
Scalable High-Speed Prefix Matching

Marcel Waldvogel
Washington University in St. Louis
and
George Varghese
University of California, San Diego
and
Jon Turner
Washington University in St. Louis
and
Bernhard Plattner
ETH Zürich

The work of Marcel Waldvogel was supported in part by KTI grant 3221.1. The work of George Varghese was
supported in part by an ONR Young Investigator Award and NSF grants NCR-940997 and NCR-9628218.
Parts of this paper were presented in ACM SIGCOMM ’97 [Waldvogel et al. 1997].
Name: Marcel Waldvogel
Affiliation: Washington University in St. Louis
Address: Department of Computer Science; Campus Box 1045; Washington University in St. Louis; St. Louis,
MO 63130-4899; USA; mwa@arl.wustl.edu

Name: George Varghese
Affiliation: University of California, San Diego
Address: Computer Science and Engineering, MS 0114; University of California, San Diego; 9500 Gilman
Drive; La Jolla, CA 92040-0114; varghese@cs.ucsd.edu

Name: Jon Turner
Affiliation: Washington University in St. Louis
Address: Department of Computer Science; Campus Box 1045; Washington University in St. Louis; St. Louis,
MO 63130-4899; USA; jst@cs.wustl.edu

Name: Bernhard Plattner
Affiliation: ETH Zürich
Address: TIK, ETZ G89; ETH Zürich; 8092 Zürich; Switzerland; plattner@tik.ee.ethz.ch

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for profit or direct commercial advantage and that copies
show this notice on the first page or initial screen of a display along with the full citation. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other
works, requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept,
ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Finding the longest matching prefix from a database of keywords is an old problem with a number of applications,
ranging from dictionary searches to advanced memory management to computational geometry. But perhaps
today’s most frequent best matching prefix lookups occur in the Internet, when forwarding packets from router
to router. Internet traffic volume and link speeds are rapidly increasing; at the same time, an increasing user
population is increasing the size of routing tables against which packets must be matched. Both factors make
router prefix matching extremely performance critical.

In this paper, we introduce a taxonomy for prefix matching technologies, which we use as a basis for describ-
ing, categorizing, and comparing existing approaches. We then present in detail a fast scheme using binary search
over hash tables, which is especially suited for matching long addresses, such as the 128 bit addresses proposed
for use in the next generation Internet Protocol, IPv6. We also present optimizations that exploit the structure of
existing databases to further improve access time and reduce storage space.

Categories and Subject Descriptors: C.2.6 [Computer-Communication Networks]: Internetworking—Routers;
E.2 [Data Storage Representations]: Hash-table representations; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—Pattern matching

General Terms: Algorithms, Performance

Additional Key Words and Phrases: collision resolution, forwarding lookups, high-speed networking

1. INTRODUCTION

The Internet is becoming ubiquitous: everyone wants to join in. Since the advent of the
World Wide Web, the number of users, hosts, domains, and networks connected to the
Internet seems to be growing explosively. Not surprisingly, network traffic is doubling
every few months. The proliferation of multimedia networking applications (e.g., Napster)
and devices (e.g., IP phones) is expected to give traffic another major boost.

The increasing traffic demand requires four key factors to keep pace if the Internet is
to continue to provide good service: link speeds, router data throughput, packet forward-
ing rates, and quick adaptation to routing changes. Readily available solutions exist for
the first two factors: for example, fiber-optic cables can provide faster links and switch-
ing technology can be used to move packets from the input interface of a router to the
corresponding output interface at multi-gigabit speeds [Partridge et al. 1998]. Our paper
deals with the other two factors: forwarding packets at high speeds while still allowing for
frequent updates to the routing table.

A major step in packet forwarding is to lookup the destination address (of an incoming
packet) in the routing database. While there are other chores, such as updating TTL fields,
these are computationally inexpensive compared to the major task of address lookup. Data
link Bridges have been doing address lookups at 100 Mbps [Spinney 1995] for many years.
However, bridges only do exact matching on the destination (MAC) address, while Inter-
net routers have to search their database for the longest prefix matching a destination IP
address. Thus, standard techniques for exact matching, such as perfect hashing, binary
search, and standard Content Addressable Memories (CAM) cannot directly be used for
Internet address lookups. Also, the most widely used algorithm for IP lookups, BSD Patri-
cia Tries [Sklower 1993], has poor performance.

Prefix matching in Internet routers was introduced in the early 1990s, when it was fore-
seen that the number of endpoints and the amount of routing information would grow
enormously. At that time, only address classes A, B, and C existed, giving individual sites
either 24, 16, and 8 bits of address space, allowing up to 16 Million, 65,534, and 254 host

Scalable High-Speed Prefix Matching · 3

addresses, respectively. The size of the network could easily be deduced from the first few
address bits, making hashing a popular technique. The limited granularity turned out to
be extremely wasteful on address space. To make better use of this scarce resource, espe-
cially the class B addresses, bundles of class C networks were given out instead of class B
addresses. This would have resulted in massive growth of routing table entries over time.
Therefore, Classless Inter-Domain Routing (CIDR) [Fuller et al. 1993] was introduced,
which allowed for aggregation of networks in arbitrary powers of two to reduce routing
table entries. With this aggregation, it was no longer possible to identify the number of bits
relevant for the forwarding decision from the address itself, but required a prefix match,
where the number of relevant bits was only known when the matching entry had already
been found in the database.

To achieve maximum routing table space reduction, aggregation is done aggressively.
Suppose all the subnets in a big network have identical routing information except for a sin-
gle, small subnet with different information. Instead of having multiple routing entries for
each subnet in the large network, just two entries are needed: one for the overall network,
and one entry showing the exception for the small subnet. Now there are two matches
for packets addressed to the exceptional subnet. Clearly, the exception entry should get
preference there. This is achieved by preferring the more specific entry, resulting in a Best
Matching Prefix (BMP) operation. In summary, CIDR traded off better usage of the lim-
ited IP address space and a reduction in routing information for a more complex lookup
scheme.

The upshot is that today an IP router’s database consists of a number of address prefixes.
When an IP router receives a packet, it must compute which of the prefixes in its database
has the longest match when compared to the destination address in the packet. The packet
is then forwarded to the output link associated with that prefix, directed to the next router
or the destination host. For example, a forwarding database may have the prefixes P 1 =
0000∗, P2 = 0000 111∗ and P3 = 0000 1111 0000∗, with ∗ meaning all further bits
are unspecified. An address whose first 12 bits are 0000 0110 1111 has longest matching
prefix P1. On the other hand, an address whose first 12 bits are 0000 1111 0000 has
longest matching prefix P3.

The use of best matching prefix in forwarding has allowed IP routers to accommodate
various levels of address hierarchies, and has allowed parts of the network to be oblivious
of details in other parts. Given that best matching prefix forwarding is necessary for hier-
archies, and hashing is a natural solution for exact matching, a natural question is: “Why
can’t we modify hashing to do best matching prefix?” However, for several years now, it
was considered not to be “apparent how to accommodate hierarchies while using hashing,
other than rehashing for each level of hierarchy possible” [Sklower 1993].

Our paper describes a novel algorithmic solution to longest prefix match, using binary
search over hash tables organized by the length of the prefix. Our solution requires a
worst case of log W hash lookups, with W being the length of the address in bits. Thus,
for the current Internet protocol suite (IPv4) with 32 bit addresses, we need at most 5 hash
lookups. For the upcoming IP version 6 (IPv6) with 128 bit addresses, we can do lookup in
at most 7 steps, as opposed to longer for current algorithms (see Section 2), giving an order
of magnitude performance improvement. Using perfect hashing [Fredman et al. 1984], we
can lookup 128 bit IP addresses in at most 7 memory accesses. This is significant because
on current processors, the calculation of a hash function is usually much cheaper than an
off-chip memory access.

4 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

In addition, we use several optimizations to significantly reduce the average number
of hashes needed. For example, our analysis of the largest IPv4 forwarding tables from
Internet backbone routers show that the majority of addresses can be found with at most
two hashes. Also, all available databases allowed us to reduce the worst case to four
accesses. In both cases, the first hash can be replaced by a simple index table lookup.

The rest of the paper is organized as follows. Section 2 introduces our taxonomy and
compares existing approaches to IP lookups. Section 3 describes our basic scheme in a se-
ries of refinements that culminate in the basic binary search scheme. Section 4 focuses on
a series of important optimizations to the basic scheme that improve average performance.
Section 5 describes ways how to build the appropriate structures and perform dynamic
insertions and deletions, Section 6 introduces prefix partitioning to improve worst-case
insertion and deletion time, and Section 7 explains fast hashing techniques. Section 8 de-
scribes performance measurements using our scheme for IPv4 addresses, and performance
projections for IPv6 addresses. We conclude in Section 9 by assessing the theoretical and
practical contributions of this paper.

2. COMPARISON OF EXISTING ALGORITHMS

As several algorithms for efficient prefix matching lookups have appeared in the literature
over the last few years (including a recent paper [Srinivasan and Varghese 1999] in ACM
TOCS), we feel that it is necessary to structure the presentation of related work using
a taxonomy. Our classification goes beyond the lookup taxonomy recently introduced
in [Ruiz-Sánchez et al. 2001]. However, the paper [Ruiz-Sánchez et al. 2001] should be
consulted for a more in-depth discussion and comparison of some of the other popular
schemes.

0 1
P

refix Length

Value

Prefix Node

Internal Node

Fig. 1. Prefix Matching Overview

Traditionally, prefix matching has been done on tries [Gwehenberger 1968; Morrison
1968], with bit-wise (binary) tries being the foremost representative. Figure 1 shows such
a trie. To find the longest prefix matching a given search string, the tree is traversed starting
at the root (topmost) node. Depending on the value of the next bit in the search string, either
the left or right link is followed, always remembering the most recent prefix node visited.
When the search string is exhausted or a nonexistent link is selected, the remembered prefix
node is returned as the best match.

Thus a trie has two aspects (Figure 1) that we base our taxonomy on: the first is the
vertical aspect that signifies prefix length (as we travel vertically down the trie the prefixes
we encounter are correspondingly longer); the second horizontal aspect is the prefix value

Scalable High-Speed Prefix Matching · 5

(the value of the bit string representing the prefix, prefixes of the same length are sorted
from left to right). Our simple insight, which is the basis of our taxonomy, is that existing
schemes either do linear or binary search in either the prefix length or value dimensions.
The schemes can also be augmented using parallelism, caching, and compression.

2.1 Taxonomy

Thus our taxonomy is organized along four dimensions. The two major dimensions are
defined by the main search space in which to operate (see Figure 1) and the basic search
algorithm used. The minor dimensions, orthogonal and largely independent of the main
dimensions, identify parallelism, memory optimizations and compression, and the use of
caching.

Search space: Search in prefix length or value space

Search algorithm: Linear or binary search

Parallelism: Serialized, pipelined, or parallel execution

Data Compaction and caching: Optional use of compression and caching.

2.2 Linear Search on Prefix Lengths

The basic trie scheme described above is an example of linear search in the prefix length
space without compression. This is because trie traversal explores prefixes in increasing
order of lengths. Many schemes have extended this idea by reducing the trie memory
footprint or the number of trie nodes accessed during search.

The most commonly available IP lookup implementation is found in the BSD Unix
kernel, and is a radix trie implementation [Sklower 1993]. It uses a path-compressed trie,
where non-branching internal nodes are eliminated, improving memory utilization. The
actual implementation uses potentially expensive backtracking. Even an efficient search
implementation would require O(W) node accesses, where W is the length of an address.
Thus, search implementation requires up to 32 or 128 costly external memory accesses, for
IPv4 or IPv6, respectively. Therefore, these algorithms are not directly used in high-speed
networking equipment. Unlike most other algorithms, updates to these unibit tries are very
fast and make them ideal candidates for data structures with a high update/search ratio.

Path compression is most useful when compressing long non-branching chains of in-
ternal nodes, which occur in sparsely populated areas of the trie. LC-Tries [Andersson
and Nilsson 1994; Nilsson and Karlsson 1999] extend this notion by introducing level
compression, where, for any given prefix length, dense areas with a common ancestor are
aggregated into a single 2k-ary branching node. This scheme maintains a good balance of
memory usage, search speed, and update times.

For applications where search speed is much more important than update speed or
worst-case memory consumption, such as for Internet forwarding lookups, more aggres-
sive search time optimization is required. To reduce the number of levels that need to be
touched, Controlled Prefix Expansion [Srinivasan and Varghese 1999] selects a small num-
ber of prefix lengths to be searched. All database entries that are not already of one of these
lengths, are expanded into multiple entries of the next higher selected length. Depending
on the length of the “strides” s between the selected lengths and the prefix length distri-
bution, this can lead to an expansion of up to 2s−1. Selecting the strides using dynamic
programming techniques results in minimal expansion when used with current IP routing

6 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

tables. Despite expansion, this search scheme is still linear in the prefix length because
expansion only provides a constant factor improvement.

Prefix expansion is used generously in the scheme developed by Gupta et al. [Gupta
et al. 1998] to reduce memory accesses even further. In the DIR-24-8 scheme presented
there, all prefixes are expanded to at least 24 bits (the Internet backbone forwarding tables
contain almost no prefixes longer than 24 bits). A typical lookup will then just use the most
significant 24 bits of the address as an index into the 16M entries of the table, reducing the
expected number of memory accesses to almost one.

A different approach was chosen by Degermark et al. [Degermark et al. 1997]. By first
expanding to a complete trie and then using bit vectors and mapping tables, they are able
to represent routing tables of up to 40,000 entries in around 150KBytes. This compact
representation allows the data to be kept in on-chip caches, which provide much better
performance than standard off-chip memory. A further approach to trie compression using
bitmaps is described in [Eatherton 1999].

Crescenzi et al. [Crescenzi et al. 1999] present another compressed trie lookup scheme.
They first fully expand the trie, so that all leaf nodes are at length W . Then, they divide
the tree into multiple subtrees of identical size. These slices are then put side-by-side, say,
in columns. All the neighboring identical rows are then collapsed, and a single table is
created to map from the original row number to the new, compressed row number. Unlike
the previous approach [Degermark et al. 1997], this does not result in a small enough table
to fit into typical on-chip caches, yet it guarantees that all lookups can be done in exactly
3 indexed memory lookups.

McAuley and Francis [McAuley and Francis 1993] use standard (“binary”) content-
addressable memories (CAMs) to quickly search the different prefix lengths. The first
solution discussed requires multiple passes through, starting with the longest prefix. This
search order was chosen to be able to terminate after the first match. The other solution
is to have multiple CAMs queried in parallel. CAMs are generally much slower than con-
ventional memory and do not provide enough entries for backbone routers are still rare,
where in the near future more than 100,000 forwarding entries will be required. Never-
theless, CAMs are popular in edge routers, which typically only have up to hundreds of
forwarding entries.

2.3 Binary Search on Prefix Lengths

The prior work closest to binary search on prefix lengths occurs in computational geometry.
De Berg et al. [de Berg et al. 1995] describe a scheme for one-dimensional point location
based on stratified trees [van Emde Boas 1975; van Emde Boas et al. 1977]. A stratified
tree is probably best described as a self-similar tree, where each node internally has the
same structure as the overall tree. The actual search is not performed on a prefix trie, but
on a balanced interval tree. The scheme does not support overlapping regions, which are
required to implement prefix lookups. While this could be resolved in a preprocessing
step, it would degrade the incremental update time to O(N). Also unlike the algorithm
introduced in Section 3, it cannot take advantage of additional structure in the routing table
(Section 4).

2.4 Linear Search of Values

Pure linear value search is only reasonable for very small tables. But a hardware-parallel
version using ternary CAMs has become attractive in the recent years. Ternary CAMs,

Scalable High-Speed Prefix Matching · 7

unlike the binary CAMs above, which require multiple stages or multiple CAMs, have a
mask associated with every entry. This mask is used to describe which bits of the entry
should be compared to the query key, allowing for one-pass prefix matching. Due to the
higher per-entry hardware overhead, ternary CAMs typically provide for only about half
the entries as comparable binary CAMs. Also, as multiple entries may match for a single
search key, it becomes necessary to prioritize entries. As priorities are typically associ-
ated with an internal memory address, inserting a new entry can potentially cause a large
number of other entries to be shifted around. Shah and Gupta [Shah and Gupta 2000]
present an algorithmic solution to minimize these shifts while Kobayashi et al. [Kobayashi
et al. 2000] modify the CAM itself to return only the longest match with little hardware
overhead.

2.5 Binary Search of Values

The use of binary search on the value space was originally proposed by Butler Lampson
and described in [Perlman 1992]; additional improvements were proposed in [Lampson
et al. 1998]. The key ideas are to represent each prefix as a range using two values (the
lowest and highest values in the range), to preprocess the table to associate matching pre-
fixes with these values, and then to do ordinary binary search on these values. The resulting
search time is �log2 2N� search steps, with N being the number of routing table entries.
With current routing table sizes, this gets close to the expected number of memory accesses
for unibit tries, which is fairly slow. However, lookup time can be reduced using B-trees
instead of binary trees and by using an initial memory lookup [Lampson et al. 1998].

2.6 Parallelism, Data Compaction, and Caches

The minor dimensions described above in our taxonomy can be applied to all the major
schemes. Almost every lookup algorithm can be pipelined. Also, almost all algorithms
lend themselves to more compressed representations of their data structures; however, in
[Degermark et al. 1997; Crescenzi et al. 1999; Eatherton 1999], the main novelty is the
manner in which a multibit trie is compressed while retaining fast lookup times.

In addition, all of the lookup schemes can take advantage of an added lookup cache,
which does not store the prefixes matched, but instead stores recent lookup keys, as exact
matches are generally much simpler and faster to implement. Unfortunately, with the
growth of the Internet, access locality in packet streams seems to decrease, requiring larger
and larger caches to achieve similar hit rates. In 1987, Feldmeier [Feldmeier 1988] found
that a cache for the most recent 9 destination addresses already provided for a 90% hit rate.
8 years later, Partridge [Partridge 1996] did a similar study, where caches with close to
5000 entries were required to achieve the same hit rate. We expect this trend to continue
and potentially to become even more pronounced.

2.7 Protocol Based Solutions

Finally, (leaving behind our taxonomy) we note that one way to finesse the problems of IP
lookup is to have extra information sent along with the packet to simplify or even totally
get rid of IP lookups at routers. Two major proposals along these lines were IP Switching
[Newman et al. 1997] and Tag Switching [Rekhter et al. 1997], both now mostly replaced
by Multi-Protocol Label Switching (MPLS [Rosen et al. 2001]. All three schemes require
large, contiguous parts of the network to adopt their protocol changes before they will
show a major improvement. The speedup is achieved by adding information on the des-

8 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

tination to every IP packet, a technique first described by Chandranmenon and Varghese
[Chandranmenon and Varghese 1995]. This switching information is included by adding a
“label” to each packet, a small integer that allows direct lookup in the router’s forwarding
table.

Neither scheme can completely avoid ordinary IP lookups. All schemes require the
ingress router (to the portions of the network implementing their protocol) to perform a full
routing decision. In their basic form, both systems potentially require the boundary routers
between autonomous systems (e.g., between a company and its ISP or between ISPs) to
perform the full forwarding decision again, because of trust issues, scarce resources, or
different views of the network. Labels will become scarce resources, of which only a finite
amount exist. Thus towards the backbone, they need to be aggregated; away from the
backbone, they need to be separated again.

2.8 Summary of Existing Work

There are two basic solutions for the prefix matching problem caused by Internet growth:
(1) making lookups faster or (2) reducing the number of lookups using caching or protocol
modifications. As seen above, the latter mechanisms are not able to completely avoid
lookups, but only reduce them to either fewer routers (label switching) or fewer per router
(caching). The advantage of using caches will disappear in a few years, as Internet data
rates are growing much faster than hardware speeds, to the point that all lookup memory
will have to use the fastest available memory (i.e., SRAM of the kind that is currently used
by cache memory).

The most popularly deployed schemes today are based on linear search of prefix lengths
using multibit or unibit tries together with high speed memories and pipelining. However,
these algorithms do not scale well to longer next generation IP addresses. Lookup schemes
based on unibit tries and binary search are (currently) too slow and do not scale well; CAM
solutions are relatively expensive and are hard to field upgrade;

In summary, all existing schemes have problems of either performance, scalability, gen-
erality, or cost, especially when addresses extend beyond the current 32 bits. We now
describe a lookup scheme that has good performance, is scalable to large addresses, and
does not require protocol changes. Our scheme allows a cheap, fast software implementa-
tion, and is also amenable to hardware implementations.

3. BASIC BINARY SEARCH SCHEME

Our basic algorithm is based on three significant ideas: First, we use hashing to check
whether an address D matches any prefix of a particular length; second, we use binary
search to reduce number of searches from linear to logarithmic; third, we use pre-computation
to prevent backtracking in case of failures in the binary search of a range. Rather than
present the final solution directly, we will gradually refine these ideas in Section 3.1, Sec-
tion 3.2, and Section 3.4 to arrive at a working basic scheme. We describe further opti-
mizations to the basic scheme in the next section. As there are multiple ways to look at the
data structure, whenever possible we will use the terms “shorter” and “longer” to signify
selecting shorter or longer prefixes.

3.1 Linear Search of Hash Tables

Our point of departure is a simple scheme that does linear search of hash tables organized
by prefix lengths. We will improve this scheme shortly to do binary search on the hash

Scalable High-Speed Prefix Matching · 9

tables.

Length Hash

5

7

12

01010

0101011
0110110

011011010101

Hash tables

Fig. 2. Hash Tables for each possible prefix length

The idea is to look for all prefixes of a certain length l using hashing and use multiple
hashes to find the best matching prefix, starting with the largest value of l and working
backwards. Thus we start by dividing the database of prefixes according to lengths. As-
suming a particularly tiny routing table with four prefixes of length 5, 7, 7, and 12, respec-
tively, each of them would be stored in the hash table for its length (Figure 2). So each
set of prefixes of distinct length is organized as a hash table. If we have a sorted array L
corresponding to the distinct lengths, we only have 3 entries in the array, with a pointer to
the longest length hash table in the last entry of the array.

To search for destination address D, we simply start with the longest length hash table l
(i.e. 12 in the example), and extract the first l bits of D and do a search in the hash table
for length l entries. If we succeed, we have found the longest match and thus our BMP; if
not, we look at the first length smaller than l, say l ′ (this is easy to find if we have the array
L by simply indexing one position less than the position of l), and continuing the search.

3.2 Binary Search of Hash Tables

The previous scheme essentially does (in the worst case) linear search among all dis-
tinct string lengths. Linear search requires O(W) time (more precisely, O(W dist), where
Wdist ≤ W is the number of distinct lengths in the database.)

A better search strategy is to use binary search on the array L to cut down the number
of hashes to O(log Wdist). However, for binary search to make its branching decision, it
requires the result of an ordered comparison, returning whether the probed entry is “less
than,” “equal,” or “greater than” our search key. As we are dealing with prefix lengths,
these map to indications to look at “shorter,” “same length,” or “longer,” respectively.
When dealing with hash lookups, ordered comparison does seem impossible: either there
is a hit (then the entry found equals the hash key) or there is a miss and thus no comparison
possible.

Let’s look at the problem from the other side: In ordinary binary search, “equal” indi-
cates that we have found the matching entry and can terminate the search. When searching
among prefix lengths, having found a matching entry does not yet imply that this is also the
best entry. So clearly, when we have found a match, we need to continue searching among
the longer prefixes. How does this observation help? It signifies, that when an entry has
been found, we should remember it as a potential candidate solution, but continue looking
for longer prefixes. The only other information that we can get from the hash lookup is a
miss. Due to limited choice, we start taking hash misses as an indication to inspect shorter
prefixes. This results in the pseudo code given in Figure 3.

10 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Function NaiveBinarySearch(D) (* search for address D *)
Initialize search range R to cover the whole array L;
While R is not a single entry do

Let i correspond to the middle level in range R;
Extract the most significant L[i].length bits of D into D′;
Search(D′, L[i].hash); (* search hash table for D′ *)
If found then set R := longer half of R (*longer prefixes*)

Else set R := shorter half of R; (*shorter prefixes*)
Endif

Endwhile

Fig. 3. Naı̈ve Binary Search

(a) Binary search tree

1

2

3

4

6

5 7

0*

(b) Hash Tables

1111010

11001111100* 110011*

111100*

bold: Prefixes italic: Markers

Fig. 4. Binary Search: First Attempt

Figure 4 illustrates binary search over 7 prefix lengths. The tree on the top indicates the
binary search branching that is to be taken: Starting at the root (length 4), the current hash
table is probed for the key shortened to the current prefix length. If the key is found, longer
prefixes are selected, otherwise shorter prefixes are tested next. As an example, we try to
find the longest prefix for “1100100.” We find a match at length 4 (1100*), thus taking
the branch towards longer prefixes, namely length 6. Looking for “110010*” there fails.
Therefore, we look for shorter prefixes at length 5, and miss again. The best match found
during our search is “1100*,” which is correct.

Trying to locate address “1111000” fails miserably: We miss at 4, go shorter to 2, miss
again, and have no luck at length 1 either. The correct match would have been “111100*”
at length 6. Unlike the previous example, there had been no guiding prefixes in this case.
To make sure that such guiding prefixes exist, we insert additional branching information,
called markers. These markers look like prefixes, except that they have no associated
information fields, their sheer presence is all we want for now.

But where do we need markers, and how many are there? Na ı̈vely, it seems that for every
entry, there would be a marker at all other prefix lengths, leading to a massive increase in
the size of the hash tables. Luckily, markers do not need to be placed at all levels. Figure 5
again shows a binary search tree. At each node, a branching decision is made, going to
either the shorter or longer subtree, until the correct entry or a leaf node is met. Clearly,
at most log W internal nodes will be traversed on any search, resulting in at most log W

Scalable High-Speed Prefix Matching · 11

branching decisions. Also, any search that will end up at a given node only has a single
path to choose from, eliminating the need to place markers at any other levels.

(a) Binary search tree

1

2

3

4

6

5 7

0* 1111*

(b) Hash Tables including Markers

1111010

11001111100* 110011*

111100*

111101*

bold: Prefixes italic: Markers

Fig. 5. Improved Branching Decisions due to Markers

3.3 Problems with Backtracking

Unfortunately, the algorithm shown in Figure 3 is not correct as it stands and does not take
logarithmic time if fixed naı̈vely. The problem is that while markers are good things (they
lead to potentially better, longer prefixes in the table), can also cause the search to follow
false leads which may fail. In case of failure, we would have to modify the binary search
(for correctness) to backtrack and search the shorter prefixes of R again. Such a naı̈ve
modification can lead us back to linear time search. An example will clarify this.

1

2

3

1*

00*

111*11*

Fig. 6. Misleading Markers

First consider the prefixes P1 = 1, P2 = 00, P3 = 111 (Figure 6). As discussed above,
we add a marker to the middle table so that the middle hash table contains 00 (a real prefix)
and 11 (a marker pointing down to P3). Now consider a search for 110. We start at the
middle hash table and get a hit; thus we search the third hash table for 110 and fail. But the
correct best matching prefix is at the first level hash table — i.e., P1. The marker indicating
that there will be longer prefixes, indispensable to find P3, was misleading in this case; so
apparently, we have to go back and search the shorter half of the range.

The fact that each entry contributes at most log2 W markers may cause some readers to
suspect that the worst case with backtracking is limited to O(log2 W). This is incorrect.
The worst case is O(W). The worst-case example for say W bits is as follows: we have a

12 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

prefix Pi of length i, for 1 ≤ i < W that contains all 0s. In addition we have the prefix Q
whose first W − 1 bits are all zeroes, but whose last bit is a 1. If we search for the W bit
address containing all zeroes then we can show that binary search with backtracking will
take O(W) time and visit every level in the table. (The problem is that every level contains
a false marker that indicates the presence of something better in the longer section.)

3.4 Pre-computation to Avoid Backtracking

We use pre-computation to avoid backtracking when we shrink the current range R to the
longer half of R (which happens when we find a marker at the mid point of R). Suppose
every marker node M is a record that contains a variable M.bmp, which is the value of the
best matching prefix of the marker M .1 M.bmp can be precomputed when the marker M is
inserted into its hash table. Now, when we find M at the mid point of R, we indeed search
the longer half, but we also remember the value of M.bmp as the current best matching
prefix. Now if the longer half of R fails to produce anything interesting, we need not
backtrack, because the results of the backtracking are already summarized in the value of
M.bmp. The new code is shown in Figure 7.

Function BinarySearch(D) (* search for address D *)
Initialize search range R to cover the whole array L;
Initialize BMP found so far to null string;
While R is not empty do

Let i correspond to the middle level in range R;
Extract the first L[i].length bits of D into D′;
M := Search(D′, L[i].hash); (* search hash for D′ *)
If M is nil Then set R := shorter half of R; (* not found *)
Else-if M is a prefix and not a marker
Then BMP := M.bmp; break; (* exit loop *)
Else (* M is a pure marker, or marker and prefix *)

BMP := M.bmp; (* update best matching prefix so far *)
R := longer half of R;

Endif
Endwhile

Fig. 7. Working Binary Search

The standard invariant for binary search when searching for key K is: “K is in range
R”. We then shrink R while preserving this invariant. The invariant for this algorithm,
when searching for key K is: “either (The Best Matching Prefix of K is BMP) or (There
is a longer matching prefix in R)”.

It is easy to see that initialization preserves this invariant, and each of the search cases
preserves this invariant (this can be established using an inductive proof). Finally, the
invariant implies the correct result when the range shrinks to 1. Thus the algorithm works
correctly; also since it has no backtracking, it takes O(log2 Wdist) time.

1This can either be a pointer to the best matching node, or a copy of its value. The latter is typically preferred,
as the information stored is often comparable to the size of a pointer. Very often, the BMP is an index into a
next-hop table.

Scalable High-Speed Prefix Matching · 13

4. REFINEMENTS TO BASIC SCHEME

The basic scheme described in Section 3 takes just 7 hash computations, in the worst case,
for 128 bit IPv6 addresses. However, each hash computation takes at least one access to
memory; at gigabit speeds each memory access is significant. Thus, in this section, we
explore a series of optimizations that exploit the deeper structure inherent to the problem
to reduce the average number of hash computations.

1

10

100

1000

10000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
ou

nt

Prefix Length

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

Fig. 8. Histogram of Backbone Prefix Length Distributions (log scale)

4.1 Asymmetric Binary Search

We first describe a series of simple-minded optimizations. Our main optimization, mutat-
ing binary search, is described in the next section. A reader can safely skip to Section 4.2
on a first reading.

The current algorithm is a fast, yet very general, BMP search engine. Usually, the
performance of general algorithms can be improved by tailoring them to the particular
datasets they will be applied to. Figure 8 shows the prefix length distribution extracted
from forwarding table snapshots from five major backbone sites in January 1999 and, for
comparison, at Mae-East in December 1996 2. As can be seen, the entries are distributed
over the different prefix lengths in an extremely uneven fashion. The peak at length 24
dominates everything by at least a factor of ten, if we ignore length 24. There are also more
than 100 times as many prefixes at length 24 than at any prefix outside the range 15 . . . 24.
This graph clearly shows the remnants of the original class A, B, and C networks with local
maxima at lengths 8, 16, and 24. This distribution pattern is retained for many years now
and seems to be valid for all backbone routing tables, independent of their size (Mae-East
has over 38,000, while PAIX has less than 6,000 entries).

These characteristics visibly cry for optimizations. Although we will quantify the po-
tential improvements using these forwarding tables, we believe that the optimizations in-
troduced below apply to any current or future set of addresses.

As the first improvement, which has already been mentioned and used in the basic
scheme, the search can be limited to those prefix lengths which do contain at least one en-
try, reducing the worst case number of hashes from log 2 W (5 with W = 32) to log2 Wdist

2http://www.merit.edu/ipma/routing table/

14 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Table 1. Forwarding Tables: Total Prefixes, Distinct Lengths, and Distinct Lengths longer than 16 bit
Prefixes Wdist Wdist≥16

AADS 24218 23 15
Mae-East 38031 24 16
Mae-West 23898 22 14
PAIX 5924 17 12
PacBell 22850 20 12
Mae-East 1996 33199 23 15

(4.1 . . . 4.5 with Wdist ∈ [17, 24], according to Table 1). Figure 9 applies this to Mae-
East’s 1996 table. While this numerically improves the worst case, it harms the average
performance, since the popular prefix lengths 8, 16, and 24 move to less favorable posi-
tions.

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

30

26

22

18

14

10

6

2

28

20

12

4

24

16

8

32

28

24

21

18

15

12

9

30

27

23

20

17

14

11

8

29

22

16

10

26

19

13

Standard Binary Search Distinct Binary Search

Fig. 9. Search Trees for Standard and Distinct Binary Search

A more promising approach is to change the tree-shaped search pattern in the most
promising prefix length layers first, introducing asymmetry into the binary tree. While
this will improve average case performance, introducing asymmetries will not improve the
maximum tree height; on the contrary, some searches will make a few more steps, which
has a negative impact on the worst case. Given that routers can temporarily buffer packets,
worst case time is not as important as the average time. The search for a BMP can only be
terminated early if we have a “stop search here” (“terminal”) condition stored in the node.
This condition is signalled by a node being a prefix but no marker (Figure 7).

Average time depends heavily on the traffic pattern seen at that location. Optimizing
binary search trees according to usage pattern is an old problem [Knuth 1998]. By opti-
mizing the average case, some data sets could degenerate towards linear search (Figure 10),
which is clearly undesirable.

To build a useful asymmetrical tree, we can recursively split both the upper and lower
part of the binary search tree’s current node’s search space, at a point selected by a heuris-
tic weighting function. Two different weighting functions with different goals (one strictly
picking the level covering most addresses, the other maximizing the entries while keeping
the worst case bound) are shown in Figure 10, with coverage and average/worst case analy-
sis for both weighting functions in Table 2. As can be seen, balancing gives faster increases

Scalable High-Speed Prefix Matching · 15

Table 2. Address (A) and Prefix (P) Count Coverage for Asymmetric Trees
Steps Usage Balance

A P A% P%

1 43% 14% 43% 14%
2 83% 16% 46% 77%
3 88% 19% 88% 80%
4 93% 83% 95% 87%
5 97% 86% 100% 100%

Average 2.1 3.9 2.3 2.4
Worst case 9 9 5 5

after the second step, resulting in generally better performance than “narrow-minded” al-
gorithms.

26

20

12

9

24

15

10

19

17

14

18

16

8

13

11

21
22

27
28

30
32

23

21

19

17

13

8

32

28

26

22

18

15

12

30

27

20

14

29

24

16

10
9

11

Maximize Entries,
Keeping Balance

Maximize
Addresses Covered
(Usage Probability)

Fig. 10. Asymmetric Trees produced by two Weighting Functions

4.2 Mutating Binary Search

In this subsection, we further refine the basic binary search tree to change or mutate to
more specialized binary trees each time we encounter a partial match in some hash table.
We believe this a far more effective optimization than the use of asymmetrical trees though
the two ideas can be combined.

Previously, we tried to improve search time based on analysis of prefix distributions
sorted by prefix lengths. The resulting histogram (Figure 8) led us to propose asymmet-
rical binary search, which can improve average speed. More information about prefix
distributions can be extracted by further dissecting the histogram: For each possible n bit
prefix, we could draw 2n individual histograms with possibly fewer non-empty buckets,
thus reducing the depth of the search tree.

16 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Table 3. Histogram of the Number of Distinct Prefix Lengths ≥ 16 in the 16 bit Partitions

1 2 3 4 5 6 7 8 9
AADS 3467 740 474 287 195 62 11 2 1
Mae-East 2094 702 521 432 352 168 53 8 1
Mae-West 3881 730 454 308 158 70 17 3 —
PAIX 1471 317 139 56 41 31 1 — —
PacBell 3421 704 442 280 168 42 9 — —
Mae-East
1996 5051 547 383 273 166 87 27 3 —

When partitioning according to 16 bit prefixes3, and counting the number of distinct
prefix lengths in the partitions, we discover another nice property of the routing data. We
recall the whole forwarding databases (Figure 8 and Table 1) showed up to 24 distinct
prefix lengths with many buckets containing a significant number of entries and up to 16
prefix lengths with at least 16 bits. Looking at the sliced data in (Table 3), none of these
partial histograms contain more than 9 distinct prefixes lengths; in fact, the vast majority
only contain one prefix, which often happens to be in the 16 bit prefix length hash table
itself. This suggests that if we start with 16 bits in the binary search and get a match, we
need only do binary search on a set of lengths that is much smaller than the 16 possible
lengths we would have to search in na ı̈ve binary search.

In general, every match in the binary search with some marker X means that we need
only search among the set of prefixes for which X is a prefix. Thus, binary search on
prefix lengths has an advantage over conventional binary search: on each branch towards
longer prefixes, not only the range of prefix lengths to be searched is reduced, but also the
number of prefixes in each of these lengths. Binary search on prefix lengths thus narrows
the search in two dimensions on each match, as illustrated in Figure 11.

Thus the whole idea in mutating binary search is as follows: whenever we get a match
and move to a new subtrie, we only need to do binary search on the levels of new subtrie.
In other words, the binary search mutates or changes the levels on which it searches dy-
namically (in a way that always reduces the levels to be searched), as it gets more and more
match information.

Thus each entry E in the search table could contain a description of a search tree spe-
cialized for all prefixes that start with E. The optimizations resulting from this observation
improve lookups significantly:

Worst case: In all the databases we analyzed, we were able to reduce the worst case from
five hashes to four hashes.

Average case: In the largest two databases, the majority of the addresses is found in at
most two hash lookups. The smaller databases take a little bit longer to reach their
halfway point.

Using Mutating Binary Search, looking for an address (see Figure 13) is different. First,
we explain some new conventions for reading Figure 13. As in the other figures, we con-
tinue to draw a binary search tree on top. However, in this figure, we now have multiple

3There is nothing magic about the 16 bit level, other than it being a natural starting length for a binary search of
32 bit IPv4 addresses.

Scalable High-Speed Prefix Matching · 17

X

Root

New Trie on Failure

m = Median Length
among all prefix
lengths in trie

New Trie on Match
(first m bits of
Prefix = X)

Fig. 11. Showing how mutating binary search for prefix P dynamically changes the trie on which it will do
binary search of hash tables.

 0%

 20%

 40%

 60%

 80%

100%

1 2 3 4

Pr
ef

ix
es

 f
ou

nd

Search Steps

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

Average

Fig. 12. Number of Hash Lookups (Note: No average-case optimizations)

partial trees, originating from any prefix entry. This is because the search process will
move from tree to tree, starting with overall tree. Each binary tree has the “root” level (i.e.,
the first length to be searched) at the left; the left child of each binary tree node is the length
to be searched on failure, and whenever there is a match, the search switches to the more
specific tree.

Consider now a search for address 1100110, matching the prefix labelled B, in the
database of Figure 13. The search starts with the generic tree, so length 4 is checked,
finding A. Among the prefixes starting with A, there are known to be only three distinct
lengths (4, 5, and 6). So A contains a description of the new tree, limiting the search
appropriately. This tree is drawn as rooting in A. Using this tree, we find B, giving a new
tree, the empty tree. The binary tree has mutated from the original tree of 7 lengths, to a
secondary tree of 3 lengths, to a tertiary empty “tree”.

Looking for 1111011, matching G, is similar. Using the overall tree, we find F . Switch-
ing to its tree, we miss at length 7. Since a miss (no entry found) can’t update a tree, we
follow our current tree upwards to length 5, where we find G.

In general, whenever we go down in the current tree, we can potentially move to a
specialized binary tree because each match in the binary search is longer than any previous
matches, and hence may contain more specialized information. Mutating binary trees arise
naturally in our application (unlike classical binary search) because each level in the binary
search has multiple entries stored in a hash table. as opposed to a single entry in classical

18 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

1

2

3

4

6

5 7

Overall Search Tree

0* 00* 000*

10000*1000*

0000* 000000*

1111* 11110* 1111000

6

5

5

7

1100* 11001* 110000* 1100000

6
5 7

110011*
B:

A:

F: G: H:

0111* 01110* 011100*
5

6

Fig. 13. Mutating Binary Search Example

binary search. Each of the multiple entries can point to a more specialized binary tree.
In other words, the search is no longer walking through a single binary search tree, but

through a whole network of interconnected trees. Branching decisions are not only based
on the current prefix length and whether or not a match is found, but also on what the best
match so far is (which in turn is based on the address we’re looking for.) Thus at each
branching point, you not only select which way to branch, but also change to the most
optimal tree. This additional information about optimal tree branches is derived by pre-
computation based on the distribution of prefixes in the current dataset. This gives us a
faster search pattern than just searching on either prefix length or address alone.

Two possible disadvantages of mutating binary search immediately present themselves.
First, precomputing optimal trees can increase the time to insert a new prefix. Second, the
storage required to store an optimal binary tree for each prefix appears to be enormous. We
deal with insertion speed in Section 5. For now, we only observe that while the forwarding
information for a given prefix may frequently change in cost or next hop, the addition or
deletion of a new prefix (which is the expensive case) is be much rarer. We proceed to deal
with the space issue by compactly encoding the network of trees.

4.2.1 Bitmap. One short encoding method would be to store a bitmap, with each bit
set to one representing a valid level of the binary search tree. While this only uses W
bits, computing a binary tree to follow next is an expensive task with current processors.
The use of lookup tables to determine the middle bit is possible with short addresses (such
as IPv4) and a binary search root close to the middle. Then, after the first lookup, there
remain around 16 bits (less in upcoming steps), which lend themselves to a small (2 16

bytes) lookup table.

4.2.2 Rope. A key observation is that we only need to store the sequence of levels which
binary search on a given subtrie will follow on repeated failures to find a match. This is
because when we get a successful match (see Figure 11), we move to a completely new
subtrie and can get the new binary search path from the new subtrie. The sequence of
levels which binary search would follow on repeated failures is what we call the Rope of
a subtrie, and can be encoded efficiently. We call it Rope, because the Rope allows us to

Scalable High-Speed Prefix Matching · 19

swing from tree to tree in our network of interconnected binary search trees.
If we consider a binary search tree, we define the Rope for the root of the trie node to

be the sequence of trie levels we will consider when doing binary search on the trie levels
while failing at every point. This is illustrated in Figure 14. In doing binary search we start
at Level m which is the median length of the trie. If we fail, we try at the quartile length
(say n), and if we fail at n we try at the one-eight level (say o), and so on. The sequence
m,n, o, . . . is the Rope for the trie.

m

n

o Eight Level

Quarter Level

Median Level

m

n

o

•

• • •

Fig. 14. In terms of a trie, a rope for the trie node is the sequence of lengths starting from the median length, the
quartile length, and so on, which is the same as the series of left children (see dotted oval in binary tree on right)
of a perfectly balanced binary tree on the trie levels.

Figure 15 shows the Ropes containing the same information as the trees in Figure 13.
Note that a Rope can be stored using only log2 W (7 for IPv6) pointers. Since each pointer
needs to only discriminate among at most W possible levels, each pointer requires only
log2 W bits. For IPv6, 64 bits of Rope is more than sufficient, though it seems possible
to get away with 32 bits of Rope in most practical cases. Thus a Rope is usually not
longer than the storage required to store a pointer. To minimize storage in the forwarding
database, a single bit can be used to decide whether the rope or only a pointer to a rope is
stored in a node.

1

2

4
Initial Rope

0* 00* 000*

10000*1000*

0000* 000000*

1111* 11110* 1111000

6

5

5

7

1100* 11001* 110000* 1100000

6
5

7

110011*

0111* 01110* 011100*
5 6

3

Fig. 15. Sample Ropes

20 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Using the Rope as the data structure has a second advantage: it simplifies the algorithm.
A Rope can easily be followed, by just picking pointer after pointer in the Rope, until the
next hit. Each strand in the Rope is followed in turn, until there is a hit (which starts a new
Rope), or the end of the Rope is reached. Following the Rope on processors is easily done
using “shift right” instructions.

Pseudo-code for the Rope variation of Mutating Binary Search is shown below. An
element that is a prefix but not a marker (i.e., the “terminal” condition) specifies an empty
Rope, which leads to search termination. The algorithm is initialized with a starting Rope.
The starting Rope corresponds to the default binary search tree. For example, using 32 bit
IPv4 addresses, the starting Rope contains the starting level 16, followed by Levels 8, 4, 2,
1. The Levels 8, 4, 2, and 1 correspond to the “left” pointers to follow when no matches
are found in the default tree. The resulting pseudo-code (Figure 16) is elegant and simple
to implement. It appears to be simpler than the basic algorithm.

Function RopeSearch(D) (* search for address D *)
Initialize Rope R containing the default search sequence;
Initialize BMP so far to null string;
While R is not empty do

Pull the first strand (pointer) off R and store it in i;
Extract the first L[i].length bits of D into D′;
M := Search(D′, L[i].hash); (* search hash table for D′ *)
If M is not nil then

BMP := M.bmp; (* update best matching prefix so far *)
R := M.rope; (* get the new Rope, possibly empty *)

Endif
Endwhile

Fig. 16. Rope Search

4.3 Trading Speed Against Memory

The following sections will discuss a number of mechanisms that allow tuning the tradeoff
between search speed and memory requirements according to the application’s desires.

4.3.1 Using Arrays. In cases where program complexity and memory use can be traded
for speed, it might be desirable to change the first hash table lookup to a simple indexed
array lookup, with the index being formed from the first w 0 bits of the address, with w0

being the prefix length at which the search would be started. For example, if w 0 = 16, we
would have an array for all possible 216 values of the first 16 bits of a destination address.
Each array entry for index i will contain the BMP of i as well as a Rope which will guide
binary search among all prefixes that begin with i. An initial array lookup is not only faster
than a hash lookup, but also results in reducing the average number of lookups, since there
will be no misses at the starting level, which could direct the search below w0.

4.3.2 Halving the Prefix Lengths. It is possible to reduce the worst case search time
by another memory access. For that, we halve the number of prefix lengths by e.g. only
allowing all the even prefix lengths, decreasing the log W search complexity by one. All
the prefixes with odd lengths would then be expanded to two prefixes, each one bit longer.
For one of them, the additional bit would be set to zero, for the other, to one. Together, they
would cover the same range as the original prefix. At first sight, this looks like the memory

Scalable High-Speed Prefix Matching · 21

requirement will be doubled. It can be shown that the worst case memory consumption is
not affected, since the number of markers is reduced at the same time.

With W bits length, each entry could possibly require up to log(W) − 1 markers (the
entry itself is the log W th entry). When expanding prefixes as described above, some of the
prefixes will be doubled. At the same time, W is halved, thus each of the prefixes requires
at most log(W/2) − 1 = log(W) − 2 markers. Since they match in all but their least bit,
they will share all the markers, resulting again in at most log W entries in the hash tables.

A second halving of the number of prefixes again decreases the worst case search time,
but this time increases the amount of memory, since each prefix can be extended by up to
two bits, resulting in four entries to be stored, expanding the maximum number of entries
needed per prefix to log(W) + 1. For many cases the search speed improvement will
warrant the small increase in memory.

4.3.3 Internal Caching. Figure 8 showed that the prefixes with lengths 8, 16, and 24
cover most of the address space used. Using binary search, these three lengths can be
covered in just two memory accesses. To speed up the search, each address that requires
more than two memory accesses to search for will be cached in one of these address lengths
according to Figure 17. Compared to traditional caching of complete addresses, these
cache prefixes cover a larger area and thus allow for a better utilization.

Function CacheInternally(A, P , L, M)
(* found prefix P at length L after taking M memory accesses

searching for A *)
If M > 2 then (* Caching can be of advantage *)

Round up prefix length L to next multiple of 8;
Insert copy of P ’s entry at L, using the L first bits of A;

Endif

Fig. 17. Building the Internal Cache

4.4 Very Long Addresses

All the calculations above assume the processor’s registers are big enough to hold entire
addresses. For long addresses, such as those used for IP version 6, this does not always
hold. We define w as the number of bits the registers hold. Instead of working on the entire
address at once, the database is set up similar to a multibit trie [Srinivasan and Varghese
1999] of stride w, resulting in a depth of k := W/w. Each of these “trie nodes” is then
implemented using binary search. If the “trie nodes” used conventional technology, each
of them would require O(2w) memory, clearly impractical with modern processors, which
manipulate 32 or 64 bits at a time.

Slicing the database into chunks of w bits also requires less storage than unsliced databases,
since not the entire long addresses do not need to be stored with every element. The smaller
footprint of an entry also helps with hash collisions (Section 7).

This storage advantage comes at a premium: Slower access. The number of memory
accesses changes from log2 W to k + log2 w, if the search in the intermediate “trie nodes”
begins at their maximum length. This has no impact on IPv6 searches on modern 64 bit
processors (Alpha, UltraSparc, Merced), which stay at 7 accesses. For 32 bit processors,
the worst case using the basic scheme raises by 1, to 8 accesses.

22 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

4.5 Hardware Implementations

As we have seen in both Figure 7 and Figure 16, the search functions are very simple,
so ideally suited for implementation in hardware. The inner component, most likely done
as a hash table in software implementations, can be implemented using (perfect) hashing
hardware such as described in [Spinney 1995], which stores all collisions from the hash
table in a CAM. Instead of the hashing/CAM combinations, a large binary CAM could
be used. Besides the hashing function described in [Spinney 1995], Cyclic Redundancy
Check (CRC) generator polynomials are known to result in good hashing behavior (see
also the comparison to other hashing functions in Section 7).

RAM
Mask

Shift
Next
Strand

Compare

IP Address

Hash
Key

Rope

Match

Next
Length

BMP
Register

Hash

MaxColl
Entries

Fig. 18. Hardware Block Schematic

The outer loop in the Rope scheme can be implemented as a shift register, which is
reloaded on every match found, as shown in Figure 18. This makes for a very simple hard-
ware unit. For higher performances, the loop can be unrolled into a pipelined architecture.
Pipelining is cheaper than replicating the entire lookup mechanism: in a pipelined imple-
mentation, each of the RAMs can be smaller, since it only needs to contain the entries that
can be retrieved in its pipeline stage (recall that the step during which an entry is found de-
pends only on the structure of the database, and not on the search key). Consult Figure 12
for a distribution of the entries among the different search steps. As is true for software
search, Rope search will reduce the number of steps per lookup to at most 4 for IP version
4 addresses, and hardware may also use an initial array. Pipeline depth would therefore
be four (or five, in a conservative design). Besides pipelining, converting binary branching
to k-ary would provide another way around the relatively high memory access latencies.
Instead of a single probe, as required for the binary decision, k − 1 parallel probes would
need to be taken. In our implementation [Braun et al. 2001], using parallel search engines
turned out to be more efficient than using higher branching degrees when only a single
external dynamic RAM (DRAM) module was available.

The highest speeds can be achieved using a pipelined approach, where each stage has its
own memory. As of this writing, DRAM technology (DDR SDRAMs at 133 MHz), with
information appropriately distributed and copied among the banks of the SDRAM, enables
a throughput of 8 lookup every 9 cycles, resulting in 118 million packets per second with
inexpensive hardware. This speed is roughly equivalent to 50 Gbit/s with minimum size
packets (40 bytes) or more than 400 Gbit/s using measured packet distributions (354 bytes

Scalable High-Speed Prefix Matching · 23

average) from June 1997.4 Using custom hardware and pipelining, we thus expect a sig-
nificant speedup to software performance, allowing for affordable IP forwarding reaching
far beyond the single-device transmission speeds currently reached in high-tech research
labs.

5. BUILDING AND UPDATING

Besides hashing and binary search, a predominant idea in this paper is pre-computation.
Every hash table entry has an associated bmp field and (possibly) a Rope field, both of
which are precomputed. Pre-computation allows fast search but requires more complex
Insertion routines. However, as mentioned earlier, while the routes stored with the prefixes
may change frequently, the addition of a new prefix (the expensive case) is much rarer.
Thus it is worth paying a penalty for Insertion in return for improved search speed.

5.1 Basic Scheme Built from Scratch

Setting up the data structure for the Basic Scheme is straightforward, as shown in Fig-
ure 19, requiring a complexity of O(N log W). For simplicity of implementation, the list
of prefixes is assumed to be sorted by increasing prefix length in advance (O(N) using
bucket sort). For optimal search performance, the final hash tables should ensure minimal
collisions (see Section 7).

Function BuildBasic;
For all entries in the sorted list do

Read next prefix-length pair (P , L) from the list;
Let i be the index for the L’s hash table;
Use Basic Algorithm on what has been built by now

to find the BMP of P and store it in B;
Add a new prefix node for P in the hash table for i;
(* Now insert all necessary markers “to the left” *)
For ever do

(* Go up one level in the binary search tree *)
Clear the least significant set bit in i;
If i = 0 then break; (* end reached *)
Set L to the appropriate length for i;
Shorten P to L bits;
If there is already an entry for P at i then

Make it a marker if it isn’t already;
break; (* higher levels already do have markers *)

Else
Create a new marker M for P at i’s hash table;
Set M.bmp to B;

Endif
Endfor

Endfor

Fig. 19. Building for the Basic Scheme

To build a basic search structure which eliminates unused levels or to take advantage of
asymmetries, it is necessary to build the binary search tree first. Then, instead of clearing

4http://www.nlanr.net/NA/Learn/packetsizes.html

24 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

the least significant bit, as outlined in Figure 19, the build algorithm really has to follow
the binary search tree back up to find the “parent” prefix length. Some of these parents
may be at longer prefix lengths, as illustrated in Figure 5. Since markers only need to be
set at shorter prefix lengths, any parent associated with longer prefixes is just ignored.

5.2 Rope Search from Scratch

There are two ways to build the data structure suitable for Rope Search:

Simple: The search order does not divert from the overall binary search tree, only missing
levels are left out. This results in only minor improvements on the search speed and
can be implemented as a straightforward enhancement to Figure 19.

Optimal: Calculating the shortest Ropes on all branching levels requires the solution to
an optimization problem in two dimensions. As we have seen, each branch towards
longer prefix lengths also limits the set of remaining prefixes.

We present the algorithm which globally calculates the minimum Ropes, based on dynamic
programming. The algorithm can be split up into three main phases:

(1) Build a conventional (uncompressed) trie structure with O(NW) nodes containing all
the prefixes (O(NW) time and space).

(2) Walk through the trie bottom-up, calculating the cost of selecting different branching
points and combining them on the way up using dynamic programming (O(NW 3)
time and space).

(3) Walk through the trie top-down, build the Ropes using the results from phase 2, and
insert the entries into the hash tables (O(NW log W) time, working on the space
allocated in phase 2).

To understand the bottom-up merging of the information in phase 2, let us first look at
the information that is necessary for bottom-up merging. Recall the Ropes in Figure 15. At
each branching point, the search either turns towards longer prefixes and a more specific
branching tree, or towards shorter prefixes without changing the set of levels. The goal is
to minimize worst-case search cost, or the number of hash lookups required. The overall
cost of putting a decision point at prefix length x is the maximum path length on either side
plus one for the newly inserted decision. Looking at Figure 15, the longest path on the left
of our starting point has length two (the paths to 0∗ or 000∗). When looking at the right
hand side, the longest of the individual searches require two lookups (11001∗, 1100000,
11110∗, and 0111000).

Generalizing, for each range R covered and each possible prefix length x splitting this
range into two halves, Rl and Rr, the program needs to calculate the maximum depth
of the aggregate left-hand tree R l, covering shorter prefixes, and the maximum depth of
the individual right-hand trees Rr. When trying to find an optimal solution, the goal is
to minimize these maxima, of course. Clearly, this process can be applied recursively.
Instead of implementing a simple-minded recursive algorithm in exponential time, we use
dynamic programming to solve it in polynomial time.

Figure 20(a) shows the information needed to solve this minimization problem. For each
subtree t matching a prefix P , a table containing information about the depth associated
with the subrange R ranging from start length s to end length e is kept. Specifically,
we keep (1) the maximum over all the individual minimal-depth trees (T I), as used for
branching towards longer prefixes and (2) the minimal aggregate tree (T A), for going to

Scalable High-Speed Prefix Matching · 25

Root of
 processed
 subtrie (t)

Trie's root (r)

Start
(s)

End
(e)

Mini-
 tries

In
cr

ea
si

n
g

 p
re

fi
x

le
n

g
th

(a) Structures

Leaf set-up

Propagate

Merge

Merge+

LLL

LP+

P

M

M+

M

In
cr

ea
si

n
g

 p
re

fi
x

le
n

g
th

Propagate+

Trie node with associated prefix

(b) Cases treated

Fig. 20. Rope Construction, Phase 2

shorter prefixes. Each of these trees in turn consists of both a left-hand aggregate tree and
right-hand individual branching trees.

Using the dynamic programming paradigm, we start building a table (or in this case,
a table per trie node) from the bottom of the trie towards the root. At each node, we
combine the information the children have accumulated with our local state, i.e. whether
this node is an entry. Five cases can be identified: (L) setting up a leaf node, (P) propagating
the aggregate/individual tables up one level, (P+) same, plus including the fact that this
node contains a valid prefix, (M) merging the child’s aggregate/individual tables, and (M+)
merging and including the current node’s prefix. As can be seen, all operations are a subset
of (M+), working on less children or not adding the current node’s prefix. Figure 21 lists
the pseudo-code for this operation.

As can be seen from Figure 21, merging the TAs takes O(W 3) time per node, with a
total of O(NW) nodes. The full merging is only necessary at nodes with two children,
shown as (M) and (M+) in Figure 20(b). In any trie, there can be only O(N) of them,
resulting in an overall build time of only O(NW 3).

If the optimal next branching point is stored alongside each TA[s, e], building the rope
for any prefix in Phase 3 is a simple matter of following the chain set by these branching
points, by always following TA[sprev + 1, previous branching point]. A node will be used
as a marker, if the higher-level rope lists its prefix length.

5.2.1 Degrees of Freedom. The only goal of the algorithm shown in Figure 21 is to
minimize the worst-case number of search steps. Most of the time multiple branching
points will result in the same minimal TA depth. Therefore, choosing the split point gives a
further degree of freedom to optimize other factors within the bounds set by the calculated
worst case. This freedom can be used to (1) reduce the number of entries requiring the
worst case lookup time, (2) improve the average search time, (3) reduce the number of
markers placed, (4) reduce the number of hash collisions, or (5) improve update behavior
(see below). Because of limitations in space and scope, they will not be discussed in more
depth.

26 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Function Phase2MergePlus;
Set p to the current prefix length;

(* Merge the children’s TI below p *)
Forall s, e where s ∈ [p + 1 . . . W], e ∈ [s . . . W];

(* Merge the TI mini-trees between Start s and End e *)
If both children’s depth for TI [s, e] is 0 then

(* No prefixes in either mini-tree *)
Set this node’s depth for TI [s, e] to 0;

Else
Set this node’s depth for TI [s, e] to the

the max of the children’s TI [s, e] depths;
Endif

Endforall

(* “Calculate” the depth of the trees covering just this node *)
If the current entry is a valid prefix then

Set TI [p, p] = TA[p, p] = 1; (* A tree with a single entry *)
Else

Set TI [p, p] = TA[p, p] = 0; (* An empty tree *)
Endif

(* Merge the children’s TA, extend to current level *)
For s ∈ [p . . . W];

For e ∈ [s + 1 . . . W];
(* Find the best next branching length i *)
Set TA[s, e]’s depth to min(TI [s + 1, e] + 1), (* split at s *)

mine
i=s+1(max(TA[s, i − 1] + 1, TI [i, e]))); (* split below *)

(* Since TA[s, i − 1] is only searched after missing at i, add 1 *)
Endfor

Endfor

(* “Calculate” the TI at p also *)
Set TI [p, ∗] to TA[p, ∗; (* Only one tree, so aggregated=individual *)

Fig. 21. Phase 2 Pseudo-code, run at each trie node

5.3 Insertions and Deletions

As shown in [Labovitz et al. 1997], some routers receive routing update messages at high
frequencies, requiring the routers to handle these messages within a few milliseconds.
Luckily for the forwarding tables, most of the routing messages in these bursts are of
pathological nature and do not require any change in the routing or forwarding tables.
Also, most routing updates involve only a change in the route and do not add or delete
prefixes. Additionally, many wide-area routing protocols such as BGP [Rekhter and Li
1995] use timers to reduce the rate of route changes, thereby delaying and batching them.
Nevertheless, algorithms in want of being ready for further Internet growth should support
sub-second updates under most circumstances.

Adding entries to the forwarding database or deleting entries may be done without re-

Scalable High-Speed Prefix Matching · 27

building the whole database. The less optimized the data structure is, the easier it is to
change it.

5.3.1 Updating Basic and Asymmetric Schemes. We therefore start with basic and asym-
metric schemes, which have only eliminated prefix lengths which will never be used. Inser-
tion and deletion of leaf prefixes, i.e. prefixes, that do not cover others, is trivial. Insertion
is done as during initial build (Figure 19). For deletion, a simple possibility is to just re-
move the entry itself and not care for the remaining markers. When unused markers should
be deleted immediately, it is necessary to maintain per-marker reference counters. On dele-
tion, the marker placement algorithm from Figure 19 is used to determine where markers
would be set, decreasing their reference count and deleting the marker when the counter
reaches zero.

Should the prefix p being inserted or deleted cover any markers, these markers need to
be updated to point to their changed BMP. There are a number of possibilities to find all
the underlying markers. One that does not require any helper data structures, but lacks
efficiency, is to either enumerate all possible longer prefixes matching our modified entry,
or to walk through all hash tables associated with longer prefixes. On deletion, every
marker pointing to p will be changed to point to p’s BMP. On insertion, every marker
pointing p’s current BMP and matching p will be updated to point to p. A more efficient
solution is to chain all markers pointing to a given BMP in a linked list. Still, this method
could require O(N log W) effort, since p can cover any amount of prefixes and markers
from the entire forwarding database. Although the number of markers covered by any
given prefix was small in the databases we analyzed (see Figure 22), Section 6 presents a
solution to bound the update efforts, which is important for applications requiring real-time
guarantees.

During the previous explanation, we have assumed that the prefix being inserted had a
length which was already used in the database. In Asymmetric Search, this may not al-
ways be true. Depending on the structure of the binary search trie around the new prefix
length, adding it is trivial. The addition of length 5 in Figure 23(a) is one of these exam-
ples. Adding length 6 in Figure 23(b) is not as easy. One possibility, shown in the upper
example, is to re-balance the trie structure, which unlike balancing a B-tree can result in
several markers being inserted: One for each pre-existing prefix not covered by our newly
inserted prefix, but covered by its parent. This structural change can also adversely affect
the average case behavior. Another possibility, shown in the lower right, is to immediately
add the new prefix length, possibly increasing the worst case for this single prefix. Then
we wait for a complete rebuild of the tree which takes care of the correct re-balancing.

We prefer the second solution, since it does not need more than the plain existing in-
sertion procedures. It also allows for updates to take effect immediately, and only incurs a
negligible performance penalty until the database has been rebuilt. To reduce the frequency
of rebuilds, the binary search tree may be constructed as to leave room for inserting the
missing prefix lengths at minimal cost. A third solution would be to split a prefix into mul-
tiple longer prefixes, similar to the one used by Causal Collision Resolution Section 7.1.

5.3.2 Updating Ropes. All the above insights also apply to Rope Search, and even more
so, since it uses many local asymmetric binary search trees, containing a large number of
uncovered prefix lengths. Inserting a prefix has a higher chance of adding a new prefix
length to the current search tree, but it will also confine the necessary re-balancing to a
small subset of prefixes. Therefore, we believe the simplest, yet still very efficient, strategy

28 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

1

10

100

1 10 100

Fr
eq

en
cy

Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(a) “Pure Basic” (without Length Elimination)

1

10

100

1 10 100

Fr
eq

en
cy

Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(b) Basic

1

10

100

1 10 100

Fr
eq

en
cy

Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(c) Asymmetric

1

10

100

1 10 100

Fr
eq

en
cy

Markers referencing single BMP Node

AADS
MaeEast

MaeWest
PAIX

PacBell
MaeEast 1996

(d) Rope

Fig. 22. Histogram of Markers depending on a Prefix (log scales)

is to add a marker at the longest prefix length shorter than p’s, pointing to p. If this should
degrade the worst-case search time, or anyway after a large number of these insertions,
a background rebuild of the whole structure is ordered. The overall calculation of the
optimal branching points in phase 2 (Figure 21) is very expensive, O(NW 3), far more
expensive than calculating the ropes and inserting the entries Table 4. Just recalculating to
incorporate the changes induced by a routing update is much cheaper, as only the path from
this entry to the root needs to be updated, at most O(W 4), giving a speed advantage over
simple rebuild of around three orders of magnitude. Even though Rope Search is optimized
to very closely fit around the prefix database, Rope Search still keeps enough flexibility to
quickly adapt to any of the changes of the database.

The times in Table 4 were measured using completely unoptimized code on a 300 MHz
UltraSparc-II. We would expect large improvements from optimizing the code. “Hash”
refers to building the hash tables, “Phase 2” is phase 2 of the rope search, “Ropes” calcu-
lates the ropes and sets the markers. Just adding or deleting a single entry takes orders of
magnitudes less time.

Scalable High-Speed Prefix Matching · 29

1

2

3

4

6

7

1

2

3

4

7

5

1

2

3

4

6

75

5Adding

6Adding

1

2

3

4

6

75

1

2

3

4

5

7

6

(a)

(b)

Fig. 23. Adding Prefix Lengths (Gray Nodes change Rope)

Table 4. Build Speed Comparisons (Built from Trie)
Basic Rope Entries
Hash Phase 2 Ropes Hash

AADS 0.56s 11.84s 0.59s 0.79s 24218
Mae-East 1.82s 14.10s 0.85s 1.69s 38031
Mae-West 0.58s 11.71s 0.60s 0.85s 23898
PAIX 0.09s 4.16s 0.18s 0.07s 5924
PacBell 0.48s 11.04s 0.57s 0.73s 22850
Mae-East
1996 1.14s 13.08s 0.75s 1.12s 33199

6. MARKER PARTITIONING

The scheme introduced below, recursive marker partitioning, significantly reduces the cost
of marker updates identified as a problem above. It does this by requiring at most one
additional memory access per entire search, whenever the last match in the search was on
a marker. Using rope search on the examined databases, an additional memory lookup is
required for 2 . . . 11% of the addresses, a negligible impact on the average search time. Of
the searches that require the identified worst case of four steps, only 0 . . . 2% require an
additional fifth memory access.

Furthermore, prefix partitioning offers a tunable tradeoff between the penalty incurred
for updates and searches, which makes it very convenient for a wide range of applications.

6.1 Basic Partitioning

To understand the concept and implications of partitioning, we start with a single layer
of partitions. Assume an address space of 4 bits with addresses ranging from 0 to 15,
inclusive. This space also contains nine markers, labeled a1 to c3, as shown in Figure 24(a).
For simplicity, the prefixes themselves are not shown. Recall that each marker contains a
pointer to its BMP. This information requires update whenever the closest covering prefix
is changed.

Assume the prefix designated new is inserted. Traditional approaches would require the
insert procedure to walk through all the markers covered by new and correct their BMP,

30 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1 a2

a3

b1

b3b2

c1

c2

c3

Prefix
Length

Range covered

4

3

2

1

0
new

a b c

(a) Simple Partitioning Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a1 a2

a3

b1 b3

b2

c1

c2

c3

Prefix
Length

Range covered

4

3

2

1

0

new

a b c

Overlapping
partitions

Partitions with
boundary "bags"

a3 b3

(b) Partitions with Overlaps

Fig. 24. Marker partitioning explained

taking up to N log W steps. Marker partitioning groups these markers together. Assume
we had grouped markers a1 to a3 in group a, markers b1 to b3 in b, and c1 to c3 in c. Note
that the prefixes in the group are disjoint and hence, we can store a single overlapping BMP
pointer information for all of them instead of at each of them individually. Thus, in this
example, we would remember only three such entries — one per group or partition. This
improves the time required from updating each entry to just modifying the information
common to the group. In our example above (Figure 24(a)), when adding the new prefix,
we see that it entirely covers the partitions a, b and c. Thus, our basic scheme works well
as long as the partition boundaries can be chosen so that no marker overlaps them and the
new prefix covers entire groups.

But when looking at one more example in Figure 24(b), where partition A contains
markers a1, a2, a3, partition B contains b1, b2, b3 and partition C contains c1, c2, c3. Clearly,
the partition boundaries now overlap. Although in this example it is possible to find par-
titionings without overlaps, prefixes covering a large part of the address space would
severely limit the ability to find enough partitions. Thus, in the more general case, the

Scalable High-Speed Prefix Matching · 31

boundaries between the splits are no longer well-defined; there are overlaps. Because of
the nature of prefix-style ranges, at most W distinct ranges may enclose any given point.
This is also true for the markers crossing boundary locations. So at each boundary, we
could store the at most W markers that overlap it and test against these special cases indi-
vidually when adding or deleting a prefix like new. It turns out to be enough to store these
overlapping markers at only a single one of the boundaries it crosses. This is enough, since
its BMP will only need to change when a modification is done to an entry covering our
prefix.

For simplicity of the remaining explanations in this section, it is assumed that it is pos-
sible to split the prefixes in a non-overlapping fashion. One way to achieve that would be
to keep a separate marker partition for each prefix length. Clearly, this separation will not
introduce any extra storage and the search time will be affected by at most a factor of W .

Continuing our example above (Figure 24(b)), when adding the new prefix, we see that
it entirely covers the partitions a, b and partially covers c. For all the covered partitions,
we update the partitions’ Best Match. Only for the partially covered partitions, we need to
process their individual elements. The changes for the BMP pointers are outlined in bold
in the Table 5. The real value of the BMP pointer is the entry’s value, if it is set, or the
partition’s value otherwise. If neither the entry nor the entry’s containing partition contain
any information, as is the case for c3, the packet does not match a prefix (filter) at this level.

Table 5. Updating Best Matching Prefixes
Entry/Group Old BMP

stored
New BMP
stored

Resulting
BMP

a1 — — new
a2 — — new
a3 — — new
a — new (N/A)
b1 a3 a3 a3

b2 — — new
b3 b2 b2 b2
b — new (N/A)
c1 — new new
c2 — — —
c3 — — —
c — — (N/A)

Generalizing to p partitions of e markers each, we can see that any prefix will cover at
most p partitions, requiring at most p updates.

At most two partitions can be partially covered, one at the start of the new prefix, one at
the end. In a simple-minded implementation, at most e entries need to be updated in each
of the split partitions. If more than e/2 entries require updating, instead of updating the
majority of entries in this partition, it is also possible to relabel the container and update
the minority to store the container’s original value. This reduces the update to at most e/2
per partially covered marker, resulting in a worst-case total of p + 2e/2 = p + e updates.

As p ∗ e was chosen to be N , minimizing p + e results in p = e =
√

N . Thus, the
optimal splitting solution is to split the database into

√
N sets of

√
N entries each. This

reduces update time from O(N) to O(
√

N) at the expense of at most a single additional

32 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

memory access during search. This memory access is needed only if the entry does not
store its own BMP value and we need to revert to checking the container’s value.

6.2 Dynamic Behavior

Insertion and deletion of prefixes often goes ahead with the insertion or deletion of markers.
Over time, the number of elements per partition and also in the total number of entries, N ,
will change. The implications of these changes are discussed below. For readability, S will
be used to represent

√
N , the optimal number of partitions and entries per partition.

The naı̈ve solution of re-balancing the whole structure is to make all partitions equal
size after every change to keep them between 	S
 and �S�. This can be done by ‘shifting’
entries through the list of partitions in O(S) time. This breaks as soon as the number of
partitions needs to be changed when S crosses an integer boundary. Then, O(S) entries
need to be shifted to the partition that is being created or from the partition that is being
destroyed, resulting in O(N) entries to be moved. This obviously does not fit into our
bounded update time.

We need to be able to create or destroy a partition without touching more than O(S)
entries. We thus introduce a deviation factor, d, which defines how much the number
of partitions, p, and the number of elements in each partition, e i, may deviate from the
optimum, S. The smallest value for d which allows to split a maximum-sized partition
(size Sd) into two partitions not below the minimum size S/d and vice versa is d =

√
2.

This value will also satisfy all other conditions, as we will see.
Until now, we have only tried to keep the elements e i in each partition within the bounds

set by S and d. As it turns out, this is satisfactory to also force the number of partitions p
within these bounds, since N/min ei > S/d and N/ max ei < Sd.

Whenever a partition grows too big, it is split into two or distributes some of its contents
across one or both of its neighbors, as illustrated in Figure 25. Conversely, if an entry is
getting too small, it either borrows from one or both of its neighbors, or merges with a
suitably small neighbor. Clearly, all these operations can be done with touching at most
Sd entries and at most 3 partitions.

The split operation is sufficient to keep the partitions from exceeding their maximum
size, since it can be done at any time. Keeping partitions from shrinking beyond the lower
limit requires both borrow (as long as at least one of the neighbors is still above the mini-
mum) and merge (as soon as one of them has reached the minimum).

0

S

Max

Min
Split

Merge Borrow

Distribute

Fig. 25. Dynamic Operations

S crossing an integer boundary may result in all partitions to become either too big or
too small in one instant. Obviously, not all of them can be split or merged at the same
time without violating the O(S) bound. Observe that there will be at least 2S + 1 further
insertions or 2S − 1 deletions until S crosses the next boundary. Also observe that there

Scalable High-Speed Prefix Matching · 33

will be at most S/d maximum-sized entries and Sd minimum-sized entries reaching the
boundaries.5 If we extend the boundaries by one on each side, there is plenty of time to
perform the necessary splits or merges one by one before the boundaries change again.

Instead of being ‘retro-active’ with splitting and joining, it can also be imagined to be
pro-active. Then, always the partition furthest away from the optimal value would try to
get closer to the optimum. This would make the updates even more predictable, but at the
expense of always performing splits or joins.

To summarize, with the new bounds of S/d − 1 to Sd + 1, each insertion or deletion
of a node requires at most 2(Sd + 1) updates of BMP pointers, moving Sd/2 entries to a
new partition, and on boundary crossing Sd + 1 checks for minimal size partitions. This
results in O(Sd) work, or with d chosen a constant

√
2, O(S) = O(

√
N). All further

explanations will consider d =
√

2. Also, since we have O(s) partitions, each with O(s)
pointers, the total amount of memory needed for the partitions is O(N).

6.3 Multiple Layers of Partitioning

We have shown that with a single layer of partitions, update complexity can be limited to
O(

√
N) with at most a single additional memory access during search.

It seems natural to extend this to more than one layer of grouping and to split the par-
titions into sub-partitions and sub-sub-partitions, similar to a tree. Assume we defined a
tree of α layers (including the leaves). Each of the layers would then contain s = α

√
N

entries or sub-partitions of the enclosed layer. As will be shown below, the update time is
then reduced to O(α α

√
N) at the expense of up to α − 1 memory accesses to find the Best

Match associated with the innermost container level who has it set.

Prefix updates At the outermost layer, at most sd containers will be covered, with at
most two of them partially. These two in turn will contain at most sd entries each, of
which at the most sd/2 need to be updated, and at most one further split partition. We
continue this until the innermost level is found, resulting in at most sd+(α−1)2sd/2
changes, or O(s).

Splitting and Joining At any one level, the effort is s. In the worst case, α levels are
affected, giving O(sα).

Boundary Crossing of s The number of insertions or deletions between boundary cross-
ings is (s + 1)α − sα, while the number of minimal-sized partitions is

∑a−1
i=1 si =

(sα−s)/(s−1). So there is enough time to amortize the necessary changes over time
one by one during operations that do not themselves cause a split or join.

6.4 Further Improvements

For many filter databases it would make sense to choose α dynamically, based on the real
number of entries. The total number of markers for most databases will be much less
than the worst case. If optimal search time should be achieved with bounded worst-case
insertion, it seems reasonable to reduce the partition nesting depth to match the worst-case
update. Often, this will reduce the nesting to a single level or even eliminate it.

5If there are more than Sd/2 minimum-sized entries, than some of them have to be right beside each other.
Then a single merge will eliminate two of them. Therefore, there will be at most Sd/2 operations necessary to
eliminate all minimum-sized entries.

34 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

7. FAST HASHING WITH BOUNDED COLLISIONS

Many algorithms are known for hashing. Since we have mentioned a single memory access
per lookup, the number of collisions needs to be tightly bounded. One well-known solution
is perfect hashing [Fredman et al. 1984]. Unfortunately, true perfect hashing requires enor-
mous amounts of time to build the hash tables and also requires complex functions to locate
the entries. While perfect hashing is a solution that satisfies the O(1) access requirement,
it is often impractical. An improvement, dynamic perfect hashing [Dietzfelbinger et al.
1994], also achieves O(1) lookup time at amortized cost of O(1) per insertion, by having a
two-level hierarchy of randomly chosen hashing functions. Thus, it requires two memory
accesses per hash lookup, making it an attractive option.

With memory prices dropping, memory cost is no longer one of the main limiting factor
in router design. Therefore, it is possible to relax the hashing requirements. First, we no
longer enforce optimal compaction, but allow for sparse hash tables. This already greatly
reduces the chances for collisions.

Second, we increase the hash bucket size. With current DRAM technologies, the cost
of a random access to a single bit is almost indistinguishable from accessing many bytes
sequentially. Modern CPUs take advantage of this and always read multiple consecutive
words, even if only a single byte is requested. The amount of memory fetched per access,
called a cache line, ranges from 128 to 256 bits in modern CPUs. This cache line fetching
us to store a (small) number of entries in the same hash bucket, with no additional memory
access penalty (recall that for most current processors, access to main memory is much
slower than access to on-chip memory and caches or instruction execution.)

We have seen several key ingredients: randomized hash functions (usually only a single
parameter is variable), over-provisioning memory, and allowing a limited number of colli-
sions, as bounded by the bucket size. By combining these ingredients into a hash function,
we were able to achieve single memory access lookup with almost O(1) amortized inser-
tion time.

In our implementations, we have been using several hash functions. One group of func-
tions consists of non-parametric functions, each one utilizing several cheap processor in-
structions to achieve data scrambling. Switching between these functions is achieved by
changing to a completely new search function, either by changing a function pointer or by
overwriting the existing function with the new one.

The other group consists of a single function which can be configured by a single param-
eter, using f(Key∗Scramble)∗BucketCount, where f is a function returning the fractional
part, Key is the key to be hashed, Scramble ∈ (0 . . . 1] is a configurable scrambling param-
eter, and BucketCount is the number of available hash buckets. This function does not
require floating point and can be implemented as fixed-point arithmetic using integer oper-
ations. Since multiplication is generally fast on modern processors, calculation of the hash
function can be hidden behind other operations. Knuth [Knuth 1998] recommends the
scrambling factor to be close to the conjugated golden ratio ((

√
5 − 1)/2). This function

itself gives a good tradeoff between the collision rate and the additional allocation space
needed.

It is possible to put all the hash entries of all prefix lengths into one big hash table, by
using just one more bit for the address and setting the first bit below the prefix length to
1. This reduces the collision rate even further with the same total memory consumption.
Since multiplication is considered costly in hardware, we also provide a comparison with

Scalable High-Speed Prefix Matching · 35

a 32-bit Cyclic Redundancy Check code (CRC-32), as used in the ISO 3309 standard,
in ITU recommendation V.42, and the GZIP compression program [Deutsch 1996]. In
Figure 26(b), a soft lowpass filter has been applied to increase readability of the graph,
eliminating single peaks of +1. Since only primes in steps of about 1000 apart are used
for the table sizes, there is always a prime hash table size available nearby which fulfills
the limit.

Depending on the width of the available data path, it might thus be more efficient to
allow for more collisions, thus saving memory. Memory requirements are still modest.
A single hash table entry for 32 bit lookups (IPv4) can be stored in as little as 6 or 8
bytes, for the basic schemes or rope search, respectively. Allowing for five entries per hash
bucket, the largest database (Mae East) will fit into 1.8 to 2.4 megabytes. Allowing for six
collisions, it will fit into 0.9 to 1.2 MB.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20000 40000 60000 80000 100000

A
ve

ra
ge

 C
ol

lis
io

ns

Hash Table Size

MaeEast, Mult
MaeEast, CRC
PacBell, Mult
PacBell, CRC

(a) Average Collisions

3

4

5

6

7

8

9

10

11

20000 40000 60000 80000 100000

M
ax

 C
ol

lis
io

ns

Hash Table Size

MaeEast, Mult
MaeEast, CRC
PacBell, Mult
PacBell, CRC

(b) Maximum Collisions

Fig. 26. Collisions versus Hash Table Size

7.1 Causal Collision Resolution

As can be seen from Figure 26, only very few entries create collisions. If we could reduce
collisions further, especially at these few “hot spots”, we could optimize memory usage or
reduce the number of operations or the data path width. In this section, we present a tech-
nique called “Causal Collision Resolution” (CCR), which allows us to reduce collisions by
adapting the marker placement and by relocating hash table entries into different buckets.
We have seen that there are several degrees of freedom available when defining the binary
search (sub-)trees for Asymmetric and Rope Search (Section 5.2.1), which help to move
markers.

Moving prefixes is also possible by turning one prefix colliding with other hash table
entries into two. Figure 27(a) illustrates the expansion of a prefix from length l to two
prefixes at l+1, covering the same set of addresses. This well-known operation is possible
whenever the l is not a marker level for l+1 (otherwise, a marker with the same hash key as
the original prefix would be inserted at l, nullifying our efforts). When expansion doesn’t
work, it is possible to “contract” the prefix (Figure 27(b)). It is then moved to length l− 1,
thus covering too large a range. By adding a prefix C at l, complementing the original

36 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

prefix within the excessive range at l − 1, the range can be corrected. C stores the original
BMP associated with that range.

The two binary search trees shown in Figure 27 are only for illustrative purposes. Ex-
pansion and contraction also work with other tree structures. When other prefixes already
exist at the newly created entries, precedence is naturally given to the entries originat-
ing from longer prefix lengths. Expansion and contraction can also be generalized in a
straightforward way to work on more than ±1 prefix lengths.

000*

111*

001*

110*

00*

11*

0000*

0001*

1110*

1111*

000*

111*

3

2 4

3

2 4

3

4

3

4
(a) Expand

(b) Contract

l-1 l l+1 l-1 l l+1

Fig. 27. Causal Collision Resolution

0

5

10

15

20

25

30

35

40

45

20000 40000 60000 80000 100000

Fu
ll

H
as

h
B

uc
ke

ts

Hash Table Size

MaeEast, Mult
MaeEast, CRC
PacBell, Mult
PacBell, CRC

(a) Number of Hash Buckets with Maximum
Collisions

0

50

100

150

200

250

300

350

400

450

500

20000 40000 60000 80000 100000

A
lm

os
t F

ul
l H

as
h

B
uc

ke
ts

Hash Table Size

MaeEast, Mult
MaeEast, CRC
PacBell, Mult
PacBell, CRC

(b) Number of Hash Buckets with One Entry
Less

Fig. 28. Number of (Almost) Full Hash Buckets

In Figure 28 the number of buckets containing the most collisions and those containing
just one entry less are shown. As can be seen, for the vast majority of hash table config-
urations, only less than a handful of entries define the maximum bucket size. In almost
half of the cases, it is a single entry. Even for the buckets with one entry less than the

Scalable High-Speed Prefix Matching · 37

Table 6. Marker Overhead for Backbone Forwarding Tables
Total Basic: Request for Max Effective

Entries 0 1 2 3 4 Markers Markers
AADS 24218 2787 14767 4628 2036 0 30131 9392
Mae-East 38031 1728 25363 7312 3622 6 50877 13584
Mae-West 23898 3205 14303 4366 2024 0 29107 9151
PAIX 5924 823 3294 1266 541 0 7449 3225
PacBell 22850 2664 14154 4143 1889 0 28107 8806
Mae-East 1996 33199 4742 22505 3562 2389 1 36800 8342

maximum size (Figure 28(b)), a negligible amount of buckets (less than 1 per thousand for
most configurations) require that capacity.

Using causal collision resolution, it is possible to move one of the “surplus” entries in
the biggest buckets to other buckets. This makes it possible to shrink the bucket sizes by
one or two, reducing the existing modest memory requirements by up to a factor of two.

8. PERFORMANCE EVALUATION

Recollecting some of the data mentioned earlier, we show measured and expected perfor-
mance for our scheme.

8.1 Marker Requirements

Although we have seen that adding markers could extend the number of entries required
by a factor log2 W . In the typical case, many prefixes will share markers (Table 6), reduc-
ing the marker storage further. Notice the difference between “Max Markers”, the number
of markers requested by the entries, and “Effective Markers”, how many markers really
needed to be inserted, thanks to marker sharing. In our sample routing databases, the addi-
tional storage required due to markers was only a fraction of the database size. However, it
is easy to give a worst case example where the storage needs require O(log 2 W) markers
per prefix. (Consider N prefixes whose first log2 N bits are all distinct and whose remain-
ing bits are all 1’s). The numbers listed below are taking from “Plain Basic” scheme, but
the amount of sharing is comparable with other schemes.

8.2 Complexity Comparison

Table 7 collects the (worst case) complexity necessary for the different schemes mentioned
here. Be aware that these complexity numbers do not say anything about the absolute speed
or memory usage. See Section 2 for a comparison between the schemes. For Radix Tries,
Basic Scheme, Asymmetric Binary Search, and Rope Search, W is the number of distinct
lengths. Memory complexity is given in W bit words.

8.3 Measurements for IPv4

Many measurements on real-world data have already been included earlier in this paper. To
summarize, we have shown that with modest memory requirements of less than a megabyte
and simple hardware or software, it is possible to achieve fast best matching prefix lookups
with at most four memory accesses, some of them may even be resolved from cache.

38 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

Table 7. Speed and Memory Usage Complexity
Algorithm Build Search Memory Update

Binary Search O(N log N) O(log N) O(N) O(N)
Trie O(NW) O(W) O(NW) O(W)
Radix Trie6 O(NW) O(W) O(N) O(W)

Basic Scheme O(N log W) O(log W) O(N log W) O(N)

or O(α + log W) O(α α
√

NW log W)
Asymmetric BS O(N log W) O(log W) O(N log W) O(N)

or O(α + log W) O(α α
√

NW log W)
Rope Search O(NW3) O(log W) O(N log W)7 O(N)

or O(α + log W) O(α
α
√

NW log W)
Ternary CAMs O(N) O(1)8 O(N) O(N)

8.4 Projections for IP Version 6

Although there originally were several proposals for IPv6 address assignment principles,
the aggregatable global unicast address format [Hinden et al. 1998] is at the verge of being
deployed. All these schemes help to reduce routing information. In the optimal case of a
strictly hierarchical environment, it can go down to a handful of entries. But with massive
growth of the Internet together with the increasing forces for connectivity to multiple ISPs
(“multi-homing”) and meshing between the ISPs, we expect the routing tables to grow.
Another new feature of IPv6, Anycast addresses [Hinden and Deering 1998; Deering and
Hinden 1998], may (depending on how popular they will become) add a very large number
of host routes and other routes with very long prefixes.

So most sites will still have to cope with a large number of routing entries at different
prefix lengths. There is likely to be more distinct prefix lengths, so the improvements
achieved by binary search will be similar or better than those achieved on IPv4.

For the array access improvement shown in Section 4.3.1, the improvement may not be
as dramatic as for IPv4. Although it will improve performance for IPv6, after length 16
(which happens to be a “magic length” for the aggregatable global unicast address format),
only a smaller percentage of the address space will have been covered. Only time will tell
whether this initial step will be of advantage. All other optimizations are expected to yield
similar improvements.

9. CONCLUSIONS AND FUTURE WORK

We have designed a new algorithm for best matching search. The best matching prefix
problem has been around for twenty years in theoretical computer science; to the best
of our knowledge, the best theoretical algorithms are based on tries. While inefficient
algorithms based on hashing [Sklower 1993] were known, we have discovered an efficient
algorithm that scales with the logarithm of the address size and so is close to the theoretical
limit of O(log log N).

Our algorithm contains both intellectual and practical contributions. On the intellectual
side, after the basic notion of binary searching on hash tables, we found that we had to
add markers and use pre-computation, to ensure logarithmic time in the worst-case. Algo-
rithms that only use binary search of hash tables are unlikely to provide logarithmic time
in the worst case. Among our optimizations, we single out mutating binary trees as an
aesthetically pleasing idea that leverages off the extra structure inherent in our particular
form of binary search.

Scalable High-Speed Prefix Matching · 39

On the practical side, we have a fast, scalable solution for IP lookups that can be imple-
mented in either software or hardware, reducing the number of expensive memory accesses
required considerably. We expect most of the characteristics of this address structure to
strengthen in the future, especially with the transition to IPv6. Even if our predictions,
based on the little evidence available today, should prove to be wrong, the overall per-
formance can easily be restricted to that of the basic algorithm which already performs
well.

We have also shown that updates to our data structure can be very simple, with a tight
bound around the expected update efforts. Furthermore, we have introduced causal colli-
sion resolution which exploits domain knowledge to simplify collision resolution.

With algorithms such as ours and that of others, we believe that there is no more reason
for router throughputs to be limited by the speed of their lookup engine. We also do not
believe that hardware lookup engines are required because our algorithm can be imple-
mented in software and still perform well. If processor speeds do not keep up with these
expectations, extremely affordable hardware (around US$ 100) enables forwarding speeds
of around 250 Gbit/s, much faster than any single transmitter can currently achieve even in
the research laboratories. Therefore, we do not believe that there is a compelling need for
protocol changes to avoid lookups as proposed in Tag and IP Switching. Even if these pro-
tocol changes were accepted, fast lookup algorithms such as ours are likely to be needed
at several places throughout the network.

Our algorithm has already been successfully included into the BBN multi-gigabit per
second router [Partridge et al. 1998], which can do the required Internet packet processing
and forwarding decisions for 10 . . . 13 million packets per second using a single off-the-
shelf microprocessor. Besides performance for IPv6, our algorithm was also chosen as it
could naturally and efficiently handle 64 bit wide prefixes (which occur while concatenat-
ing destination and source addresses when forwarding IP multicast packets).

A more challenging topic beyond prefix lookups is packet classification, where multi-
dimension prefix matches have to be performed, often combined with exact and range
matches. Many of the one-dimensional lookup techniques (including the one described in
this paper) have been used as lookups on individual fields, whose results are then combined
later [Gupta and McKeown 1999; Srinivasan et al. 1998]. The main idea of this paper,
namely working non-linearly in the prefix length space, has been directly generalized to
multi-dimensional packet classification schemes such as tuple space search [Srinivasan
et al. 1999] and line search [Waldvogel 2000].

We believe that trie-based and CAM-based schemes will continue to dominate in IPv4-
based products. However, the slow, but ongoing, trend towards IPv6 will give a strong edge
to schemes scalable in terms of prefix lengths. Except for tables where path compression
is very effective9, we believe that our algorithm will be better than trie-based algorithms
for IPv6 routers. Perhaps our algorithm was adopted in the BBN router in anticipation of
such a trend.

For future work, we are attempting to fine-tune the algorithm and are looking for other
applications. Thus we are working to improve the update behavior of the hash functions
even further, and are studying the effects of internal caching. We are also trying to optimize
the building and modification processes. Our algorithm belongs to a class of algorithms

9For instance, the initial IPv6 tables may be derived from IPv4 tables by adding a long prefix. In such cases, path
compression will be very effective.

40 · M. Waldvogel, G. Varghese, J. Turner, and B. Plattner

that speed up search at the expense of insertion; besides packet classification, we believe
that our algorithm and its improvements may be applicable in other domains besides Inter-
net packet forwarding. Potential applications we are investigating include memory man-
agement using variable size pages, access protection in object-oriented operating systems,
and access permission management for web servers and distributed file systems.

ACKNOWLEDGMENTS

We thank V. Srinivasan, Thomas Meyer, Milind Buddhikot, Subhash Suri, and Marcel
Dasen for many helpful interactions, which resulted in substantial improvements of this
paper. We are also extremely grateful to have received extensive and useful comments by
the anonymous reviewers.

REFERENCES

ANDERSSON, A. AND NILSSON, S. 1994. Faster searching in tries and quadtrees – an analysis of level
compression. In Second Annual European Symposium on Algorithms (1994), pp. 82–93.

BRAUN, F., WALDVOGEL, M., AND LOCKWOOD, J. 2001. OBIWAN – an internet protocol router in
reconfigurable hardware. Technical Report WU-CS-01-xx (May), Washington University in St. Louis.

CHANDRANMENON, G. AND VARGHESE, G. 1995. Trading packet headers for packet processing. In
Proceedings of SIGCOMM ’95 (Boston, Aug. 1995). Also in IEEE Transactions on Networking, April
1996.

CRESCENZI, P., DARDINI, L., AND GROSSI, R. 1999. IP lookups made fast and simple. In 7th Annual
European Symposium on Algorithms (July 1999). Also available as technical report TR-99-01, Diparti-
mento di Informatica, Università di Pisa.

DE BERG, M., VAN KREVELD, M., AND SNOEYINK, J. 1995. Two- and three-dimensional point location
in rectangular subdivisions. Journal of Algorithms 18, 2, 256–277.

DEERING, S. AND HINDEN, R. 1998. Internet protocol, version 6 (IPv6) specification. Internet RFC
2460.

DEGERMARK, M., BRODNIK, A., CARLSSON, S., AND PINK, S. 1997. Small forwarding tables for fast
routing lookups. In Proceedings of ACM SIGCOMM ’97 (Sept. 1997), pp. 3–14.

DEUTSCH, L. P. 1996. GZIP file format specification. Internet RFC 1952.

DIETZFELBINGER, M., MEHLHORN, K., ROHNERT, H., KARLIN, A., MEYER AUF DER HEIDE, F., AND

TARJAN, R. E. 1994. Dynamic perfect hashing: Upper and lower bounds. SIAM Journal of Comput-
ing 23, 4, 748–761.

EATHERTON, W. N. 1999. Hardware-based Internet protocol prefix lookups. Master’s thesis, Washington
University in St. Louis, St. Louis, MO, USA.

FELDMEIER, D. C. 1988. Improving gateway performance with a routing-table cache. In Proceedings of
IEEE Infocom ’88 (New Orleans, March 1988), pp. 298–307.

FREDMAN, M. L., KOMLÓS, J., AND SZEMERÉDI, E. 1984. Storing a sparse table with O(1) worst case
access time. Journal of the ACM 31, 3, 538–544.

FULLER, V., LI, T., YU, J., AND VARADHAN, K. 1993. Classless Inter-Domain Routing (CIDR): an
address assignment and aggregation strategy. Internet RFC 1519.

GUPTA, P., LIN, S., AND MCKEOWN, N. 1998. Routing lookups in hardware at memory access speeds.
In Proceedings of IEEE Infocom (April 1998), pp. 1240–1247.

GUPTA, P. AND MCKEOWN, N. 1999. Packet classification on multiple fields. In Proceedings of ACM
SIGCOMM ’99 (Cambridge, Massachusetts, USA, Sept. 1999), pp. 147–160.

GWEHENBERGER, G. 1968. Anwendung einer binären Verweiskettenmethode beim Aufbau von Listen
(Use of a binary tree structure for processing files). Elektronische Rechenanlagen 10, 223–226.

HINDEN, R. AND DEERING, S. 1998. IP version 6 addressing architecture. Internet RFC 2373.

HINDEN, R., O’DELL, M., AND DEERING, S. 1998. An IPv6 aggregatable global unicast address for-
mat. Internet RFC 2374.

Scalable High-Speed Prefix Matching · 41

KNUTH, D. E. 1998. Sorting and Searching (2nd ed.), Volume 3 of The Art of Computer Programming.
Addison-Wesley.

KOBAYASHI, M., MURASE, T., AND KURIYAMA, A. 2000. A longest prefix match search engine for
multi-gigabit ip processing. In Proceedings of the International Conference on Communications (June
2000).

LABOVITZ, C., MALAN, G. R., AND JAHANIAN, F. 1997. Internet routing instability. In Proceedings of
ACM SIGCOMM ’97 (1997), pp. 115–126.

LAMPSON, B., SRINIVASAN, V., AND VARGHESE, G. 1998. IP lookups using multiway and multicol-
umn search. In Proceedings of IEEE Infocom ’98 (San Francisco, 1998).

MCAULEY, A. J. AND FRANCIS, P. 1993. Fast routing table lookup using CAMs. In Proceedings of
Infocom ’93 (March–April 1993), pp. 1382–1391.

MORRISON, D. R. 1968. PATRICIA—practical algorithm to retrieve information coded in alphanumeric.
Journal of the ACM 15, 514–534.

NEWMAN, P., MINSHALL, G., AND HUSTON, L. 1997. IP Switching and gigabit routers. IEEE Commu-
nications Magazine 35, 1 (Jan.), 64–69.

NILSSON, S. AND KARLSSON, G. 1999. Ip address lookup using LC-tries. IEEE Journal on Selected
Areas in Communications 15, 4 (June), 1083–1092.

PARTRIDGE, C. 1996. Locality and route caches. In NSF Workshop on Internet Statistics Measure-
ment and Analysis (San Diego, CA, USA, Feb. 1996). Available at http://www.caida.org/outreach/9602/
positions/partridge.html.

PARTRIDGE, C., CARVEY, P. P., ET AL. 1998. A 50-gb/s IP router. IEEE/ACM Transactions on Network-
ing 6, 3 (June), 237–248.

PERLMAN, R. 1992. Interconnections: Bridges and Routers. Addison-Wesley.
REKHTER, Y., DAVIE, B., KATZ, D., ROSEN, E., AND SWALLOW, G. 1997. Cisco systems’ tag switch-

ing architecture overview. Internet RFC 2105.
REKHTER, Y. AND LI, T. 1995. A border gateway protocol 4 (BGP-4). Internet RFC 1771.
ROSEN, E. C., VISWANATHAN, A., AND CALLON, R. 2001. Multiprotocol label switching architecture.

Internet RFC 3031.
RUIZ-SÁNCHEZ, M. A., BIERSACK, E. W., AND DABBOUS, W. 2001. Survey and taxonomy of ip

address lookup algorithms. IEEE Network 15, 2 (March–April), 8–23.
SHAH, D. AND GUPTA, P. 2000. Fast incremental updates on ternary-cams for routing lookups and packet

classification. In Proceedings of Hot Interconnects (2000).
SKLOWER, K. 1993. A tree-based packet routing table for Berkeley Unix. Technical report, University of

California, Berkeley. Also at http://www.cs.berkeley.edu/ ˜sklower/routing.ps.
SPINNEY, B. A. 1995. Address lookup in packet data communications link, using hashing and content-

addressable memory. U.S. Patent number 5,414,704. Assignee Digital Equipment Corporation, Maynard,
MA.

SRINIVASAN, V., SURI, S., AND VARGHESE, G. 1999. Packet classification using tuple space search. In
Proceedings of ACM SIGCOMM ’99 (Cambridge, Massachusetts, USA, Sept. 1999), pp. 135–146.

SRINIVASAN, V. AND VARGHESE, G. 1999. Fast address lookups using controlled prefix expansion.
Transactions on Computer Systems 17, 1 (Feb.), 1–40.

SRINIVASAN, V., VARGHESE, G., SURI, S., AND WALDVOGEL, M. 1998. Fast and scalable layer four
switching. In Proceedings of ACM SIGCOMM ’98 (Sept. 1998), pp. 191–202.

VAN EMDE BOAS, P. 1975. Preserving order in a forest in less than logarithmic time. In Proceedings of
the 16th Annual Symposium on Foundations of Computer Science (1975), pp. 75–84.

VAN EMDE BOAS, P., KAAS, R., AND ZULSTRA, E. 1977. Design and implementation of an efficient
priority queue. Mathematical Systems Theory 10, 99–127.

WALDVOGEL, M. 2000. Multi-dimensional prefix matching using line search. In Proceedings of IEEE
Local Computer Networks (Nov. 2000), pp. 200–207.

WALDVOGEL, M., VARGHESE, G., TURNER, J., AND PLATTNER, B. 1997. Scalable high speed IP
routing table lookups. In Proceedings of ACM SIGCOMM ’97 (Sept. 1997), pp. 25–36.

