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Abstract

Pacletsin thelnternetcanexperiencdarge queueinglelaysduringbusy periods.Backbone
routersaregenerallyengineeredo have large buffers,in which pacletsmaywait aslong as
half asecondassuming-1FO service Jongerotherwise).During congestiorperiods these
buffers may stay closeto full, subjectingpacletsto long delays,even whenthe intrinsic
lateny of the pathis relatively small. This paperstudiesthe performancamprovements
thatcanbe obtainedby usingmoresophisticategaclet schedulersthanaretypical of In-
ternetrouters. The resultsshav that the large buffers found in WAN routerscontritute
only maginally to improving routerthroughputandthe higherdelaysthatcomewith large
buffers makesthemadubiousinvestment.Theresultsalsoshawv thatbetterpaclet schedul-
ing algorithmscanproducedramaticdimprovementsn fairnessUsingns-2simulationswe
shaw thatalgorithmsusingmultiple queuesansignificantlyoutperformRED andBlue, es-
peciallyat smallerbuffer sizes.Over a single-bottleneckink, thevariancein TCP goodput
usingthe proposedmultiqueuepaclet schedulerss one-tenththat obtainedwith RED and
one-fifththat obtainedwith Blue. Given a traffic mix of TCP flows with differentround-
trip times, longer round-triptime flows achieve 80% of their fair-shareusing multiqueue
schedulerscomparedo 40% underRED andBlue. We obsere a similar performance
improvementfor multi-hop paths.

Thiswork is supportedn partby NSFGrantANI-9714698



Efficient QueueManagementfor TCP Flows

AnshulKantavalaandJonatharTurner
Departmenbf ComputerScience
WashingtornJniversity
St. Louis, MO 63130
{anshul,jst @arl.wustl.edu

Abstract

Pacletsin thelnternetcanexperiencdarge queueinglelaysduringbusyperiods.Backbone
routersaregenerallyengineeredo have large buffers,in which pacletsmaywait aslongas
half a secondassuming-1FO service Jongerotherwise).During congestiorperiods these
buffers may stay closeto full, subjectingpacletsto long delays,even whenthe intrinsic
lateny of the pathis relatively small. This paperstudiesthe performancdamprovements
thatcanbe obtainedby usingmoresophisticateghaclet schedulersthanaretypical of In-
ternetrouters. The resultsshav that the large buffers found in WAN routerscontritute
only mamginally to improving routerthroughputandthe higherdelaysthatcomewith large
buffersmakesthemadubiousinvestment.Theresultsalsoshav thatbetterpaclet schedul-
ing algorithmscanproducedramaticimprovementsn fairnessUsingns-2simulationswe
shaw thatalgorithmsusingmultiple queuesansignificantlyoutperformRED andBlue, es-
peciallyat smallerbuffer sizes.Over a single-bottleneckink, thevariancein TCP goodput
usingthe proposednmultiqueuepaclet schedulerss one-tenththat obtainedwith RED and
one-fifththat obtainedwith Blue. Givena traffic mix of TCP flows with differentround-
trip times, longerround-triptime flows achieve 80% of their fair-shareusing multiqueue
schedulerscomparedto 40% underRED and Blue. We obsere a similar performance
improvementfor multi-hop paths.

1. Intr oduction

Backboneroutersin the Internetaretypically configuredwith buffersthatare several timestimes
largerthanthe productof thelink bandwidthandthetypical round-tripdelayonlong network paths.
Suchbufferscandelaypacletsfor asmuchashalf a secondduringcongestiorperiods.Whensuch
large queuescarry heary TCP traffic loads,andareservicedusingthe Tail Drop policy, the large
gueuesemaincloseto full mostof thetime. Thus,evenif eachTCPflow is ableto obtainits share
of thelink bandwidth,the end-to-enddelayremainsvery high. This is exacerbatedor flows with



multiple hops,sincepacletsmay experiencehigh queueingdelaysat eachhop. This phenomenon
is well-knowvn andhasbeendiscussedy Hashen{1] andMorris [2], amongothers.

To addresghis issue researcherhave developedalternatve queueingalgorithmswhich try to
keepaveragequeuesizeslow, while still providing high throughputandlink utilization. The most
popularof theseis RandomEarly Discad or RED [3]. RED maintainsanexponentially-weighte
moving averageof thequeudengthwhichis usedto detectcongestionWhenthe averagecrossesa
minimumthreshold(min,,), pacletsarerandomlydroppedor marked with anexplicit congestion
notification(ECN) bit. Whenthequeudengthexceedgshemaximumthresholdmazx;,), all paclets
aredroppedor marked. RED includessereral parametersvhich mustbe carefully selectedo get
goodperformanceTo malkeit operatdt robustly underwidely varying conditions,onemusteither
dynamicallyadjustthe parametersr operateusingrelatively large buffer sizes[4, 5].

RecentlyanothemueueingalgorithmcalledBlue[6], wasproposedo improve uponRED. Blue
adjustdts parametergutomaticallyin responseo queueoverflov andunderflav events.Whenthe
buffer overflows, the paclet droppingprobability is increasedy a fixedincrement(d1) andwhen
the buffer empties(underflavs), the droppingprobability is decreasedby a fixed increment(d2).
The updatefrequeny is limited by a freezetime parameter Incomingpacletsarethenrandomly
droppedor marked with an ECN bit. Although Blue doesimprove over RED in certainscenarios,
its parameterarealsosensitve to differentcongestiorconditionsandnetwork topologies.

In this paper we investigatehow paclet schedulersisingmultiple gueuesanimprove perfor
manceover existing methods Our goalis to find schedulershatsatisfythefollowing objectves:

¢ High throughputwhenbuffers are small This allows queueingdelaysto be keptlow.

¢ Insensitivityto opefating conditionsandtraffic. Thisreducegheneedto tuneparameterspr
compromiseon performance.

¢ Fair treatmentof different flows This shouldhold regardlessof differencesin round-trip
delayor numberof hopstraversed.

Theresultspresentedhereshav thatboth RED andBlue aredeficientin theserespects.Both
performfairly poorly whenbuffer spaceis limited to a smallfraction of the round-tripdelay Al-
thoughBlue is lesssensitve to parametechoicesthanRED, it still exhibits significantparameter
sensitvity. Both RED andBlue exhibit afairly high varianceamongindividual TCPflow goodputs
evenover asingle-bottleneckink.

We investigatequeueingalgorithmsthatusemultiple queuesto isolateflows from oneanother
Most of the resultsreporteduseperflow queueshut we alsoshav that comparableperformance
canbeobtainedvhenqueuesresharedoy multiple flows. While algorithmsusingmultiple queues
have historically beenconsideredoo comple, continuingadwancesin technologyhave madethe
incrementakostngyligible, andwell worththeinvestmenif thesemethodscanreduceherequired
buffer sizesandresultingpaclet delays.We shaw, usingns-2simulationsthatthe proposedjueue-
ing algorithmsrepresenimajorimprovementsover existing methodswith respecto all threeof the
objectveslistedabove.

Therestof the paperis organizedasfollows. Section2 describeghe nev multi-queuemeth-
ods investigatedhere. Section3 documentghe configurationsusedfor the simulationsand the



parametersisedfor RED andBlue. Section4 compareghe performanceesultsof the proposed
multi-queuemethodsagainstRED, Blue and Tail Drop. Section5 presentsa brief summaryof
relatedwork andSection6 concludeghepaper

2. Algorithms

As statedn the previous section whenwe evaluatedcurrentqueueingdisciplinessuchasRED and
Blue, we foundthatthey did notwork well with small buffer sizes.Anotherbig disadwantagewith
boththesealgorithms(moresoin the caseof RED), is the problemof finding the right parameters
for a given queue. Given our experimentsand prior work in this area,it hasbeenshavn thatno
singlesetof RED parametersvork for differentbottleneckhandwidthsdifferentflow combinations
anddifferentqueuelengths. Thus,to be ableto effectively useRED, the parametersnustbe fine
tunedgivenlink bandwidth,buffer sizeandtraffic mix. In practice,thisis very difficult sincethe
inputtraffic mix is continuouslyarying.

Given theseproblemswith existing congestiorbuffer managemenalgorithms,we decidedto
evaluatea fair queueingdisciplinefor managingT CP flows. We startedwith usingDeficit Round
Robin(DRR) [7]. DRRis anapproximatdair-queueingalgorithmthatrequiresonly O(1) work to
processa paclet andthusit is simpleenoughto beimplementedn hardware. Also, sincethereare
no parameterso setor fine tune, it makesit usableacrossvarying traffic patterns.We evaluated
threedifferentpaclet-discardoolicies.

1. DRR with LongestQueueDrop
Ouir first policy combinedDRR with paclet-discardfrom the longestactive queue. For the
rest of the paper we refer to this policy asplain DRR or DRR, sincethis paclet-discard
policy is partof the original DRR algorithm[7] andwasfirst proposedy McKenng in [8].
Throughour simulationstudy we found that plain DRR was not very effective in utilizing
link bandwidthor providing fair sharingamongcompetingl CPflows overasingle-bottleneck
link. DRR did performsignificantly betterthanRED andBlue whentherewere TCP flows
with differentRTTs or the flows weresentthroughmulti-bottlenecKink topology However
its performancewvas roughly comparableéo RED over a single-bottleneckink usinglarge
buffers, andworsefor small buffer sizes. Thus,we investigatedwo differentenhancements
to the paclet-discardpolicy which areoutlinedbelow.

2. Throughput DRR (TDRR)

In this algorithm,we storeathroughputvalueassociateavith eachDRR queue.Thethrough-
put parametetis maintainedas an exponentiallyweightedaverageandis usedin choosing
thedropqueue.Thediscardpolicy for anew paclet arrival whenthelink buffer is full, is to

choosehe queuewith the highestthroughput(amongsthe currentlyactive DRR queues}o

dropapaclet. Intuitively, this algorithmshouldpenalizehigherthroughputT CP flows more
andthusachieve betterfairnessandour simulationresultsdo confirmthis. The dravbackfor

this policy is thatwe needto storeandupdatean extra parametefor eachDRR queueand
time averagingparameterequiresuning.



3. QueueStateDRR (QSDRR)

SinceTDRR hasan overheadassociatedvith computingandstoringa weightedthroughput
valuefor eachDRR queue,we investigateanotherpaclet-discardpolicy which addssome
hysteresigo plain DRR’s longestqueuedrop policy. The mainideais thatoncewe dropa
paclet from onequeue we keepdroppingfrom the samegueuewhenfacedwith congestion
until that queueis the smallestamongstall active queues.Intuitively, this policy will try to
penalizethe leastnumberof flows necessaryo keepthelink from congestion.Also, when
thereis shortterm congestiona very few flows will be affected,thusensuringthatthe link
will notbeunderutilized. A detaileddescriptionof this algorithmis presentedh Figurel.

Let Q be a state variable which is
undefined initially.

When a packet arrives and there is no
menory space |eft:

if Q@ is not defined
Let @ be the |ongest queue in the
system
Di scard one or nore packets from
the front of Q to nake room
for the new packet;
else // @ is defined
if Q is shorter then all

ot her non-enpty queues

Let @ be the |ongest queue in the
syst em now;

Di scard one or nore packets
fromthe front of @ to nake
room for the new packet;

el se

Di scard one or nore packets
fromthe front of @ to nmake
room for the new packet;

Figurel: Algorithm for QSDRR

3. Simulation Environment

In orderto evaluatethe performancef DRR, TDRR andQSDRR,we rananumberof experiments
usingns-2. We comparedhe performanceover a varied setof network configurationsandtraffic
mixeswhich are describedbelown. In all our experimentswe usedTCP sourceswith 1500 byte
pacletsandthe datacollectedis over a 100 secondsimulationinterval. We ran experimentsusing



RED
mazx, | Max.dropprobability 0.01
Wy Queueweight 0.001
ming, Min. threshold 20% of buffer size
ATy, Max. threshold Buffer size

Tablel: RED parameters

Blue
dl Increment| 0.0025
d2 Decrement| 0.00025
freeze_time | Hold-time 0.1s

Table2: Blue parameters

TCP Renoand TCP Tahoeandobtainedsimilar resultsfor both; hencewe only shav the results
usingTCP Renosources.

For eachof theconfigurationsye variedthe bottleneclkqueuesizefrom a 100pacletsto 20,000
paclets. The 20,000paclets representa half-secondbandwidth-delayproducthbuffer which is a
commonbuffer sizedeplo/edin currentcommerciakouters.We ranseveralsimulationgo evaluate
mazx, andw, for RED thatworkedbestfor our simulationernvironmentto ensureafair comparison
againstour multi-queuebasedalgorithms. The RED parametersve usedin our simulationsarein
Tablel. For Blue, we ran simulationsover our differentconfigurationdo comparethe four setsof
parametersisedby the authorsin their paperwhile evaluatingBlue [6]. The Blue parametersve
usedarein Table2 andarethe onesthatgave the bestperformance.

3.1.Single Bottleneck Link

The network configurationfor this setof experimentsis shavn in Figure2. {S1, So,...S100} are
the TCP sourcesgachconnectedy 10Mb/slinks to the bottlenecKink. Sincethe bottleneckink
capacityis 500 Mb/s, if all TCP sourcessendat the maximumrate,the overloadratio is 2:1. The
destinationspnamed{ D1, D, ... D1 }, aredirectlyconnectedo therouterR,. All 100TCPsources
arestartedsimultaneouslyo simulatea worst-casescenariovherebyTCPsourcesaresynchronized
in the network.

3.2. Multiple Roundtrip-time Configuration

The network configurationfor this setof experimentsis shavn in Figure3. This configurationis
usedto evaluatethe performancef thedifferentqueuemanagememoliciesgiventwo setsof TCP
flows with widely varying roundtrip-timesover the samebottlenecklink. The sourceconnection
setupis similar to the single-bottleneclconfiguration,exceptfor the accesdink delaysfor each
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Figure3: Multiple Roundtrip-timeNetwork Configuration

source. For 50 sourcesthe link delayis setto 20ms,while it is setto 100msfor the other50
sources.

3.3. Multi-Hop Path Configuration

The network configurationfor this setof experimentsis shavn in Figure4. In this configuration,
we have 50 TCP sourcedraversingthreebottlenecklinks andterminatingat Rs. In addition,on

eachlink, thereare50 TCP sourcesactingascross-trdic. We usethis configuratiorto evaluatethe
performanceof the differentqueuemanagemenpoliciesfor multi-hop TCP flows competingwith

shorterone-hopcross-trdic flows.
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Figure4: Multi-Hop Path Network Configuration
4. Results

We now presenthe evaluationof our multi-queuepoliciesin comparisorwith Blue, RED andTail-

Drop. We comparethe queuemanagemenpolicies usingthe averagegoodputof all TCP flows

asa percentagef its fair-shareasthe metric. We alsoshav the goodputdistribution of all TCP

sourcesover a single-bottlenechink andthe variancein goodput. The variancein goodputsis a

metric of the fairnessof the algorithm; lower varianceimplies betterfairness.For all our graphs,
we concentraten the goodputsobtainedwhile varying the buffer sizefrom 100 pacletsto 5000
paclets. Note, for the multi-queuealgorithms,the statedbuffer sizeis sharedover all the queues,
while with the single queuealgorithms,the statedbuffer sizeis for that single queue. Sinceour

bottlenecKink speeds 500 Mb/s, this translatego a variationof buffer timefrom 2.4msto 120ms.
In all our simulations,we noticedthat all the policiesbehaed in a similar fashionpastthe 5000

paclet buffer size.

4.1. Single-BottleneckLink

Thefirst setof graphsshavnin Figure5, compardhedistribution of goodputdor all L00TCPReno
flows over the simulationrun. For this experimentthe single-bottleneckink configurationis used
andthebuffer sizeis setto 200paclets. Thecloserthegoodputsareto eachother thelowerthevari-

ance,which implies betterfairness.We noticethatunderTDRR and QSDRR(Figures5(b), 5(c)),

all TCPflows hadgoodputsrery closeto the meanandthe meangoodputis very nearthefair-share
threshold We noticethattheaveragegoodputunderDRR 5(a)is notasgoodasTDRR andQSDRR
andit is evenslightly lower thanRED, sosimpleDRR is not sufiicient to preventunderutilization

of the link. In the caseof Blue (Figure 5(d)), althoughthe goodputsof different TCP flows are
closeto eachother the meangoodputachieved s far belov the fair-sharethresholdwhich leadsto

underutilization of thelink. The meangoodputachiered using RED (Figure5(e)) is closeto the

fair-sharethreshold but the varianceis high. Also, a significantnumberof sourcesareableto get

morethantheir fair-shareof the bandwidth. As expected,Tail Drop (Figure 5(f)), performsmost
poorly, with the highestvariancein goodputsanda very low averagegoodput.



@
I
I
|
|
I
|
I
-
2

Goodput (Mb/s)

o
@ o0 [e] o ©
o2 (%oam@m,, & 02

IS

3 3 v 3
0 20 40 60 80 100 o 20 40 60 80 100 0 20 40 60 80 100
TCP Source TCP Source TCP Source
(2)DRR (b) TDRR (c) QSDRR
6 0 6
[e]
6
[e]
o e £ o o Co
_ - 9@%00 3 o o I T T o .. (R Fair st
2 s O _ 0. 07 o o D o O g | 3 o o © o0 o o
b o £ 5 P50 oo T5Cp R R 2 ° oo, IS
Sl o o o 5 S - o2 oo flo oy o o, &
2 oo =S
§ R o oo Foo & o ©° 8 0°8%0 9 %9 @ "° g0 g g R P o OBl
§ Powo © 0 & % 519 0 o ©0P°9 og 8,100 o o °
o8 o o o
0,0 587 0% P05 0 Bwgod” ® 4 ® (go ] 4 00 @ o P O m® ©
3l ° o o of o B ® o O
o0 ° §,0° %o P
° °
o o 00 g)o N
2 3 3
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
TCP Source TCP Source TCP Source
(d) Blue (e)RED (f) Tail Drop

Figure5: TCP RenoGoodputdistribution over single-bottleneckink with 200 pkt buffer

Figure 6 shaws the ratio of the goodputstandarddeviation of the TCP Renoflows to the fair
sharebandwidthfor all algorithmswhile varying the buffer size. Even at higher buffer sizes,the
goodputstandarddeviation underDRR and QSDRRis very small and the ratio to the fair share
bandwidthis lessthan0.025. TDRR exhibits a higher goodputstandarddeviation, but it is still
significantlybelov Blue, RED andTail Drop. RED exhibits about10 timesthe variancecompared
to QSDRRandDRR, while Blue exhibits about5 timesthe variance.Overall, we obsere thatthe
goodputstandarddeviation is betweer2% — 4% of the fair sharebandwidthfor the multi-queue
policiescomparedo 6% for Blue, 10% for RED and12% for TailDrop. Thus,evenfor a single-
bottlenecKink, we obsere thatthe multi-queuepoliciesoffer muchbetterfairnesgo a setof TCP
flows.

Finally, figure 7 illustratesthe averagefair-sharebandwidthpercentageeceved by the TCP
Renoflows usingdifferentbuffer sizes.For small buffer sizes,i.e. under500 paclets, TDRR and
QSDRRoutperformRED significantlyandDRR is comparabléo RED. It is interestingo notethat
evenatalargebuffer sizeof 5000paclets,all policiessignificantlyoutperformBlue,including Tail
Drop.



0.15

o1f N\/ﬁ\‘///

Blue

0.05 [ 1
TDRR

Standard Deviation/Fair Share

DRR

QSDRR

0 1000 2000 3000 4000 5000
Buffer Size (pkts)

Figure6: Standardieviation over fair-sharefor TCP Renoflows over a single-bottleneckink

100

90 -

Fair Share (%)

*—% Tail Drop

60

| | | |
0 1000 2000 3000 4000 5000
Buffer Size (pkts)

Figure7: Fair shareperformancever a singlebottlenecKink

4.2.Multiple Round-Trip Time Configuration

For this configurationwe use100 TCP Renoflows over a single bottlenecklink. 50 flows have a
40msRTT and50 flows have a200msRTT. Figure8 shavs the averagefair-sharegoodputreceved
by eachset. As shavn in Figure8(a),both RED andBlue allow the 40msRTT flows to usealmost
50% morebandwidththantheir fair share.Tail Drop alsoallows the 40msRTT flows to usemore
thantheir fair shareof the bandwidthfor buffer sizessmallerthana 1000 paclets. All the DRR-
basedpoliciesexhibit muchbetterperformanceallowing only 10% extra bandwidthto be usedby
the40msRTT flows. Both RED andBlue discriminateagainsiongerRTT flows, aswe obsere in
Figure8(b), the 200msRTT flows achieze only about40% of their fair-sharebandwidthwhereas
usingthe DRR-basegolicies,200msRTT flows areableto achieze almost90% of their fair-share.

At avery smallbuffer sizeof 100paclets,200msRTT flows usingDRR andQSDRRgetabout
40% of their fair-share.However, at this buffer size,whenall theflows areactive, thereis only one
pacletperflow thatcanbebuffered. This causeshepoorperformancef DRRandQSDRR sinceit
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becomewery difficult to singleout flows thatareusingmorebandwidth.Evenwith this limitation,
whenwe moveto 200 paclets,both DRR andQSDRRsignificantlyimprove their performancend
200msRTT flows achieve about80% of their fair-sharebandwidthon the average. Since TDRR
maintainsan exponentiallyweightedthroughputaveragefor eachflow, even at the smallestbuffer

sizeof 100 paclets,it is ableto deliver almost90% of the fair-sharebandwidthto the 200msRTT
flows.

4.3.Multi-Hop Path Configuration

In this configuration 50 end-to-endl CP Renoflows go over threehopsandhave anoverall round-
trip time of 150ms.The cross-trdic on eachhop consistsof 50 TCP Renoflows with a round-trip
time of 50ms(onehop). Figure9 illustratesthe averagefair-sharegoodputreceved by eachsetof

flows. For this configuration,TDRR andQSDRRprovide almosttwicethegoodputasRED andTail

Drop andfour timesthe goodputprovided by Blue for end-to-endlows. As shavn in Figure9(a),
end-to-endlows achieve nearly80% of their fair-shareunderTDRR andQSDRRand60% under
DRR.UnderREDandTail Drop, they canachieve only 40% of theirfair share For eventhesmallest
buffer size of a 100 paclets, end-to-endT' CP flows underTDRR are ableto achiere 80% of their

fair-share UsingQSDRRandDRR, for thesmallestuffer size,theirfair-shareis thesameasRED,

but oncethe buffer sizeincreases$o 200 paclets,their performancemprovessignificantlyandthey

allow theend-to-endlows to achieve closeto 80% and60% respectiely.

For this multi-hop configuration the end-to-endlows facea probability of paclet lossat each
hop underRED andBlue. Dueto congestiorcauseddy the cross-trdic, RED andBlue will ran-
domly drop pacletsat eachhop. Althoughthe cross-trdic flows will have a greatemprobability of
being picked for a drop, the end-to-endlows also experiencerandomdroppingand thus achieve
very poorgoodput.For Blue, thisis furtherexacerbatedsincedueto the high loadfrom the cross-
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traffic flows, the discardprobability remainshigh at eachhop. This increaseshe probability of an
end-to-endlow facingpaclet dropsat eachhopandthusfurtherreducingthe goodput.

Figure 9(b) shavs the averagegoodputfor the cross-trdic flows attachedo router R;. For
DRR, TDRRandQSDRR thecross-trdic takesup theslackin thelink andconsumesboutl15 —
120% of its fair-sharebandwidth. For both RED and Tail Drop, the link utilization is lower and
althoughthe end-to-endlows consumeonly about40% of their fair-share the cross-trdic flows
consumel50% of their fair-shareandthusleave about5% unutilized. Cross-trdiic flows under
Blue consumeabout120 — 140% of their fair-shareJeaving 20 — 30% unutilized.

4.4.Scalability Issues

One drawback with a fair-queueingpolicy suchas DRR is that we needto maintaina separate
gueuefor eachactive flow. Sinceeachqueuerequiresa certainamountof memoryfor the linked
list headerusedto implementthe queue thereis alimit on the numberof queuedhata routercan
support.In theworst-casetheremight be asmary asonequeuefor every paclet stored.Sincelist
headeraregenerallymuchsmallerthanthe pacletsthemseles,the severity of the memoryimpact
of multiple queuess intrinsically limited. Onthe otherhand,sincelist headersaretypically stored
in moreexpensve SRAM, while the pacletsarestoredin DRAM, thereis somelegitimateconcern
aboutthe costassociatedvith using large numbersof queues.Oneway to reducethe impactof
thisissueis to allow multiple flows to sharea singlequeue . While this canreducethe performance
benefitsobsered in the previous sectionsjt may be appropriateo tradeoff performanceagainst
cost,atleastto someextent. To addresshis issue we ranseveral simulationsevaluatingthe effects
of meging multiple flowsinto asinglequeue FigurelQillustratesthe effectsof varyingthenumber
of queuesThesourcesare TCP Renoandthetotal buffer spacds fixedat 1000paclets.
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numberof buckets

Figurel0(a)illustratesthe effect on the goodputreceved by eachflow underdifferentnumbers
of queues. For the multiple round-trip time configurationand the multi-hop path configuration,
we showv the goodputfor the 200msRTT (longerRTT) flows andthe end-to-endmulti-hop) flows
respectrely. In boththeseconfigurationsthe abore mentionedlows arethe oneswhich receve a
muchlower goodputcomparedo theirfair shareunderexisting policiessuchasRED, Blue andTail
Drop. We obsene thatthe effect of increasinghe numberof buckets producediminishingreturns
oncewe go pastl0 buckets. In fact, thereis only a marginal increasen the goodputrecevedwhen
we gofrom 10 bucketsto 100buckets. Sinceat eachbottlenecHink therearea 100 TCPflows, this
impliesthatour algorithmsarescalableandcanperformvery well evenwith one-tenththe number
of queuesasflows.

We alsopresenthe standarddeviation in goodputreceved by eachflow for differentnumbers
of queuedn Figure10(b). Theresultsare presenteasa ratio of the standarddeviation to the fair
sharebandwidthto betterillustratethe measuref the standarddeviation. We noticethatchanging
the numberof queuesioesnot have a significantimpacton the standardleviation of the goodputs,
andthuswe do not loseary fairnessby usingmuchfewer queuesrelative to the numberof flows.
Also, the overall standarddeviation is belonv 15% of the fair sharegoodputfor all our multi-queue
policies,regardlesf the numberof queues.

5. RelatedWork

Our DRR-basedolicies, TDRR and QSDRR,which combinefair queueingand paclet discard
policies, provide one particularsolutionfor managingvery small buffers while maintainingvery
high link utilization and goodput. In this section,we compareour approachwith other related
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approachesOnething to noteaboutall the relatedwork is thatnoneof the approachesave been
testedon multiple network configurationsor with heterogeneousaffic.

5.1. Fair QueueingAlgorithms

Sereralschedulingalgorithmsareknown in theliteraturefor bandwidthallocationandtransmission
scheduling.Theseincludethe paclet-by-packt versionof GeneralizedProcessoEharing[9] (also
known asWeightedFair Queueind10]), VirtualClock[11], StochastidrairnesQueueind8], Self-
Clocked Fair Queueind12], WeightedRoundRobin[13], Deficit RoundRobin (DRR)[7], Frame-
basedFair Queueing[14]. We choseDRR dueto its simplicity and easeof implementationin
hardware.

5.2.FRED

Oneproposalfor usingRED mechanismso provide fairnesss Flow-RED (FRED)[15]. Theidea
behindFRED:is to keepstatebasedn theinstantaneougueueoccupang of agivenflow. It defines
athresholdsming, whichis theminimumnumberof pacletseachsources allowedto queue When

a new paclet arrivesandthe queuesizeis greaterthanmin,,, FRED will apply RED to sources
whosebuffer occupang exceedsmin,. Althoughthis algorithmprovidesroughfairnessin mary

situations sinceit maintainsamin, thresholdfor all sourcesit needsa large buffer spaceto work

well. We have shavn that TDRR andQSDRRareableto provide fair-sharingfor very smallbuffers

evenwith alarge numberof flows. Also, sinceFRED doesnot maintainlong-termstatisticson a

flow’s queueoccupany, it cannotprotectagainstmisbehaing flows. On the otherhand, TDRR

maintainsan exponentially-weighte throughputaveragefor eachflow, allowing it to “remember”
eventsmuchlongerin the pastthanthe queuetime constantthis allows it to enforcefairnessgven

for smallbuffer sizes.

5.3. Self-Configuring RED

Self-configuringRED[16] is aproposafor anadaptve RED policy thatcanself-parameterizgiven
differentcongestiortypes. This policy is similar to Blue, wherethe RED’s droppingprobability
maz, is decreasewhenthe averagequeuesizefalls belowv min,, andincreaseavhenthe average
gueuesizeexceedsnaxth. Thisimprovesover REDin reducingthequeuesizevariations but does
not help provide betterfair-sharingbetweerflows, suffering from the sameweaknessepresenin
RED.

5.4. TCP with per-flow queueing

Anotherproposalfor managingT CP buffersis usingframe-basedair-queueing14] with longest
gueueor randomdiscardpolicy [17]. This policy is similarto plain DRR. However, it hasa disad-
vantagen thatthe frame-basedair-queueingusestherateallocatedto eachflow in its scheduling
policy. Thisimpliesthatit needso know the numberof flows apriori, which is a difficult require-
mentto meet.We have shovn thatour multiqueuepoliciescanadaptto ary numberof flows, evenif
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theratio of flowsto queuess 10:1. We have alsoshawvn thata fair queueingschedulewith longest
gueuediscard(plain DRR) doesnot performvery well over a single-bottleneclconfigurationfor
smallbuffers.

6. Conclusion

This paperhasdemonstratethe inherentweaknesse currentqueuemanagemenpoliciescom-
monly usedin Internetrouters. Theseweaknessemcludelimited ability to performwell undera
variety of network configurationsandtraffic conditions,inability to provide a fair-sharingamong
competingTCP connectiongvith differentRTTs andrelatively low link utilization andgoodputin

routersthathave small buffers. In orderto addressheseissueswe presented DRR andQSDRR,
two different paclet-discardpolicies usedin conjunctionwith a simple, fair-queueingscheduler
DRR. Throughextensve simulationswe shavedthat TDRR andQSDRRsignificantlyoutperform
RED andBlue for variousconfigurationandtraffic mixesin boththeaveragegoodputfor eachflow

andthevariancein goodputs We alsoshavedthatour algorithmsperformwell evenwhenmemory
is limited andwe have to aggrejatemultiple sourcesnto onequeue.
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