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Abstract --This paper presents the Dynamic Hard-
ware Plugins (DHP) architecture for implementing
multiple networking applications in hardware at pro-
grammable routers. By enabling multiple applica-
tions to be dynamically loaded into a single hardware
device, the DHP architecture provides a scalable
mechanism for implementing high-performance pro-
grammable routers. The DHP architecture is pre-
sented within the context of a programmable router
architecture which processes flows in both software
and hardware. Possible implementations are
described as well as the prototype testbed at Washing-
ton University in Saint Louis1.

Keywords -- Programmable router, reconfigurable
hardware, active networking, port processor.

I. INTRODUCTION

As researchers vigorously develop advanced control
and processing schemes for programmable networks [1],
there exists a need for a scalable router architecture capa-
ble of robust flow-specific processing at optical line
speeds without prohibitively high per-port costs. As the
quantity and diversity of streaming data and computa-
tionally intensive applications continues to increase,
router architectures must respond with greater flexibility,
processing capacity, and performance. With next-genera-
tion routers containing hundreds of ports, processing
mechanisms must scale at a reasonable per-port cost.

Existing router architectures that provide sufficient
flexibility and per-flow processing employ software pro-
cessing environments containing multiple Reduced
Instruction Set Computer (RISC) cores. Existing high-
performance router architectures capable of data process-

ing at optical line speeds employ Application Specifi
Integrated Circuits (ASICs) to perform parallel computa
tions in hardware. However, these architectures oft
provide limited flexibility for deployment of new applica-
tions or protocols, and necessitate longer design cyc
and higher costs than software-based solutions. Clea
the an optimal router architecture must exhibit the flex
bility available in software and the performance offere
by hardware.

The diversity of networking applications and data flow
suggests that dynamically reprogrammable process
environment is needed to cover the potential desi
space. While some applications performing limited pr
cessing at low data rates readily lend themselves to s
ware implementation, a vast array of applications m
well to hardware implementation due to high data rate
data regularities, and parallel operations. This impli
that a viable solution to the programmable router pro
lem should employ both software and reconfigurab
hardware to process data flows. With the development
several multi-RISC core processor architectures a
implementations, the problem of providing a scalab
software processing environment is well investigate
The problem of adding a flexible and scalable hardwa
processing environment remains.

Traditionally used for low-volume prototyping and
testing purposes, the reconfigurable hardware emplo
in Field Programmable Gate Arrays (FPGAs) provides
flexible hardware platform. Recently, reconfigurab
hardware technology has made several compelling p
formance advances, identifying it as a possible soluti
for the programmable router node problem. New reco
figurable hardware devices tout approximately 1 millio
application logic gates, internal clock rates up to 20
MHz, over 100KB of on-chip memory, and partial-recon
figuration capability [2]. More impressive than the cu
rent technical statistics is the rate of progress due

1.This research supported by NSF: ANI-0096052 and
Xilinx, Inc.
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architectural optimizations and silicon fabrication
improvements: usable logic gate count increased by 10
times in two years; system clock frequency doubled in
one year; I/O bandwidth quadrupled in two years; block
and distributed on-chip memory capacity quadrupled in
one year [3]. Reconfigurable hardware devices are clearly
positioning themselves as viable options for flexible,
high-performance systems.

The Dynamic Hardware Plugins (DHP) architecture
employs reconfigurable hardware to provide a flexible
hardware processing environment for programmable,
multi-port routers. DHP allows multiple hardware appli-
cations, or plugins, to be dynamically loaded into a single
device and run in parallel, providing a substantial amount
of per-flow processing. With dedicated on-chip logic and
memory resources provisioned for each plugin as well as
arbitrated access to two types of off-chip memory
resources, DHP supports a broad spectrum of applica-
tions. Results of several case studies of Advanced
Encryption Standard (AES) implementations in software,
FPGAs, and ASICs are used to show the potential perfor-
mance and flexibility gains of the DHP architecture for
networking applications in programmable routers.

II. BACKGROUND AND RELATED WORK

Several schemes exist for delivering applications to a
programmable router. Applications may be deployed at
session setup via signalling protocols. Other schemes
allow applications to be requested by incoming packets
or carried by the packet for execution on the programma-
ble router. With the exception of minor implementation
details, the programmable router architecture discussion
is orthogonal to application deployment mechanisms.

The router architecture presented in [5] provides a scal-
able software processing environment using elements
with multiple RISC cores on a single device. This archi-
tecture readily lends itself to hardware processing inte-
gration and will be used as the departure point for
discussing the DHP architecture.

Significant work has already been done in reconfig-
urable network hardware [4]. However, the previous
approaches do not readily lend themselves to implemen-
tation in multi-port routers as the hardware requirements
for a single flow of processing are prohibitively impracti-
cal. These previous approaches also do not provide ample
memory resources to cover the design space of potential
applications.

III. PROGRAMMABLE ROUTERARCHITECTURE

Current routers capable of aggregate forwarding rates
of terabits per second and link speeds of 2.4 Gb/s and 10
Gb/s set the standard for high-performance. Programma-

ble routers need to achieve comparable performance
be considered a viable option for commercial applic
tions. The router architecture described in [5] provides
scalable mechanism for processing data flows at rou
ports. The DHP architecture will be presented as an a
mentation of this architecture to include a hardware pr
cessing environment.

As shown in Figure 1, the programmable router is bu
around a scalable multi-stage cell switching fabric
described in [6]. Based on this design, the Switch Fab
may be configured from ten to thousands of ports, ea
capable of supporting link rates of 2.4 Gb/s. Each phy
cal link attaches to a Transmission Interface (TI) whic
converts data arriving on the link into a standard form
for router input while performing the inverse operatio
on data destined for the output link. For fiber-optic link
this includes optoelectronic and serial/parallel signal co
version. Between the Transmission Interface and Swi
Fabric is the Port Processor (PP). The Port Processor p
forms all of the flow classification, forwarding, queueing
and processing functions. The Port Processor architec
will be described in the next section. A Control Process
(CP) provides an external control interface and manag
the Port Processors. The Control Processor is respons
for maintaining flow classification data structures and fi
ters, as well as binding flows to applications at each P
Processor via flow identifiers. In larger systems, the C
may be a shared memory multiprocessor dimensioned
match the processing needs of the specific configurati

PP

TI

PP

TI

PP

TI

CP

Switch Fabric

Physical Links

Figure 1: Programmable router architecture
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IV. PORT PROCESSORARCHITECTURE

The Port Processor provides all of the necessary func-
tionality to forward and process data flows as they pass
through the router. The Port Processor architecture is
detailed in Figure 2. The Packet Classification and
Queueing (PCQ) element manages the flow of data
through three device ports. The TI Port sends and
receives data from the Transmission Interface, while the
SW Port sends and receives data from the Switch Fabric.
Data belonging to flows requiring processing are sent to
and received from the processing elements via the Pro-
cessing Element (PE) Port.

On the PCQ, the Packet Classifier performs a lookup
operation on all packets arriving on the TI Port and
attaches a flow identifier (flow ID) that identifies the des-
tination of packets and type of processing, if any, that the
packet is to receive at the Port Processor. The Packet
Classifier maps each packet to a locally significant flow
ID that is used to retrieve stored state information at other
points in the system. It uses a general packet classifica-
tion algorithm such as Pruned Tuple Space Search [7].
All data structures and flow IDs are maintained by the
central Control Processor of the system.

After classification, packets are sent to the Queue Con-
troller which manages output and application queues.
Based on the flow ID, the Queue Controller places the
packet on the appropriate queue. Packets not requiring
processing are simply placed on the appropriate output
queue. Packets requiring processing are placed on the
queue associated with the application specified by the
flow ID. The Queue Controller schedules packets from
the set of application queues for output on the PE Port.
Processed packets arriving on the PE Port are placed on
the appropriate output queue.

A number of processing elements may reside in a chain
at the PE Port of the PCQ. Figure 2 shows a Software
Processing Element followed by a Hardware Processing
Element. Note that the quantity and type of processing
elements present at a Port Processor may be configured
based on traffic demands at a particular port of the router.
The Software Processing Element shown in Figure 2 con-
sists of multiple RISC cores linked by a high speed I/O
channel in a ring configuration. Processors are grouped in
small clusters for the purpose of sharing access to off-
chip memory interfaces. This architecture is a refinement
of the architecture presented in [5], and is presented here
mainly to set the context for the Dynamic Hardware Plu-
gins architecture, which is the focus of this paper.

V. DHP ARCHITECTURE

The Hardware Processing Element in Figure 2 utilizes
the Dynamic Hardware Plugins (DHP) architecture to

add flexible hardware processing capability to the Po
Processor. DHP employs reconfigurable hardware
allow multiple applications to be dynamically loaded int
hardware plugins and run in parallel on a single devic
Data flows may pass through permutations of hardwa
plugins, allowing for substantial amounts of per-flow
processing. In order to support a broad spectrum of ap
cations, each plugin possesses dedicated on-chip lo
and memory resources as well as access to two type
arbitrated off-chip memory resources.

In order to facilitate the current architectural discussio
and a later discussion of implementation options, t
DHP architecture is divided into two major parts: hard
ware plugins and infrastructure. Hardware plugins are t
hardware components that may be dynamically reconfi
ured to support new applications. Infrastructure consi
of the static control and datapath components of the DH
architecture. The infrastructure components collective
route packets to plugins and I/O ports, dynamical
reconfigure hardware plugins, interface to external me
ory devices and arbitrate access among the contend
pool of applications. The following subsections discu
the major divisions of the DHP architecture and the
associated components in detail.

A.  Infrastructure

The infrastructure, denoted by the shaded blocks
Figure 2, is the required collection of static control an
datapath components to support dynamic, modular ha
ware applications. The infrastructure provides comm
services to hardware plugins and hides details of mem
device timing. By providing a standard interface for plu
gins, the infrastructure provides the equivalent of an A
to allow hardware developers to more easily design mo
ular applications that work together.

1) Data I/O and Flow Control

As shown in Figure 2, the DHP architecture arrang
hardware plugins in a slotted ring with each ring interfac
labelled as an Input Output Controller (IOC). A ring
architecture was chosen in preference to a bus beca
rings can be operated at higher clock frequencies th
buses due to their simple point-to-point connections a
the resulting reduction in capacitive loading. The ring
better in this context than a crossbar since it allows a s
gle plugin to make use of the full ring bandwidth if nec
essary. A crossbar capable of providing simila
bandwidth to each plugin requires substantially mo
processing resources. While rings do add latency to d
transfers, a suitable hardware implementation can ke
these latencies to well under a microsecond in typic
configurations. In order to keep up with a link rate o



Figure 2: Port Processor (PP) architecture with Hardware and Software Processing elements.
The Hardware Processing Element employs the Dynamic Hardware Plugins (DHP) architecture.
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2.4Gb/s, the ring must have a minimum bandwidth of 4.8
Gb/s to allow hardware plugins to process both ingress
and egress data flows at the link rate. A 32-bit wide ring
operating at 200 MHz provides a raw bandwidth of 6.4
Gb/s, providing sufficient extra bandwidth to handle
internal overheads and keep contention low.

Note that an IOC is provided for each hardware plugin
while two IOCs interface to upstream and downstream
elements. The upstream IOC may interface to another
processing element or directly to the PCQ. The down-
stream IOC interfaces only to other processing elements.
The ring protocol transfers fixed size units with a busy/
idle bit in the first word of each transmission slot. The
first word also includes a flow control bit vector with one
bit for each IOC on the chip. An IOC sets its bit to signal
congestion. A second bit vector is used to enable fair
access to the ring. Each plugin with data queued for
transmission on the ring sets its bit and paces its trans-
missions on the ring based on the number of bits set by
other plugins. Additional fields in this word identify a
ring and slot number of the destination application for the
packet. The ring number identifies a unique processing
element in the chain, while the slot number specifies the
hardware plugin containing the destination application.
For packets requiring processing by more than one appli-
cation, the third bit vector is modified to address the next
application. Upon completion of a packet, applications
identify the correct ring and slot number of subsequent
applications via locally available state information.

As shown in Figure 2 the upstream IOC contains an
additional port to the Application Controller. When new
applications are to be loaded into the hardware plugins,
the upstream IOC must pass control messages and appli-
cation data to the Application Controller. While a hard-
ware plugin undergoes reconfiguration, the associated
IOC passes data to the next IOC in the ring. This mecha-
nism allows applications to be dynamically loaded into
hardware plugins without interrupting the flow of data
through the processing ring.

2) Application Controller

The Application Controller manages the dynamic
reconfiguration of hardware plugins to support new
applications. Hardware applications arrive as bitfiles to
the Application Controller. Bitfiles specify the logic
operations, signal routing, and on-chip memory configu-
ration for the hardware application. As bitfiles may be
loaded from local memory or remotely over the network,
the Application Controller must assemble, buffer, and
ensure the correctness of the bitfile prior to loading it into
the hardware plugin. Bitfile integrity can be maintained
via checksums and reliable transport protocols.

Prior to reconfiguring the hardware plugin, the Appl
cation Controller initiates a handshake with the applic
tion to prevent data and flow state loss. If the applicati
is not idle, it must stop accepting packets and finish pr
cessing current packets. Applications may define app
priate breakpoints for reconfiguration based on the ty
of flow processing it is performing. Control message
may be sent from applications to the PCQ to halt pack
forwarding at breakpoints. For deployment of applicatio
revisions, applications may copy flow state to off-ch
memory for the new revision to use once it has be
loaded into the hardware plugin. Once the application h
ensured that no data or relevent flow state will be lost,
returns a handshake to the Application Controller. At th
point, the IOC routes all arriving packets to the next IO
in the ring. The Application Controller then loads th
new application into the hardware plugin by writing th
application bitfile to the reconfigurable logic.

The amount of time required for plugin reconfiguratio
depends on the size of the plugin and the complexity
the application. Current FPGA technologies do not pla
a strong emphasis on high reconfiguration speeds. Ho
ever, as discussed in a later section the time required
configure a current generation FPGA with a comple
application such as an encryption cipher requires on
order of 5 ms. While this time is not so long as to mak
DHP impractical with current technology, the curren
programming rates of 66 MB of configuration data pe
second must increase for next generation technology
be suitable for use in programmable routers. As design
continue to develop systems that demand high-spe
device configuration [8], it is likely that FPGA vendor
will need to respond with faster reconfiguration mech
nisms.

Once all configuration data is loaded into the hardwa
plugin, the Application Controller initiates a localized
reset to the hardware plugin. The Application Controll
waits for a handshake from the application. Once t
application is initialized and ready, it completes the han
shake with the Application Controller. The Application
Controller responds with a control message to the C
which updates the descriptor table used by the Pac
Classifier. The IOC then routes packets with matchin
descriptors to the application.

3) Memory Interfaces

In order to cover the design space of potential hardwa
applications, DHP provides access to two types of o
chip memory resources. Banks of Synchronous Rand
Access Memory (SRAM) provide storage for per flow
state and computations requiring low-latency access
while banks of Dynamic Random Access Memor
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(DRAM) provide ample resources for memory intensive
applications. The Memory Interfaces shown in Figure 2
arbitrate access among the hardware plugins while insu-
lating applications from device-specific timing specifica-
tions.

The type of hardware technology used to implement
the hardware processing element limits the number of
pins available for interfacing to off-chip memory devices.
Current devices are capable of supporting two SRAM
devices and two DRAM devices; therefore, this configu-
ration will be used for the purpose of this discussion. Due
to the wide array of memory devices and technologies
available, the type of SRAM and DRAM devices
employed in a particular system will likely be a function
of size, speed, and cost constraints. Systems running
applications that require high-bandwidth access to large
amounts of memory may employ DRAM technologies,
such as Rambus, to meet performance constraints [9].
Implementation of such complex memory interfaces
requires more on-chip hardware resources and will be
discussed in the Implementation section. Other system
designers may wish to reduce cost by using Synchronous
Dynamic Random Access Memory (SDRAM) devices.

To allow for flexibility in selecting external memory
devices, the Memory Interfaces provide a standard inter-
face to hardware plugins abstracting them from device-
specific timing and control signalling. The Memory
Interfaces provide each plugin with independent access
to both memory types, hence applications are free to uti-
lize both types of off-chip memory resources in parallel.
Hardware plugins gain access to off-chip memory via a
simple grant/request handshake. The Memory Interface
services requests in a round-robin fashion. Once access is
granted, applications may issue read, write, burst read,
and burst write commands. Starvation avoidance is
achieved by plugins monitoring the status of the grant/
request signals. When other plugins contend, the plugin
currently accessing memory must release memory at the
conclusion of the current transaction.

B.  Hardware Plugins

Hardware plugins provide applications with the recon-
figurable logic and memory resources to process data
flows. In this context, hardware plugins are the physical
hardware structures that may be configured to implement
various networking applications. The reconfigurable
logic resources include logic gates, lookup tables, flip-
flops, multiplexors, demultiplexors, and signal routing
matrices. On-chip Random Access Memory (RAM) may
be configured to implement queues and multi-port mem-
ories.

1) Interface

In order to design modular applications for use in th
DHP, a standardized hardware plugin interface is nec
sary. Like an API for software, hardware plugins mu
interface to a static set of ports for data I/O, control, an
external memory. As shown in Figure 3, the hardwa
plugin interface includes off-chip SRAM and DRAM
interfaces, IOC interface, and Application Controlle
interface. Each application may also define its own inte
face to on-chip RAM.

The interface to off-chip DRAM includes grant and
request signals for the arbitration handshake, mem
command signals, address lines, and tri-state data lin
Similarly, the off-chip SRAM interface includes gran
and request signals, memory command signals, a
address lines. However, this interface employs separ
input and output data lines to allow for pipelined memo
reads and writes. For low-latency state and data stora
applications may define unique interfaces to on-ch
RAM. Reconfigurable hardware technology allows the
resources to function as multi-port memories, queu
and large register files.

The IOC interface includes input and output queu
interfaces. The input queue interface employs a “n
empty” status flag, while the output interface uses
“full” status flag. To keep the design uniform, the queu
data paths are the same width as the ring. The Appli
tion Controller interface provides applications with a sy
tem clock, local reset, and enable/ready signals for t
reconfiguration handshake with the Application Contro
ler. Applications may use subdivided or multiplied ve
sions of the system clock to suit design needs.

2) Applications

While the focus of this paper is not a performance com
parison of hardware and software applications, it
important to identify the types of applications that bene
from the DHP architecture. Any computationally inten
sive application operating on streaming data at high ra
is a likely candidate. Potential applications also need
contain operations that may be performed in parallel
pipelined. Purely sequential computations cannot ta
full advantage of the inherent benefits of hardware imp
mentations.

One of the most widely used applications which is als
crucial to the growth of the Internet as a commercial to
is encryption. Since every byte must be manipulated
order to properly encrypt a data block, encryption is
computationally expensive application. Due to the natu
of the computations performed, encryption is high
amenable to hardware implementation. Results of ca
studies of the new Advanced Encryption Standard (AE
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will be used to illustrate the potential performance of
DHP for networking applications.

In order to select an algorithm for AES, the National
Institute of Standards and Technology (NIST) and several
independent research groups analyzed the security and
performance of the finalist algorithms for both software
and hardware implementations [10][11][12]. Based on
these analyses, Rijndael was selected as the algorithm for
AES [13]. In order to provide a baseline performance
comparison of software and FPGAs, the authors of [11]
implemented and analyzed an iterative version of the
Rijndael algorithm that provided encryption, decryption,
and key-scheduling for 128-bit keys operating over 10
rounds on 128-bit data blocks in a Xilinx FPGA. This
implementation achieved a throughput of 353 Mb/s, pro-
viding a factor of 11.15 speedup over comparable soft-
ware implementations that achieved 31.64 Mb/s. This
implementation would occupy approximately 20% of the
available resources of the largest current generation
FPGA, a Xilinx Virtex 3200E, and would require on the
order of 5 ms for device configuration. While these
results show significant performance gains, NIST cited
case studies of ASIC implementations of the Rijndael
algorithm achieving throughputs of 5.16 Gb/s, a factor of
163 speedup over software [10]. This level of perfor-
mance was achieved through fully pipelined architectures
as opposed to the iterative architectures used in [11].
Fully pipelined architectures require significantly more
resources, making them impractical for use in current
generation FPGAs and the DHP architecture. However,

for implementation in programmable routers a high
performance FPGA implementation of AES is required

The authors of [12] implemented several architectur
variants of the Rijndael algorithm in an FPGA. The
analysis focused solely on encryption throughput, oper
ing under the assumption that key-scheduling delays c
be masked by a suitable parallel implementation. Th
analysis is relevant to the programmable router discu
sion, as throughput is the metric of interest and it is like
that encryption and decryption will occur in separa
hardware plugins. In this analysis, the authors found th
a 5-stage partial-pipeline with a single-stage sub-pipeli
architecture of Rijndael algorithm achieved a throughp
of 1.94 Gb/s. While this implementation required near
twice the amount of device resources as the iterat
implementation in the aforementioned study, it occupi
less than 40% of the largest current generation FPGA.

Based on these results, a single hardware plugin co
encrypt 80% of the traffic carried on an OC-48 link
Achieving this level of performance in software woul
require distributing the computation over 60 RISC core
an exorbitant amount of resources for a single applicati
operating on a single link. These results clear
strengthen the case for employing reconfigurable ha
ware in reprogrammable routers. Unlike ASIC imple
mentations, the DHP architecture allows for ne
encryption standards such as AES to be deployed in
matter of milliseconds.

New streaming data services such as audio and vid
bridging for video conferencing also provide ideal hard

SDRAM
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Figure 3: Hardware Plugin interface with static interfaces to infrastructure components. Applications defi
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ware plugin applications. Multi-service routing and mul-
ticast support are also ideal candidates for hardware
implementation. With the proliferation of Hardware
Description Languages (HDLs) as common tools for
designing hardware applications, many applications cur-
rently implemented in ASICs can be easily ported for
DHP implementation.

VI. I MPLEMENTATION

Due to strides in current FPGA technology, the
Dynamic Hardware Plugins architecture can be imple-
mented in a single FPGA. As device speeds and densities
continue to increase, the quantity and performance capa-
bilities of hardware plugins available on a single device
will likewise increase. Providing dynamic, modular plu-
gins surrounded by static control structures in a single
device physically translates to partially reprogramming a
running FPGA at the port of a router. This is a non-trivial
task that is the focus of ongoing research at Washington
University in Saint Louis. A significant part of the solu-
tion involves new CAD tools capable of targeting specific
regions of a device, producing partial reprogramming bit-
files, reserving logic and routing resources, and locking
signals for static plugin interfaces. While many of these
capabilities exist in one form or another within current
CAD tool suites, execution of this task requires an enor-
mous amount of effort. While this is a significant area of
research, its discussion is beyond the scope of this paper.

While an FPGA is a readily available device for imple-
menting the DHP architecture, it also leaves room for
improvement. One refinement would be to use static
logic for infrastructure components, enabling higher per-
formance with more efficient resource usage. While
FPGAs support several I/O standards, the types of mem-
ory devices available to system designers are limited by
those supported by FPGA vendors. Adding high perfor-
mance memory interfaces, such as Rambus, would pro-
vide substantially better performance.

An intriguing implementation option for the DHP
architecture is a mixed ASIC/FPGA. By hand-crafting
the IOC ring, Application Controller, and Memory Inter-
faces in ASIC technology, greater I/O performance could
be achieved for off-chip data transfers and memory trans-
actions as well as faster plugin configuration. Given the
same die size, this would also result in a more area effi-
cient infrastructure implementation providing more area
for reconfigurable hardware; hence, more logic and
memory resources per hardware plugin or more plugin
slots per device. However, unlike FPGA implementations
the mixed ASIC/FPGA implementation does not provide
for plugin size dimensioning based on projected applica-
tion demands.

VII. PROTOTYPETESTBED

In order to prototype the Dynamic Hardware Plugin
architecture operating in a Port Processor of a multi-p
programmable router, several research systems desig
and built at Washington University in Saint Louis ar
used in combination [14]. The WUGS 20, an 8 port ATM
switch providing 20 Gb/s of aggregate throughput,
used for the Switch Fabric. This switching core is bas
upon a multi-stage Benes topology, supports up to 2
Gb/s link rates, and scales up to 4096 ports for an agg
gate throughput of 9.8 Tb/s. The Smart Port Card (SP
is used to prototype the software processing elem
[15]. It employs an embedded microprocessor, memo
and custom network interface ASIC to process netwo
data flows. The Field Programmable Port Extend
(FPX) is used to prototype the Dynamic Hardware Pl
gins architecture [16][17]. It employs two FPGAs, on
acting as the Network Interface Device (NID) and th
other as the Reprogrammable Application Devic
(RAD). The RAD FPGA has access to two 1 MB Zero
Byte Turnaround (ZBT) SRAMs and two 64MB
SDRAM modules. A diagram of the FPX is shown in
Figure 4. Both the SPC and FPX are implemented
Printed Circuit Boards (PCBs) of the same form factor
the WUGS transmission interfaces. Hence, each port
the WUGS may be fitted with different FPX/SPC comb
nations. Photographs of the FPX and the FPX in t
WUGS are shown in Figure 5.

VIII. C ONCLUSION

Dynamic Hardware Plugins provides a scalable mech
nism for building high-performance, multi-port router
capable of robust per flow processing. As reconfigurab
hardware technology continues to offer higher perfo
mance via denser logic and memory resources at fas
clock rates, the amount and diversity of per flow proces
ing made available by the DHP architecture likewis
increases. Implementing networking applications
hardware provides performance levels either not achi
able in software, or achievable only with significantl
more hardware resources and complex control mec
nisms. By allowing multiple hardware applications to b
dynamically loaded into a single device, the DHP arch
tecture is a flexible, parallel, hardware processing mec
nism. As applications are developed, the prototy
testbed at Washington University in Saint Louis provide
an ideal platform for performance analysis and furth
research into reconfigurable network hardware.
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