orthogonal to application deployment mechanisms.

The router architecture presented in [6] provides a scalable software processing
environment using elements with multiple RISC cores on a single device. This
architecture readily lends itself to hardware processing integration and will be
used as the departure point for discussing the DHP architecture.

Significant work has already been done in reconfigurable network hardware;
specifically, the P4 developed at the University of Pennsylvania [7]. By dy-
namically switching FPGAs in and out of the datapath, flows can be routed
through chains of applications while other applications are loaded into idle
FPGAs. This approach does not readily lend itself to implementation in large
routers, as the hardware requirements for a single flow of processing are pro-
hibitively impractical. As applications are restricted to the resources provided
on the FPGA, this architecture does not provide ample memory resources to
cover the design space of potential applications. The Dynamic Hardware Plu-
gins architecture provides more robust processing in a scalable and efficient
way, making it more amenable to implementation in large high-performance



routers.

Taking a more global view of related research, Dynamic Hardware Plugins falls
under the general auspices of a reconfigurable hardware system. Implementa-
tion options for the DHP architecture are discussed in a later section along
with the prototype testbed in which the DHP architecture is implemented in
a Xilinx Virtex FPGA. FPGA implementation of a system that uses recon-
figurability can be done in two ways: Compile-Time and Run-Time Recon-
figuration [8]. For Compile-Time Reconfiguration (CTR) the FPGA does not
change configuration during the application lifetime. Each application has spe-
cific functions that are loaded when the FPGA is started. Some examples of
CTR systems are SPLASH [9] and PAM [10]. For Run-Time Reconfiguration
(RTR), the FPGA changes configuration while it is operating. RTR can be
total (the entire device is reprogrammed) or partial (only part of the device is
reprogrammed). Existing CTR platforms have focused on reconfiguration of
entire FPGA devices [11][12][13]. The prototype implementation of the DHP
architecture is a contribution to recent work in RTR platforms that consider
partial reconfiguration [14][15].

3 Programmable Router Architecture

Current routers capable of aggregate forwarding rates of terabits per second
and link speeds of 2.4 Gb/s and 10 Gb/s set the standard for high-performance.
Programmable routers need to achieve comparable performance to be con-
sidered a viable option for commercial applications. The router architecture
described in [6] provides a scalable mechanism for processing data flows at
router ports. The DHP architecture will be presented as an augmentation of
this architecture to include a hardware processing environment.

As shown in Fig. 1, the programmable router is built around a scalable multi-
stage cell switching fabric as described in [16]. Based on this design, the Switch
Fabric may be configured from ten to thousands of ports, each capable of sup-
porting link rates of 2.4 Gb/s. Each physical link attaches to a Transmission
Interface (TI) which converts data arriving on the link into a standard for-
mat for router input while performing the inverse operation on data destined
for the output link. For fiber-optic links, this includes optoelectronic and se-
rial /parallel signal conversion. Between the Transmission Interface and Switch
Fabric is the Port Processor (PP). The Port Processor performs all of the flow
classification, forwarding, queueing, and processing functions. The Port Pro-
cessor architecture will be described in the next section. A Control Processor
(CP) provides an external control interface and manages the Port Processors.
The Control Processor is responsible for maintaining flow classification data
structures and filters, as well as binding flows to applications at each Port Pro-



cessor via flow identifiers. In larger systems, the CP may be a shared memory
multiprocessor dimensioned to match the processing needs of the specific con-
figuration.
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Fig. 1. Programmable router architecture.

4 Port Processor Architecture

The Port Processor provides all of the necessary functionality to forward and
process data flows as they pass through the router. The Port Processor archi-
tecture is detailed in Fig. 2. The Packet Classification and Queueing (PCQ)
element manages the flow of data through three device ports. The TI Port
sends and receives data from the Transmission Interface, while the SW Port
sends and receives data from the Switch Fabric. Data belonging to flows re-
quiring processing are sent to and received from the processing elements via
the Processing Element (PE) Port.
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Fig. 2. Port Processor (PP) architecture with Hardware and Software Processing el-
ements. The Hardware Processing Element employs the Dynamic Hardware Plugins
(DHP) architecture.



On the PCQ), the Packet Classifier performs a lookup operation on all packets
arriving on the TI Port and attaches a flow identifier (flow ID) that identifies
the destination of packets and type of processing, if any, that the packet is
to receive at the Port Processor. The Packet Classifier maps each packet to
a locally significant flow ID that is used to retrieve stored state information
at other points in the system. It uses a general packet classification algorithm
such as Pruned Tuple Space Search [17]. All data structures and flow IDs are
maintained by the central Control Processor of the system.

After classification, packets are sent to the Queue Controller which manages
output and application queues. Based on the flow ID, the Queue Controller
places the packet on the appropriate queue. Packets not requiring processing
are simply placed on the appropriate output queue. Packets requiring process-
ing are placed on the queue associated with the application specified by the
flow ID. The Queue Controller schedules packets from the set of application
queues for output on the PE Port. Processed packets arriving on the PE Port
are placed on the appropriate output queue.

A number of processing elements may reside in a chain at the PE Port of the
PCQ. Fig. 2 shows a Software Processing Element followed by a Hardware
Processing Element. Note that the quantity and type of processing elements
present at a Port Processor may be configured based on traffic demands at
a particular port of the router. The Software Processing Element shown in
Fig. 2 consists of multiple RISC cores linked by a high speed I/O channel in a
ring configuration. Processors are grouped in small clusters for the purpose of
sharing access to offchip memory interfaces. This architecture is a refinement
of the architecture presented in [6], and is presented here mainly to set the
context for the Dynamic Hardware Plugins architecture, which is the focus of
this paper.

5 DHP Architecture

The Hardware Processing Element in Fig. 2 utilizes the Dynamic Hardware
Plugins (DHP) architecture to add flexible hardware processing capability to
the Port Processor. DHP employs reconfigurable hardware to allow multiple
applications to be dynamically loaded into hardware plugins and run in paral-
lel on a single device. Data flows may pass through permutations of hardware
plugins, allowing for substantial amounts of per-flow processing. In order to
support a broad spectrum of applications, each plugin possesses dedicated on-
chip logic and memory resources as well as access to two types of arbitrated
off-chip memory resources.

In order to facilitate the current architectural discussion and a later discussion



of implementation options, the DHP architecture is divided into two major
parts: hardware plugins and infrastructure. Hardware plugins are the hardware
components that may be dynamically reconfigured to support new applica-
tions. Infrastructure consists of the static control and datapath components
of the DHP architecture. The infrastructure components collectively route
packets to plugins and I/O ports, dynamically reconfigure hardware plugins,
interface to external memory devices and arbitrate access among the contend-
ing pool of applications. The following subsections discuss the major divisions
of the DHP architecture and their associated components in detail.

5.1 Infrastructure

The infrastructure, denoted by the shaded blocks in Fig. 2, is the required
collection of static control and datapath components to support dynamic,
modular hardware applications. The infrastructure provides common services
to hardware plugins and hides details of memory device timing. By providing a
standard interface for plugins, the infrastructure provides the equivalent of an
API to allow hardware developers to more easily design modular applications
that work together.

5.1.1 Data I/O and Flow Control

As shown in Fig. 2, the DHP architecture arranges hardware plugins in a
slotted ring with each ring interface labelled as an Input Output Controller
(IOC). A ring architecture was chosen in preference to a bus because rings
can be operated at higher clock frequencies than buses due to their simple
point-to-point connections and the resulting reduction in capacitive loading.
The ring is better in this context than a crossbar since it allows a single
plugin to make use of the full ring bandwidth if necessary. A crossbar capable
of providing similar bandwidth to each plugin requires substantially more
processing resources. While rings do add latency to data transfers, a suitable
hardware implementation can keep these latencies to well under a microsecond
in typical configurations. In order to keep up with a link rate of 2.4Gb/s, the
ring must have a minimum bandwidth of 4.8 Gb/s to allow hardware plugins
to process both ingress and egress data flows at the link rate. A 32-bit wide
ring operating at 200 MHz provides a raw bandwidth of 6.4 Gb/s, providing
sufficient extra bandwidth to handle internal overheads and keep contention
low.

Note that an IOC is provided for each hardware plugin while two IOCs inter-
face to upstream and downstream elements. The upstream IOC may interface
to another processing element or directly to the PCQ. The downstream 10C



interfaces only to other processing elements. The ring protocol transfers fixed
size units with a busy/idle bit in the first word of each transmission slot. The
first word also includes a flow control bit vector with one bit for each 10C
on the chip. An IOC sets its bit to signal congestion. A second bit vector
is used to enable fair access to the ring. Each plugin with data queued for
transmission on the ring sets its bit and paces its transmissions on the ring
based on the number of bits set by other plugins. Additional fields in this
word identify a ring and slot number of the destination application for the
packet. The ring number identifies a unique processing element in the chain,
while the slot number specifies the hardware plugin containing the destination
application. For packets requiring processing by more than one application,
the ring and slot number fields are modified to address the next application.
Upon completion of a packet, applications identify the correct ring and slot
number of subsequent applications via locally available state information.

As shown in Fig. 2 the upstream IOC contains an additional port to the Appli-
cation Controller. When new applications are to be loaded into the hardware
plugins, the upstream IOC must pass control messages and application data
to the Application Controller. While a hardware plugin undergoes reconfig-
uration, the associated IOC passes data to the next IOC in the ring. This
mechanism allows applications to be dynamically loaded into hardware plug-
ins without interrupting the flow of data through the processing ring.

5.1.2  Application Controller

The Application Controller manages the dynamic reconfiguration of hardware
plugins to support new applications. Hardware applications arrive as bitfiles
to the Application Controller. Bitfiles specify the logic operations, signal rout-
ing, and on-chip memory configuration for the hardware application. As bitfiles
may be loaded from local memory or remotely over the network, the Applica-
tion Controller must assemble, buffer, and ensure the correctness of the bitfile
prior to loading it into the hardware plugin. Bitfile integrity can be maintained
via checksums and reliable transport protocols.

Prior to reconfiguring the hardware plugin, the Application Controller initi-
ates a handshake with the application to prevent data and flow state loss. If
the application is not idle, it must stop accepting packets and finish processing
current packets. Applications may define appropriate breakpoints for reconfig-
uration based on the type of flow processing it is performing. Control messages
may be sent from applications to the PC(Q to halt packet forwarding at break-
points. For deployment of application revisions, applications may copy flow
state to off-chip memory for the new revision to use once it has been loaded
into the hardware plugin. Once the application has ensured that no data or
relevent flow state will be lost, it returns a handshake to the Application Con-



troller. At this point, the IOC routes all arriving packets to the next IOC in
the ring. The Application Controller then loads the new application into the
hardware plugin by writing the application bitfile to the reconfigurable logic.

The amount of time required for plugin reconfiguration depends on the size of
the plugin and the complexity of the application. Current FPGA technologies
do not place a strong emphasis on high reconfiguration speeds. However, as
discussed in a later section the time required to configure a current generation
FPGA with a complex application such as an encryption cipher requires on the
order of 5 ms. While this time is not so long as to make DHP impractical with
current technology, the current programming rates of 66MB of configuration
data per second must increase for next generation technology to be suitable for
use in programmable routers. As designers continue to develop systems that
demand high-speed device configuration [18], it is likely that FPGA vendors
will need to respond with faster reconfiguration mechanisms.

Once all configuration data is loaded into the hardware plugin, the Application
Controller initiates a localized reset to the hardware plugin. The Application
Controller waits for a handshake from the application. Once the application is
initialized and ready, it completes the handshake with the Application Con-
troller. The Application Controller responds with a control message to the
CP, which updates the descriptor table used by the Packet Classifier. The
IOC then routes packets with matching descriptors to the application.

5.1.8 Memory Interfaces

In order to cover the design space of potential hardware applications, DHP pro-
vides access to two types of off-chip memory resources. Banks of Synchronous
Random Access Memory (SRAM) provide storage for per flow state and com-
putations requiring low-latency accesses, while banks of Dynamic Random
Access Memory (DRAM) provide ample resources for memory intensive ap-
plications. The Memory Interfaces shown in Fig. 2 arbitrate access among
the hardware plugins while insulating applications from device-specific timing
specifications.

The type of hardware technology used to implement the hardware processing
element limits the number of pins available for interfacing to off-chip memory
devices. Current devices are capable of supporting two SRAM devices and
two DRAM devices; therefore, this configuration will be used for the purpose
of this discussion. Due to the wide array of memory devices and technologies
available, the type of SRAM and DRAM devices employed in a particular
system will likely be a function of size, speed, and cost constraints. Systems
running applications that require high-bandwidth access to large amounts of
memory may employ DRAM technologies, such as Rambus, to meet perfor-
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mance constraints [19]. Implementation of such complex memory interfaces
requires more on-chip hardware resources and will be discussed in the Imple-
mentation section. Other system designers may wish to reduce cost by using
Synchronous Dynamic Random Access Memory (SDRAM) devices.

To allow for flexibility in selecting external memory devices, the Memory In-
terfaces provide a standard interface to hardware plugins insulating them from
device-specific timing and control signalling. The Memory Interfaces provide
each plugin with independent access to both memory types, hence applica-
tions are free to utilize both types of off-chip memory resources in parallel.
Hardware plugins gain access to off-chip memory via a simple grant/request
handshake. The Memory Interface services requests in a round-robin fashion.
Once access is granted, applications may issue read, write, burst read, and
burst write commands. Starvation avoidance is achieved by plugins monitor-
ing the status of the grant/request signals. When other plugins contend, the
plugin currently accessing memory must release memory at the conclusion of
the current transaction.

5.2  Hardware Plugins

Hardware plugins provide applications with the reconfigurable logic and mem-
ory resources to process data flows. In this context, hardware plugins are
the physical hardware structures that may be configured to implement vari-
ous networking applications. The reconfigurable logic resources include logic
gates, lookup tables, flip-flops, multiplexors, demultiplexors, and signal rout-
ing matrices. On-chip Random Access Memory (RAM) may be configured to
implement queues and multi-port memories.

In order to design modular applications for use in the DHP, a standardized
hardware plugin interface is necessary. Like an API for software, hardware
plugins must interface to a static set of ports for data I/O, control, and ex-
ternal memory. As shown in Fig. 3, the hardware plugin interface includes
off-chip SRAM and DRAM interfaces, IOC interface, and Application Con-
troller interface. Each application may also define its own interface to on-chip
RAM.

The interface to off-chip DRAM includes grant and request signals for the
arbitration handshake, memory command signals, address lines, and tri-state
data lines. Similarly, the off-chip SRAM interface includes grant and request
signals, memory command signals, and address lines. However, this interface
employs separate input and output data lines to allow for pipelined memory
reads and writes. For low-latency state and data storage, applications may
define unique interfaces to on-chip RAM. Reconfigurable hardware technology

11



/ <— Request Not Empty=—— IOC
| Grant Data In ﬁ
SRAM Command IOC Input
Address Interface
Interface
Data Out
Clock [=— . .
| mmmPppaain  Hardware rese- Application
. Controller
Plug|n Enablef—— Interf
-— Request Ready~——— neriace
— > Grant
SDRAM Command IOC Output
Interface Address Full = Interface
“ Data In/Out Data OutP
(application—defined interface) R AM

Fig. 3. Hardware Plugin interface with static interfaces to infrastructure compo-
nents. Applications define interfaces and configurations for on-chip memory.

allows these resources to function as multi-port memories, queues, and large
register files.

The IOC interface includes input and output queue interfaces. The input queue
interface employs a “not empty” status flag, while the output interface uses
a “full” status flag. To keep the design uniform, the queue data paths are
the same width as the ring. The Application Controller interface provides
applications with a system clock, local reset, and enable/ready signals for the
reconfiguration handshake with the Application Controller. Applications may
use subdivided or multiplied versions of the system clock to suit design needs.

6 Applications & Performance

While the focus of this paper is not a performance comparison of hardware and
software applications, it is important to identify the types of applications that
benefit from the DHP architecture. Any computationally intensive application
operating on streaming data at high rates is a likely candidate. Potential
applications also need to contain operations that may be performed in parallel
or pipelined. Purely sequential computations cannot take full advantage of the
inherent benefits of hardware implementations.

One of the most widely used applications which is also crucial to the growth
of the Internet as a commercial tool is encryption. Since every byte must be
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manipulated in order to properly encrypt a data block, encryption is a compu-
tationally expensive application. Due to the nature of the computations per-
formed, encryption is highly amenable to hardware implementation. Results
of case studies of the new Advanced Encryption Standard (AES) will be used
to illustrate the potential performance of DHP for networking applications.

In order to select an algorithm for AES, the National Institute of Standards
and Technology (NIST) and several independent research groups analyzed
the security and performance of the finalist algorithms for both software and
hardware implementations [20][21][22]. Based on these analyses, Rijndael was
selected as the algorithm for AES [23]. In order to provide a baseline perfor-
mance comparison of software and FPGAs, the authors of [21] implemented
and analyzed an iterative version of the Rijndael algorithm that provided
encryption, decryption, and key-scheduling for 128-bit keys operating over
10 rounds on 128-bit data blocks in a Xilinx FPGA. This implementation
achieved a throughput of 353 Mb/s, providing a factor of 11.15 speedup over
comparable software implementations that achieved 31.64 Mb/s. This imple-
mentation would occupy approximately 20% of the available resources of the
largest current generation FPGA, a Xilinx Virtex 3200E, and would require
on the order of 5 ms for device configuration. While these results show sig-
nificant performance gains, NIST cited case studies of ASIC implementations
of the Rijndael algorithm achieving throughputs of 5.16 Gb/s, a factor of 163
speedup over software [20]. This level of performance was achieved through
fully pipelined architectures as opposed to the iterative architectures used
in [21]. Fully pipelined architectures require significantly more resources, mak-
ing them impractical for use in current generation FPGAs and the DHP ar-
chitecture. However, for implementation in programmable routers a higher
performance FPGA implementation of AES is required.

The authors of [22] implemented several architectural variants of the Rijndael
algorithm in an FPGA. Their analysis focused solely on encryption through-
put, operating under the assumption that key-scheduling delays can be masked
by a suitable parallel implementation. This analysis is relevant to the pro-
grammable router discussion, as throughput is the metric of interest and it is
likely that encryption and decryption will occur in separate hardware plugins.
In this analysis, the authors found that a 5-stage partial-pipeline with a single-
stage sub-pipeline architecture of Rijndael algorithm achieved a throughput
of 1.94 Gb/s. While this implementation required nearly twice the amount of
device resources as the iterative implementation in the aforementioned study,
it occupies less than 40% of the largest current generation FPGA.

Based on these results, a single hardware plugin could encrypt 80% of the
traffic carried on an OC-48 link. Achieving this level of performance in software
would require distributing the computation over 60 RISC cores, an exorbitant
amount of resources for a single application operating on a single link. These
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results clearly strengthen the case for employing reconfigurable hardware in
reprogrammable routers. Unlike ASIC implementations, the DHP architecture
allows for new encryption standards such as AES to be deployed in a matter
of milliseconds.

New streaming data services such as audio and video bridging for video confer-
encing also provide ideal hardware plugin applications. Multi-service routing
and multicast support are also ideal candidates for hardware implementation.
With the proliferation of Hardware Description Languages (HDLs) as com-
mon tools for designing hardware applications, many applications currently
implemented in ASICs can be easily ported to DHP implementation.

7 Implementation

Due to strides in current FPGA technology, the Dynamic Hardware Plugins
architecture can be implemented in a single FPGA. As device speeds and
densities continue to increase, the quantity and performance capabilities of
hardware plugins available on a single device will likewise increase. Providing
dynamic, modular plugins surrounded by static control structures in a single
device physically translates to partially reprogramming a running FPGA at
the port of a router. This is a non-trivial task that is the focus of ongoing
research at Washington University in Saint Louis. A significant part of the
solution involves new CAD tools capable of targeting specific regions of a
device, producing partial reprogramming bitfiles, reserving logic and routing
resources, and locking signals for static plugin interfaces. While many of these
capabilities exist in one form or another within current CAD tool suites, ex-
ecution of this task requires an enormous amount of effort. This significant
area of research will be examined in the following section.

Due to the homogeneous nature of reconfigurable logic, FPGA implementation
of static infrastructure components provides lower efficiency and performance
than a comparable ASIC implementation. Another limitation lies in off-chip
data transfers. The types of memory devices available to system designers are
limited by those conforming to I/O standards supported by FPGA vendors.
Adding high-performance memory interfaces, such as Rambus, could provide
substantially better performance. While an FPGA is a readily available de-
vice for implementing the DHP architecture, the challenges and inefficiences
encourage the pursuit for a better solution.

An intriguing implementation option for the DHP architecture is a mixed
ASIC/FPGA device with regions of reconfigurable logic embedded into appli-
cation specific silicon. By hand-crafting the IOC ring, Application Controller,
and Memory Interfaces in ASIC technology, greater I1/O performance could
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be achieved for on- and off-chip data transfers and memory transactions as
well as faster plugin configuration. Given the same die size, this would also
result in a more area-efficient infrastructure implementation providing more
silicon area for reconfigurable logic; hence, more logic and memory resources
per hardware plugin or more plugin slots per device. Such implementation
options are the focus of ongoing research in this area.

8 Prototype Testbed

In order to prototype the Dynamic Hardware Plugins architecture operating
in a Port Processor of a multi-port programmable router, several research
systems designed and built at Washington University in Saint Louis are used
in combination [24]. The WUGS 20, an 8 port ATM switch providing 20 Gb/s
of aggregate throughput, is used for the Switch Fabric. This switching core is
based upon a multi-stage Benes topology, supports up to 2.4 Gb/s link rates,
and scales up to 4096 ports for an aggregate throughput of 9.8 Tbh/s [25].

The Smart Port Card (SPC) is used to prototype the software processing
element [26]. It employs an embedded microprocessor, memory, and custom
network interface ASIC, the APIC, to process network data flows in software.
Data flows requiring processing are identified by their ATM Virtual Circuit
Identifier (VCI). The APIC writes the data from these flows directly to sys-
tem memory via the PCI bus. Once in memory the embedded microprocessor
processes the data, then triggers the APIC to transmit.

The Field Programmable Port Extender (FPX) is used to prototype the Dy-
namic Hardware Plugins architecture [27][28]. It employs two FPGAs, one
acting as the Network Interface Device (NID) and the other as the Repro-
grammable Application Device (RAD). The RAD FPGA has access to two
1IMB Zero-Byte Turnaround (ZBT) SRAMs and two 64MB SDRAM mod-
ules. A diagram of the FPX is shown in Fig. 4. Both the SPC and FPX are
implemented on Printed Circuit Boards (PCBs) of the same form factor as the
WUGS transmission interfaces. Hence, each port of the WUGS may be fitted
with different FPX/SPC combinations. A photograph of an FPX is shown in
Fig. 5. A photograph of an FPX in the WUGS is shown in Fig. 6.

As these research systems were designed to be sufficiently general for use in di-
verse research areas, mapping the DHP architecture to this testbed requires a
partitioning of infrastructure components across several devices. Fig. 7 details
the mapping of the DHP architecture onto the prototype testbed at Washing-
ton University. At a coarse level, the SPC functions as the software process-
ing element while the FPX functions as the hardware processing element and
Packet Classification and Queueing (PCQ) element. In this context, all ingress
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Fig. 4. Diagram of the Field Programmable port eXtender (FPX) used to prototype
the Dynamic Hardware Plugins (DHP) architecture.

A

Fig. 5. Photograph of the Field Programmable port eXtender (FPX)

traffic must be sent to the FPX for classification and queueing; hence, cells
arriving from the Line Card must tunnel through the APIC. Upon arrival at
the FPX, the NID switches the ATM cells containing packets of the data flow
to the PCQ port of the RAD. Utilizing the ZBT SRAM, the Packet Classi-
fier performs a lookup on the packet header fields and assigns locally unique
flow identifiers. These flow identifiers are subsequently used by the Queue
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Controller to allocate and schedule queues in the SDRAM. The Control Cell
Processor parses control cells for on-chip control register and off-chip memory
updates for PCQ initialization and control. Data flows requiring processing in
the SPC are sent back through the NID to the APIC where packet contents
are copied directly to system memory via the PCI bus. The embedded micro-
processor then processes the packets and triggers the APIC for transmission
upon completion. Data flows requiring hardware processing are sent to the
NID, switched to the DHP port of the RAD, and placed on the IOC ring for
processing.

As the FPX does not provide mechanisms for partial self-configuration, the
Application Controller is implemented in the NID FPGA. Applications are
loaded into the RAD FPGA by sending control cells containing configuration
bitfiles to the NID FPGA. The Application Controller parses the control cells
to extract the bitfile and buffers the data in an off-chip SRAM. Upon receipt
of the complete bitfile and a program command, the Application Controller
programs the RAD FPGA using the Select MAP programming interface [29].
This interfaces provides the fastest available mechanism for configuring the
RAD FPGA. In order to update or re-configure a single hardware plugin, a
specific region of the RAD FPGA must be reprogrammed while allowing the
remaining regions to continue operating. This requires the use of the partial
reconfiguration capability of the Xilinx Virtex FPGA, along with custom CAD
tools to generate the correct configuration bitfiles.

Fig. 6. Prototype environment for the DHP architecture; photograph of an FPX in
a WUGS with the line card removed for visibility.
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8.1 PARBIT

In order to partially reconfigure an FPGA, it is necessary to isolate a specific
area inside the device and download the configuration bits related to that
area. A tool called PARBIT [30] has been developed to easily transform and
restructure bitfiles to enable implementation of dynamically loadable hardware
applications.

8.1.1 Virtex Architecture

PARBIT leverages knowledge of the Xilinx Virtex FPGA architecture, pro-
gramming mechanisms, and partial reconfiguration mechanisms in order to
perform these tasks [31]. The Virtex architecture contains three types of logic
resources: Configurable Logic Blocks (CLBs), BlockRAM, and Input/Output
Blocks (IOBs). The CLBs contain lookup tables (LUTs) and logic resources
that can be programmed to implement user-defined functions. The IOBs (In-
put/Output Blocks) may be configured to conform to various I/O standards
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Fig. 7. Block diagram of the prototype implementation of the DHP architecture in
the Washington University testbed.
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Fig. 8. Architecture of the Xilinx Virtex FPGA.

in order to interconnect the logic to off-chip resources. A block diagram of the
Xilinx Virtex architecture can be seen in Fig. 8.

Configuration memory that specifies the use of on-chip resources is divided in
vertical slices, called columns. There are five types of columns:

e Center - controls the global clock pins;

e IOB (Input/Output Block) - controls the configuration for the left and right
side IOBs;

e CLB (Configurable Logic Block) - controls one column of CLBs and two
IOBs above and bellow these CLBs. Each column has “n” rows, with one
CLB per row;

e Block SelectRAM Interconnect - defines the interconnection of each RAM
column;

e Block SelectRAM Content - defines the contents of each RAM column;

To configure the Virtex FPGA, a series of bits, divided into fields of commands
and data, are loaded into the device. The data field can program the contents
of each configuration column. The minimum amount of a column that can
be reconfigured is a vertical slice, one-bit wide, called a frame. Fig. 9 shows
the configuration columns for one specific device, the Xilinx Virtex-E 1000
(XCV1000E).

8.1.2 Operation

PARBIT allows arbitrary block regions of a compiled FPGA design to be
re-targeted into any similar size region of the FPGA. It is possible to define
an area inside the CLB columns of the chip, without the top and bottom
IOB configuration bits. The tool generates the partial bitfile containing the
area selected by the user from the original bitfile. This file will be used to
reconfigure the FPGA.
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Fig. 9. Configuration of columns in the Xilinx Virtex-E 1000 (XCV1000E).

A target bitfile is used by PARBIT to copy the configuration bits that are
inside a column specified by the user, but outside the partial reconfigurable
area. This happens due to the fact that one frame takes all the rows of a
column and the partial reconfigurable area is smaller than a whole column.

To generate a partial configuration bitfile, the tool utilizes the original bitfile,
the target bitfile, and parameters given by the user. These parameters include
the physical coordinates of the logic implemented on the FPGA, the coor-
dinates of the target area for partial reprogramming, and the programming
options. For application revisions and modifications, PARBIT also reallocates
logic within the target partial reconfigurable area. The tool calculates new val-
ues for the configuration address registers [31] and modifies the bitfile, such
that the original area can be reallocated in another region of the FPGA.

8.1.8 Using PARBIT to Implement DHP

Applications targeted to hardware plugins on the FPX are first built with the
standard design methodology of running CAD tools to compile, place, and
route logic into a fixed region of an XCV1000E or XCV2000E FPGA. After
generating the source bitfile, PARBIT is run to transform the source file into
a partial bitfile. This bitfile contains the application to be implemented in a
hardware plugin of the DHP architecture.

PARBIT reads the region of the chip that contains the hardware plugin from
the original bitfile. This file contains the partial reconfiguration area that
will be loaded into the device. The hardware plugin must always remain in
same location. In order to do this, the user must confine the hardware plugin
between static CLB coordinates in the FPGA: start column, end column, start
row and end row. The original bitfile, if viewed from an FPGA chip editor,
has the format shown in Fig. 10.

The target design specifies empty areas to load the block design generated in
the previous step. Each one of these areas is defined by two coordinates (Row,
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Col), as shown in Fig. 11. The area surrounding the empty target locations is
used by the DHP infrastructure.

9 Conclusion

Dynamic Hardware Plugins provides a scalable mechanism for building high-
performance, multi-port routers capable of robust per flow processing. As re-
configurable hardware technology continues to offer higher performance via
denser logic and memory resources at faster clock rates, the amount and di-
versity of per flow processing made available by the DHP architecture likewise
increases. Implementing networking applications in hardware provides perfor-
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mance levels either not achievable in software, or achievable only with signifi-
cantly more hardware resources and complex control mechanisms. By allowing
multiple hardware applications to be dynamically loaded into a single device,
the DHP architecture is a flexible, parallel, hardware processing mechanism.
As applications are developed, the prototype testbed at Washington Univer-
sity in Saint Louis provides an ideal platform for performance analysis and
further research into reconfigurable network hardware.
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