
1

Configuring Sessions in Programmable Networks
Sumi Choi, Jonathan Turner and Tilman Wolf

Department of Computer Science, Campus Box 1045
Washington University, St. Louis, MO 63130-4899

{syc1, jst, wolf}@arl.wustl.edu

Abstract—The provision of advanced computational services within net-
works is rapidly becoming both feasible and economical. We present a
general approach to the problem of configuring application sessions that
require intermediate processing by showing how the session configuration
problem can be transformed to a conventional shortest path problem for
unicast sessions or to a conventional Steiner tree problem for multicast ses-
sions. We show, through a series of examples, that the method can be ap-
plied to a wide variety of different situations.

Keywords—routing, programmable networks, session configuration

I. I NTRODUCTION

Advances in technology are making it possible to incorpo-
rate general purpose processing capabilities in network routers.
Network processor components with more than ten RISC cores
have recently become available and will soon appear in high
performance routers from several different equipment vendors.
Research inactive networking[1], [2], [3] is exploring the po-
tential of programmable routers, and other approaches are being
pursued by individual router vendors.

This paper is concerned with the problem of how to map
application sessions onto network resources, when those net-
work resources may include computational elements that per-
form some service on behalf of the application. For example, a
video application might invoke a video compression service in
the network to reduce its usage of network bandwidth. There
may be several places in the network where the required com-
pression and decompression service could be performed. We
would like to select the best locations that meet the application’s
requirements. In this paper, we describe a general methodol-
ogy for configuring such applications so as to make most effec-
tive use of network resources, including link bandwidth and the
computational resources provided by the network. Our method-
ology is not restricted to systems in which application services
are provided at routers. It can also be used to configure applica-
tion services provided by network-attached servers.

We assume an operating environment in which application
sessions are explicitly configured when the application starts up.
The configuration of an application session includes selection
of intermediate processing nodes and the network links used for
communication among the various components of the applica-
tion. In our view, this session-oriented approach is needed to en-
able efficient allocation of network resources among competing
applications. This is especially true for applications that require
a certain level of resources in order to achieve an acceptable
quality of service. However, even “best-effort” applications can
benefit from a resource allocation system that seeks to configure
applications to take advantage of locations where resources are
plentiful, rather than simply letting them compete for resources
in locations where the required resources may be scarce.

Sections 2 through 7 describe various application scenarios
that each raise different resource configuration issues. In each
case, we show how the problem can be reformulated so that it
can be solved in a similar fashion. In Section 8, we discuss
implementation issues and in Section 9, discuss how it can be
applied to sessions that require explicit resource reservation. We
provide related works of resource allocation and configuration in
Section 10 and conclude in Section 11.

II. ROUTING THROUGH ONE PROCESSINGSITE

We start with the simplest version of the application config-
uration problem. In this version, we have two participating end
systems and there is some intermediate computation that is to be
performed somewhere in the network (possibly a format transla-
tion, for example, allowing two otherwise incompatible end sys-
tems to share information). There are a number of sites within
the network where the processing could occur, but not all of
the sites may be able to perform the needed processing (perhaps
they are not capable of executing the required program, or per-
haps their computational resources are already fully committed
to other tasks). The application configuration system must select
one of the sites within the network and select network paths join-
ing the end systems to the intermediate processing site. It should
do this in such a way as to minimize the use of network re-
sources, including link bandwidth and processing “bandwidth.”

We can state the problem formally as follows. The network
is represented by a directed graph,G = (V, E), in which the
nodes correspond to routers and end systems, while the edges
correspond to links. LetR ⊆ V be a subset of the nodes that
represent sites where intermediate processing may occur. For
brevity, we’ll refer to these asrednodes. Each edge(u, v) has
an associatedcostc(u, v) and each red noder has an associated
costc(r). Finally, we have a source vertexs and a destination
vertext. Our objective is to find a least-cost path froms to t
that includes at least one red node. The cost of a path is the sum
of the costs of its links, plus the cost of the least cost red node
along the path. Note that the overall path froms to t may not
be a simple path. See Figure 1 for an example of the problem.
Therednodes can be distinguished from the other nodes by the
numbers that indicate their processing costs. The heavy weight
edges in the figure indicate the best path froms to t that passes
through at least one red node.

There is one fairly obvious approach to solving the problem.
First, solve the single-source shortest path problem froms to all
other nodes [8], considering link costs only. Second, solve the
single-destination shortest path problem tot from all the other
nodes. At the end of these two steps, for each vertexu, we know
the cost of the shortest path froms to u and fromu to t. So we



2

2

1

1

2

3

2

1

5

1

1 1

2

3

3 2
3

1
22

1

5

s
3

4
3

2

t

Fig. 1. Network with Processing Sites

can simply iterate over all nodesr ∈ R and select the node that
minimizes

d(s, r) + d(r, t) + c(r)

whered(x, y) denotes the length of the shortest path betweenx
andy, considering just the edge costs. For a graph withn ver-
tices andm edges, this algorithm can be implemented to run in
O(m + n log n) time. This is the same complexity as that for
finding a shortest path in a graph, so we cannot expect to im-
prove on it substantially. The only real drawback of this method
is that it does not readily generalize to more complex situations.
For that reason we consider an alternative approach that can be
applied more generally.

2

1

1

2

3

2
1

5
1

1 1

2

3

3 2
3

1
22

1

5

t

3
4

3 2

2

1

1

2

3

2
1

5
1

1 1

2

3

3 2
3

1
22

1

5
s

Fig. 2. Transformed Network for Single Site Processing

Our alternative approach is to transform the original problem
to a conventional shortest path problem on a different graph. We
then solve this new problem using standard methods and apply
the results back to the original problem. The first step in the
transformation is to make two copies of the original graphG.
We refer to these two copies aslayersin the resulting graph and
identify them as layer 1 and layer 2. For each vertexu in the
original graph, letu1 denote the copy ofu in layer 1 of the target
graph and letu2 denote the copy ofu in layer 2. The edges in
the two layers have the same costs as the corresponding edges in
the original graph. Now, for every noder ∈ R, we add an edge
(r1, r2) in the target graph and letc(r1, r2) be equal to the cost
originally assigned tor. This completes the construction of the
target graph. See Figure 2 for an illustration of the construction.
To solve our original problem, we simply find a shortest path

from s1 to t2 in the target graph, considering link costs only
(see Figure 2). The resulting path can then be mapped back to
a path in the original graph by “projecting” the two layer path
onto a single layer.

The correctness of this procedure is easily established. First,
note that the least cost path froms1 to t2 does correspond to
a path (not necessarily a simple path) in the original graph and
the cost of the path is the same as the cost defined in the origi-
nal problem statement for the corresponding path in the original
graph. Second, note that there cannot be a cheaper solution to
the original problem. If there were, this solution would have
to correspond to a path froms1 to t2 in the target graph that is
cheaper than the given least-cost solution, a clear contradiction.

III. ROUTING THROUGH MULTIPLE SITES

In this section, we consider a more general application con-
figuration problem. There are again two participating end sys-
tems, but here there are several intermediate computational steps
that are to be performed at possibly different locations in the
network. For each step, there may be multiple sites where the
processing could be done. One simple example is secure data
transmission, where the intermediate processing steps include
encryption and decryption processing. The encryption process-
ing can be done at any of several nodes in the originating end
system’s domain and decryption processing can be done at any
of several nodes in the destination end system’s domain. We
allow k intermediate processing steps for anyk ≥ 1.

We can state the problem formally as follows. The network
is represented by a directed graph,G = (V, E), with each edge
(u, v) having an associated costc(u, v). As before, we have a
source nodes and a destination nodet. For 1 ≤ i ≤ k, let
Ri ⊆ V be a subset of the nodes.Ri contains sites where the
ith intermediate processing step may be performed. Accord-
ingly, each noder ∈ Ri has an associated costci(r). We define
anadmissible pathfrom s to t to be a path (not necessarily sim-
ple) that includes nodes from each of theRi, appearing in order.
That is, a pathu1, u2, . . . , um is admissible, if there are integers
i1, . . . , ik that satisfy1 ≤ i1 ≤ · · · ≤ ik ≤ m anduij ∈ Rj

for 1 ≤ j ≤ k. The list of nodes(ui1 , . . . , uik
) is called asite

list for the path. An admissible path may have multiple site lists.
Note that a node may appear in a site list more than once. The
cost of a site list is the sum of the costs of its nodes and the cost
of an admissible path is the sum of the costs of its edges, plus the
cost of its least expensive site list. Figure 3 shows an example
of the problem. In this figure, nodes drawn with “thick” circles
are inR2, while the other nodes containing numbers are inR1.

2

1

1

2

3

2

1

5

1

1 1

2

3

3 2
3

1
22

1

5

s
3

4

2

3

3

4

2

t

Fig. 3. Network for Multiple Site Processing



3

A brute force approach to solving this problem involves enu-
merating all possible combinations of processing nodes and con-
necting them with the shortest paths. However, the number of
possible combinations grows proportionally tonk, making this
approach impractical, even for modest values ofk.

2

1

1

2

3

2
1

5
1

1 1

2

3

3 2
3

12
2

1

5

t

3
4

2

2

1

1

2

3

2
1

5
1

1 1

2

3

3 2
3

1
22

1

5

3
4

3 2

2

1

1

2

3

2
1

5
1

1 1

2

3

3 2
3

1
22

1

5
s

Fig. 4. Transformed Network for Multiple Site Processing

Fortunately, the problem can be solved efficiently be reducing
it to an ordinary shortest path problem in a different graph. The
target graphG hask + 1 layers, each layer being just a copy
of the original graph, and numbered from 1 tok + 1. For each
nodeu in the original graph, we letui denote the copy ofu in
layeri. Now, for every noder ∈ Ri, we add an edge(ri, ri+1)
in the target graph and letc(ri, ri+1) be equal to the costci(r)
assigned tor in the original graph. See Figure 4 for an example
of a target graph for a problem withk = 2. To solve the original
problem, we find the shortest path froms1 to tk+1 in the target
graph. The resulting path can be mapped back to a path on the
original graph by “projecting” the path back onto the original
graph.

The correctness of the procedure can be shown in a similar
fashion as in Section 2. Consider the least cost path froms1 to
tk+1. It is easy to see that it corresponds to an admissible path
in the original graph and that its cost is the same as the cost of
the admissible path. Also note that there can exist no cheaper
solution to the original problem. Any cheaper solution would
have to correspond to a path froms1 to tk+1 in the target graph,
yielding a contradiction to the definition of the shortest path.

IV. A PPLICATIONS THAT ALTER BANDWIDTH

Certain processing steps performed on behalf of an applica-
tion may alter properties of the data. For example, processing
steps that compress data can change its bandwidth requirements
by substantial amounts. We would like to be able to config-

ure compression and decompression processing in the network,
so as to best exploit the savings that can be obtained, while si-
multaneously accounting for the costs associated with the com-
pression algorithm itself. More generally, we want to be able
to configure arbitrary applications that modify the bandwidth
requirements of the processed data stream. Examples for ap-
plications that decrease the bandwidth of a stream are data and
image compression, filtering, and data merging. Applications
that increase the bandwidth of a data stream are data and image
decompression, forward error correction coding, certain encryp-
tion and authentication schemes, etc.

To quantify the changes in bandwidth, we define theband-
width scale factorγi for processing stepi, to be the ratio of the
outgoing bandwidth to the incoming bandwidth for processing
stepi. The application configuration problem introduced in the
previous section can be generalized to handle changes in band-
width requirements. The only change needed is to the definition
of the cost of an admissible path, to account for the changes in
the bandwidth of the data stream. LetP = u1, . . . um be an ad-
missible path, that includes the site listL = (ui1 , . . . uik

). The
cost ofP with respect to site listL is given by

i1−1∑

j=1

c(uj , uj+1) + c(ui1)

+
i2−1∑

j=i1

γ1(c(uj , uj+1) + c(ui2))

+
i3−1∑

j=i2

γ1γ2(c(uj , uj+1) + c(ui3))

+ · · ·

+
ik−1∑

j=ik−1

(γ1γ2 · · · γk−1)(c(uj , uj+1) + c(uik
))

+
m−1∑

j=ik

(γ1γ2 · · · γk)c(uj , uj+1)

The cost of a pathP , is the the minimum over all site listsL of
P , of the cost ofP with respect toL.

The solution method of the previous section can also be gen-
eralized to handle bandwidth scaling. The target graph is con-
structed as before, but the edge costs of the target graph are
modified as follows. For edges within layeri, the edge costs
are multiplied byγ1γ2 · · · γi−1. Edge costs from layeri to layer
i + 1 are multiplied byγ1γ2 · · · γi. We solve the problem, as
before, by finding a shortest path froms1 to tk+1.

V. OPTIONAL PROCESSING

Some network applications provide services that are not nec-
essary for correct data transmission, but which can improve the
performance or quality of the connection. These optional pro-
cessing steps might decrease the transmission cost to some des-
tination nodes, but not necessarily to all. We now extend our
method to handle such cases.

For concreteness, we use a simple example of a compres-
sion/decompression application. The processing for compres-
sion and decompression incurs a cost, but the intermediate data



4

t

0 0 0

0

0

0

s

Fig. 5. Transformed Network for Optional Processing

stream has a lower bandwidth (γ < 1) which yields lower trans-
mission costs. Thus, for long-distance transmissions the pro-
cessing overhead is worthwhile, while for short distances, the
cost of the added processing may exceed the benefit. The prob-
lem can be solved using the method of the previous section. To
make the compression and decompression processing optional,
for each vertexu in the original graph, we add edges(u1, u3),
linking layers 1 and 3. These edges are assigned a cost of zero.
Note, that for this method to work correctly, the bandwidth of
the decompressed data stream must match that of the original,
uncompressed data stream. In this case, we can actually use
a slightly simpler target graph with just two layers, and edges
(u1, u2) for all verticesu ∈ R1 and edges(v2, v1) for all ver-
ticesv ∈ R2. The edges within layer 2 are scaled by the com-
pression factor, as are the edges from layer 2 to layer 1.

The method can be extended to configuring sessions where
different processing stages are optional. However, when the
effects on the bandwidth of the data stream are more complex
than in the simple compression/decompression example, a more
complex target graph may be required. These more general
cases can be solved using target graphs that have a source node
s connected to multiple columns of layers, where each column
contains some subset of the layers for the complete processing,
and eventually connected to the destinationt below the last layer
of each column. The general form of such a graph is illustrated
in Figure 5. The columns of layers connected from the sources

and to the destinationt represent possible choices of processing
sequences.

VI. CONGESTIONCONTROL PROCESSING

Application-specific congestion control [9] is often cited as
a good example application for active networking. The idea is
that an application-specific module could modify the application
data stream dynamically in response to network congestion, in a
way that minimizes the impact on the application (for example,
a video congestion control module might preferentially discard
high frequency information, to reduce the subjective impact of
the lost information).

For this type of application, the modules should be installed
at nodes preceding those links that are most likely to be subject
to congestion, but can be omitted from links where congestion is
unlikely to occur. If the application is configured to use several
congested links, the congestion control module will need to be
installed at each of these links. If it is configured to use only un-
congested links, then no congestion control modules need to be
installed. If a path using several congested links is much shorter
than a path that uses no congested links, it may be preferred.
We want to formulate the problem so that we can make the best
overall choice of a path, considering both the cost of the links
and the cost associated with the congestion control (this may
include both a processing cost component and a “cost” for the
impact of congestion on the application). We can accomplish



5

this simply by modifying the costs of all congested links to re-
flect the added cost of coping with congestion at those links, and
then we search for a shortest path, using the modified costs.

The problem is defined formally as follows. The network is
represented by a graphG = (V, E) and we letL ⊆ E denote
the set ofcongestedlinks. Each edge(u, v) in the graph has an
associated cost,c(u, v) and each congested edge has additional
costc′(u, v). Given a sources and a destinationt, our objective
is to find a least-cost path froms to t. The cost of a path includes
the cost of its links, where for congested links we include both
c andc′ in the sum.

VII. C ONFIGURING MULTICAST SESSIONS

So far, we have considered several types of different applica-
tion configuration problems with two participating end system
and the common objective to find an optimal path from one to
the other. In this section, we show that our method can be ap-
plied to multicast applications where there are multiple destina-
tions, rather than just one. For each of the source-destination
paths, we want to include the same sort of processing that we
might apply to a unicast application. Our objective is to find a
way of selecting processing sites and links so that the processing
requirements are met, and so that the overall cost is minimized.

We illustrate the application of the method to multicast sit-
uations by considering a video distribution application, where
we need to perform compression processing and decompression
processing. As discussed earlier, we can solve this problem for
unicast applications using a two layer graph with “compression
edges” from layer 1 to layer 2, and “decompression edges” from
layer 2 to layer 1. The same target graph can be used for the
multicast problem, where we have a source and multiple desti-
nations. See Figure 6 for an example of the target graph. The
only real difference is that the objective of the problem becomes
finding a least-cost subtree of the two layer network with the
source at the root, and the destinations at the leaves. This prob-
lem is a Steiner Tree problem (as is the usual multicast routing
problem), which is known to be NP-complete [10], [11]. There
are several known approximation algorithms for the Steiner Tree
problem in graphs that can produce solutions costing no more
than twice the cost of an optimal solution, and which in practice
are typically better than the bound implied by the worst-case
performance. We do not discuss such algorithms further here;
we simply note that they can be applied to finding an appropri-
ate tree in the target graph, and we can then use this to produce a
solution to the original multicast session configuration problem.

VIII. R ESOURCERESERVATION ISSUES

So far, we have not explicitly raised the issue of resource
reservation. While link and node costs may be defined to ex-
press the availability of resources, there are some additional is-
sues that must be addressed, in order to handle resource reser-
vation correctly.

One way to handle resource reservation is to simply omit from
the original network graph those links and nodes that lack suf-
ficient resources to handle a given application session. So for
example, if an application session requires 100 Mb/s of link
bandwidth, we can simply remove from the network graph all

2

1

1

2

3

2
1

5
1

1 1

2

3

3 2
3

1
22

1

5

2

10
15 3

10 4
20

5

5

5

10

15

10
5

25

5

5
5

10

15

15 10
15

5
1010

5

5
s

t1

t2

t3

Fig. 6. Transformed Network for Multicast with Compression

edges corresponding to links with less than 100 Mb/s of avail-
able bandwidth. Similarly, if it requires the equivalent of 50
MIPS of “CPU bandwidth” at one processing site, we can omit
all nodes that have less than 50 MIPS of available capacity. Un-
fortunately, this does not quite work, since the problem specif-
ically allows edges and nodes to be used more than once by an
application session. If our example session were to use a given
link twice, that link would require 200 Mb/s of unused band-
width, in order to accommodate both uses. Similarly, a node
that is used in more than one processing step, must have suffi-
cient available CPU bandwidth to handle all the steps for which
it is used.

Unfortunately, there appears to be no simple solution to this
problem. Consider an instance of the session configuration
problem in which every node but the source and sink is a po-
tential processing site, there aren − 2 intermediate processing
steps (wheren is the number of nodes in the graph, including
the source and sink), but each node has only enough CPU band-
width to perform one step. Problem instances like this corre-
spond directly to a variant of the NP-hard traveling salesman
problem, so we cannot expect to find an efficient optimal al-
gorithm for the session configuration problem that accounts for
resource reservation.

However, it appears likely that in practice, a more positive
outcome can be expected. Real applications typically involve
just a few processing steps, opening up opportunities for finding
optimal or near-optimal solutions with modest computational ef-
fort. Specifically, our approach of transforming a session con-
figuration problem to a shortest path problem in a layered graph
can also be usefully applied to problems where there are re-
source reservations.

Consider the version of the problem discussed in Section III.
If the session to be configured requires a link bandwidth ofB
and the layered graph hask layers, then omit from the lay-
ered graph all edges corresponding to links for which the avail-
able bandwidth is less thankB. Similarly, if the sum of the
processing resources required at all sites isR, omit from the
layered graph all inter-layer edges corresponding to processing
sites with less thanR units of CPU bandwidth. A shortest path



6

in this version of the layered graph is guaranteed to correspond
to a feasible solution, although possibly not an optimal solution.
Assuming such a solution exists, it does at least provide an up-
per bound on the cost of an optimal solution. We can also obtain
a lower bound on the cost of an optimal solution by including
in the layered graph all intra-layer edges corresponding to links
with B units of available bandwidth and all nodes with enough
available CPU bandwidth to handle a single processing step. A
shortest path in this version of the layered graph is guaranteed
to have a cost no larger than that of an optimal solution to the
session configuration problem, but the solution obtained may
not correspond to a feasible solution, since it may use nodes or
edges more times than resource constraints would allow. We
expect that in practice, the upper and lower bound solutions ob-
tained in this way will often differ by only small amounts, mak-
ing the use of the “upper bound solution” a reasonable decision.

More realistic algorithms can be obtained by refining these
methods. For example, if an intra-layer edge hasiB units of
capacity, but less than(i+1)B, it can safely be included in anyi
layers of the network graph. Including such edges ini layers will
increase the number of feasible paths that can be discovered by a
shortest path search in the layered graph, leading to more nearly
optimal solutions. This can be taken a step further by adapting
Dijkstra’s shortest path algorithm so that it builds a shortest path
tree in a layer-by-layer fashion (this works because edges are
directed from one layer to the next, and not back). As we go
from one layer to the next, we can decide whether to include
edges in the next layer or not. Specifically, any edge withiB
units of available bandwidth, which has so far been included in
the shortest path tree in< i layers can be safely included in the
next layer without violating any resource constraint.

Evaluation of these and other heuristic approaches will have
to be addressed through simulation studies of session establish-
ment in realistic network configurations. Such studies are now
in progress.

IX. I MPLEMENTATION ISSUES

The previous sections have omitted any explicit discussion of
implementation strategies, focusing instead on fundamental al-
gorithmic issues. Of course, in order to apply our approach, a
suitable implementation method is needed. One way to imple-
ment the approach is for a global configuration server, to make
session configuration decisions, based on complete knowledge
of the network state that it maintains at a central location. While
this may be feasible in small networks, it clearly does not scale
to larger systems. In general terms, what is needed is a dis-
tributed configuration service, that allows configuration deci-
sions to be made by multiple computers in a cooperative fash-
ion. Such a system must include a component that distributes
information about network resource availability, and a compo-
nent that uses that information to make configuration decisions
with respect to specific sessions.

The ATM Private Network-Network Interfaceprotocol
(PNNI) [12] is an example of a distributed resource allocation
system that solves a similar problem. PNNI can be viewed as
two protocols, a link-state protocol that distributes information
about network resource availability, and a signalling protocol
that uses this information to make virtual circuit routing deci-

sions. In the case of PNNI, the route from a source to a des-
tination is selected by the switch connected to the source, us-
ing stored information about the network topology and resource
availability. It then passes the selected route to other switches
along the path. They, in turn, make local resource reservations
and propagate the signalling message along the path. If dur-
ing this process, an attempt to make a local resource reservation
fails, a new path may be computed by the switch at the point
where the reservation failed, allowing the path setup process to
continue. To make the approach scalable to very large networks,
the PNNI protocol aggregates information about sections of the
network, allowing switches to have complete knowledge of the
portion of the network that is close to them and more summary
knowledge of distant portions of the network.

The general approach taken by the PNNI protocol can be ex-
tended to handle configuration of sessions requiring intermedi-
ate processing. The state information distributed by the routing
protocol must be expanded to include information about pro-
cessing resources available at various locations in the network.
Using this information, a path can be computed by the router
connected to the source of a unicast session, and then forwarded
in a signalling message to successive routers on the path to the
destination, allowing local resource reservations to be made as
the signalling message proceeds to the destination. Of course,
as with the basic PNNI protocols, the selected paths may not
be globally optimal, since initial path selections may be based
on summary information about distant portions of the network.
This is nothing new in network routing, where optimality of path
selection must generally be sacrificed for the sake of scalability.

Other approaches are possible as well. In particular, other link
state protocols, such as Open Shortest Path First (OSPF) [13]
can be used to distribute state information, and other signalling
protocols can be used to select paths and make the required re-
source reservations.

X. RELATED WORK

Resource discovery and resource allocation are important el-
ements of network programmability. The Darwin project [4]
proposes a set of resource management mechanisms that sup-
port customized network services. Their resource management
system is divided into four components, high-level resource al-
location, run-time resource management, hierarchical resource
scheduling and low-level resource allocation. Aservice broker
component called Xena provides both resource discovery and al-
location. Xena formulates the resource allocation problem as a
general optimization problem with multiple metrics. While this
provide a very flexible and general formulation, it makes it com-
putationally infeasible to find optimal solutions, even in simple
situations. By contrast, our approach sacrifices some degree of
flexibility to enable rapid computation of optimal solutions in
the most common cases.

A different approach is taken in [5], where the focus is on
identifying topological properties related to network services
and resource states. Constrained programmability is provided
to applications based on these properties. Topological properties
are determined by distributing network queries and then aggre-
gating results back at the source, using a form of network fusion
operation.



7

Market-based resource control mechanisms are considered
in [7]. In this work, resources are treated as trade goods, network
nodes and links as producers and applications as consumers.
Service brokers are used to mediate access to resources between
producers and consumers, using a form of currency exchange,
and can enable varying levels of competition and cooperation.

XI. SUMMARY

The provision of advanced computational services within net-
works is rapidly becoming both feasible and economical. The
provision of such services, either by routers or by network-
attached processing sites, is potentially a significant benefit for
network users, as it can relieve individuals from the need to
acquire, install and maintain software in end systems to per-
form required services. As such network services become more
widely used, it will become increasingly important for service
providers to have effective methods for configuring applications
sessions so that they use resources efficiently.

We have presented a general approach to the problem of con-
figuring application sessions that require intermediate process-
ing. The method involves transformation of the original prob-
lem to a conventional shortest path problem. We have shown,
through a series of examples, that the method can be applied to
a wide variety of different situations. To make the ideas in this
paper directly applicable, it will be necessary to automate the
methodology, so that resource management software can auto-
matically determine the best way to configure a session to satisfy
its requirements. The next step in reaching this objective is to
develop a general way of specifying application requirements
for intermediate processing, that is expressive enough to de-
scribe typical application scenarios, while being simple enough
for application programmers to use effectively.

We believe that given such a specification method, it will be
possible for network resource management software to combine
information about network resource availability and an applica-
tion specification, to produce a graph that represents the possible
configurations of the application. By solving the appropriate op-
timization problem on this graph (typically a shortest path prob-
lem), the network resource management software will be able
to automatically map the application to an appropriate set of re-
sources. This paper represents a crucial first step in a research
program that aims to achieve this objective.

REFERENCES

[1] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden, “A survey of active network research,”
IEEE Communications Magazine, vol. 35, no. 1, pp. 80–86, Jan. 1997.

[2] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho
Miki, John B. Vicente, and Daniel Villela, “A survey of programmable
networks,” Computer Communication Review, vol. 29, no. 2, pp. 7–23,
Apr. 1999.

[3] Daniel Decasper, Guru Parulkar, Sumi Choi, John DeHart, Tilman Wolf,
and Bernard Plattner, “A scalable, high performance active network node,”
IEEE Network, January/February 1999.

[4] Prashant Chandra, Allan Fisher, Corey Kosak, T. S. Eugene Ng, Peter
Steenkiste, Eduardo Takahashi, and Hui Zhang, “Darwin: Resource man-
agement for value-added customizable network service,”Sixth IEEE In-
ternational Conference on Network Protocols, October 1998.

[5] Youngsu Chae, Shashi Merugu, Ellen Zegura, and Samrat Bhattacharjee,
“Exposing the network: Support for topology sensitive applications,”Pro-
ceedings of IEEE OpenArch 2000, March 2000.

[6] Tomasz Imielinski and Julio C. Navas, “Gps-based geographic addressing,
routing, and resource discovery,”Comm. of ACM, vol. 42, Apr 1999.

[7] Kostas G. Anagnostakis, Michael W. Hicks, Sotiris Ioannidis, Angelos D.
Keromytis, and Jonathan M. Smith, “Scalable resource control in active
networks,” The Second International Working Conference on Active Net-
works, October 2000.

[8] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest,Intro-
duction to Algorithms, McGraw-Hill Book Company, 1990.

[9] Ralph Keller, Sumi Choi, Dan Decasper, Marcel Dasen, George
Fankhauser, and Bernhard Plattner, “Active router architecture for multi-
cast video distribution,”Proceedings of IEEE Infocom 2000, March 2000.

[10] Frank K. Hwang, Dana S. Richards, and Pawel Winter,The Steiner Tree
Problem, vol. 53 ofAnnals of Discrete Mathematics, North-Holland, Am-
sterdam, Netherlands, 1992.

[11] Pawel Winter, “The steiner problem in networks: A survey.,”Networks,
vol. 17, 1987.

[12] ATM Forum Technical Committee,Private Network-Network Interface
Specification Version 1.0, Mar. 1996.

[13] J. Moy, OSPF Version 2, IETF Network Working Group, Apr. 1998, RFC
2328.

[14] Larry L. Peterson and Bruce S. Davie, “Computer networks,”Computer
Networks : A Systems Approach, 2nd Edition, 2000.


