
Design and Evaluation of a High-Performance Dynamically Extensible Router
�

Fred Kuhns, John DeHart, Anshul Kantawala, Ralph Keller, John Lockwood, Prashanth Pappu,
David Richard

�
, David Taylor

�
, Jyoti Parwatikar, Ed Spitznagel, Jon Turner, and Ken Wong

Department of Computer Science, � Department of Electrical Engineering and

The Applied Research Laboratory, Washington University in St. Louis, USA�
fredk,jdd,anshul,keller,lockwood,prashant,wdr,det3,jp,ews1,jst,kenw � @arl.wustl.edu

Abstract

This paper describes the design, implementation and
performance of an open, high performance, dynamically ex-
tensible router under development at Washington University
in St. Louis. This router supports the dynamic installation
of software and hardware plugins in the data path of appli-
cation data flows. It provides an experimental platform for
research on programmable networks, protocols, router soft-
ware and hardware design, network management, quality
of service and advanced applications. It is designed to be
flexible without sacrificing performance. It supports gigabit
links and uses a scalable architecture suitable for support-
ing hundreds or even thousands of links. The system’s flex-
ibility makes it an ideal platform for experimental research
on dynamically extensible networks that implement higher
level functions in direct support of individual application
sessions.

1. Introduction

In the last decade, the Internet has undergone a funda-
mental transformation, from a small-scale network serving
academics and select technology companies to a global in-
frastructure serving people in all walks of life and all parts
of the world. As the Internet has grown, it has become more
complex, making it difficult for researchers and engineers
to understand its behavior and that of its many interacting
components. This increases the challenges faced by those
seeking to create new protocols and technologies that can
potentially improve the Internet’s reliability, functionality
and performance. At the same time, the growing impor-
tance of the Internet is dramatically raising the stakes. Even
small improvements can have a big payoff.

�
This work was supported in part by NSF grants ANI-0096052, ANI-

9714698, ANI-9813723, ANI-9616754 and DARPA grant N66001-98-C-
8510.

In this context, experimental studies aimed at under-
standing how Internet routers perform in realistic network
settings are essential to any serious research effort in In-
ternet technology development. Currently, academic re-
searchers have two main alternatives for experimental re-
search in commercial routers and routing software. With
commercial routers, researchers are using state-of-the-art
technology but are generally limited to treating the router
as a black box with the only access provided by highly
constrained management interfaces. The internal design is
largely hidden and not subject to experimental modifica-
tion. The other alternative for academic researchers is to
use routing software running on standard computers. Open
source operating systems, such as Linux and NetBSD, have
made this a popular choice. This alternative provides the re-
searcher with direct access to all functionality and provides
complete extensibility but lacks most of the advanced archi-
tectural features found in commercial routers, making such
systems unrealistic.

The growing performance demands of the Internet have
made the internal design of high performance routers far
more complex. Routers now support large numbers of gi-
gabit links and use dedicated hardware to implement many
protocol processing functions. Functionality is distributed
among the line cards that interface to the links, the con-
trol processors that provide high level management and the
interconnection network that moves packets from inputs to
outputs. The highest performance systems use multistage
interconnection networks capable of supporting hundreds or
even thousands of 10 Gb/s links. To understand how such
systems perform, one must work with systems that have the
same architectural characteristics. A single processor with
a handful of relatively low speed interfaces uses an archi-
tecture which is both quantitatively and qualitatively very
different. The kinds of issues one faces in systems of this
sort are very different from the kinds of issues faced by de-
signers of modern high performance routers. If academic
research is to be relevant to the design of such systems, it
needs to be supported by systems research using compara-

ble experimental platforms.

This paper describes a highly flexible, dynamically ex-
tensible router that is under development at Washington
University. It provides an ideal platform for advanced net-
working research in the increasingly complex environment
facing researchers and technology developers. It is built
around a switch fabric that can be scaled up to thousands
of ports. While typical research systems have small port
counts, they do use the same parallel architecture used by
much larger systems, requiring researchers to address in a
realistic way many of the issues that arise in larger systems.
The system has embedded, programmable processors at ev-
ery link interface, allowing packet processing at these inter-
faces to be completely flexible and allowing dynamic mod-
ule installation that can add specialized processing to in-
dividual application data flows. An extension to the system
architecture, which is now in progress, will enable all packet
processing to be implemented in reconfigurable hardware,
allowing wire-speed forwarding at gigabit rates. The design
of all software and hardware used in the system is being
placed in the public domain, allowing it to be studied, mod-
ified and reused by researchers and developers interested in
advancing the development of open, extensible, high per-
formance Internet routers.

This paper contains two parts. Part I (Sections 2 to 4)
describes the architecture of Washington University’s Dy-
namically Extensible Router (DER). Section 2 describes the
overall system architecture and some novel hardware com-
ponents. The principle configurations are distinguished by
the type of hardware performing the port processing func-
tions. In the simplest configuration, all port processors are
Smart Port Cards (SPCs) which contain a general-purpose
processor. This SPC-only system can be extended by off
loading most of the traditional IP processing functions to
a reconfigurable hardware module called the Field Pro-
grammable port eXtender (FPX). In this FPX/SPC system,
the SPC handles special processing such as active packets
and some IP options. Section 3 describes the design and im-
plementation of system-level processing elements and some
of the design issues related to its distributed architecture.
Section 4 describes the processing done at the port proces-
sors in an SPC-only system.

Part II (Sections 5 to 9) describes the use and evalua-
tion of the DER. Section 5 describes our experience with an
active networking application that exploits the system’s ex-
tensibility. Section 6 describes performance measurements
of packet forwarding speed on an SPC-only prototype sys-
tem. The measurements quantify the ability of an SPC-
only system to forward packets and provide fair link ac-
cess. Section 7 describes the evaluation of our combined
packet queueing and scheduling algorithm called Queue
State Deficit Round Robin (QSDRR). Section 8 describes
the evaluation of our distributed queueing algorithm which

is aimed at maximizing output link utilization with consid-
erably lower cost than output queueing systems.

�������

����	

��

����������

�
�
�
��

�
�
�
�
	

�
�

���

���

��

�
�
�

�
�
�

���

���

��

�
�
�

�
�
�

���

���

��

�
�
�

�
�
�

���

���

��

�
�
�

�
�
�

���

���

��

�
�
�

�
�
�

���

���

��

�
�
�

�
�
�

�
�
	

�
�
�
�

�
�
�
��
�
�
�
�
��
�
�
	

Figure 1. DER Hardware Configuration

Section 9 describes how an FPX/SPC system would han-
dle active IP packets and presents preliminary measure-
ments of its packet forwarding speed with and without ac-
tive traffic. These measurements quantify the effect of ex-
tending an SPC-only system with field programmable mod-
ules. Finally, Section 10 closes with final remarks on the
current status of the system and future extensions.

Part I: Architecture

2. System Overview

The Washington University Dynamically Extensible
Router (DER) is designed to be a scalable, high-
performance, open platform for conducting network re-
search. It employs highly reconfigurable technology (pro-
grammable hardware and dynamic software modules) to
provide high-speed processing of IP packets and can be
extended to provide application-specific processing for se-
lected flows. Because it is built around an ATM core, it can
also support ATM virtual circuits. Figure 1 shows the over-
all architecture of the DER and its main components: Con-
trol Processor (CP), ATM switch core, Field Programmable
port eXtenders (FPXs), Smart PortCards (SPCs) and Line
Cards (LCs). Figure 2 shows one DER unit with its cover
off in the right photograph.

The main function of the router is to forward packets
at a high speed from its input side to its output side. The
system uses a multistage interconnection network with dy-
namic routing and a small internal speed advantage (i.e.,
the internal data paths can forward packets at a faster rate

2

Figure 2. Washington University Dynamically Extensible Router

than the external links) to connect the input side Port Pro-
cessors (PPs) to the output side PPs. Our use of an ATM
switch core is a typical approach used by commercial sys-
tems where IP is often implemented over ATM in order to
get the benefits of cell-switching. A PP can include either a
Field Programmable port eXtender (FPX) or a Smart Port-
Card (SPC) or both. These PPs perform packet classifica-
tion, route lookup and packet scheduling.

The system employs a number of interesting techniques
aimed at achieving high performance and flexibility. A dis-
tributed queueing algorithm is used to gain high throughput
even under extreme overload. A queue state deficit round
robin packet scheduling algorithm is used to improve av-
erage goodput (throughput excluding retransmissions) and
goodput variability with less memory utilization. The PPs
include an efficient dynamic plugin framework that can pro-
vide customized services that are integrated into the normal
packet processing path. The PPs also use a packet classifica-
tion algorithm that can run at wire speed when implemented
in hardware. The CP runs open source route daemons that
support standard protocols such as OSPF as well as the
DER’s own flow-specific routing protocol. Furthermore,
the key router functions are efficiently distributed among its
hardware components by exploiting the high bandwidth and
connection-oriented circuits provided by the ATM switch
core. The remainder of this section gives an overview of the
DER hardware components.

2.1. Control Processor

The Control Processor (CP) runs software that directly
or indirectly controls and monitors router functions. Some
of these functions include:

� Configuration discovery and system initialization

� Resource usage and status monitoring

� Routing protocols

� Control of port-level active processing environments

� Forwarding table and classifier database maintenance

� Participation in higher level protocols for both local
and global resource management

The processing associated with some of these functions is
described in Sections 3 and 4. The CP is connected to one
of the DER’s ports and uses native ATM cells and frames
(AAL0 and AAL5) to communicate with and control the
individual port processors.

2.2. Switch Fabric and Line Cards

The DER’s ATM switch core is a Washington University
Gigabit ATM Switch (WUGS)[1, 2]. The current WUGS
has eight ports with Line Cards (LCs) [3] capable of oper-
ating at rates up to 2.4 Gb/s and supports ATM multicasting
using a novel cell recycling architecture.

Each LC provides conversion and encoding functions re-
quired for the target physical layer device. For example,
an ATM switch link adapter provides parallel-to-serial, en-
coding, and optical-to-electrical conversions necessary for
data transmission over fiber using one of the optical trans-
mission standards, e.g., SONET. Current LCs include a dual
155 Mb/s OC-3 SONET [4] link adapter, a 622 Mb/s OC-12
SONET link adapter, and a 1.2 Gb/s Hewlett Packard (HP)
G-Link [5] link adapter. A gigabit Ethernet LC is currently
being designed.

2.3. Port Processors

Commercial switches and routers typically employ spe-
cialized integrated circuits to implement complex queueing
and packet filtering mechanisms. Active processing envi-
ronments that use commercial routers rely on a general-
purpose processing environment with high-level language

3

SRAM

T
o/

F
ro

m
 o

th
er

 n
et

w
or

k
po

rt
s

Interface
Programming

SelectMap

Hardware-based
Packet Processing

SPC

VC VC

VCVC

Error Check
Circuit

Control Cell
Processor

Virtual Circuit
Lookup Table

Synch, Buffered
Interface

temp

Asynchronous
Interface

Switch

Three Port

APIC

Pentium

Li
ne

 C
ar

dNID

RAD

WUGS

F
ire

w
al

l

E
nc

ry
pt

io
n

M
od

ul
e

M
od

ul
e

Software-based

FPX

Four Port

Switch

EC EC

Switching
Packet Processing

ccp

North

Program
RAD

SDRAM SDRAM

Data Data

Bridge South
Bridge

EDO
DRAM

Data
SRAM
Data

SRAM

Module
Intel Embedded

PCI Interface

PCI Bus

Figure 3. An FPX/SPC Port Processor

support such as Java and NodeOS [6, 7]. This approach re-
sults in an inflexible, high-performance standard packet for-
warding path and a relatively low-performance active pro-
cessing path.

The DER takes a different approach to supporting ac-
tive processing and high-performance packet forwarding.
The port processors are implemented using two separate de-
vices: an embedded general-purpose computing platform
called the Smart Port Card (SPC) and an embedded pro-
grammable hardware device called the Field Programmable
port eXtender (FPX). Figure 3 illustrates how the SPC, FPX
and WUGS are interconnected. In general, the FPX per-
forms basic IP packet processing, forwarding and schedul-
ing [8] and leaves non-standard processing to an SPC which
acts as a network processor. This implementation ap-
proach takes advantage of the benefits of a cooperative hard-
ware/software combination [9, 10].

While a high-performance configuration would contain
both FPXs and SPCs, this is not required. The SPC can han-
dle all IP forwarding functions (i.e., IP route lookup, flow
classification, distributed queueing and packet scheduling)
as well as active processing.

Smart Port Card (SPC): As shown in Figure 4, the Smart
Port Card (SPC) consists of an embedded Intel proces-
sor module, 64 MBytes of DRAM, an FPGA (Field Pro-
grammable Gate Array) that provides south bridge func-
tionality, and a Washington University APIC ATM host-
network interface [11]. The SPC runs a version of the
NetBSD operating system [12] that has been substantially
modified to support fast packet forwarding, active network
processing and network management.

The Intel embedded module contains a 166 MHz Pen-

��������	
�

��������������������

�	�
������
������

�����
 !��
"#��

	������

�	��

����$"��� ����

����

����$"���$����

�
��

�
�
�

�
��
%

	�%	��#%�&

��'��#'���#%(�����)���

��#%*�����)���

�'�+

�'�(

,�-�����)���

�.��������)���

"
�
�
��
�
�
#
%

Figure 4. Block Diagram of the Smart Port
Card (SPC)

tium MMX processor, north bridge [13] and L2 cache.
(We are currently developing an SPC 2, a faster version
of this module, which will replace the current SPC.) The
“System FPGA” provides the functionality of the south
bridge chip [14] found in a normal Pentium system and
is implemented using a Xilinx XC4020XLA-08 Field Pro-
grammable Gate Array (FPGA) [15]. It contains a small
boot ROM, a Programmable Interval Timer (PIT), a Pro-
grammable Interrupt Controller (PIC), a dual UART inter-
face, and a modified Real Time Clock (RTC). See [16] for
additional details.

On the SPC, ATM cells are handled by the APIC [17,
18]. Each of the ATM ports of the APIC can be indepen-
dently operated at full duplex rates ranging from 155 Mb/s
to 1.2 Gb/s. The APIC supports AAL-5 and is capable

4

of performing segmentation and reassembly at maximum
bus rate (1.05 Gb/s peak for PCI-32). The APIC directly
transfers ATM frames to and from host memory and can be
programmed so that cells of selected channels pass directly
from one ATM port to another.

We have customized NetBSD to use a disk image stored
in main memory, a serial console, a self configuring APIC
device driver and a “fake” BIOS. The fake BIOS pro-
gram acts like a boot loader: it performs some of the ac-
tions which are normally done by a Pentium BIOS and the
NetBSD boot loader during power-up.

Field Programmable Port Extender (FPX): The FPX is
a programmable hardware device that processes packets as
they pass between the WUGS backplane and the line card
(shown in the middle of Figure 3). All of the logic on the
FPX is implemented with two FPGA devices: the Network
Interface Device (NID) and the Reprogrammable Applica-
tion Device (RAD) [8]. The FPX is implemented on a
20 cm � 10.5 cm printed circuit board that interconnects
the FPGAs with multiple banks of memory.

The Network Interface Device (NID) controls how pack-
ets are routed to and from its modules. It also provides
mechanisms to load hardware modules over the network.
These two features allow the NID to dynamically load and
unload modules on the RAD without affecting the switch-
ing of other traffic flows or the processing of packets by the
other modules in the system [19].

As shown in the lower-center of Figure 3, the NID has
several components, all of which are implemented on a Xil-
inx Virtex XCV-600E FPGA device. It contains: 1) A four-
port switch to transfer data between ports; 2) Flow look-up
tables on each port to selectively route flows; 3) An on-
chip Control Cell Processor to process control cells that
are transmitted and received over the network; 4) Logic to
reprogram the FPGA hardware on the RAD; and 5) Syn-
chronous and asynchronous interfaces to the four network
ports that surround the NID.

A key feature of the FPX is that it allows the DER to
perform packet processing functions in modular hardware
components. As shown in the upper-center of Figure 3,
these modules are implemented as regions of FPGA logic
on the RAD. A standard interface has been developed that
allows a module to process the streaming data in the pack-
ets as they flow through the module and to interface with
off-chip memory [20]. Each module on the RAD connects
to one Static Random Access Memory (SRAM) and to one
wide Synchronous Dynamic RAM (SDRAM). In total, the
modules implemented on the RAD have full control over
four independent banks of memory. The SRAM is used
for applications that need to implement table lookup op-
erations such as the routing table for the Fast IP Lookup
(FIPL) module. The other modules in the system can be
programmed over the network to implement user-defined

functionality [21].

3. System-Level Processing

Figure 5 gives a global view of an SPC-only DER show-
ing some of the functions along the control and data paths.
Section 9 describes how the SPC works with the FPX in an
FPX/SPC system. This section describes the activities that
involve the Control Processor (CP) and its interaction with
the PPs. The software framework running on the CP sup-
ports system configuration, status monitoring, PP (SPC and
FPX) control, resource management, and routing. The man-
aged resources include output link bandwidth, SPC buffers,
active plugin environment, route tables and classifier rules.

3.1. Internal Communication

Communication among the DER’s distributed compo-
nents is built on top of a set of ATM virtual circuits using
VCI (Virtual Circuit Identifier) allocation rules that simplify
their use. Also, the CP uses the concept of virtual interfaces
to easily segregate traffic arriving from the PPs. It should be
pointed out that using VCIs to segregate traffic has several
practical consequences:

� Allows for early traffic demultiplexing in the SPC
thereby reducing the per packet/cell processing over-
head [22];

� IP packets and AAL5 control traffic may be sent si-
multaneously on different VCs without the possibility
of interleaving ATM cells;

� Provides a simple abstraction and mechanism for im-
plementing virtual interfaces (a physical interface may
have multiple virtual interfaces, each associated with a
different VCI).

The VCI space is partitioned into into three groups, one
for each of the three traffic types:

1) ATM Device Control: The CP sends AAL0 cells to
configure and monitor the various ATM specific de-
vices in the DER (e.g., FPX, SPC ATM interface
(APIC), ATM switch).

2) IP Datagrams: IP traffic travels from input PPs to out-
put PPs using specific VCIs. The VCI allocation rules
for inter-PP communication simplifies the identifica-
tion of the sending and receiving ports by treating the
VCI as a “tag”. For example, input PP

�
sends to out-

put PP � on VCI (�������). The ATM switch translates
the VCI so that PP � receives the same frame on VCI
(
� �	���). Here, 40 is the base VCI for transiting IP

traffic. Other traffic types use different base VCIs.

5

����

��
�
��
�

��
�
���

��
�
���

���

����	
�

���

������	���

��� ��

����	
�

����	

���

���

����	
�

���

������	���

��� ��

����	
�

����	

���

���

����	
�

���

������	���

��� ��

����	
�

����	

���

���

����	
�

���

������	���

��� ��

����	
�

����	

���

��
�
��
�

����

�	
��	���	����	�

����

��������

�	���
�

����

���	����

����	����

�	��

�	
��������	

����

�	����

����
������

�� 	�!�
�

���	�������
����

���
��
����	�	�	�

"�� #��$ �%�

�	���
����	�	�	�

�������%
��������

Figure 5. DER Logical View

3) Command and Management Traffic: A similar ap-
proach is used to send commands from the CP to the
PPs. For example, the CP sends commands to SPC �
on VCI (� � � �) while each SPC listens for these com-
mands on VCI 62.

3.2. System Configuration

System initialization sets up communication paths
among all processors (CP, PPs) and initializes the PPs with
instructions and data. This boot process is multi-tiered.
First, it performs a low-level initialization sequence so that
the CP can communicate with the PPs. Next, it discovers
the number, location, and types of computing resources and
links at each port.

The following sequence is executed:

Configuration: The CP controls the operation of its PPs
using ATM control cells. Therefore, communication must
be established between the CP and its PPs even before the
discovery step can be performed. The CP sets up predefined
ATM virtual circuits (VCs). These include VCs for control
cells, for program loading and for forwarding IP packets
from input ports to output ports.

Discovery: The CP discovers the low-level configuration of
a port by sending control cells in succession to the switch
port processor and each of the adjoining cards. Each pro-

cessor reports the characteristics of the adjacent card. The
responses indicate the type of processors at each port and
the link rate.

SPC Initialization: The CP downloads a NetBSD kernel
and memory-resident filesystem to each SPC using a multi-
cast VC and AAL5 frames and completes each SPC’s iden-
tity by sending them their port number using a DER control
message.

FPX Initialization: Initialization of an FPX follows a sim-
ilar sequence. A program and configuration is loaded into
the RAD reprogram memory under control of the NID us-
ing control cells. Once the last cell has been successfully
loaded, the CP sends a control cell to the NID to initiate
the reprogramming of the RAD using the contents of the
reprogram memory.

The DER can also dynamically alter a large number of
system parameters making it ideal for an experimental set-
ting. These changes can be performed at a full range of sys-
tem levels. Examples at the policy level include selecting
a packet classifier or a particular distributed queueing algo-
rithm. Examples at the lowest levels include the enabling
of debug messages and the selection of the system message
recipients. The DER’s control cell framework makes it easy
to add and control new dynamic configuration options.

6

3.3. Packet Classification

The DER architecture is based on a relatively simple ar-
chitectural model which is similar to the integrated services
routing architecture described in RFC1633 [23]. Packet
classification is used to determine how a packet will be han-
dled. The CP configures and maintains the classifiers at the
PPs. The CP sends a set of rules to the PPs which together
with the routing table define the classifier. A rule is com-
posed of a filter (predicate) and an action perhaps involving
some action specific data (e.g., resource requirements for a
reserved flow).

A filter specifies a bit pattern that is compared against
the received packet header. The DER supports both longest
prefix match and general match filters. A general match
filter permits partial matches which include the source and
destination IP address fields, the corresponding netmasks,
the source and destination port number fields and the pro-
tocol field. The longest prefix match filter compares up to
104 bits from the IP and transport headers and selects the
filter with longest matching prefix.

The classification function is performed by the general
filters and the flow/route lookup modules at each input PP.
When a packet is received at an input PP, it is classified
resulting in a set of associated actions and resource allo-
cations. Additional information associated with a packet
may include a representation of the next hop’s address, QoS
reservations, an indication of route pinning and whether a
copy of the packet should be sent to a management module.
Actions supported in the DER include:

� Deny: Drop the packet, an action typical of a fire-
wall implementation where a set of rules are defined
to specifically list application flaws or traffic classes
that must not be forwarded by the router.

� Permit: Forward normally: this is the default action
when no other actions are specified.

� Reserved: Forward based on reservation: the flow has
an existing resource reservation.

� Active: The flow is associated with an active plugin.
So, the packet must be sent to the active processing
environment.

3.4. Route Management

The DER maintains information about other routers in
the network by running Zebra [24], an open-source routing
framework distributed under the GNU license. Zebra sup-
ports various interior (OSPF, RIP) and exterior (BGP) rout-
ing protocols. Each individual routing protocol contributes
routes to a common routing table managed by the CP. Based

on this routing table, the CP computes a forwarding table
for each port that it keeps synchronized with the routing
table. As routing protocols receive updates from neighbor-
ing routers that modify the routing table, the CP continu-
ously recomputes the forwarding tables and propagates the
changes to each port.

The forwarding tables stored in the FPXs and SPCs use a
tree bitmap structure for fast packet classification with effi-
cient memory usage [25]. The Fast IP Lookup (FIPL) algo-
rithm employs multibit trie data structures that are ideally
suited for fast hardware implementation [8]. Section 9.1
describes the algorithm and its performance in a prototype
configuration.

When the CP receives a route update from another router
to add or delete a path, it creates a new internal tree bitmap
structure that reflects the modified forwarding table. Then,
it sends ATM control cells to the Fast IP Lookup compo-
nents in the SPC or FPX representing the modifications to
the multibit trie structure.

3.5. Signaling and Resource Management

The CP supports various signaling protocols (e.g., RSVP,
MPLS) and supports active networking. The signaling pro-
tocols allow applications to make bandwidth reservations
required for QoS guarantees. When a bandwidth reservation
request arrives at the CP, the CP first performs admission
control by checking for sufficient resources. If admission
control succeeds, the CP reserves the required bandwidth on
both the input and output ports and returns a signaling mes-
sage to grant the reservation. If the reservation is granted,
then a new rule is added to the classifier to bind the reserved
flow to its reservation. The route entry may also be pinned
so that packets belonging to the same flow are routed con-
sistently. This mechanism is useful for applications with
user-specified processing needs that need to transit specific
network nodes in a given order.

In addition, the DER provides flow-specific processing
of data streams. An active flow is explicitly set up using sig-
naling mechanisms which specify the set of functions which
will be required for processing the data stream. In the con-
text of the DER, plugins are code modules that provide a
specific processing function and can be dynamically loaded
and configured at each port.

If an active signaling request references a plugin that has
not been deployed on the router, the CP retrieves the plugin
code from a remote code server, checks its digital signature
and then downloads it to a PP where it is configured using a
command protocol between the CP and the target PP. Once
the plugin has been successfully loaded and configured, the
CP installs a filter in the port’s classifier so that matching
packets will be routed to the plugin.

7

3.6. Distributed Queueing

Under sustained overload, the internal links of the
WUGS can become congested leading to substantially re-
duced throughput. Our Distributed Queueing (DQ) algo-
rithm allows the DER to perform like an output queueing
system (switch fabric and output queues operate at the ag-
gregate input rate) but without the � times speed-up re-
quired by a true output queueing switch [26]. It avoids
switch fabric congestion while maintaining high output link
utilization. We describe the basic algorithm below but leave
the discussion of refinements until Section 8.

Mechanism: The DQ algorithm employs a coarse schedul-
ing approach in which queue backlogs at the inputs and
outputs are periodically broadcast to all PPs. The DER
uses Virtual Output Queueing [27, 28, 29] to avoid head-
of-line blocking. Each input maintains separate queues for
each output allowing inputs to regulate the flow of traffic to
each of the outputs so as to keep data moving to the output
queues in a timely fashion while avoiding congestion within
the switch core and output underflow.

Definition

� Number of output (or input) ports�
Switching fabric speed-up (

�����
)�

External link rate�	�
Backlog at output ���
� �
Input

�
’s backlog to output �� �
� �

Input
�
’s share of input backlog to output ����
� �

Input
�
’s share of total backlog to output ����
� � Ratio of
���
� �

to
���
� � ��� � � � ���
� ��
� � Allocated sending rate from input

�
to output �

Table 1. Distributed Queueing Parameters

Algorithm: At every update period (currently 500 � sec),
each PP

�
receives backlog information from all PPs and re-

calculates the rates �
� � at which it can send traffic to each
output � . Roughly, the algorithm computes �
� � , the allo-
cated sending rate from input

�
to output � by apportioning

the switch capacity
��� �

based on relative backlogs so as to
avoid both switch congestion and output queue underflow.
Table 1 lists the parameters which appear in the DQ algo-
rithm.

Let

� �
� ��� ��
� �
��� � � � � (1)

Note that if input
�

is limited to a rate no more than
� � � �� �"! �$# �&% , we can avoid congestion at output � . Now, let

���
� ��� ��
� �
�	� � � � � � � � (2)

and note that if input
�

always sends to output � at a rate
at least equal to

� � ��� ! �$# �&% , then the queue at output � will
never become empty while there is data for output � in an
input queue. These two observations are the basis for the
rate allocation. The allocated rates �
� � are:

�
� �'� �(� � �*),+ - ! � �
� � # ���
� � % (3)

where ���
� �'� ���
� �
�.� ���
� � (4)

4. Port-Level Processing

4.1. IP Processing

This section describes IP packet processing and the pro-
grammable network environment at the port level in an
SPC-only system. When the SPC is the only PP, it must
handle all input and output processing. Although ideally
every port should have both an FPX to handle the typical
case (e.g., no active processing or options) and an SPC to
handle special cases (e.g., application-specific processing),
it is desirable to have an SPC that has full port functionality
for several reasons:

� Rapid Prototyping: A prototype DER testbed can be
constructed even though the FPX is still under devel-
opment.

� Lower Cost: A lower cost (but slower) DER can be
constructed using only SPC PPs.

� Measurement and Experience Base: Experience with
the SPC may be fruitful in the development of the
FPX, and experimental features can be examined using
the SPC as a preliminary step to committing to hard-
ware. Furthermore, the acceleration benefits of using
the FPX can be quantified.

The dark path in Figure 6 shows the main IP data path
through the SPC kernel. In order to reduce overhead, the
majority of the IP data path, active processing environ-
ment, resource management functions and command pro-
cessing have been incorporated into the APIC device driver.
Only functions that require periodic processing (e.g., packet
scheduling and distributed queueing updates) are performed
outside this path. These are performed within the clock in-
terrupt handler which runs at a higher priority than the APIC
driver.

Code Path Selection: As indicated in Section 3.1, VCIs
are used as demultiplexing keys for incoming packets. The
VCI of an incoming packet indicates to the kernel whether
it is from a previous hop router, the CP or one of the con-
nected DER input ports. A packet coming from a previous

8

����
�����	

�����
�����
������

�
�
�

��	����������
�����

�
�
�

������

����	��

������

����������	���

���
��
�	������
 �������

(a) Input Side

������
������

���	
��

���
��������

�
�
�

����
�
�����

�����
������

�
�
�

���	
�

�������

�
�
�

���������
������

��������
����������
�	�

�����
����
 ��

(b) Output Side

Figure 6. SPC IP Processing

hop is sent to the input-side code: general-match lookup,
route lookup and virtual output queue (VOQ). Route lookup
is done by a software implementation of the FIPL (Fast IP
Lookup) algorithm described later in Section 9.1. The Dis-
tributed Queueing (DQ) algorithm described earlier in Sec-
tion 3.6 controls the VOQ drain rates.

A packet coming from an input port is sent to the output-
side code and goes through a sequence similar to the input
side except that it is scheduled onto an output queue by the
Queue State DRR algorithm. An output queue corresponds
to a virtual interface which may represent one or more con-
nected hosts or routers. Active packets can be processed on
either side of the DER.

APIC Processing and Buffer Management: The oper-
ation of an APIC reduces the load on the SPC by asyn-
chronously performing sequences of read/write operations
described by descriptor chains. An APIC descriptor is a
16-byte structure that describes the data buffer to be written
to for receive, or read from on transmit. During initializa-
tion a contiguous chunk of memory is allocated for the de-
scriptors (half for TX (transmit) and half for RX (receive)).
The driver and APIC hardware then use a base address and
index to access a particular descriptor.

During initialization, another contiguous region of mem-
ory is allocated for IP packet buffers. Each buffer is 2 KB,
and there are an identical number of buffers and RX de-
scriptors. Each buffer is bound to an RX descriptor such
that their indexes are the same. Consequently, given a de-
scriptor address or index, the corresponding RX buffer can
be located simply and quickly. The reverse operation from
buffer to descriptor is equally fast. This technique makes
buffer management trivial, leaving only the management of
the RX descriptor pool as a non-trivial task.

Since there are the same number of TX descriptors as RX
descriptors, we are always guaranteed to be able to send a
packet once it is received. Note that when sending a packet,
the receive buffer is bound to the TX descriptor. The corre-
sponding RX descriptor is not available for reuse until the
send operation completes. This has the nice effect that the
SPC will stop receiving during extreme overload avoiding
unnecessary PCI and memory traffic, as well as receiver
livelock.

Queue State DRR Packet Scheduling: The Queue State
Deficit Round Robin (QSDRR) algorithm is used during
output-side IP processing to provide fair packet scheduling
and buffer congestion avoidance. In our prototype imple-
mentation, QSDRR can be configured so that multiple flows
can share a single queue.

QSDRR adds a packet discard algorithm with hystere-
sis to DRR’s approximately fair packet scheduling. Sec-
tion 7 shows that QSDRR provides higher average good-
put and lower goodput variation while using less memory
than conventional algorithms such as Random Early Dis-
card (RED) [30] and Blue [31]. Furthermore, QSDRR re-
quires no tuning.

The basic idea behind QSDRR is that it continues to
drop packets from the same queue when faced with con-
gestion until that queue is the smallest amongst all active
queues. Intuitively, this policy penalizes the least number
of flows necessary to avoid link congestion. When there is
short-term congestion, only a small number of flows will
be affected, thus reducing the synchronization effect of the
TCP flow control mechanism and reducing oscillation in the
buffer occupancy.

9

4.2. Programmable Networks Environment

The SPC environment includes functionality to support
both traditional IP forwarding as well as flow-specific pro-
cessing. Each SPC runs a modified NetBSD kernel that pro-
vides a programmable environment for packet processing.

If a DER port is equipped with an FPX, packets are clas-
sified using the hardware implementation of the general-
match lookup and Fast IP Lookup (FIPL) algorithm and sent
to the SPC on a special VCI. This special VCI indicates to
the SPC that the packet is already classified. If no FPX is
present at a port, the packet arrives at the standard VCI and
the SPC performs the lookup itself using a software imple-
mentation of the IP classifier.

Regardless of how the packet is identified as requiring
active processing, it is passed to the Plugin Control Unit
(PCU) which, in turn, passes the packet to the target plugin
or plugins. The PCU provides an environment for loading,
configuring, instantiating and executing plugins. Plugins
are dynamically loadable NetBSD kernel modules which re-
side in the kernel’s address space. Since no context switch-
ing is required, the execution of plugins is highly efficient.

For the design of plugins, we follow an object-oriented
approach. A plugin class specifies the general behavior of a
plugin and defines how it is initialized, configured and how
packets need to be processed. A plugin instance is a runtime
configuration of a plugin class bound to a specific flow. It is
desirable to have multiple configurations of a plugin, each
processing its specific flow and having its own data segment
that includes the internal state. Multiple plugin instances
can be bound to one flow, and multiple flows can be bound
to a single instance.

Through a virtual function table, each plugin class re-
sponds to a standardized set of methods to initialize, config-
ure and process plugins. All code for initialization, config-
uration and processing is encapsulated in the plugin itself.
Therefore, the PCU is not required to know anything about
a plugin’s internal details.

Once a packet is associated with a plugin or plugin chain,
the plugin environment invokes the processing method of
the corresponding plugin instance, passing it a reference to
the packet to be processed. The processing might alter the
packet payload as well as the header. If a packet’s destina-
tion address has been modified, the packet needs to be re-
classified since the output port might have changed before
the packet is finally forwarded.

Part II: Use and Evaluation
This part begins with a description of an active applica-

tion that illustrates some of the features of the DER. Then,
it describes the evaluation of several parts of the DER:
1) packet forwarding; 2) Queue State DRR; 3) distributed
queueing; and 4) the reconfigurable hardware extension.

5. Wave Video (An Active Application)

5.1. The Application

The Wave Video application demonstrates an innovative
active video scaling architecture that uses on-demand de-
ployment of executable code in the form of plugins [32].
Video transmission triggers the retrieval of a plugin from a
nearby code server and its installation in a router’s kernel.
Since the plugin code runs in kernel space, the scheme is
highly efficient making it suitable for data path applications
with high link rates.

The application is based on a wavelet-based encoding
method. The high-performance video scaling algorithm ex-
ecutes as a plugin in the kernel space of a router. The plu-
gin adapts the video stream to fit the current network load.
If an output link is congested, the video stream is lowered
to the bandwidth that the packet scheduler can guarantee.
The video adaptation scheme ensures that low-frequency
wavelet coefficients (which are crucial for the general def-
inition of the image) are always forwarded but drops high-
frequency parts (that describe image details) if bandwidth
becomes scarce. The video adaptation algorithm can re-
act within less than 50 ms to network load fluctuations.
Thus, receivers see no disturbing artifacts, motion-blur, or
wrongly coded colors even on networks with very bursty
traffic patterns.

This approach yields better performance than layered
multicast. Layered multicast reacts much more slowly
to congestion (several seconds) than the wavelet-based
method. And it needs a large number of multicast groups
to provide similar granularity.

5.2. Experimental Evaluation

Video
Display

Video
Display

Cross
Traffic

Active
Router

D1 D2

D3R1 R2
3 Mbps 3 Mbps

S

1 2

Video

Active

Source

Router

Video
Display

Figure 7. Wave Video Network

Figure 7 shows the network configuration used in our ex-
perimental evaluation of the Wave Video application. The
video source (S) multicasts the video to three destinations
(D1, D2, and D3). Receiver D1 is not affected by cross traf-
fic at all, and therefore displays a disturbance-free video in

10

all test cases. D2 and D3 are exposed to cross traffic: the
link between R2 and D2 is shared by the video and one cross
traffic stream, whereas the link to D3 is shared by the video
and two cross traffic streams. Thus, D2 is moderately con-
gested and D3 heavily congested. For all of our experiments
we use two test videos: 1) Akiyo, which is a low-motion
sequence, requires 1.3 Mb/s on average, and 2) Foreman,
which has a higher degree of motion, requires 2.6 Mb/s.
Both videos are lossless encoded with QCIF (Quarter Com-
mon Intermediate Format) resolution at 12 frames/s. To
bring the routers’ downstream links into a congested state
by the cross traffic, we restrict the respective ATM link rate
to 3 Mb/s using hardware pacing in the APIC. The routers
run an implementation of the Deficit Round Robin (DRR)
packet scheduler, which assigns an equal share of the avail-
able bandwidth to each flow. Thus, when the link is shared
with one competing cross traffic flow, the video flow will
get 1.5 Mbit/s. With two concurrently active cross traffic
flows, the video gets 1 Mbit/s. If the bandwidth provided
by the packet scheduler to the video flow is insufficient and
no scaling is active, the packet scheduler drops the oldest
packets (plain-queueing) from the video flow queue.

Reference [32] gives the details of four performance
studies of the Wave Video system that were conducted.
These studies evaluated:

� The cost of the video scaling algorithm;

� the time to download a plugin;

� the quality of the video in terms of PSNR (Picture
Signal-to-Noise Ratio); and

� the reaction time of the wave video plugin to network
congestion.

We describe below the results of the last study on reaction
time to network congestion.

One major advantage of the video scaling architecture
is that nodes have local knowledge of the load. Because
the WaveVideo plugin can directly interact with the packet
scheduler, it can immediately react to congestion. To
demonstrate the node’s ability to quickly respond to an over-
load situation, the video quality perceived at the receiver
was measured during periods containing cross traffic bursts.
When cross traffic is active, the DRR scheduler assigns the
cross traffic an equal share of the link bandwidth, thus lim-
iting the available bandwidth for the video flow to 1.5 Mb/s.

The quality of the plain-queued video stream suffers
whenever the cross traffic is active, disturbing the video
seriously. Further, the video quality does not recover un-
til the burst is finished, making the video defective for the
complete duration of the burst. On the other hand, active
video scaling follows closely the video quality of the origi-
nal video with only minor degradation after the cross traffic

is turned on. As soon as the WaveVideo plugin discovers a
decline in bandwidth (which is in the worst-case the 50 ms
profile update period), it scales the video to the new avail-
able bandwidth. Doing so, the video stream quality recov-
ers rapidly to a level very close to the original video stream
showing no disturbing artifacts during the bursts.

Figure 8. Plain Queueing (Top) and Active
Queueing (Bottom)

To further demonstrate that quality is indeed gained by
active dropping, we analyze the received frequency sub-
bands at the receivers. Figure 8 shows a histogram of the
subband distribution on receiver D2 when the routers are
exposed to cross traffic bursts. Our test video sequence uses
33 subbands. The lowest frequency subband (containing the
most crucial image information) is shown at the bottom of
the graph and the highest frequency subband is displayed on
top. The gray level of each cell indicates how many times a
specific subband was received during a period of 8 frames:
if a cell is white, the subband was never received at all, and
if a cell is completely black, the subband was present in all
the last 8 frames.

Active dropping now clearly shows its benefits: during
burst activity, plain-dropping shows a random distribution
of loss in all frequency subbands, leading to poor video
quality. On the other hand, active dropping ensures that
low-frequency subbands (which are crucial for the general
image definition) are always forwarded to the receivers.

6. SPC-Only Packet Forwarding Experiments

This section focuses on the router throughput when us-
ing only SPCs as both input and output port processors. In
particular, we measure the packet forwarding rate and data
throughput for different IP packet sizes and examine the
overhead timing components.

11

��
������

	�
�

������

������

��

��

��

��

��

��

��

��

��

�������������

�������������

����������	��

����������
��

�������������

���

���

���

���

���

���

���

���

��

��

��

��

��

��

�������������

�����

�����

�����

Figure 9. Experimental Setup

6.1. Experimental Setup

Figure 9 shows the experimental setup used for our tests.
The configuration includes a DER with CP and one PC on
port P4 acting as a traffic source. The ATM switch core is
an eight-port WUGS configured with an SPC on each port.
The CP and traffic source are both 600 MHz Pentium III
PCs with APIC NICs.

The experiments use four key features of the WUGS: in-
put port cell counters, a calibrated internal switch clock and
ATM multicast and cell recycling. The CP reads the cell
counter from the switch input ports and uses the switch cell
clock to calculate a cell rate. The packet rate can easily
be derived from the cell rate since the number of cells per
packet is a constant for an individual experiment.

The multicast and recycling features of the WUGS were
used to amplify the traffic volume for single-cell IP packets.
Cell traffic can be amplified by ��� by copying and recycling
cells through � VCIs before directing the cells to a target
port. However, this feature can not be used for multi-cell
IP packets since the ATM switch core does not prevent the
interleaving of cells from two packets.

The SPCs on ports P2 and P3 were configured to operate
as IP packet forwarders. Port P2 is used as the input port
and port P3 as the output port. All other SPCs are disabled
so that traffic will pass through them unaffected.

Typically, hosts or other routers would be connected to
each port of a DER. However, to facilitate data collection
we have directly connected the output of port P1 to the input
of port P2 and the output of port P3 to the input of P7. Our
data source is connected to port P4. Thus we can use:

� The cell counters at port P4 to measure the sending
rate;

� The cell counters at port P2 to measure the traffic for-
warded by the input side PP at port P2; and

� The cell counters at port P7 to measure the traffic for-
warded by the output side PP at port P3.

IP traffic is generated by using a program that sends spe-
cific packet sizes at a prescribed rate. Packet sending rates
are controlled using two mechanisms: 1) logic within the
traffic generator program, and 2) for high rates, the APIC’s
pacing facility. These two mechanisms produced both high
and consistent sending rates.

6.2. Small-Packet Forwarding Rate

In order to determine the per packet processing overhead,
we measured the forwarding rate of 40-byte IP packets (one
ATM cell each) at the input and output ports. Single-cell
packet rates as high as 907 KPps (KiloPackets per second)
were generated by using the ATM multicast and cell recy-
cling features of the switch to multiply the incoming traffic
by a factor of eight. The measurements were repeated by
successively disabling three major IP processing overhead
components:

1) Distributed queueing (no DQ processing occurs).

2) Fast IP Lookup (FIPL) (a simple IP lookup algorithm
using a small table is used).

3) Word swapping.

12

Disabling word swapping is related to a bug in the
APIC hardware that requires the SPC to swap pair-
wise memory words of a packet (e.g., word[0] � word[1],
word[2] � word[3]). When word swapping is disabled, the
IP packet body words are not swapped, but the packet
header is swapped.

80,000

90,000

100,000

110,000

120,000

130,000

140,000

150,000

0 100,000 200,000 300,000 400,000 500,000 600,000

Input�Rate�(PPS)

T
hr

ou
gh

pu
t�

(P
P

S)
��

�Dist.�Queueing

IP�lookup

Complete�Processing

Word�Swap

Figure 10. Packet Forwarding Rate for 40-Byte
IP Packets

Figure 10 shows typical bottleneck curves where the
throughput (forwarding rate in packets per second (Pps)) is
equal to the input rate until the bottleneck is reached. The
maximum throughput when all processing components are
included (”Complete Processing”) is about 105,000 packets
per second. The other curves show the cumulative effects of
disabling each overhead component. Note that the through-
put starts at 80,000 Pps. Thus, DQ, FIPL, and word swap-
ping account for an additional overhead of approximately
6% (7 KPps), 15% (16 KPps), and 8% (9 KPps) respec-
tively. We expect that the DQ algorithm can be accelerated
since it is a first implementation.

80,000

90,000

100,000

110,000

120,000

130,000

140,000

150,000

0 100,000 200,000 300,000 400,000 500,000

Input�Rate�(PPS)

T
hr

ou
gh

pu
t�

(P
P

S)

SPC�1�-�Complete�Processing

SPC�1�-�minus�DQ�and�IP�Lookup

SPC�2�-�Complete�Processing

40�byte�packets

Figure 11. Comparison With SPC2

The maximum forwarding rate at an input port PP as-
suming an APIC hardware fix and infinite acceleration of

DQ and FIPL is about 140 KPps (KiloPackets per second).
But we have already been testing the SPC 2, a newer version
of the SPC, which includes a 500 MHz PIII with a larger
(256 MB) and higher bandwidth (1.6X) memory. Figure 11
shows that this processor can almost make up for the over-
heads and attain 140 KPps. Experiments with larger packet
sizes show that a speed-up of 1.6 is possible. This is not
surprising since the two principal resources used in packet
forwarding are the PCI bus and the memory system.

The output port PP has a higher forwarding rate since it
does not perform IP destination address lookup. Further-
more, the maximum throughput can be sustained even for a
source rate as high as 900 KPps. This rate stability at high
loads is a consequence of our receiver livelock avoidance
scheme.

6.3. Throughput Effects of Packet Size

We next measured the effect of the packet size on the
packet forwarding rate. Because IP packets larger than 40
bytes require more than one cell (there are 8 bytes of over-
head), we no longer used ATM multicast with cell recycling
to amplify the traffic. Instead, we used a single host to
generate traffic using packet sizes ranging from 40 bytes
to 1912 bytes.

Figure 12 shows the throughput (Mb/s) as a function of
the packet size when the input packet rate is 40 KPps. For
packets less than 400 bytes, the throughput is almost equal
to the product of the input rate and the packet size. This re-
gion corresponds to the case when there are no bottlenecks
along the path through the router. Then, a knee in the curve
develops until around a packet size of 500 bytes when CPU,
PCI bus and memory system bottlenecks begin to seriously
limit the throughput. When the packet size is 1,500 bytes,
the throughput is about 220 Mb/s.

0

50

100

150

200

250

0 500 1000 1500

Input�IP�Packet�Size�(Bytes)

T
hr

ou
gh

pu
t�

(M
b/

s)

Input�rate:�40�KPps

Figure 12. Router Throughput for Various IP
Packet Sizes

Figure 13 shows the effect of limited memory bandwidth
on the throughput. Word swapping, in effect, forces the SPC

13

0

50

100

150

200

250

300

350

400

450

150 250 350 450 550

Input�Rate�(Mb/s)

T
hr

ou
gh

pu
t�(

M
b/

s)

Word�Swap

Dist.�Queueing IP�Lookup

Complete�Processing

1500�Byte�Packets

Figure 13. SPC Throughput (Mb/s)

to consume twice as much memory bandwidth as it should.
When we remove the word swapping overhead, the maxi-
mum throughput is increased from 220 Mbps to 380 Mbps.

6.4. Analysis of Results

In analyzing our performance results, we considered
three potential bottlenecks:

1) PCI Bus (33 MHz, 32 bit).

2) SPC Memory Bus (66 MHz EDO DRAM).

3) Processor (166 MHz Pentium MMX).

Each of these comes into play at different points in the
packet forwarding operation.

Our studies of the PCI bus operations that take place to
forward a packet indicate that there are 3 PCI read opera-
tions and 5 PCI write operations which together consume
60 bus cycles. Additionally, under heavy load, we can ex-
pect 64 wait cycles to be introduced. Thus a total of 124 bus
cycles (30.3 ns per cycle on a 33 MHz bus) or 3.72 � sec
are consumed by PCI bus operations in the forwarding of a
packet.

In an early measurement of a simplified test case, the av-
erage software processing time was shown to be 3.76 � sec.
This, combined with the PCI bus time calculated above
gives us a per packet forwarding time of 7.48 � sec. This
is very close to the time of 7.5 � sec for the 40-byte packet
forwarding rate of 128 KPps shown in Figure 10.

As indicated earlier, the bug in the APIC chip causes the
received word order on an Intel platform to be incorrect. In
order to work around this, the APIC driver must perform a
word swap on all received data. Thus, each received packet
may cross the memory bus four times:

1) APIC writes packet to memory.

2) CPU reads packet during word swapping.

3) CPU writes packet during word swapping.

4) APIC reads packet from memory

Figures 10 and 13 quantify this overhead.

7. Queue State DRR Experiments

7.1. Study Objectives

The Queue State DRR (QSDRR) algorithm has been
evaluated using an ns-2 simulation and compared with
other competing algorithms. An early version of QSDRR
has been implemented in an SPC-only prototype and is cur-
rently being evaluated. The goal of the simulation experi-
ments is to find schedulers that satisfy the following prop-
erties:

� High throughput with small buffers to avoid long
queueing delays.

� Insensitivity to operating conditions and traffic to re-
duce the need to tune parameters.

� Fairness among flows with different characteristics to
reduce the need for discriminating among flows.

Our results show that QSDRR outperforms other common
queueing algorithms such as RED and Blue [30, 31].

Backbone Internet routers are typically configured with
large buffers that can store packets arriving at link speed for
a duration equal to several coast-to-coast round-trip delays.
Such buffers can delay packets for as much as half a second
during congestion periods. When such large queues carry
heavy TCP traffic loads and are serviced with the Tail Drop
policy, the large queues remain close to full resulting in high
end-to-end delays for long periods [33, 34].

RED maintains an exponentially-weighted moving aver-
age of the queue length and uses this as an indicator of con-
gestion. When the average crosses a minimum threshold
(�
� ���
�
), packets are randomly dropped or marked with an

explicit congestion notification (ECN) bit. When the queue
length exceeds the maximum threshold (�������

�
), all pack-

ets are dropped or marked. RED parameters must be tuned
with respect to link bandwidth, buffer size and traffic mix.

Blue improves on RED by adjusting its parameters au-
tomatically in response to queue overflow and underflow
events. Although Blue is an improvement in some scenar-
ios, it too is sensitive to different congestion conditions and
network topologies. In practice, tuning these algorithms
is very difficult since the input traffic mix is continuously
varying.

14

QSDRR combines a queueing algorithm with fair
scheduling over multiple queues. Although most previ-
ous work on fair scheduling used per-flow queues, we have
shown that comparable performance can be obtained when
queues are shared by multiple flows. While algorithms us-
ing multiple queues have historically been considered too
complex, continuing advances in technology have made the
incremental cost negligible and well worth the investment
if these methods can reduce the required buffer sizes and
resulting packet delays.

We have compared the performance of QSDRR with
RED, Blue, tail drop FCFS (Tail Drop), longest queue drop
DRR (DRR) and Throughput DRR (TDRR) and shown ma-
jor improvements with respect to the three objectives listed
above [35]. The class of DRR algorithms approximates
fair-queueing and requires only

� ! � % work to process a
packet. Thus, it is simple enough to be implemented in
hardware [36]. DRR with longest queue dropping is a well-
known algorithm that drops packets from the longest active
queue. For the rest of the paper, we refer to it as plain DRR
or DRR since longest queue dropping was part of the orig-
inal algorithm first proposed by McKenney [37]. TDRR
drops packets from the highest throughput active queue.
Some of our results for QSDRR and RED are presented be-
low to illustrate the effectiveness of QSDRR.

7.2. Simulation Environment

We present some of the performance results below. Ta-
ble 2 shows the algorithm independent parameters. See [35]
for the parameters and network configurations used in the
complete study.

Value Definition

� 100 Number of TCP sources�
1500 Bytes Packet size���
500 Mb/s Inter-router link rate���
10 Mb/s Access link rate�
100 Sec Observation period�

Reno TCP Protocol�
100-20,000 Pkts Bottleneck queue capacity

Table 2. Algorithm Independent Parameters

For each of the configurations, we varied the bottleneck
queue capacity from a 100 packets to 20,000 packets. A bot-
tleneck queue capacity of 20,000 packets represents a half-
second bandwidth-delay product buffer, a common buffer
size deployed in current commercial routers. We ran several
simulations to evaluate �����	� and ��
 for RED that worked
best for our simulation environment to ensure a fair compar-
ison against our multi-queue based algorithms. The RED
parameters we used in our simulations are in Table 3.

RED

������� Max. drop probability 0.01��
 Queue weight 0.001
�
� ���
�

Min. threshold � �� of buffer size
����� �

�
Max. threshold Buffer size

Table 3. RED Parameters

S1

S2

S100

R
1

D1

D2

D100

R2

500 Mb/s

50ms

0.5ms

10 Mb/s

Figure 14. Single Bottleneck Link Network
Configuration

The network configuration of experiments is shown in
Figure 14.

� � � # ��� # � � � � ����� � are the TCP sources, each con-
nected by 10Mb/s links to the bottleneck link. Since the
bottleneck link capacity is 500 Mb/s, if all TCP sources
send at the maximum rate, the overload ratio is 2:1. The
destinations

��� � # � � # � � � � ����� � are directly connected to the
router � � . All 100 TCP sources are started simultaneously
to simulate a worst-case scenario whereby TCP sources are
synchronized in the network.

7.3. Results

We compared the queue management policies with re-
spect to three metrics: 1) The average goodput of all TCP
flows as a percentage of its fair-share; 2) the goodput dis-
tribution of all TCP sources over a single-bottleneck link;
and 3) the variance in goodput. The variance in goodputs
is a metric of the fairness of the algorithm: Lower variance
implies better fairness.

For all our graphs, we concentrate on the goodputs ob-
tained while varying the buffer size from 100 packets to
5000 packets. For multi-queue algorithms, the stated buffer
size is shared over all the queues while for single queue
algorithms, the stated buffer size is for that single queue.
Since our bottleneck link speed is 500 Mb/s, this translates
to a variation of buffer time from 2.4 msec to 120 msec.
Only packet buffer sizes up to 5,000 packets are shown
since the behavior with larger buffer sizes is the same for
larger sizes.

Figure 15 compares the distribution of goodputs for all
100 TCP Reno flows for QSDRR and RED when the buffer

15

0 20 40 60 80 100
TCP Source

2

3

4

5

6

7

G
oo

dp
ut

 (
M

b/
s)

Mean
Fair Share

(a) QSDRR

0 20 40 60 80 100
TCP Source

2

3

4

5

6

7

G
oo

dp
ut

 (
M

b/
s)

Mean
Fair Share

(b) RED

Figure 15. Goodput Distribution (Single-Bottleneck Link, 200 Pkt Buffer)

0 1000 2000 3000 4000 5000
Buffer Size (pkts)

60

70

80

90

100

F
ai

r
S

ha
re

 (
%

)

DRR
TDRR
QSDRR
Blue
RED
Tail Drop

Figure 16. Fair Share Performance

size is small (200 packets). For QSDRR, all TCP flows had
goodputs very close to the mean, and the mean goodput is
very near the fair-share threshold. This low variability of
the goodputs between different TCP flows indicates good
fairness. The RED plot shows considerably more variability
which implies less fairness.

Figure 16 shows the average fair-share bandwidth per-
centage received by the TCP Reno flows using different
buffer sizes. For small buffer sizes (i.e., under 500 pack-
ets), TDRR and QSDRR outperform RED significantly, and
DRR is comparable to RED. It is interesting to note that
even for large a buffer size (5000 packets), all policies sig-
nificantly outperform Blue including Tail Drop.

Figure 17 shows the ratio of the goodput standard de-

0 1000 2000 3000 4000 5000
Buffer Size (pkts)

0

0.05

0.1

0.15

S
ta

nd
ar

d
D

ev
ia

tio
n/

F
ai

r
S

ha
re

DRR

TDRR

QSDRR

Blue

RED

TailDrop

Figure 17. Standard Deviation Over Fair-
Share

viation of the TCP Reno flows to the fair share band-
width while varying the buffer size. Even at higher buffer
sizes, the standard deviations for DRR and QSDRR are very
small, and the ratio to the fair share bandwidth is less than
0.025. TDRR exhibits a higher goodput standard devia-
tion, but it is still significantly below Blue, RED and Tail
Drop. RED exhibits about 10 times the variance compared
to QSDRR and DRR while Blue exhibits about 5 times the
variance. Overall, the goodput standard deviation is be-
tween � � �� of the fair share bandwidth for the multi-
queue policies compared to

� for Blue,
� �� for RED and�

� for Tail Drop. Thus, even for a single-bottleneck link,

16

the multi-queue policies offer much better fairness between
TCP flows.

Experiments with multi-hop network configurations and
a mix of TCP flow characteristics showed the superiority
of QSDRR over the other algorithms [35]. QSDRR signif-
icantly outperforms RED and Blue for various configura-
tions and traffic mixes: QSDRR results in higher average
goodput for each flow and lower variance in goodputs. QS-
DRR also performs well even when memory is limited and
when multiple sources are aggregated into one queue.

8. Distributed Queueing Experiments

8.1. The Stress Test

The Distributed Queueing (DQ) algorithm described in
Section 3.6 was implemented in a discrete-event simulator
and in an SPC-only prototype. The simulator allowed us to
quickly evaluate alternative algorithms in a controlled envi-
ronment before implementing the algorithm in the more re-
strictive and less controllable environment of an SPC-only
prototype. This section describes the results of an experi-
ment that was designed to assess the performance and sta-
bility of the DQ algorithm under extreme loading condi-
tions.

This stress traffic load goes through � �
�

stages where
each of � inputs builds backlogs for each of � �

�
out-

puts. Arriving data at one of the inputs then switches to an
� th output, creating a situation that can lead to underflow
at one or more of the outputs. The experiment parameters
are shown in Table 4 and are the same parameters used in
experiments with an SPC-only prototype.

� sources overload the switch fabric by each sending at
the link rate

�
. Since the speed-up is less than the number

of sources (
��� �), the switch will be overloaded and input

backlogs will develop. All traffic is initially aimed at out-
put
�

for a duration
�

. Then, the traffic pattern is changed in
stages stepping through the outputs in ascending order until
reaching output � at which time all sources turn off except
source

�
. The beginning of stage � is chosen such that there

will be input backlogs at the � inputs in stage � .

Figure 18 shows the stages of the stress load for the case
� � � and � ��� . Let

� �
be the ending time of stage � .

At time
� � � �

, all sources switch their traffic to output � .
In stage 2, input backlogs for output

�
will drain while the

input backlogs for output � climb. All sources switch to
output � at time

� �
when the input backlog

�'
� �
equals

��
� �
,

and stage 3 begins. This traffic switching pattern continues
until stage

�
when all sources except source

�
shut off.

Value Definition

� 8 Number of output (or input) ports�
2 Switch speed-up (

�����
)�

70 Mb/s External link rate (source rates)�
500 � sec DQ update period�
520 Bytes Packet size

� 4 Number of traffic sources
� 5 Number of traffic stages�

400 DQs Time stage 1 ends (=
� �

)
(=200 msec)

Table 4. Parameters of the DQ Experiment

1

[T , T]2

2

(2)
[T , T]2 3

3

(3)

3[T , T]4

4

(4)

1[0, T]

1

(1)

4[T ,]

5

(5)

1

Figure 18. Stress Traffic Load

8.2. Simulation Experiments

The simulation results presented in this section are for
a variant of the algorithm presented in Section 3.6. Small
modifications to Equations 1 and 2 improve system respon-
siveness by reserving some bandwidth for queues that fre-
quently have very small or no backlog. The new equations
are:

� �
� ��� ���

� �
��
� �

� ���
 � �
��� � � � � (5)

���
� ��� ��� �

� �

��
� �
�	� � ��� � � � � (6)

where
���

� is a small, artificial input backlog, and
��� �

�
�

� � �	� � is a small, artificial minimum rate.
Figure 19 shows the output and input backlogs

� �
and� �$� �

. Figure 20 shows the allocated rates � �$� � . Since the
duration of stage 1 is 400 DQ periods (200 msec), we expect
the other beginning stage times to be 600, 700, and 750 DQ
periods.

Consider the backlog plot shown in Figure 19. The
curves labeled Output 1, 2, 3 and 4 are the output backlogs�	�

for � � � � � � . The other curves labeled 1=
 j, � � � � � � ,
are the input backlogs

� �$� �
for � � � � � � (

� �$� �
is unlabeled).

Clearly, the system is overloaded since the switch capac-
ity is

��� �
= 140 Mb/s while the aggregate source rate is

17

0

500

1000

1500

2000

2500

3000

3500

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

DQ�Period

B
ac

kl
og

�(
K

B
) Output�1

2

3
4

1=>3
1=>2
1=>1

Figure 19. Output Backlogs and Input 0 Back-
logs

� � � = 280 Mb/s. So, the output backlogs build up at a
rate of approximately 70 Mb/s (=

� � �
�
�

) or about 1.76
MB in 400 DQ periods. This build-up continues until back
pressure from an overloaded output reduces the sending rate
below 35 Mb/s. The input backlogs build up at a rate of ap-
proximately 35 Mb/s (=

� � � � �) or about 880 KB in 400
DQ periods.

Output 1’s backlog rate begins to decrease around 600
DQ periods, just when the sources are transitioning from
output 2 to output 3. Meanwhile the input backlog

� �$� �
that had been draining at a rate of 35 Mb/s, starts draining
slower around 600 DQ periods because of the back pressure
from output 1.

0

20

40

60

80

100

120

140

0

20
0

40
0

60
0

80
0

10
00

12
00

DQ�Period

A
llo

ca
te

d�
R

at
es

to�1

2

3

4

5

Figure 20. Input 1 Allocated Rates

Figure 20 shows three characteristics suggested by the
above discussion:
1) The rates � �$� � , � � � � � � for input 1 are 35 Mb/s which

is input 1’s equal share of the 140 Mb/s switch capac-

ity. At DQ period 600, � �$� � drops dramatically because
a sufficient output backlog has developed. In fact, a
small drop in rate occurred before this time. These de-
creases in rates can also be seen for other outputs.

2) Input queues that have no backlog are allocated some
non-zero rate. For example, before DQ period 400,
there is no input backlog for output 2, but it is still
allocated about 15 Mb/s (= (140-35)/7).

3) After all sources have shut off, input 1 gets to send
to output 5 at about the link rate of 70 Mb/s. Input 1
continues to drain the other input queues at about 10
Mb/s.

0

20

40

60

80

100

120

140

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

DQ�Period

M
in

�R
at

e�
fr

om
�I

np
ut

�1
�(M

b/
s)

to�1

5

4
3

2

Figure 21. Input 1 Minimum Rates

The sum of the minimum rates for input i is an indicator
of output underflow. This sum is

� � ��� ���
� �
where

�
is the

link rate. Figure 21 shows this sum for input 1 when
�

=
70 Mb/s and

�
= 2 (the switch speed-up). Each curve start-

ing with the ”to 1” curve indicates the contribution of each
output to this sum. Recall that

� � ���
� �
is the minimum rate

that must be allocated for traffic sent from input
�

to output
� to avoid underflow at output � . This will be possible if the
sum

� � ��� ��� �$� �
is no more than

�(� �
.

Figure 21 clearly shows that the sum is less than 140
Mb/s and therefore underflow will be avoided. It also shows
the response of the DQ algorithm to the stress load. Since
there are � � � sources, the maximum rates

� � � �
� �
in

stages 1..4 is 17.5 Mb/s (= 70/4 Mb/s) for inputs 1..4 going
to outputs 1..4. The speed-up of 2 in conjunction with the
DQ algorithm allows the DER to move sufficient backlog to
outputs 1..4 so that the demand for switch bandwidth is re-
duced over time. In the last stage, input 1 gets its minimum
rate of

�
= 70 Mb/s (

��� �$�
�
� � � �$�

�
� �

), and the sum of
the minimum rates is well below its underflow limit of 140
Mb/s.

18

����
�����	

�����
�����
������

������
����
�����

	���	�
�����

������

��	����������
�����

�
�
�

���

���
������

���

���

������� ��	���

��� !�
�	�"���
#�������

�
�
�

(a) Input Side

����
�����	

����
�����

������
�����
�����

	���	�
�����
������

��
�

������
�����

��
�

���

���
������

���

����

�������������	���

���

��
�

	��

�� �!
�����

"���
����	���

(b) Output Side

Figure 22. FPX IP Processing

8.3. SPC-Only Prototype Experiments

We repeated the stress experiment on an SPC-only pro-
totype and obtained results similar to those shown in the
simulation experiments. Three tools were developed to aid
in duplicating the stress experiments:

1) A traffic generator that can be remotely configured and
controlled.

2) A DQ cell monitor to capture all DQ cells carrying
backlog data.

3) A Java DQ visualizer that duplicates the DQ calcula-
tions and plots the same graphs we saw earlier in the
simulation experiments.

The traffic generator is capable of sending AAL5 frames at
nearly 1 Gbps. It consists of three components: 1) a stan-
dard user-space server code that accepts control and con-
figuration packets (e.g., start sending, stop sending, set pac-
ing rate, set destination, set packet length, stress load); 2)
a user-space library that directly manipulates the traffic de-
scriptors stored in kernel memory; and 3) an APIC driver
that sends the AAL5 frames based on the traffic descriptors.

We continue to improve the DQ algorithm and study its
operating characteristics. Two fundamental questions are
”How does the algorithm behave when the speed-up

�
is

less than 2 (but greater than 1)?” and ”How low of a speed-
up can be practically used?”

9. Reconfigurable Hardware Extension

The FPX/SPC system extends the SPC-only system by
adding field programmable hardware modules at the ports to

assist in port processing. This section describes the logical
port architecture of the FPX, briefly describes the FIPL en-
gine, and presents measurements of FIPL’s packet forward-
ing performance under a synthetic load. Reference [38] pro-
vides additional details on the FIPL engine.

9.1. Logical Port Architecture and the FIPL Engine

In an FPX/SPC system the SPC is used primarily to han-
dle active processing and special IP options. The FPX per-
forms the bulk of the IP processing that the SPC handles in
an SPC-only system. Figure 22 shows the logical organiza-
tion of the FPX in its capacity as an IP packet processor and
its interaction with the SPC. The figure is virtually identical
to Figure 6 except that the plugins and the Plugin Control
Unit remain in its partner SPC.

The FPX recognizes an active packet destined for its SPC
when the packet matches a special filter. The FPX sends
an active packet over a special VCI to its SPC for active
processing. The SPC returns the packet to its FPX on a
different special VCI, and the FPX then forwards it on to
the next hop.

A fundamental function in any IP router is flow lookup.
A lookup consists of finding the longest prefix stored in the
forwarding table that matches a given 32-bit IPv4 destina-
tion address and retrieving the associated forwarding infor-
mation.

The Fast Internet Protocol Lookup (FIPL) engine imple-
ments Eatherton and Dittia’s Tree Bitmap algorithm [25].
The algorithm employs a multibit trie data structure with a
clever data encoding that leads to a good hardware imple-
mentation:

� Small memory requirement (typically 4-6 bytes per

19

prefix)

� Small memory bandwidth (leads to fast lookup rates)

� Updates have negligible impact on the lookup perfor-
mance

Also, several concurrent lookups can be interleaved to avoid
the impact of external memory latency.

The implementation uses reconfigurable hardware and
Random Access Memory (RAM). It is implemented in a
Xilinx Virtex-E Field Programmable Gate Array (FPGA)
running at 100 MHz and uses a Micron 1 MB Zero Bus
Turnaround (ZBT) Synchronous Random Access Memory
(SRAM).

In the example shown in Figure 23, the IP address
128.252.153.160 is compared to the stored prefixes starting
with the most significant bit. Logically, the Tree Bitmap al-
gorithm starts by storing prefixes in a binary tree. Shaded
nodes denote a stored prefix. A search is conducted by using
the IP address bits to traverse the trie, starting with the most
significant bit of the address. To speed up this searching
process, multiple bits of the destination address are com-
pared simultaneously. In order to do this, subtrees of the bi-
nary trie are combined into single nodes producing a multi-
bit trie, reducing the number of memory accesses needed to
perform a lookup. The depth of the subtrees combined to
form a single multibit trie node is called the stride.

P

PP

P

P

0 1

1

1

0

0

0 0

1

1

1 1 1

10

0 1

0

0

0

0

0

1

1

1

1

0

0

0

32−bit destination address: 128.252.153.160
1000 0000 1111 1100 ... 1010 0000

Figure 23. IP Lookup Table Represented as a
Multibit Trie

The example shows a multibit trie using 4-bit strides.
Each trapezoid surrounds a multibit trie node. Figure 24
shows how the Tree Bitmap algorithm codes information as-
sociated with each node of the multibit trie using bitmaps. A

0 00 1001 0000 0000

0000 0000 0000 0000

Internal Prefix Bitmap

External Prefix Bitmap

1 00 0110 0000 0010

0101 0100 0001 0000

1 00 0000 0000 0000

0000 0000 0000 0000

0 10 0000 0000 0000

0000 0000 0000 0000

0 01 0000 0000 0000

0000 0000 0000 0000

0 01 0100 0000 0000

1000 0000 0000 0000

1 00 0000 0000 0000

0000 0000 0000 0000

Figure 24. IP Lookup Table Represented as a
Tree Bitmap

1 in the
�
th position of an Extending Paths Bitmap indicates

that a child multibit trie node exists. For example, the root
node initially has a child at every odd position in the first six
positions resulting in ”010101” in the first six bits. The In-
ternal Prefix Bitmap identifies with a 1 the stored prefixes
in the binary sub-tree of the multibit node. The Internal
Prefix Bitmap of the root multibit node is ”1 00 0110
00000010” (reading from left-to-right, the bits have been
grouped by tree level) where the leftmost 1 corresponds to
the root, the next two 0 bits correspond to the next level of
the tree, and so on.

9.2. Performance

While the worst-case performance of FIPL is determin-
istic, an evaluation environment was developed in order
to benchmark average FIPL performance on actual router
databases. As shown in Figure 25, the evaluation environ-
ment includes a modified FIPL Engine Controller, 8 FIPL
Engines, and a FIPL Evaluation Wrapper. The FIPL Evalu-
ation Wrapper includes an IP Address Generator which uses
16 of the available on-chip BlockRAMs in the Xilinx Vir-
tex 1000E to implement storage for 2048 IPv4 destination
addresses. The IP Address Generator interfaces to the FIPL
Engine controller like a FIFO. When a test run is initiated,
an empty flag is driven to FALSE until all 2048 addresses
are read.

Control cells sent to the FIPL Evaluation Wrapper initi-
ate test runs of 2048 lookups and specify how many FIPL
Engines should be used during the test run. The FIPL En-
gine Controller contains a latency timer for each FIPL En-
gine and a throughput timer that measures the time required
to complete the test run. Latency timer values are written to
a FIFO upon completion of each lookup. The FIPL Evalu-
ation Wrapper packs latency timer values into control cells
which are sent back to the system control software where
the contents are dumped to a file. The throughput timer
value is included in the final control cell.

Using a portion of the Mae-West snapshot from July 12,

20

gr
an

t

re
qu

es
t

rw

ad
dr

es
s

da
ta

_o
ut

da
ta

_i
n

gr
an

t

re
qu

es
t

ad
dr

es
s

da
ta

_i
n

ip_addr_valid

ip_addr_in

fipl_data_in

done_l

fipl_addr_out

root_node_ptr

ip_addr_valid

ip_addr_in

fipl_data_in

done_l

fipl_addr_out

cells_in

cells_out

read_addr

ip_address

empty

write_time

write_data

full

engine_enables

root_node_ptr

throughput_timer

SRAM Interface

FIPL Engine Controller
Control Cell
Processor

Wrapper
Evaluation
FIPL

8
FIPL Engine

FIPL Engine
1

Timer FIFO
Latency

Generator
IP Address

Figure 25. Block Diagram of FIPL Evaluation
Environment.

2001, a Tree Bitmap data structure consisting of 16,564
routes was loaded into the off-chip SRAM. The on-chip
memory read by the IP Address Generator was initialized
with 2048 destination addresses randomly selected from
the route table snapshot. Test runs were initiated using 1
through 8 engines. With 8 FIPL engines, the entire mem-
ory bandwidth of the single SRAM is consumed. Figure 26
shows the results of test runs without intervening update
traffic. Note that the left y-axis is the throughput (millions
of lookups per second), and the right y-axis is the average
lookup latency (nanoseconds). Plots of the theoretical per-
formance for all worst-case lookups is shown for reference.
Figure 27 shows the results of test runs with various inter-
vening update frequency. A single update consisted of a
route addition requiring 12 memory writes packed into 3
control cells.

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8
#�of�FIPL�engines

M
ill

io
ns

�o
f�

lo
ok

up
s�

pe
r�

se
co

nd

0

100

200

300

400

500

600

700

800

900

1000

1100

A
ve

ra
ge

�L
oo

ku
p�

L
at

en
cy

�(
ns

)

Mae�West�
Througput

Mae�West�Avg.�
Lookup�Latency

Worst-Case�Avg.�Lookup�Latency

Worst-Case�
Throughput

Figure 26. FIPL Performance

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8
#�of�FIPL�engines

M
ill

io
ns

�o
f�l

oo
ku

ps
�p

er
�s

ec
on

d

No�updates

10K�updates/sec

100K�updates/sec

Figure 27. FIPL Performance Under Update
Load

With no intervening update traffic, lookup throughput
ranged from 1,526,404 lookups per second for a single FIPL
engine to 10,105,148 lookups per second for 8 FIPL en-
gines. Average lookup latency ranged from 624 ns for a
single FIPL engine to 660 ns for 8 FIPL engines. This is
less than a 6% increase in average lookup latency over the
range of FIPL Engine Controller configurations.

Note that update frequencies up to 1,000 updates per sec-
ond have little to no effect on lookup throughput perfor-
mance. An update frequency of 10,000 updates per second
exhibited a maximum performance degradation of 9%. Us-
ing the near maximum update frequency supported by the
Control Processor of 100,000 updates per second, lookup
throughput performance is degraded by a maximum of 62%.
Note that this is a highly unrealistic situation, as lookup fre-
quencies rarely exceed 1,000 updates per second.

Coupled with advances in FPGA device technology, im-
plementation optimizations of critical paths in the FIPL en-
gine circuit hold promise of doubling the system clock fre-
quency to 200 MHz in order to take full advantage of the
memory bandwidth offered by the ZBT SRAMs. Doubling
of the clock frequency directly translates to a doubling of
the lookup performance to a guaranteed worst case through-
put of over 18 million lookups per second. Ongoing re-
search hopes to exploit new FPGA devices and more ad-
vanced CAD tools to double the lookup performance by
doubling the clock frequency.

10. Concluding Remarks

Additional performance measurements of the DER are
in progress, and a number of developments and extensions
are underway. First, the integration of the FPX with the

21

current DER configuration will soon commence. The Fast
IP Lookup (FIPL) algorithm has been implemented in re-
programmable hardware using the FPX and partially eval-
uated in a development environment. In addition, other
applications have been ported to the FPX. Second, SPC 2
boards will be available soon. It will have a faster proces-
sor (500 MHz PIII) much higher main memory bandwidth
(SDRAM), and a larger memory (256 MB). Third, a Giga-
bit Ethernet line card is being designed around the PMC-
Sierra PM3386 S/UNI-2xGE Dual Gigabit Ethernet Con-
troller chipset with plans for availability by summer 2002.
This will allow us to interface the DER to routers and hosts
that have Gigabit Ethernet interfaces. Fourth, the Queue
State DRR (QSDRR) algorithm is being evaluated in an
SPC-only testbed. Fifth, the Wave Video active application
will be ported to the DER environment. This will require
that it be able to interrogate QSDRR. Sixth, a lightweight
flow setup service will be developed and demonstrated. This
service, which can be implemented largely in hardware, will
require no elaborate signaling protocol and no extra round-
trip delays normally associated with signaling and resource
reservation. Finally, many CP software components are in
their early prototyping stage. Some of these components
include: 1) Automatic multi-level boot process that starts
with discovery and ends with a completely configured, run-
ning router; 2) Network monitoring components based on
active, extensible switch and PP MIBs and probes provid-
ing a multi-level view of the DER router; and 3) the Zebra-
based routing framework.

The Washington University DER provides an open, flex-
ible, high-performance active router testbed for advanced
networking research. Its parallel architecture will allow re-
searchers to deal with many of the same real design issues
faced by modern commercial designers. Finally, its repro-
grammability in combination with its open design and im-
plementation make it an ideal prototyping environment for
exploring advanced networking features.

References

[1] T. Chaney and A. Fingerhut and M. Flucke and J. S. Turner,
“Design of a Gigabit ATM Switch,” in IEEE INFOCOM ’97,
(Kobe, Japan), IEEE Computer Society Press, April 1997.

[2] J. S. Turner and A. Staff, “ A Gigabit Local ATM Testbed for
Multimedia Applications ,” Tech. Rep. ARL-94-11, Applied
Research Laboratory, Washington University in St. Louis,
1994.

[3] W. D. Richard, “The Gigabit Switch Link Interface Spec-
ification,” Tech. Rep. ARL-94-17, Washington University
Applied Research Laboratory,St. Louis, Missouri, January
1995.

[4] A. T1.106-1988, Telecommunications - Digital Hierarchy
Optical Interface Specifications: Single Mode, 1988.

[5] H.-P. Corporation, “HDMP-1022 Transmitter/HDMP-1024
Receiver Data Sheet,” 1997.

[6] DARPA Active Network Working Group, Architectural
Framework for Active Networks Version 1.1, Dec 2001.

[7] DARPA Active Network Node OS Working Group, NodeOS
Interface Specification, Jan 2001.

[8] J. W. Lockwood, J. S. Turner, and D. E. Taylor, “Field
programmable port extender (FPX) for distributed routing
and queuing,” in ACM International Symposium on Field
Programmable Gate Arrays (FPGA’2000), (Monterey, CA,
USA), pp. 137–144, Feb. 2000.

[9] S. Choi, J. Dehart, R. Keller, J. W. Lockwood, J. Turner, and
T. Wolf, “Design of a flexible open platform for high per-
formance active networks,” in Allerton Conference, (Cham-
paign, IL), 1999.

[10] D. S. Alexander, M. W. Hicks, P. Kakkar, A. D. Keromytis,
M. Shaw, J. T. Moore, C. A. Gunter, J. Trevor, S. M. Nettles,
and J. M. Smith in The 1998 ACM SIGPLAN Workshop on
ML / International Conference on Functional Programming
(ICFP), 1998.

[11] Z. D. Dittia, “ATM Port Interconnect Chip.”
www.arl.wustl.edu/apic.html.

[12] “NetBSD.” http://www.netbsd.org.

[13] Intel Corporation, Intel 430HX PCISET 82439HX System
Controller (TXC) Data Sheet. Mt. Prospect, IL, 1997.

[14] Intel Corporation, 822371FP (PIIX) and 82371SB (PIIX3)
PCI ISA IDE Xcelerator Data Sheet. San Jose, CA, 1997.

[15] Xilinx, Inc., Xilinx 1999 Data Book. San Jose, CA, 1999.

[16] J. D. DeHart, W. D. Richard, E. W. Spitznagel, and D. E.
Taylor, “The Smart Port Card: An Embedded Unix Proces-
sor Architecture for Network Management and Active Net-
working,” Department of Computer Science, Technical Re-
port WUCS-01-18, Washington University, St. Louis, 2001.

[17] Z. D. Dittia, J. R. Cox, Jr., and G. M. Parulkar, “Design of the
APIC: A High Performance ATM Host-Network Interface
Chip,” in IEEE INFOCOM ’95, (Boston, USA), pp. 179–
187, IEEE Computer Society Press, April 1995.

[18] Z. D. Dittia, G. M. Parulkar, and J. R. Cox, Jr., “The APIC
Approach to High Performance Network Interface Design:
Protected DMA and Other Techniques,” in Proceedings of
INFOCOM ’97, (Kobe, Japan), pp. 179–187, IEEE, April
1997.

[19] J. W. Lockwood, N. Naufel, J. S. Turner, and D. E. Tay-
lor, “Reprogrammable Network Packet Processing on the
Field Programmable Port Extender (FPX),” in ACM Inter-
national Symposium on Field Programmable Gate Arrays
(FPGA’2001), (Monterey, CA, USA), pp. 87–93, Feb. 2001.

[20] D. E. Taylor, J. W. Lockwood, and N. Naufel, “Gener-
alized RAD Module Interface Specification of the Field-
programmable Port eXtender (FPX),” tech. rep., WUCS-01-
15, Washington University, Department of Computer Sci-
ence, July 2001.

[21] J. W. Lockwood, “Evolvable internet hardware platforms,”
in The Third NASA/DoD Workshop on Evolvable Hardware
(EH’2001), pp. 271–279, July 2001.

[22] F. Kuhns, D. C. Schmidt, and D. L. Levine, “The Design
and Performance of a Real-time I/O Subsystem,” in Pro-
ceedings of the

�����
IEEE Real-Time Technology and Appli-

cations Symposium, (Vancouver, British Columbia, Canada),
pp. 154–163, IEEE, June 1999.

22

[23] B. Braden, D. Clark, and S. Shenker, “Integrated services in
the internet architecture,” Network Information Center RFC
1633, June 1994.

[24] The Zebra Organization, “GNU Zebra.”
http://www.zebra.org.

[25] W. Eatherton, “Hardware-Based Internet Protocol Prefix
Lookups,” Master’s thesis, Department of Electrical Engi-
neering, Washington University in St. Louis, 1998.

[26] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “On
the stability of input-queued switches with speed-up,” IEEE
Trans. on Networking, vol. 9, pp. 104–118, Feb 2001.

[27] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High
speed switch scheduling for local area networks,” ACM
Trans. on Computer Systems, vol. 11, pp. 319–352, Nov
1993.

[28] N. McKeown, V. Anantharam, and J. Walrand, “Achieving
100% throughput in an input-queued switch,” IEEE Trans.
Communication, vol. 47, pp. 1260–1267, 1999.

[29] N. McKeown, M. Izzard, A. Mekkittikul, W. Ellersick, and
M. Horowitz, “ The Tiny Tera: A Packet Switch Core,” in
Hot Interconnects, 1996.

[30] S. Floyd and V. Jacobson, “Random Early Detection Gate-
ways for Congestion Avoidance,” IEEE/ACM Transactions
on Networking, vol. 1, pp. 397–413, Aug. 1993.

[31] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue: A New
Class of Active Queue Management Algorithms,” Tech. Rep.
CSE-TR-387-99, University of Michigan, Apr. 1999.

[32] Keller, R., S. Choi, M. Dasen, D. Decasper, G. Fankhauser,
and B. Plattner, “An Active Router Architecture for Multi-
cast Video Distribution,” in Proceedings of IEEE INFOCOM
2000, (Tel Aviv, Israel), March 2000.

[33] E. Hashem, “Analysis of random drop for gateway conges-
tion control,” Tech. Rep. LCS TR-465, Laboratory for Com-
puter Science, MIT, 1989.

[34] R. Morris, “Scalable TCP Congestion Control,” in IEEE IN-
FOCOM 2000, March 2000.

[35] A. Kantawala and J. Turner, “Efficient Queue Management
for TCP Flows,” Tech. Rep. WUCS-01-22, Washington Uni-
versity, Department of Computer Science, September 2001.

[36] M. Shreedhar and G. Varghese, “Efficient Fair Queueing us-
ing Deficit Round Robin,” in ACM SIGCOMM ’95, Aug.
1995.

[37] P. McKenney, “Stochastic Fairness Queueing,” Internet-
working: Research and Experience, vol. 2, pp. 113–131, Jan.
1991.

[38] D. E. Taylor, J. W. Lockwood, T. Sproull, J. Turner, and D. B.
Prlour, “Scalable IP Lookup for Programmable Routers,”
Tech. Rep. WUCS-01-33, Washington University, Depart-
ment of Computer Science, October 2001.

23

