Dynamic Hardware Plugins (DHP):
Exploiting Reconfigurable Hardware for High-Performance

Programmable Routers

David E. Taylor, Jonathan S. Turner, John W. Lockwood
det3@arl.wustl.edu, jst@cs.wustl.edu, lockwood@arl.wustl.edu
Applied Research Laboratory
Washington University in Saint Louis
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130
USA
(314) 935-4845

Abstract --This paper presents the Dynamic Hard- ing at optical line speeds employ Application Specific
ware Plugins (DHP) architecture for implementing Integrated Circuits (ASICs) to perform parallel computa-
multiple networking applications in hardware at pro- tions in hardware. However, these architectures often
grammable routers. By enabling multiple applica- provide limited flexibility for deployment of new applica-
tions to be dynamically loaded into a single hardware tions or protocols, and necessitate longer design cycles
device, the DHP architecture provides a scalable and higher costs than software-based solutions. Clearly,
mechanism for implementing high-performance pro- the an optimal router architecture must exhibit the flexi-
grammable routers. The DHP architecture is pre- bility available in software and the performance offered
sented within the context of a programmable router by hardware.
architecture which processes flows in both software The diversity of networking applications and data flows
and hardware. Possible implementations are suggests that dynamically reprogrammable processing
described as well as the prototype testbed at Washing-environment is needed to cover the potential design
ton University in Saint Louis®. space. While some applications performing limited pro-

cessing at low data rates readily lend themselves to soft-

Keywords-- Programmable router, reconfigurable ware implementation, a vast array of applications map

hardware, active networking, port processor. well to hardware implementation due to high data rates,
data regularities, and parallel operations. This implies
l. INTRODUCTION that a viable solution to the programmable router prob-

As researchers vigorously develop advanced contfgl" should employ both software and reconfigurable
and processing schemes for programmable networks mx’rdware to process data flows. With the dgvelopment of
there exists a need for a scalable router architecture capveral multi-RISC core processor architectures and
ble of robust flow-specific processing at optical lin&nPlementations, the problem of providing a scalable
speeds without prohibitively high per-port costs. As theoftware processing environment is well investigated.
quantity and diversity of streaming data and computg_he problem of adding a flexible and scalable hardware

tionally intensive applications continues to increasB/0C€sSINg environment remains.

router architectures must respond with greater flexibilitéTraditiona”y used for low-volume prototyping and

processing capacity, and performance. With next-genef&Sting purposes, the reconfigurable hardware employed
tion routers containing hundreds of ports, processitlyField Programmable Gate Arrays (FPGAs) provides a
mechanisms must scale at a reasonable per-port cost.flexible hardware platform. Recently, reconfigurable

Existing router architectures that provide sufficiertardware technology has made several compelling per-

flexibility and per-flow processing employ software Iorof_ormance advances, identifying it as a possible solution

cessing environments containing multiple Reducd@r the programmable router node problem. New recon-
Instruction Set Computer (RISC) cores. Existing higﬁl_gurable hardware devices tout approximately 1 million

performance router architectures capable of data proced@plication logic gates, internal clock rates up to 200
MHz, over 100KB of on-chip memory, and partial-recon-

figuration capability [2]. More impressive than the cur-
rent technical statistics is the rate of progress due to

L This research supported by NSF: ANI-0096052 and
Xilinx, Inc.

architectural optimizations and silicon fabricatiole routers need to achieve comparable performance to
improvements: usable logic gate count increased by @ considered a viable option for commercial applica-

times in two years; system clock frequency doubled tions. The router architecture described in [5] provides a

one year; 1/0 bandwidth quadrupled in two years; blodcalable mechanism for processing data flows at router
and distributed on-chip memory capacity quadrupled ports. The DHP architecture will be presented as an aug-
one year [3]. Reconfigurable hardware devices are cleamgntation of this architecture to include a hardware pro-

positioning themselves as viable options for flexibleessing environment.
high-performance systems.

The Dynamic Hardware Plugins (DHP) architecture CP
employs reconfigurable hardware to provide a flexible A
hardware processing environment for programmable, Y
multi-port routers. DHP allows multiple hardware appli-
cations, or plugins, to be dynamically loaded into a single Suitch Fabric

device and run in parallel, providing a substantial amount
of per-flow processing. With dedicated on-chip logic and

memory resources provisioned for each plugin as well as
arbitrated access to two types of off-chip memory

resources, DHP supports a broad spectrum of applica- PP PP |- PP
tions. Results of several case studies of Advanced A
Encryption Standard (AES) implementations in software, Y
FPGAs, and ASICs are used to show the potential perfor- TI Tm |- ---- TI
mance and flexibility gains of the DHP architecture for
networking applications in programmable routers. f ‘ f ‘ f ‘

Il. BACKGROUND AND RELATED WORK

_ o o Physical Links

Several schemes exist for delivering applications to a
programmable router. Applications may be deployed at Figure 1: Programmable router architecture
session setup via signalling protocols. Other schemes
allow applications to be requested by incoming packetsAs shown in Figure 1, the programmable router is built
or carried by the packet for execution on the programmaround a scalable multi-stage cell switching fabric as
ble router. With the exception of minor implementationdescribed in [6]. Based on this design, the Switch Fabric
details, the programmable router architecture discussimay be configured from ten to thousands of ports, each
is orthogonal to application deployment mechanisms. capable of supporting link rates of 2.4 Gb/s. Each physi-

The router architecture presented in [5] provides a scahl link attaches to a Transmission Interface (TI) which
able software processing environment using elemewtnverts data arriving on the link into a standard format
with multiple RISC cores on a single device. This archfer router input while performing the inverse operation
tecture readily lends itself to hardware processing inten data destined for the output link. For fiber-optic links,
gration and will be used as the departure point fahis includes optoelectronic and serial/parallel signal con-
discussing the DHP architecture. version. Between the Transmission Interface and Switch

Significant work has already been done in reconfigrabric is the Port Processor (PP). The Port Processor per-
urable network hardware [4]. However, the previou®rms all of the flow classification, forwarding, queueing,
approaches do not readily lend themselves to implememd processing functions. The Port Processor architecture
tation in multi-port routers as the hardware requirementsll be described in the next section. A Control Processor
for a single flow of processing are prohibitively impracti{CP) provides an external control interface and manages
cal. These previous approaches also do not provide amiple Port Processors. The Control Processor is responsible
memory resources to cover the design space of potenf@ maintaining flow classification data structures and fil-

applications. ters, as well as binding flows to applications at each Port
Processor via flow identifiers. In larger systems, the CP
lIl. PROGRAMMABLE ROUTER ARCHITECTURE may be a shared memory multiprocessor dimensioned to

Current routers capable of aggregate forwarding rat®&tch the processing needs of the specific configuration.
of terabits per second and link speeds of 2.4 Gb/s and 10
Gb/s set the standard for high-performance. Programma-

IV. PORT PROCESSORARCHITECTURE add flexible hardware processing capability to the Port
rJf’rocessor. DHP employs reconfigurable hardware to

The Port Processor provides all of the necessary fu ﬁ_o multiole applications to be dvnamically loaded into
tionality to forward and process data flows as they p é W mulliple applicatl . y ically "
grdware plugins and run in parallel on a single device.

through the router. The Port Processor architecture :
detailed in Figure 2. The Packet Classification anlaata flows may pass through permutations of hardware
ugins, allowing for substantial amounts of per-flow

Queueing (PCQ) element manages the flow of ddta

through three device ports. The Tl Port sends al%o.cessing. In orde_r to support a broa(_j spectrum Of appli.—
receives data from the Transmission Interface, while tﬁggor?qse’me;mreﬂgg'rréezoggevizﬁz:ng;;zc,:ootc\;gﬁ'p Iec;g:)(;
SW Port sends and receives data from the Switch Fabﬁ‘@ y yp

Data belonging to flows requiing processing are sent ¥ T P AR FENOY FEREER) i o
and received from the processing elements via the Pro-

cesing Element () Port.
On the PCQ, the Packet Classifier performs a |00kle . . JOT parts.
s}g/are plugins and infrastructure. Hardware plugins are the

operation on all packets arriving on the Tl Port an ardware components that mav be dvnamically reconti
attaches a flow identifier (flow ID) that identifies the deg!®' " P y be dynamicaly '9-

tination of packets and type of processing, if any, that e ed to support new applications. Infrastructure consists
packet is to receive at the Port Processor. The PacRe he static control and datapath components of the DHP

Classifier maps each packet to a locally significant fIO%rchltecture. The infrastructure components collectively

ID that is used to retrieve stored state information at othreorme _packets to pluglns_ anq VO ports, dynamically
ggonflgure hardware plugins, interface to external mem-

points in the system. It uses a general packet classifil devices and arbitrate aceess amonda the contendin
tion algorithm such as Pruned Tuple Space Search [9.y I . g . 9
ol of applications. The following subsections discuss

All data structures and flow IDs are maintained by t : L) :
central Control Processor of the system. the major divisions of the DHI_3 architecture and their
ssociated components in detail.

After classification, packets are sent to the Queue cdie
troller which manages output and application queues.
Based on the flow ID, the Queue Controller places the
packet on the appropriate queue. Packets not requirinahe infrastructure, denoted by the shaded blocks in
processing are simply placed on the appropriate outdugure 2, is the required collection of static control and
queue. Packets requiring processing are placed on €@@apath components to support dynamic, modular hard-
queue associated with the application specified by th@re applications. The infrastructure provides common
flow ID. The Queue Controller schedules packets frofervices to hardware plugins and hides details of memory
the set of application queues for output on the PE Poggvice timing. By providing a standard interface for plu-
Processed packets arriving on the PE Port are placedds, the infrastructure provides the equivalent of an API
the appropriate output queue. to allow hardware developers to more easily design mod-

A number of processing elements may reside in a challar applications that work together.
at the PE Port of the PCQ. Figure 2 shows a Softwa{ Data I/O and Elow Control

Processing Element followed by a Hardware Processin o]
Element. Note that the quantity and type of processing™*S Shown in Figure 2, the DHP architecture arranges

elements present at a Port Processor may be configufggdware plugins in a slotted ring with each ring interface
based on traffic demands at a particular port of the routi&Pelled as an Input Output Controller (IOC). A ring
The Software Processing Element shown in Figure 2 Coel)_{_chltecture was chosen in .preference to a bus_because
sists of multiple RISC cores linked by a high speed 1/@NgS can be operated at higher clock frequencies than
channel in a ring configuration. Processors are groupedPiSes due to their simple point-to-point connections and
small clusters for the purpose of sharing access to oie resulting reduction in capacitive loading. The ring is
chip memory interfaces. This architecture is a refinemepgtter in this context than a crossbar since it allows a sin-
of the architecture presented in [5], and is presented h@!g Plugin to make use of the full ring bandwidth if nec-
mainly to set the context for the Dynamic Hardware PIESS&Ty.: A crossbar capable of providing similar

Infrastructure

gins architecture, which is the focus of this paper. bandwidth to each plugin requires substantially more
processing resources. While rings do add latency to data
V. DHP ARCHITECTURE transfers, a suitable hardware implementation can keep

h d , | - i these latencies to well under a microsecond in typical
The Har ware Processing E_ement n Flgur_e 2 ut 12&dnfigurations. In order to keep up with a link rate of
the Dynamic Hardware Plugins (DHP) architecture to

Switch Fabric
Filter Memory I'A'\
d
‘ PCQ SW Port i O= D<=
O
Packet _ o [
Classifier g O
B O ==L
[Queue Controller S e~
(]
} g O<O=0O-
8; e[|
y e
* Tl Port PE Port e e e = |
‘ Y | 1oc |
\'2 . _L I
V. - .
Transmission Interface CPU %L 85 |cpu
ﬁg Q o) 0|55
= |9 = o|a=
o
Cach |= Cach
e |l | B
Processing | DRAM Bemoy -5} e y DRAM
Element R | J £ L '
Cache ks Cache
g2 |Q § Qg2
CPU|%E |° 2|28 |cPu
as _ os
’—>
| 1oc |
[1oc |
. _L I
Plugin |8l J<_.I5| Plugin
SRAM - = i (@] ™ SRAM
. RAM] § [RAM
dw £ £ g
Hardware IS _ S 1o 2
Processing = Plugin | o= 78‘;8 Plugin {2
Element g o] § s %
= —
DRAM g L @ DRAM
. |Plugin |O 5L ~5| Plugin | |
(@]
RAM T, RAM
[1oc]

Extension Port

Figure 2: Port Processor (PP) architecture with Hardware and Software Processing elements.
The Hardware Processing Element employs the Dynamic Hardware Plugins (DHP) architecture.

2.4Gb/s, the ring must have a minimum bandwidth of 4.8Prior to reconfiguring the hardware plugin, the Appli-
Gb/s to allow hardware plugins to process both ingresation Controller initiates a handshake with the applica-
and egress data flows at the link rate. A 32-bit wide rirtipn to prevent data and flow state loss. If the application
operating at 200 MHz provides a raw bandwidth of 6. not idle, it must stop accepting packets and finish pro-
Gb/s, providing sufficient extra bandwidth to handleessing current packets. Applications may define appro-
internal overheads and keep contention low. priate breakpoints for reconfiguration based on the type
Note that an IOC is provided for each hardware plugiof flow processing it is performing. Control messages
while two IOCs interface to upstream and downstreamay be sent from applications to the PCQ to halt packet
elements. The upstream IOC may interface to anotHerwarding at breakpoints. For deployment of application
processing element or directly to the PCQ. The dowrevisions, applications may copy flow state to off-chip
stream IOC interfaces only to other processing elememsemory for the new revision to use once it has been
The ring protocol transfers fixed size units with a busybaded into the hardware plugin. Once the application has
idle bit in the first word of each transmission slot. Thensured that no data or relevent flow state will be lost, it
first word also includes a flow control bit vector with oneeturns a handshake to the Application Controller. At this
bit for each IOC on the chip. An IOC sets its bit to signgboint, the I0C routes all arriving packets to the next I0C
congestion. A second bit vector is used to enable fair the ring. The Application Controller then loads the
access to the ring. Each plugin with data queued foew application into the hardware plugin by writing the
transmission on the ring sets its bit and paces its trargplication bitfile to the reconfigurable logic.
missions on the ring based on the number of bits set byrhe amount of time required for plugin reconfiguration
other plugins. Additional fields in this word identify adepends on the size of the plugin and the complexity of
ring and slot number of the destination application for thie application. Current FPGA technologies do not place
packet. The ring number identifies a unique processiagstrong emphasis on high reconfiguration speeds. How-
element in the chain, while the slot number specifies tleger, as discussed in a later section the time required to
hardware plugin containing the destination applicationonfigure a current generation FPGA with a complex
For packets requiring processing by more than one apgpplication such as an encryption cipher requires on the
cation, the third bit vector is modified to address the neatder of 5 ms. While this time is not so long as to make
application. Upon completion of a packet, applicationdHP impractical with current technology, the current
identify the correct ring and slot number of subsequeptogramming rates of 66 MB of configuration data per
applications via locally available state information. second must increase for next generation technology to
As shown in Figure 2 the upstream IOC contains are suitable for use in programmable routers. As designers
additional port to the Application Controller. When nevweontinue to develop systems that demand high-speed
applications are to be loaded into the hardware plugirdgvice configuration [8], it is likely that FPGA vendors
the upstream |OC must pass control messages and appiit need to respond with faster reconfiguration mecha-
cation data to the Application Controller. While a hardrisms.
ware plugin undergoes reconfiguration, the associate@®nce all configuration data is loaded into the hardware
IOC passes data to the next IOC in the ring. This mechalugin, the Application Controller initiates a localized
nism allows applications to be dynamically loaded inteset to the hardware plugin. The Application Controller
hardware plugins without interrupting the flow of datavaits for a handshake from the application. Once the
through the processing ring. application is initialized and ready, it completes the hand-
L shake with the Application Controller. The Application
2) Application Controller Controller responds with a control message to the CP,
The Application Controller manages the dynamighich updates the descriptor table used by the Packet
reconfiguration of hardware plugins to support neglassifier. The 10C then routes packets with matching
applications. Hardware applications arrive as bitfiles #escriptors to the application.
the Application Controller. Bitfiles specify the logic
operations, signal routing, and on-chip memory configd) Memory Interfaces
ration for the hardware application. As bitfiles may be In order to cover the design space of potential hardware
loaded from local memory or remotely over the networlapplications, DHP provides access to two types of off-
the Application Controller must assemble, buffer, anthip memory resources. Banks of Synchronous Random
ensure the correctness of the bitfile prior to loading it inthccess Memory (SRAM) provide storage for per flow
the hardware plugin. Bitfile integrity can be maintainedtate and computations requiring low-latency accesses,
via checksums and reliable transport protocols. while banks of Dynamic Random Access Memory

(DRAM) provide ample resources for memory intensive) Interface

applications. The Memory Interfaces shown in Figure 2|n order to design modular applications for use in the
arbitrate access among the hardware plugins while ingyeip, 3 standardized hardware plugin interface is neces-
lating applications from device-specific timing specificasary. Like an API for software, hardware plugins must
tions. interface to a static set of ports for data 1/0, control, and
The type of hardware technology used to implemegkternal memory. As shown in Figure 3, the hardware
the hardware processing element limits the number gfygin interface includes off-chip SRAM and DRAM
pins available for interfacing to off-chip memory devicespterfaces, 10C interface, and Application Controller
Current devices are capable of supporting two SRAMterface. Each application may also define its own inter-
devices and two DRAM devices; therefore, this configysce to on-chip RAM.
ration will be used for the purpose of this discussion. DueThe interface to off-chip DRAM includes grant and
to the wide array of memory devices and technologigsquest signals for the arbitration handshake, memory
available, the type of SRAM and DRAM devicegommand signals, address lines, and tri-state data lines.
employed in a particular system will likely be a functiorsimilarly, the off-chip SRAM interface includes grant
of size, speed, and cost constraints. Systems runniyy request signals, memory command signals, and
applications that require high-bandwidth access to larggdress lines. However, this interface employs separate
amounts of memory may employ DRAM technologiesnhpyt and output data lines to allow for pipelined memory
such as Rambus, to meet performance constraints ﬁ%ﬁds and writes. For low-latency state and data storage,
Implementation of such complex memory interfacegpplications may define unique interfaces to on-chip
requires more on-chip hardware resources and will B&\M. Reconfigurable hardware technology allows these
discussed in the Implementation section. Other systeByources to function as multi-port memories, queues,
designers may wish to reduce cost by using Synchronqygy large register files.
Dynamic Random Access Memory (SDRAM) devices. The |OC interface includes input and output queue
To allow for flexibility in selecting external memoryinterfaces. The input queue interface employs a “not
devices, the Memory Interfaces provide a standard intmpty” status flag, while the output interface uses a
face to hardware plugins abstracting them from devicey||” status flag. To keep the design uniform, the queue
specific timing and control signalling. The Memoryyata paths are the same width as the ring. The Applica-
Interfaces provide each plugin with independent accagsn Controller interface provides applications with a sys-
to both memory types, hence applications are free to Um clock, local reset, and enable/ready signals for the
lize both types of off-chip memory resources in paralleleconfiguration handshake with the Application Control-
Hardware plugins gain access to off-chip memory via|ay, Applications may use subdivided or multiplied ver-

simple grant/request handshake. The Memory Interfag@ns of the system clock to suit design needs.
services requests in a round-robin fashion. Once access is

granted, applications may issue read, write, burst redd Applications

and burst write commands. Starvation avoidance iswhile the focus of this paper is not a performance com-
achieved by plugins monitoring the status of the grangarison of hardware and software applications, it is
request signals. When other plugins contend, the plugimportant to identify the types of applications that benefit
currently accessing memory must release memory at fhem the DHP architecture. Any computationally inten-

conclusion of the current transaction. sive application operating on streaming data at high rates
. is a likely candidate. Potential applications also need to
B. Hardware Plugins contain operations that may be performed in parallel or

Hardware plugins provide applications with the recortipelined. Purely sequential computations cannot take
figurable logic and memory resources to process daél advantage of the inherent benefits of hardware imple-
flows. In this context, hardware plugins are the physicléntations. _ o o
hardware structures that may be configured to implemenfne of the most widely used applications which is also
various networking applications. The reconfigurab@rucial to the growth of the Internet as a commercial tool
logic resources include logic gates, lookup tables, flijs €ncryption. Since every byte must be manipulated in
flops, multiplexors, demultiplexors, and signal routin§rder to properly encrypt a data block, encryption is a
matrices. On-chip Random Access Memory (RAM) magomputat|onally expensive application. Due to the nature

be configured to implement queues and multi-port merf the computations performed, encryption is highly
ories. amenable to hardware implementation. Results of case

studies of the new Advanced Encryption Standard (AES)

will be used to illustrate the potential performance dbr implementation in programmable routers a higher
DHP for networking applications. performance FPGA implementation of AES is required.
In order to select an algorithm for AES, the National The authors of [12] implemented several architectural
Institute of Standards and Technology (NIST) and severadriants of the Rijndael algorithm in an FPGA. Their
independent research groups analyzed the security amélysis focused solely on encryption throughput, operat-
performance of the finalist algorithms for both softwarig under the assumption that key-scheduling delays can
and hardware implementations [10][11][12]. Based dme masked by a suitable parallel implementation. This
these analyses, Rijndael was selected as the algorithmdoalysis is relevant to the programmable router discus-
AES [13]. In order to provide a baseline performancgion, as throughput is the metric of interest and it is likely
comparison of software and FPGAs, the authors of [1ffjat encryption and decryption will occur in separate
implemented and analyzed an iterative version of thardware plugins. In this analysis, the authors found that
Rijndael algorithm that provided encryption, decryptiorg 5-stage partial-pipeline with a single-stage sub-pipeline
and key-scheduling for 128-bit keys operating over ldrchitecture of Rijndael algorithm achieved a throughput
rounds on 128-bit data blocks in a Xilinx FPGA. Thi®f 1.94 Gb/s. While this implementation required nearly
implementation achieved a throughput of 353 Mb/s, prowice the amount of device resources as the iterative
viding a factor of 11.15 speedup over comparable softnplementation in the aforementioned study, it occupies
ware implementations that achieved 31.64 Mb/s. Thisss than 40% of the largest current generation FPGA.
implementation would occupy approximately 20% of the Based on these results, a single hardware plugin could
available resources of the largest current generatiencrypt 80% of the traffic carried on an OC-48 link.
FPGA, a Xilinx Virtex 3200E, and would require on theéAchieving this level of performance in software would
order of 5 ms for device configuration. While theseequire distributing the computation over 60 RISC cores,
results show significant performance gains, NIST citexh exorbitant amount of resources for a single application
case studies of ASIC implementations of the Rijndaeperating on a single link. These results clearly
algorithm achieving throughputs of 5.16 Gb/s, a factor gtrengthen the case for employing reconfigurable hard-
163 speedup over software [10]. This level of perfoware in reprogrammable routers. Unlike ASIC imple-
mance was achieved through fully pipelined architecture¥entations, the DHP architecture allows for new
as opposed to the iterative architectures used in [1&hcryption standards such as AES to be deployed in a
Fully pipelined architectures require significantly morenatter of milliseconds.
resources, making them impractical for use in currentNew streaming data services such as audio and video
generation FPGAs and the DHP architecture. Howevérjdging for video conferencing also provide ideal hard-

[~ =——Request Not Emptyj=——— |IOC
—~|Grant Data In ﬁ
C d
omman |OC Input
SRAM
Address Interface
Interface
Data Out
Clock [e=———

| mmmppivaain Hardware resetf-—— APPication

) Enable Controller
Plug In Readyl= Interface

~— Request
—— | Grant

SDRAM Command IOC Output
Interface Address Ful | Interface
“ Data In/Out Data OutP

(application—defined interface) R AM

Figure 3: Hardware Plugin interface with static interfaces to infrastructure components. Applications define
interfaces and configurations for on-chip memory.

ware plugin applications. Multi-service routing and mul- VIl. PROTOTYPETESTBED

ticast support are also ideal candidates for hardwar : ,
implementation. With the proliferation of Hardware i order to prototype the Dynamic Hardware Plugins

Description Lanauages (HDLS) as common tools 1Earrchitecture operating in a Port Processor of a multi-port
Crip guag .(:) - Oprogrammable router, several research systems designed
designing hardware applications, many applications cur

rentlv implemented in ASICs can be easilv ported fornd built at Washington University in Saint Louis are
y Imp . yp used in combination [14]. The WUGS 20, an 8 port ATM
DHP implementation.

switch providing 20 Gb/s of aggregate throughput, is
used for the Switch Fabric. This switching core is based
upon a multi-stage Benes topology, supports up to 2.4
Due to strides in current FPGA technology, thep/s link rates, and scales up to 4096 ports for an aggre-
Dynamic Hardware Plugins architecture can be implgate throughput of 9.8 Th/s. The Smart Port Card (SPC)
mented in a single FPGA. As device speeds and densifiesysed to prototype the software processing element
continue to increase, the quantity and performance capgs]. It employs an embedded microprocessor, memory,
bilities of hardware plugins available on a single devicgnd custom network interface ASIC to process network
will likewise increase. Providing dynamic, modular pludata flows. The Field Programmable Port Extender
gins surrounded by static control structures in a singlepXx) is used to prototype the Dynamic Hardware Plu-
device physically translates to partially reprogramminggdins architecture [16][17]. It employs two FPGAs, one
running FPGA at the port of a router. This is a non-trivigdcting as the Network Interface Device (NID) and the
task that is the focus of ongoing research at WaShinthﬂ]er as the Reprogrammab|e App”cation Device
University in Saint Louis. A significant part of the solu{RAD). The RAD FPGA has access to two 1 MB Zero-
tion involves new CAD tools capable of targeting specifigyte Turnaround (ZBT) SRAMs and two 64MB
regions of a device, producing partial reprogramming biSDRAM modules. A diagram of the FPX is shown in
files, reserving logic and routing resources, and lockimgure 4. Both the SPC and FPX are implemented on
signals for static plugin interfaces. While many of theserinted Circuit Boards (PCBs) of the same form factor as
capabilities exist in one form or another within currenthe WUGS transmission interfaces. Hence, each port of
CAD tool suites, execution of this task requires an enafhe WUGS may be fitted with different FPX/SPC combi-

mous amount of effort. While this is a significant area qfations. Photographs of the FPX and the FPX in the
research, its discussion is beyond the scope of this paggUGS are shown in Figure 5.

While an FPGA is a readily available device for imple-
menting the DHP architecture, it also leaves room for VIIl. CONCLUSION
|mprover_nent. One refinement would be_ to use S'[at'CDynamic Hardware Plugins provides a scalable mecha-
logic for infrastructure components, enabling higher per-

formance with more efficient resource usage. Whilg for building high-performance, multi-port routers
ge. capable of robust per flow processing. As reconfigurable

FPGAs support several I/O standards, the types of meérr?—

ory devices available to system designers are limited rdware technology continues to offer higher perfor-
y y 9 ance via denser logic and memory resources at faster

tmhoie SLranpr?lrted 2%’ ::fPGA vendhors. gd(i:gg high plzrfoéiock rates, the amount and diversity of per flow process-
1ance memory Intertaces, such as rambus, wou pﬁ?@ made available by the DHP architecture likewise
vide substantially better performance.

S . . . increases. Implementing networking applications in
An intriguing implementation option for the DHP P 9 g abp

. . : ._hardware provides performance levels either not achiev-
archltectgre IS a F“'X‘?d ASIC/FPGA. By hand-craftm%ble in software, or achievable only with significantly
the IO.C ring, Application Controller, and Memory Intermore hardware resources and complex control mecha-
faces n ASIC technol_ogy, greater /O performance CoUftsms. By allowing multiple hardware applications to be
be achieved for off-chip data transfers and memory tran 'namically loaded into a single device, the DHP archi-

actions as well as faster plugin configuration. Given t) . .
o) plug 9 cture is a flexible, parallel, hardware processing mecha-
same die size, this would also result in a more area effj-

cient infrastructure implementation providing more ar ism. As applications are developed, the prototype
i P) P 9 € a'%%sthed at Washington University in Saint Louis provides
for reconfigurable hardware; hence, more logic a

. Wh ideal platform for performance analysis and further
memory resources per hardware plugin or more pluqlgsearch into reconfigurable network hardware.
slots per device. However, unlike FPGA implementations

the mixed ASIC/FPGA implementation does not provide ACKNOWLEDGMENT

for plugin size dimensioning based on projected applica- _ _ _
tion demands. The authors would like to thank David Parlour and Xil-

VI. |MPLEMENTATION

FPX

WashU / ARL

VRM: 1.8V Switcher

Device

OSCpgOosC
10 MHz [ll100MH

WUGS Switch Backplane Connector

SDRAM
(backside)

RAD

Reprogrammable
Application

irtex1000E fg680

(backside)
SDRAM

July, 2000
JL/MR

RAD
Program
SRAM

NID

Network
Interface
Device

OC3/0C12/0C48 Linecard Connector

Reprog

0OSC
JTAG 652.5 MHZA

RAD/NID Status @0 @0 @0 QO

Figure 4: Diagram of the Field Programmable port eXtender (FPX) used to prototype the

Dynamic Hardware Plugins (DHP) architecture.

inx, Inc. for their support and efforts to aid in this
research. The authors would also like to thank Naji

Naufel for his contributions to the FPX project.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D.[,lo]

Wetheral, D.J., Minden, G.J. “A Survey of Active
Network Research IEEE Communications35, 1,
January 1997, 80-86.

Xilinx, Inc. “Virtex-E 1.8V Field Programmable
Gate Arrays”, Advance Product Specification, Feb-
ruary 29, 2000, San Jose, CA.

Xilinx, Inc. “Xilinx Unveils New FPGA Architec-
ture to Enable High-Performance, Ten Million Sys-
tem-Gate Designs” Press Release, May 22, 2000;
San Jose, CA

Hadzic, I., Smith, J. “On-the-fly Programmable
Hardware for Networks”, Proceedings of GLoBE!l
COM 1998.

Wolf, T., Turner, J.: "Design Issues for High Perfor-
mance Active Routers," Proceedings of Internation-
al Zurich Seminar on Broadband Communications,
Zurich, Switzerland, February 2000.

[11]

12]

T. Chaney, A. Fingerhut, M. Flucke, J. Turner, “Del13]

sign of a Gigabit ATM Switch”, Proc. of INFOCOM
97, Kobe, Japan.

Srinivasan, V., Suri, S., Varghese, G., “Packet CIa&lA']

sification using Tuple Space Search”, Proc. of SIG-
COMM 99, Cambridge, Mass.

H. Schmit, "Incremental Reconfiguration for Pipe-
lined Applications," Proceedings of the IEEE Sym-

posium on FPGAs for
Machines, pp. 47-55, 1997.
Warmke, R., “Designing a Multimedia Subsystem
with Rambus DRAMS”, Multimedia Systems De-
sign, March 1998, Miller Freeman, Inc.

J. Nechvatal, E. Barker, L. Bassham, W. Burr, M.
Dworkin, J. Foti, E. Roback, “Report on the Devel-
opment of the Advanced Encryption Standard
(AES)”, Computer Security Division Information
Technology Laboratory, National Institute of Stan-
dards and Technology, Technology Administration,
U.S. Department of Commerce, October 2, 2000.
A.Dandalis, V.K. Prasanna, J.D.P. Rolim, “A Com-
parative Study of Performance of AES Final Candi-
dates Using FPGAs”, AES3: The Third Advanced
Encryption Standard (AES) Candidate Conference,
Gaithersburg, MD, April 2000.

A. Elbirt, et al., “An FPGA Implementation and
Performance Evaluation of the AES Block Cipher
Candidate Algorithm Finalists,” AES3: The Third
Advanced Encryption Standard (AES) Candidate
Conference, National Institute of Standards and
Technology, Gaithersburg, MD, April 2000.

J. Daemen, V. Rijmen, “AES Proposal: Rijndael,”
First Advanced Encryption Standard (AES) Confer-
ence, (Ventura, California, USA), 1998.

Turner, J., Choi, S., Decasper, D., DeHart, J., Keller,
R., Lockwood, J., Wolf, T., “Design of a Flexible
Open Platform for High Performance Active Net-
works”, Proceedings of the Allerton Conference, 10/
99.

Custom Computing

[15]

[16]

[17]

Figure 5: Prototype environment for the DHP architecture. a.) Photograph of the Field Programmable port
eXtender (FPX). b.) Photograph of an FPX in a WUGS with the line card removed for visibility.

Decasper, D., Parulkar, G., Choi, S., DeHart, J.,
Wolf, T., Plattner, B.: "A Scalable High-Perfor-
mance Active Network Node". IEEE Network, Vol.
13, No. 1, January/February 1999.

Lockwood, J., Turner, J., Taylor, D. “Field Pro-
grammable Port Extender (FPX) for Distributed
Routing and Queuing”, FPGA 2000: Eighth ACM
International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, 2/00.

Lockwood, J., Naufel, N., Taylor, D., Turner, J.,
“Reprogrammable Network Packet Processing on
the Field Programmable Port Extender (FPX)”,
FPGA 2001: Ninth ACM International Symposium
on Field-Programmable Gate Arrays, Monterey,

	I. Introduction
	II. Background and Related Work
	III. Programmable Router Architecture
	Figure 1: Programmable router architecture

	IV. Port Processor Architecture
	Figure 2: Port Processor (PP) architecture with Hardware and Software Processing elements. The Ha...

	V. DHP Architecture
	A. Infrastructure
	1) Data I/O and Flow Control
	2) Application Controller
	3) Memory Interfaces

	B. Hardware Plugins
	1) Interface
	Figure 3: Hardware Plugin interface with static interfaces to infrastructure components. Applicat...

	2) Applications

	VI. Implementation
	VII. Prototype Testbed
	Figure 4: Diagram of the Field Programmable port eXtender (FPX) used to prototype the Dynamic Har...

	VIII. Conclusion
	Acknowledgment
	References
	[1] Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetheral, D.J., Minden, G.J. “A Survey of Ac...
	[2] Xilinx, Inc. “Virtex-E 1.8V Field Programmable Gate Arrays”, Advance Product Specification, F...
	[3] Xilinx, Inc. “Xilinx Unveils New FPGA Architecture to Enable High-Performance, Ten Million Sy...
	[4] Hadzic, I., Smith, J. “On-the-fly Programmable Hardware for Networks”, Proceedings of GLOBECO...
	[5] Wolf, T., Turner, J.: "Design Issues for High Performance Active Routers," Proceedings of Int...
	[6] T. Chaney, A. Fingerhut, M. Flucke, J. Turner, “Design of a Gigabit ATM Switch”, Proc. of INF...
	[7] Srinivasan, V., Suri, S., Varghese, G., “Packet Classification using Tuple Space Search”, Pro...
	[8] H. Schmit, "Incremental Reconfiguration for Pipelined Applications," Proceedings of the IEEE ...
	[9] Warmke, R., “Designing a Multimedia Subsystem with Rambus DRAMs”, Multimedia Systems Design, ...
	[10] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, E. Roback, ‘‘Report on th...
	[11] A.Dandalis, V.K. Prasanna, J.D.P. Rolim, “A Comparative Study of Performance of AES Final Ca...
	[12] A. Elbirt, et al., ‘‘An FPGA Implementation and Performance Evaluation of the AES Block Ciph...
	[13] J. Daemen, V. Rijmen, ‘‘AES Proposal: Rijndael,’’ First Advanced Encryption Standard (AES) C...
	[14] Turner, J., Choi, S., Decasper, D., DeHart, J., Keller, R., Lockwood, J., Wolf, T., “Design ...
	[15] Decasper, D., Parulkar, G., Choi, S., DeHart, J., Wolf, T., Plattner, B.: "A Scalable High-P...
	[16] Lockwood, J., Turner, J., Taylor, D. “Field Programmable Port Extender (FPX) for Distributed...
	[17] Lockwood, J., Naufel, N., Taylor, D., Turner, J., “Reprogrammable Network Packet Processing ...
	Figure 5: Prototype environment for the DHP architecture. a.) Photograph of the Field Programmabl...

