
Efficient QueueManagementfor TCP
Flows

AnshulKantawala
anshul@arl.wustl.edu
JonathanTurner
jst@arl.wustl.edu

WUCS-01-22

August3, 2001

Departmentof ComputerScience
CampusBox 1045
WashingtonUniversity
OneBrookingsDrive
St. Louis,MO 63130-4899

Abstract

Packetsin theInternetcanexperiencelargequeueingdelaysduringbusyperiods.Backbone
routersaregenerallyengineeredto have largebuffers,in whichpacketsmaywait aslongas
half asecond(assumingFIFOservice,longerotherwise).Duringcongestionperiods,these
buffers may staycloseto full, subjectingpackets to long delays,even whenthe intrinsic
latency of the pathis relatively small. This paperstudiesthe performanceimprovements
thatcanbeobtainedby usingmoresophisticatedpacket schedulers,thanaretypical of In-
ternetrouters. The resultsshow that the large buffers found in WAN routerscontribute
only marginally to improving routerthroughput,andthehigherdelaysthatcomewith large
buffersmakesthemadubiousinvestment.Theresultsalsoshow thatbetterpacketschedul-
ing algorithmscanproducedramaticimprovementsin fairness.Usingns-2simulations,we
show thatalgorithmsusingmultiplequeuescansignificantlyoutperformREDandBlue,es-
peciallyat smallerbuffer sizes.Overasingle-bottlenecklink, thevariancein TCPgoodput
usingtheproposedmultiqueuepacket schedulersis one-tenththatobtainedwith RED and
one-fifththat obtainedwith Blue. Given a traffic mix of TCP flows with differentround-
trip times, longerround-triptime flows achieve

�����
of their fair-shareusingmultiqueue

schedulers,comparedto � ��� underRED andBlue. We observe a similar performance
improvementfor multi-hoppaths.

This work is supportedin partby NSFGrantANI-9714698

Efficient QueueManagementfor TCP Flows

AnshulKantawalaandJonathanTurner
Departmentof ComputerScience

WashingtonUniversity
St. Louis,MO 63130�

anshul,jst� @arl.wustl.edu

Abstract

Packetsin theInternetcanexperiencelargequeueingdelaysduringbusyperiods.Backbone
routersaregenerallyengineeredto have largebuffers,in whichpacketsmaywait aslongas
half asecond(assumingFIFOservice,longerotherwise).Duringcongestionperiods,these
buffers may staycloseto full, subjectingpackets to long delays,even whenthe intrinsic
latency of the pathis relatively small. This paperstudiesthe performanceimprovements
thatcanbeobtainedby usingmoresophisticatedpacket schedulers,thanaretypical of In-
ternetrouters. The resultsshow that the large buffers found in WAN routerscontribute
only marginally to improving routerthroughput,andthehigherdelaysthatcomewith large
buffersmakesthemadubiousinvestment.Theresultsalsoshow thatbetterpacket schedul-
ing algorithmscanproducedramaticimprovementsin fairness.Usingns-2simulations,we
show thatalgorithmsusingmultiplequeuescansignificantlyoutperformREDandBlue,es-
peciallyat smallerbuffer sizes.Overasingle-bottlenecklink, thevariancein TCPgoodput
usingtheproposedmultiqueuepacket schedulersis one-tenththatobtainedwith RED and
one-fifththat obtainedwith Blue. Given a traffic mix of TCP flows with differentround-
trip times, longerround-trip time flows achieve

�����
of their fair-shareusingmultiqueue

schedulers,comparedto � ��� underRED and Blue. We observe a similar performance
improvementfor multi-hoppaths.

1. Intr oduction

Backboneroutersin the Internetaretypically configuredwith buffers thatareseveral timestimes
largerthantheproductof thelink bandwidthandthetypicalround-tripdelayonlongnetwork paths.
Suchbufferscandelaypacketsfor asmuchashalf asecondduringcongestionperiods.Whensuch
large queuescarry heavy TCP traffic loads,andareservicedusingtheTail Drop policy, the large
queuesremaincloseto full mostof thetime. Thus,evenif eachTCPflow is ableto obtainits share
of the link bandwidth,theend-to-enddelayremainsvery high. This is exacerbatedfor flows with

1

2

multiple hops,sincepacketsmayexperiencehigh queueingdelaysat eachhop. This phenomenon
is well-known andhasbeendiscussedby Hashem[1] andMorris [2], amongothers.

To addressthis issue,researchershave developedalternative queueingalgorithmswhich try to
keepaveragequeuesizeslow, while still providing high throughputandlink utilization. Themost
popularof theseis RandomEarly Discard or RED [3]. RED maintainsanexponentially-weighted
moving averageof thequeuelengthwhich is usedto detectcongestion.Whentheaveragecrossesa
minimumthreshold(�
	���
��), packetsarerandomlydroppedor markedwith anexplicit congestion
notification(ECN)bit. Whenthequeuelengthexceedsthemaximumthreshold(������
��), all packets
aredroppedor marked. RED includesseveral parameterswhich mustbe carefullyselectedto get
goodperformance.To make it operateit robustly underwidely varyingconditions,onemusteither
dynamicallyadjusttheparametersor operateusingrelatively largebuffer sizes[4, 5].

RecentlyanotherqueueingalgorithmcalledBlue[6], wasproposedto improveuponRED.Blue
adjustsits parametersautomaticallyin responseto queueoverflow andunderflow events.Whenthe
buffer overflows, thepacket droppingprobability is increasedby a fixed increment(���) andwhen
the buffer empties(underflows), the droppingprobability is decreasedby a fixed increment(���).
The updatefrequency is limited by a freezetime parameter. Incomingpacketsarethenrandomly
droppedor markedwith anECN bit. AlthoughBlue doesimprove over RED in certainscenarios,
its parametersarealsosensitive to differentcongestionconditionsandnetwork topologies.

In this paper, we investigatehow packet schedulersusingmultiple queuescanimprove perfor-
manceover existingmethods.Ourgoalis to find schedulersthatsatisfythefollowing objectives:

� High throughputwhenbuffers are small. Thisallows queueingdelaysto bekeptlow.

� Insensitivityto operating conditionsandtraffic. This reducestheneedto tuneparameters,or
compromiseon performance.

� Fair treatmentof different flows. This shouldhold regardlessof differencesin round-trip
delayor numberof hopstraversed.

The resultspresentedhereshow thatbothRED andBlue aredeficientin theserespects.Both
performfairly poorly whenbuffer spaceis limited to a small fraction of the round-tripdelay. Al-
thoughBlue is lesssensitive to parameterchoicesthanRED, it still exhibits significantparameter
sensitivity. BothREDandBlueexhibit a fairly highvarianceamongindividualTCPflow goodputs
evenoverasingle-bottlenecklink.

We investigatequeueingalgorithmsthatusemultiple queues,to isolateflows from oneanother.
Most of the resultsreporteduseper-flow queues,but we alsoshow that comparableperformance
canbeobtainedwhenqueuesaresharedby multipleflows. While algorithmsusingmultiplequeues
have historically beenconsideredtoo complex, continuingadvancesin technologyhave madethe
incrementalcostnegligible, andwell worth theinvestmentif thesemethodscanreducetherequired
buffer sizesandresultingpacket delays.Weshow, usingns-2simulations,thattheproposedqueue-
ing algorithmsrepresentmajorimprovementsoverexistingmethods,with respectto all threeof the
objectiveslistedabove.

The restof thepaperis organizedasfollows. Section2 describesthenew multi-queuemeth-
ods investigatedhere. Section3 documentsthe configurationsusedfor the simulationsand the

3

parametersusedfor RED andBlue. Section4 comparesthe performanceresultsof the proposed
multi-queuemethodsagainstRED, Blue andTail Drop. Section5 presentsa brief summaryof
relatedwork andSection6 concludesthepaper.

2. Algorithms

As statedin theprevioussection,whenweevaluatedcurrentqueueingdisciplinessuchasREDand
Blue,we foundthatthey did not work well with smallbuffer sizes.Anotherbig disadvantagewith
boththesealgorithms(moresoin thecaseof RED), is theproblemof finding theright parameters
for a given queue.Given our experimentsandprior work in this area,it hasbeenshown that no
singlesetof REDparameterswork for differentbottleneckbandwidths,differentflow combinations
anddifferentqueuelengths.Thus,to be ableto effectively useRED, theparametersmustbe fine
tunedgiven link bandwidth,buffer sizeandtraffic mix. In practice,this is very difficult sincethe
input traffic mix is continuouslyvarying.

Given theseproblemswith existing congestionbuffer managementalgorithms,we decidedto
evaluatea fair queueingdisciplinefor managingTCPflows. We startedwith usingDeficit Round
Robin(DRR) [7]. DRR is anapproximatefair-queueingalgorithmthatrequiresonly ����� � work to
processa packet andthusit is simpleenoughto beimplementedin hardware.Also, sincethereare
no parametersto setor fine tune, it makesit usableacrossvarying traffic patterns.We evaluated
threedifferentpacket-discardpolicies.

1. DRR with LongestQueueDrop
Our first policy combinedDRR with packet-discardfrom the longestactive queue.For the
rest of the paper, we refer to this policy as plain DRR or DRR, sincethis packet-discard
policy is partof theoriginal DRR algorithm[7] andwasfirst proposedby McKenney in [8].
Throughour simulationstudy, we found that plain DRR wasnot very effective in utilizing
link bandwidthorproviding fair sharingamongcompetingTCPflowsoverasingle-bottleneck
link. DRR did performsignificantlybetterthanRED andBlue whentherewereTCPflows
with differentRTTs or theflows weresentthroughmulti-bottlenecklink topology. However
its performancewasroughly comparableto RED over a single-bottlenecklink using large
buffers,andworsefor smallbuffer sizes.Thus,we investigatedtwo differentenhancements
to thepacket-discardpolicy whichareoutlinedbelow.

2. Thr oughput DRR (TDRR)
In thisalgorithm,westoreathroughputvalueassociatedwith eachDRRqueue.Thethrough-
put parameteris maintainedasan exponentiallyweightedaverageand is usedin choosing
thedropqueue.Thediscardpolicy for a new packet arrival whenthelink buffer is full, is to
choosethequeuewith thehighestthroughput(amongstthecurrentlyactive DRR queues)to
dropa packet. Intuitively, this algorithmshouldpenalizehigherthroughputTCPflows more
andthusachieve betterfairnessandour simulationresultsdoconfirmthis. Thedrawbackfor
this policy is that we needto storeandupdatean extra parameterfor eachDRR queueand
time averagingparameterrequirestuning.

4

3. QueueStateDRR (QSDRR)
SinceTDRR hasanoverheadassociatedwith computingandstoringa weightedthroughput
value for eachDRR queue,we investigateanotherpacket-discardpolicy which addssome
hysteresisto plain DRR’s longestqueuedrop policy. The main ideais thatoncewe drop a
packet from onequeue,we keepdroppingfrom thesamequeuewhenfacedwith congestion
until thatqueueis thesmallestamongstall active queues.Intuitively, this policy will try to
penalizethe leastnumberof flows necessaryto keepthe link from congestion.Also, when
thereis shorttermcongestion,a very few flows will be affected,thusensuringthat the link
will notbeunder-utilized. A detaileddescriptionof thisalgorithmis presentedin Figure1.

Let ! be a state variable which is
undefined initially.

When a packet arrives and there is no
memory space left:

if ! is not defined
Let ! be the longest queue in the
system;

Discard one or more packets from
the front of ! to make room
for the new packet;

else // ! is defined
if ! is shorter then all
other non-empty queues
Let ! be the longest queue in the
system now;

Discard one or more packets
from the front of ! to make
room for the new packet;

else
Discard one or more packets
from the front of ! to make
room for the new packet;

Figure1: Algorithm for QSDRR

3. Simulation Envir onment

In orderto evaluatetheperformanceof DRR,TDRRandQSDRR,werananumberof experiments
usingns-2. We comparedtheperformanceover a variedsetof network configurationsandtraffic
mixeswhich aredescribedbelow. In all our experiments,we usedTCP sourceswith 1500byte
packetsandthedatacollectedis over a 100secondsimulationinterval. We ranexperimentsusing

5

RED
�����#" Max. dropprobability 0.01$&% Queueweight 0.001
�
	'��
�� Min. threshold � ��� of buffer size
������
�� Max. threshold Buffer size

Table1: RED parameters

Blue
��� Increment 0.0025
�#� Decrement 0.00025(*),+-+/.�+ 0 	'� +

Hold-time 0.1s

Table2: Blueparameters

TCP RenoandTCP Tahoeandobtainedsimilar resultsfor both; hence,we only show the results
usingTCPRenosources.

For eachof theconfigurations,wevariedthebottleneckqueuesizefrom a100packetsto 20,000
packets. The 20,000packets representa half-secondbandwidth-delayproductbuffer which is a
commonbuffer sizedeployedin currentcommercialrouters.Weranseveralsimulationsto evaluate
������" and $&% for REDthatworkedbestfor oursimulationenvironmentto ensureafair comparison
againstour multi-queuebasedalgorithms.TheRED parameterswe usedin our simulationsarein
Table1. For Blue, we ransimulationsover our differentconfigurationsto comparethefour setsof
parametersusedby theauthorsin their paperwhile evaluatingBlue [6]. TheBlue parameterswe
usedarein Table2 andaretheonesthatgave thebestperformance.

3.1.SingleBottleneckLink

The network configurationfor this setof experimentsis shown in Figure2. 132547682:9�67;<;<;=2>4�?@?�A are
theTCPsources,eachconnectedby 10Mb/slinks to thebottlenecklink. Sincethebottlenecklink
capacityis 500Mb/s, if all TCPsourcessendat themaximumrate,theoverloadratio is 2:1. The
destinations,named1 BC4/6DBE9�67;<;<;FBC4�?@?,A , aredirectlyconnectedto therouter GH9 . All 100TCPsources
arestartedsimultaneouslyto simulateaworst-casescenariowherebyTCPsourcesaresynchronized
in thenetwork.

3.2.Multiple Roundtrip-time Configuration

The network configurationfor this setof experimentsis shown in Figure3. This configurationis
usedto evaluatetheperformanceof thedifferentqueuemanagementpoliciesgiventwo setsof TCP
flows with widely varying roundtrip-timesover the samebottlenecklink. The sourceconnection
setupis similar to the single-bottleneckconfiguration,except for the accesslink delaysfor each

6

S1

S2

S100

R
1

D1

D2

D100

R2

500 Mb/s

50ms

0.5ms

10 Mb/s

Figure2: SingleBottleneckLink Network Configuration

R
1

R2

500 Mb/s

0.5ms

D1

D100

D51

D50

S1

S100

S50

S51

10 Mb/s
100ms

10 Mb/s
20ms

Figure3: Multiple Roundtrip-timeNetwork Configuration

source. For 50 sources,the link delay is set to 20ms,while it is set to 100msfor the other 50
sources.

3.3.Multi-Hop Path Configuration

Thenetwork configurationfor this setof experimentsis shown in Figure4. In this configuration,
we have 50 TCP sourcestraversingthreebottlenecklinks andterminatingat GHI . In addition,on
eachlink, thereare50TCPsourcesactingascross-traffic. Weusethisconfigurationto evaluatethe
performanceof thedifferentqueuemanagementpoliciesfor multi-hopTCPflows competingwith
shorterone-hopcross-traffic flows.

7

R2
R3

D1

D50

S1

S50

R
1

10 Mb/s
0.5ms

10 Mb/s
0.5ms

500 Mb/s

50ms

500 Mb/s

50ms

E1 E50 E51 E100 E101 E151

500 Mb/s

50ms
R4

C1 C50 C51 C100 C101 C151

Figure4: Multi-Hop PathNetwork Configuration

4. Results

Wenow presenttheevaluationof ourmulti-queuepoliciesin comparisonwith Blue,REDandTail-
Drop. We comparethe queuemanagementpoliciesusingthe averagegoodputof all TCP flows
asa percentageof its fair-shareasthe metric. We alsoshow the goodputdistribution of all TCP
sourcesover a single-bottlenecklink andthe variancein goodput. The variancein goodputsis a
metricof the fairnessof thealgorithm; lower varianceimplies betterfairness.For all our graphs,
we concentrateon the goodputsobtainedwhile varying the buffer sizefrom 100 packets to 5000
packets. Note, for themulti-queuealgorithms,thestatedbuffer sizeis sharedover all thequeues,
while with the singlequeuealgorithms,the statedbuffer size is for that singlequeue. Sinceour
bottlenecklink speedis 500Mb/s, this translatesto avariationof buffer timefrom 2.4msto 120ms.
In all our simulations,we noticedthat all the policiesbehaved in a similar fashionpastthe 5000
packet buffer size.

4.1.Single-BottleneckLink

Thefirst setof graphs,shown in Figure5,comparethedistributionof goodputsfor all 100TCPReno
flows over thesimulationrun. For this experiment,thesingle-bottlenecklink configurationis used
andthebuffer sizeis setto 200packets.Thecloserthegoodputsareto eachother, thelowerthevari-
ance,which impliesbetterfairness.We noticethatunderTDRR andQSDRR(Figures5(b), 5(c)),
all TCPflowshadgoodputsverycloseto themeanandthemeangoodputis verynearthefair-share
threshold.WenoticethattheaveragegoodputunderDRR5(a)is notasgoodasTDRRandQSDRR
andit is evenslightly lower thanRED,sosimpleDRR is not sufficient to preventunder-utilization
of the link. In the caseof Blue (Figure5(d)), althoughthe goodputsof differentTCP flows are
closeto eachother, themeangoodputachievedis far below thefair-sharethresholdwhich leadsto
under-utilization of the link. The meangoodputachieved usingRED (Figure5(e)) is closeto the
fair-sharethreshold,but thevarianceis high. Also, a significantnumberof sourcesareableto get
morethantheir fair-shareof the bandwidth.As expected,Tail Drop (Figure5(f)), performsmost
poorly, with thehighestvariancein goodputsandavery low averagegoodput.

8

0J 20 40 60 80 100J
TCP Source

3

4

5

6

G
oo

dp
ut

 (
M

b/
s)

Mean
K
Fair Share
L

(a)DRR

0J 20 40 60 80 100J
TCP Source

3

4

5

6

G
oo

dp
ut

 (
M

b/
s)

Mean
KFair Share

(b) TDRR

0J 20 40 60 80 100J
TCP Source

3

4

5

6

G
oo

dp
ut

 (
M

b/
s) Mean

KFair Share
L

(c) QSDRR

0M 20 40 60 80 100M
TCP SourceN2

3

4

5

6

G
oo

dp
ut

 (
M

b/
s)O

Mean

Fair Share

(d) Blue

0P 20 40 60 80 100P
TCP SourceQ3

4

5

6

G
oo

dp
ut

 (
M

b/
s)R Mean

SFair Share

(e) RED

0T 20 40 60 80 100T
TCP SourceU3

4

5

6

G
oo

dp
ut

 (
M

b/
s)

Mean

Fair Share
V

(f) Tail Drop

Figure5: TCPRenoGoodputdistribution oversingle-bottlenecklink with 200pkt buffer

Figure6 shows the ratio of the goodputstandarddeviation of the TCP Renoflows to the fair
sharebandwidthfor all algorithmswhile varying the buffer size. Even at higherbuffer sizes,the
goodputstandarddeviation underDRR andQSDRRis very small and the ratio to the fair share
bandwidthis lessthan0.025. TDRR exhibits a highergoodputstandarddeviation, but it is still
significantlybelow Blue,RED andTail Drop. RED exhibits about10 timesthevariancecompared
to QSDRRandDRR, while Blue exhibits about5 timesthevariance.Overall, we observe that the
goodputstandarddeviation is between� �XW � � of the fair sharebandwidthfor the multi-queue
policiescomparedto Y � for Blue, � ��� for RED and �/� � for TailDrop. Thus,even for a single-
bottlenecklink, we observe thatthemulti-queuepoliciesoffer muchbetterfairnessto a setof TCP
flows.

Finally, figure 7 illustratesthe averagefair-sharebandwidthpercentagereceived by the TCP
Renoflows usingdifferentbuffer sizes.For smallbuffer sizes,i.e. under500packets,TDRR and
QSDRRoutperformREDsignificantlyandDRRis comparableto RED.It is interestingto notethat
evenata largebuffer sizeof 5000packets,all policiessignificantlyoutperformBlue, includingTail
Drop.

9

0
Z

1000
Z

2000
Z

3000
Z

4000
Z

5000
Z

Buffer Size (pkts)[
0

0.05

0.1

0.15

S
ta

nd
ar

d
D

ev
ia

tio
n/

F
ai

r
S

ha
re

\

DRR

TDRR
]

QSDRR

Blue

RED

TailDrop

Figure6: Standarddeviationover fair-sharefor TCPRenoflowsover asingle-bottlenecklink

0
^

1000
^

2000
^

3000
^

4000
^

5000
^

Buffer Size (pkts)_
60

70

80

90

100

F
ai

r
S

ha
re

 (
%

)

DRR
TDRR
QSDRR
Blue
RED
Tail Drop

Figure7: Fair shareperformanceover asinglebottlenecklink

4.2.Multiple Round-Trip Time Configuration

For this configuration,we use100TCPRenoflows over a singlebottlenecklink. 50 flows have a
40msRTT and50flowshavea200msRTT. Figure8 shows theaveragefair-sharegoodputreceived
by eachset.As shown in Figure8(a),bothRED andBlue allow the40msRTT flows to usealmost`����

morebandwidththantheir fair share.Tail Drop alsoallows the40msRTT flows to usemore
thantheir fair shareof the bandwidthfor buffer sizessmallerthana 1000packets. All the DRR-
basedpoliciesexhibit muchbetterperformanceallowing only � ��� extra bandwidthto beusedby
the40msRTT flows. Both RED andBlue discriminateagainstlongerRTT flows,aswe observe in
Figure8(b), the200msRTT flows achieve only about � ��� of their fair-sharebandwidthwhereas
usingtheDRR-basedpolicies,200msRTT flowsareableto achieve almosta ��� of their fair-share.

At averysmallbuffer sizeof 100packets,200msRTT flowsusingDRRandQSDRRgetabout
� ��� of their fair-share.However, at thisbuffer size,whenall theflows areactive, thereis only one
packetperflow thatcanbebuffered.Thiscausesthepoorperformanceof DRRandQSDRR,sinceit

10

0
b

1000
b

2000
b

3000
b

4000
b

5000
b

Buffer Size (pkts)c
80

100

120

140

160

F
ai

r
S

ha
re

 (
%

)

DRR
TDRR
QSDRR
Blue
RED
Tail Drop

(a) Flowswith RTT = 40ms

0
b

1000
b

2000
b

3000
b

4000
b

5000
b

Buffer Size (pkts)c
20

40

60

80

100

F
ai

r
S

ha
re

 (
%

)

DRR
TDRR
QSDRR
Blue
RED
Tail Drop

(b) Flows with RTT = 200ms

Figure8: Fair shareperformanceof differentRTT flowsover asinglebottlenecklink

becomesverydifficult to singleout flows thatareusingmorebandwidth.Evenwith this limitation,
whenwemoveto 200packets,bothDRRandQSDRRsignificantlyimprove theirperformanceand
200msRTT flows achieve about

�����
of their fair-sharebandwidthon the average.SinceTDRR

maintainsanexponentiallyweightedthroughputaveragefor eachflow, evenat thesmallestbuffer
sizeof 100packets,it is ableto deliver almost a ��� of thefair-sharebandwidthto the200msRTT
flows.

4.3.Multi-Hop Path Configuration

In this configuration,50 end-to-endTCPRenoflows go over threehopsandhave anoverall round-
trip time of 150ms.Thecross-traffic on eachhopconsistsof 50 TCPRenoflows with a round-trip
time of 50ms(onehop). Figure9 illustratestheaveragefair-sharegoodputreceivedby eachsetof
flows. For thisconfiguration,TDRRandQSDRRprovidealmosttwicethegoodputasREDandTail
Drop andfour timesthegoodputprovidedby Blue for end-to-endflows. As shown in Figure9(a),
end-to-endflows achieve nearly

�����
of their fair-shareunderTDRR andQSDRRand Y ��� under

DRR.UnderREDandTail Drop,they canachieveonly � ��� of theirfair share.Foreventhesmallest
buffer sizeof a 100 packets,end-to-endTCPflows underTDRR areableto achieve

�����
of their

fair-share.UsingQSDRRandDRR,for thesmallestbuffer size,their fair-shareis thesameasRED,
but oncethebuffer sizeincreasesto 200packets,theirperformanceimprovessignificantlyandthey
allow theend-to-endflows to achieve closeto

�����
and Y ��� respectively.

For this multi-hopconfiguration,theend-to-endflows facea probabilityof packet lossat each
hopunderRED andBlue. Due to congestioncausedby thecross-traffic, RED andBlue will ran-
domly droppacketsat eachhop. Althoughthecross-traffic flows will have a greaterprobabilityof
beingpicked for a drop, the end-to-endflows alsoexperiencerandomdroppingandthusachieve
very poorgoodput.For Blue, this is furtherexacerbated,sincedueto thehigh loadfrom thecross-

11

0
b

1000
b

2000
b

3000
b

4000
b

5000
b

Buffer Size (pkts)c
0

20

40

60

80

100

F
ai

r
S

ha
re

 (
%

)

QSDRR

TDRR

DRR

RED

TailDrop

Blue
d

(a)End-to-endTraffic

0
^

1000
^

2000
^

3000
^

4000
^

5000
^

Buffer Size (pkts)_
100

120

140

160

F
ai

r
S

ha
re

 (
%

)

QSDRR

TDRR

DRR

RED

TailDrop

Blue
e

(b) CrossTraffic

Figure9: Fair Shareperformanceof end-to-endandcrosstraffic flows over a multi-hoppathcon-
figuration

traffic flows, thediscardprobabilityremainshigh at eachhop. This increasestheprobabilityof an
end-to-endflow facingpacket dropsat eachhopandthusfurtherreducingthegoodput.

Figure9(b) shows the averagegoodputfor the cross-traffic flows attachedto router G 4 . For
DRR,TDRRandQSDRR,thecross-traffic takesuptheslackin thelink andconsumesabout �,� `fW
�/� ��� of its fair-sharebandwidth. For both RED andTail Drop, the link utilization is lower and
althoughthe end-to-endflows consumeonly about � ��� of their fair-share,the cross-traffic flows
consume� `���� of their fair-shareand thus leave about

`g�
unutilized. Cross-traffic flows under

Blueconsumeabout �/� �hW �i� ��� of their fair-share,leaving � �jWlk����
unutilized.

4.4.Scalability Issues

One drawback with a fair-queueingpolicy suchas DRR is that we needto maintaina separate
queuefor eachactive flow. Sinceeachqueuerequiresa certainamountof memoryfor the linked
list header, usedto implementthequeue,thereis a limit on thenumberof queuesthata routercan
support.In theworst-case,theremight beasmany asonequeuefor every packet stored.Sincelist
headersaregenerallymuchsmallerthanthepacketsthemselves,theseverity of thememoryimpact
of multiple queuesis intrinsically limited. On theotherhand,sincelist headersaretypically stored
in moreexpensive SRAM, while thepacketsarestoredin DRAM, thereis somelegitimateconcern
aboutthe costassociatedwith using large numbersof queues.Oneway to reducethe impactof
this issueis to allow multiple flows to shareasinglequeue.While this canreducetheperformance
benefitsobserved in the previous sections,it may be appropriateto tradeoff performanceagainst
cost,at leastto someextent.To addressthis issue,we ranseveralsimulationsevaluatingtheeffects
of mergingmultipleflowsinto asinglequeue.Figure10illustratestheeffectsof varyingthenumber
of queues.ThesourcesareTCPRenoandthetotalbuffer spaceis fixedat 1000packets.

12

1m 10n 100n
Number of Queueso

20

40

60

80

100

F
ai

r
S

ha
re

 (
%

)

Single − TDRR
Single − QSDRR
RTT − TDRR
RTT − QSDRR
Path − TDRR
Path − QSDRR

Multi−Hop Path Configuration

Multiple Round−trip Time Configuration

(200ms RTT flows)

(End−to−end flows)

Single−Bottleneck Link Configuration

(a) Fair SharePercentage

1p 10q 100q
Number of Queuesr

0

0.05

0.1

0.15

0.2

S
ta

nd
ar

d
D

ev
ia

tio
n/

F
ai

r
S

ha
re

s

Single − TDRR
Single − QSDRR
RTT − TDRR
RTT − QSDRR
Path − TDRR
Path − QSDRR

(b) StandardDeviation in goodputover Fair Share
Bandwidth

Figure 10: Performanceof TDRR and QSDRRfor a buffer size of 1000 packets, with varying
numberof buckets

Figure10(a)illustratestheeffecton thegoodputreceivedby eachflow underdifferentnumbers
of queues.For the multiple round-trip time configurationand the multi-hop path configuration,
we show thegoodputfor the200msRTT (longerRTT) flows andtheend-to-end(multi-hop)flows
respectively. In boththeseconfigurations,theabove mentionedflows aretheoneswhich receive a
muchlowergoodputcomparedto their fair shareunderexistingpoliciessuchasRED,BlueandTail
Drop. Weobserve thattheeffect of increasingthenumberof bucketsproducesdiminishingreturns
oncewego past10buckets.In fact,thereis only amarginal increasein thegoodputreceivedwhen
wegofrom 10bucketsto 100buckets.Sinceateachbottlenecklink therearea100TCPflows, this
impliesthatour algorithmsarescalableandcanperformvery well evenwith one-tenththenumber
of queuesasflows.

We alsopresentthestandarddeviation in goodputreceivedby eachflow for differentnumbers
of queuesin Figure10(b). Theresultsarepresentedasa ratio of thestandarddeviation to the fair
sharebandwidthto betterillustratethemeasureof thestandarddeviation. We noticethatchanging
thenumberof queuesdoesnot have a significantimpacton thestandarddeviation of thegoodputs,
andthuswe do not loseany fairnessby usingmuchfewer queues,relative to thenumberof flows.
Also, theoverall standarddeviation is below � `g� of thefair sharegoodputfor all our multi-queue
policies,regardlessof thenumberof queues.

5. RelatedWork

Our DRR-basedpolicies,TDRR and QSDRR,which combinefair queueingand packet discard
policies,provide oneparticularsolution for managingvery small buffers while maintainingvery
high link utilization and goodput. In this section,we compareour approachwith other related

13

approaches.Onething to noteaboutall therelatedwork is thatnoneof theapproacheshave been
testedonmultiple network configurationsor with heterogeneoustraffic.

5.1.Fair QueueingAlgorithms

Severalschedulingalgorithmsareknown in theliteraturefor bandwidthallocationandtransmission
scheduling.Theseincludethepacket-by-packet versionof GeneralizedProcessorSharing[9] (also
known asWeightedFair Queueing[10]), VirtualClock[11], StochasticFairnessQueueing[8], Self-
ClockedFair Queueing[12], WeightedRoundRobin[13], Deficit RoundRobin(DRR) [7], Frame-
basedFair Queueing[14]. We choseDRR due to its simplicity and easeof implementationin
hardware.

5.2.FRED

Oneproposalfor usingRED mechanismsto provide fairnessis Flow-RED (FRED)[15]. The idea
behindFREDis to keepstatebasedontheinstantaneousqueueoccupancy of agivenflow. It defines
athreshold,�
	'� % , whichis theminimumnumberof packetseachsourceis allowedto queue.When
a new packet arrivesandthe queuesizeis greaterthan �
	'��
�� , FRED will apply RED to sources
whosebuffer occupancy exceeds�
	'� % . Althoughthis algorithmprovidesroughfairnessin many
situations,sinceit maintainsa �
	'� % thresholdfor all sources,it needsa largebuffer spaceto work
well. Wehaveshown thatTDRRandQSDRRareableto provide fair-sharingfor verysmallbuffers
even with a large numberof flows. Also, sinceFREDdoesnot maintainlong-termstatisticson a
flow’s queueoccupancy, it cannotprotectagainstmisbehaving flows. On the otherhand,TDRR
maintainsanexponentially-weighted throughputaveragefor eachflow, allowing it to “remember”
eventsmuchlongerin thepastthanthequeuetime constant;thisallows it to enforcefairness,even
for smallbuffer sizes.

5.3.Self-Configuring RED

Self-configuringRED[16] is aproposalfor anadaptiveREDpolicy thatcanself-parameterizegiven
differentcongestiontypes. This policy is similar to Blue, wherethe RED’s droppingprobability,
������" is decreasedwhentheaveragequeuesizefallsbelow �
	'��
�� andincreasedwhentheaverage
queuesizeexceeds����� 0@t . This improvesoverREDin reducingthequeuesizevariations,but does
not helpprovide betterfair-sharingbetweenflows, suffering from thesameweaknessespresentin
RED.

5.4.TCP with per-flow queueing

Anotherproposalfor managingTCP buffers is usingframe-basedfair-queueing[14] with longest
queueor randomdiscardpolicy [17]. This policy is similar to plain DRR.However, it hasa disad-
vantagein that the frame-basedfair-queueingusestherateallocatedto eachflow in its scheduling
policy. This impliesthat it needsto know thenumberof flows apriori, which is a difficult require-
mentto meet.Wehaveshown thatourmultiqueuepoliciescanadaptto any numberof flows,evenif

14

theratioof flows to queuesis 10:1.Wehavealsoshown thata fair queueingschedulerwith longest
queuediscard(plain DRR) doesnot performvery well over a single-bottleneckconfigurationfor
smallbuffers.

6. Conclusion

This paperhasdemonstratedthe inherentweaknessesin currentqueuemanagementpoliciescom-
monly usedin Internetrouters.Theseweaknessesincludelimited ability to performwell undera
variety of network configurationsandtraffic conditions,inability to provide a fair-sharingamong
competingTCPconnectionswith differentRTTs andrelatively low link utilization andgoodputin
routersthathave smallbuffers. In orderto addresstheseissues,we presentedTDRR andQSDRR,
two differentpacket-discardpoliciesusedin conjunctionwith a simple, fair-queueingscheduler,
DRR.Throughextensive simulations,weshowedthatTDRRandQSDRRsignificantlyoutperform
REDandBluefor variousconfigurationsandtraffic mixesin boththeaveragegoodputfor eachflow
andthevariancein goodputs.Wealsoshowedthatouralgorithmsperformwell evenwhenmemory
is limited andwehave to aggregatemultiple sourcesinto onequeue.

References

[1] E. Hashem, “Analysis of randomdrop for gateway congestioncontrol”, Tech.Rep.LCS
TR-465,Laboratoryfor ComputerScience,MIT, 1989.

[2] RobertMorris, “ScalableTCPCongestionControl”, in IEEEINFOCOM2000, March2000.

[3] S. Floyd andV. Jacobson,“RandomEarly DetectionGatewaysfor CongestionAvoidance”,
IEEE/ACM Transactionson Networking, vol. 1, no.4, pp.397–413,Aug. 1993.

[4] S.Doran, “RED ExperienceandDifferentialQueueing”,NanogMeeting,June1998.

[5] C.VillamizarandC.Song,“High PerformanceTCPin ANSNET”, ComputerCommunication
Review, vol. 24,no.5, pp.45–60,Oct.1994.

[6] W. Feng,D. Kandlur, D. Saha,andK. Shin,“Blue: A New Classof ActiveQueueManagement
Algorithms”, Tech.Rep.CSE-TR-387-99,Universityof Michigan,Apr. 1999.

[7] M. ShreedharandGeorgeVarghese,“EfficientFair QueueingusingDeficit RoundRobin”, in
ACM SIGCOMM’95, Aug. 1995.

[8] P. McKenney, “StochasticFairnessQueueing”, Internetworking:Research andExperience,
vol. 2, pp.113–131,Jan.1991.

[9] A. K. ParekhandR. G. Gallager, “A generalizedprocessorsharingapproachto flow control-
thesinglenodecase”,in IEEEINFOCOM1992, May 1992.

[10] A. Demers,S.Keshav, andS.Shenker, “Analysisandsimulationof afair queueingalgorithm”,
Internetworking:Research andExperience, vol. 1, no.1, pp.3–26,1990.

15

[11] L. Zhang,“VirtualClock:anew traffic controlalgorithmfor packetswitchingnetworks”, ACM
Transactionson ComputerSystems, vol. 9, pp.101–124,May 1991.

[12] S. Golestani, “A self-clocked fair queueingschemefor broadbandapplications”, in IEEE
INFOCOM1994, Apr. 1994.

[13] M. Katevenis,S.Sidiropoulos,andC. Courcoubetis,“Weightedround-robincell multiplexing
in ageneral-purposeATM switchchip”, IEEEJournalonSelectedAreasin Communications,
vol. 9, pp.1265–1279,Oct.1991.

[14] D. StiliadisandA. Varma,“Designandanalysisof Frame-basedFairQueueing:A New Traffic
SchedulingAlgorithm for Packet-SwitchedNetworks”, in ACM SIGMETRICS’96, May 1996.

[15] DongLin andRobertMorris, “Dynamicsof RandomEarly Detection”, in ACM SIGCOMM
’97, Sept.1997.

[16] W. Feng,D. Kandlur, D. Saha,andK. Shin, “A Self-ConfiguringRED Gateway”, in IEEE
INFOCOM1999, Mar. 1999.

[17] B. Suter, T. V. Lakshman,D. Stiliadis,andA. Choudhury, “Design Considerationsfor Sup-
portingTCPwith Per-flow Queueing”,in IEEEINFOCOM1998, Mar. 1998.

