
Configuration of Reserved Delivery Subnetworks

Ruibiao Qiu Jonathan S. Turner

Applied Research Laboratory
Department of Computer Science

Washington University
Saint Louis, MO 63130, USA

Abstract—We introduce the concept of a Reserved Delivery Subnetwork
(RDS) to allow an information service provider to deliver a higher qual-
ity of service to its customers. A network provider implements an RDS
by provisioning reserved bandwidth on paths from a central site to dis-
tributed locations, where customers of the information service are located.
The amount of bandwidth reserved is a function of the mean and variance
of the traffic expected at the various locations. To configure an RDS, the
network provider must select the links to be included and must dimension
the reservations on those links appropriately. Network resource usage can
often be reduced by routing flows destined for nearby cities along common
paths. We show that the problem can be formulated as a minimum cost
network flow problem with a concave cost function (one where the cost per
unit flow decreases as the flow increases), which is a well-known NP-hard
optimization problem. We introduce an approximate solution method and
evaluate it experimentally. Our results are typically within a small factor
of an easily computed lower bound.

Keywords—Reserved delivery services, minimum concave cost network
flows, approximation algorithms.

I. INTRODUCTION

A Reserved Delivery Subnetwork (RDS) is a semi-private
network infrastructure used by an information service provider
to allow it to deliver more consistent performance to its cus-
tomers. The endpoints of an RDS include a source node and
a potentially large number of sink nodes distributed within a
fixed network infrastructure. Sink nodes are typically routers
within metropolitan areas where customers of the information
service are found. A network provider selects a set of links
within the network and dimensions bandwidth reservations on
those links in order to accommodate expected traffic flows
from the server to the various sink nodes. This allows traf-
fic from the source node to flow through to the sinks without
contention from other traffic sources, improving quality of ser-
vice.

To allow for variability in the traffic volume at sink nodes,
reservations are dimensioned based on the mean and variance
of the expected traffic. Links that carry large traffic volumes
are generally more efficient than links that carry small traffic
volumes, since the amount of bandwidth that must be reserved
to accommodate traffic variability becomes a smaller fraction
of the total as traffic volume grows. This effect makes it ben-
eficial to group together flows going from the source to sinks
that are close to one another. An example RDS is shown in
Figure 1. Note that as traffic flows diverge to reach different
sinks, the total reserved bandwidth on the “downstream links”
will generally be larger than the reserved bandwidth on the up-
stream link (or links).

(a) Reserved delivery network.

(b) Detail view of the bandwidth reservation on a router.

Fig. 1. Reserved Delivery Subnetwork

The problem of configuring an RDS can be formulated as
a minimum cost network flow problem [1], in which the cost
per unit flow decreases as the flow on an edge increases (this
models the declining influence of traffic variability as traffic
volume grows). While minimum cost flow problems can be
solved efficiently when the cost per unit flow is fixed [2], [3],
the problem becomes NP-hard when the cost functions are con-
cave [4]. Current research on such problems centers on enu-
merative algorithms that can require exponential time in the

worst-case [5], [6] and are not practical for large problem in-
stances. Relatively little work has been done on approximation
algorithms.

In this paper, we introduce an approximation algorithm for
the RDS configuration problem. The algorithm is a variant of a
classical augmenting path algorithm for the minimum cost flow
problem with linear costs (constant cost per unit flow). As with
the classical algorithm, we seek a minimum cost augmenting
path at each step. However, the choice of such a path is compli-
cated by the fact that the relative costs of different paths depend
on how much flow is sent along them. We investigate the impli-
cations of this problem and devise an approximation algorithm
based on one method for resolving the problem. Experimental
results show that the proposed algorithm produces results that
are generally no more than twice the cost of an easily com-
puted lower bound. We believe this bound to be rather loose
and provide evidence that the true performance is significantly
better than what is implied by the lower bound.

The rest of this paper is organized as follows: in Section II,
we show how RDS configuration can be formulated as a min-
imum cost flow problem. We present our proposed algorithms
in Section III. Experimental results are given in section IV and
concluding remarks in Section V.

II. PROBLEM FORMULATION

We start with an elementary observation. If the traffic on a
link consists of a large number of independent and statistically
similar streams, the mean and the variance of the aggregate
traffic scales directly with the number of flows. So, we let���������
	�����
�� denote the standard deviation of an aggregate
traffic flow with mean � , where 	 is a parameter. Note that
when ����	�� , ����������� . That is, 	�� is the mean traffic
rate for which the mean and standard deviation are the same.
Given a traffic flow with mean � and standard deviation ������� ,
a suitable choice for the reserved bandwidth is ���������������������	�����
 � , where � is a small constant (say 3). With these
preliminaries, we can now proceed with a formal statement of
the RDS configuration problem.

We are given a directed graph (or network) ! �"�$#&%�'(�
and two real-valued functions) �+*,� and - �+*,� defined on ' .
We refer to) ��./� as the length of edge . and - ��./� as its
bandwidth. We also define a real-valued edge capacity 0 �$./� ,
which represents the mean rate of the largest reservation
that can be carried by edge . . The edge capacity satis-
fies the equation 0 ��./�1�2��	 0 ��
 �3�$./�4� - ��./� and is equal to576 ��	8��9 � � 	 � �;: - �$.<�+= ��> : .

We are also given a source node ?A@ # and a set of sink
nodes BDC # , with each sink node E having a mean demand�F� E � . The minimum cost reserved delivery network that sat-
isfies the mean demands, while respecting the capacity limits
on the network links can be found by solving a minimum cost
flow problem, in which the flow into each sink is given by its
mean demand, and the total flow on each link . is bounded

by 0 ��./� . The cost of a flow G on an edge . is defined to be) �$./�H� G ���I	 G ��
 �<� . The second factor in this expression cor-
responds to the amount of bandwidth that must be reserved to
accommodate a flow of magnitude G . Note that the cost func-
tion is concave. Given a minimum cost flow that satisfies the
demand, the optimal reserved delivery subnetwork is the sub-
graph of ! defined by the edges with non-zero flows. The cost
of the subnetwork is the sum of the costs of the flows on its
edges.

Note that when there are no limits on edge capacities, the
best RDS is always a tree. We expect that in practice, network
link capacities will often not be a limiting factor, so that the
best RDS may typically be a tree. Even when link capacities
are limited, we may wish to constrain the form of the solution
so that all traffic going to a single sink is constrained to use the
same path, in order to simplify the routing of the traffic (note
that in this case, the RDS need not be a tree).

III. APPROXIMATE MINIMUM COST AUGMENTATION

One of the classical methods for solving minimum cost flow
problems is the minimum cost augmenting path method. This
method iteratively selects a minimum cost augmenting path
from the source to a sink that has unmet demand and adds flow
along that path until either the demand has been satisfied or
the capacity limit of some edge on the path has been reached.
While this method can find an optimal flow when the cost per
unit flow on each edge is constant, it cannot be directly applied
to the RDS configuration problem, since the relative costs of
two different paths can change depending on the magnitude of
the flows added to those paths. That is, it may cost less to addG units of flow to a path J than to an alternative path K , but it
may cost more to add LMG units of flow to J than to K .

Although we cannot use the minimum cost augmentation al-
gorithm directly in the RDS configuration problem, we can ap-
ply similar ideas to construct an approximation algorithm that
does not require an enumerative search of the problem space.
We start by reviewing some terminology. In the minimum cost
maximum flow problem, we seek a flow function N on the
edges of the given network. For any node that is not a source
or a sink, the sum of the flows on the incoming edges must
equal the sum of the flows on the outgoing edges. The flow
must satisfy the given capacity constraints on the edges and
must satisfy the given demands required by the sinks. Among
all such flows, we seek one of minimum cost.

In the minimum cost augmenting path algorithm, at each
step we choose an augmenting path from the source to the sink
in the residual graph for the current flow. For each edge ��O�%�P��
in the original graph, the residual graph has an edge ��O�%�PQ� ifN ��O�%�P�� is less than the capacity of ��O�%�PQ� and it has edge ��PR%�OS�
if N ��O�%�PQ� is greater than zero. The residual capacity of the
edge ��O�%�PQ� is the difference between the capacity and the cur-
rent flow. The residual capacity of ��PT%�OU� equals N ��O�%�PQ� . An
augmenting path is just any path in the residual graph from the
source to a sink. It is well known [1] that when the cost per

Fig. 2. National network configuration.

unit flow is constant, we can construct a minimum cost flow by
finding a succession of minimum cost augmenting paths and
saturating each one in turn (that is adding as much flow to the
path as allowed by the capacity constraints, or the unmet de-
mand at the sink, whichever is smaller).

To apply this approach to the RDS problem, we must first
define what we mean by the cost of an edge. For any edge .
in the original graph, the cost of carrying G units of flow on .
is) ��./� � G � ��	 G ��
 � � . We let

��� ��. %���� , be the change in cost
caused by adding � units of flow on the edge . in the residual
graph, assuming that � is no larger than the residual capac-
ity of . . If � is larger than the residual capacity,

� � ��. %�� � is
defined to be infinite. We refer to

��� �$. %�� � as the incremen-
tal cost of the edge . , with respect to the increment � . The
incremental cost of a path, with respect to an increment � , is
defined as the sum of the incremental costs of its edges. For
any flow and increment � , we can define a tree � � ����� , which
is a shortest path tree rooted at the source in the subgraph of the
residual graph defined by the edges with residual capacity no
smaller than � . The path costs in � are defined with respect to
the incremental costs,

��� �$. %�� � . As � is increased from zero,
we get a finite sequence of trees �
	 % � � %������ % ��
 . For each tree
�
� in this sequence, there is a corresponding range ��� of values
of � .

The incremental cost per unit flow of an augmenting path J
is

��� � J %�� � > � , where � is the amount of flow needed to sat-
urate J . To apply the minimum cost augmentation strategy to
the RDS problem, we seek an augmenting path from the source
to a sink that has the smallest incremental cost per unit flow
among all augmenting paths. In principle, this can be done by
constructing each of the distinct shortest path trees and select-
ing the best augmenting path found in all the trees. A com-
putationally simpler alternative is to choose a small set of in-
crements, construct the tree corresponding to each increment,
and find the best augmenting path from among this smaller set
of trees. While this only “samples” the set of trees, and hence
will not always find the best path, it does at least approximate

the minimum cost augmentation strategy. We have found that
in practice, the best path is usually found in the tree corre-
sponding to the largest increment. This observation has led us
to the following simpler algorithm, which we call the Largest
Demand First (LDF) algorithm.

N�� ��� ;
while there is unmet demand at some sink

Let � be the smaller of the largest unmet
demand and the largest residual capacity
among all augmenting paths.

Let J be the augmenting path in � � ��� � with the
smallest incremental cost per unit flow.

Modify N by saturating J .
end

If the algorithm cannot find an augmenting path, while there
is still unmet demand, then the algorithm fails. Each iteration
of the algorithm requires the computation of a shortest path
tree and a bottleneck shortest path tree. Both of these com-
putations can be implemented to run in � ��� ����� �"!#��� time,
where � is the number of edges and � the number of nodes.
In networks with ample link capacity, each iteration fully sat-
isfies the demand at some sink, so the number of iterations
equals the number of sinks. This leads to an overall running
time of � � E ��� �$�%� �"!&����� , in the case of ample link capaci-
ties. For arbitrary link capacities, the number of iterations can
grow exponentially large, as it can for the original minimum
cost augmenting path algorithm.

IV. EXPERIMENTAL RESULTS

To evaluate the LDF algorithm we compared the cost of the
solution produced to that of an easily computed lower bound.
The lower bound is computed by sorting the sinks in increas-
ing order of their distance from the root and then assuming
that each sink is reached by a path of this minimum length,
and that the path can be shared with all sinks at greater dis-
tances from the root. We evaluated the algorithm on two net-
works. The first is a '�(*)+'�(torus (each node is connected to
four neighbors forming a rectangular grid with “wrap-around
edges” linking the top and bottom rows and the leftmost and
rightmost columns). Link lengths were uniformly distributed,
with the longest links being ten times longer than the shortest.
The demands for the sinks were uniformly distributed, all with
the same mean demand.

The second network, shown in Figure 2, includes a node at
each of the fifty largest metropolitan areas in the United States;
the link lengths were chosen to be equal to the geographic dis-
tances between the locations, and the demands were chosen
to be proportional to the populations of the metropolitan ares.
The locations of sources and sinks were selected randomly,
with every node having the same probability of selection. For
the results reported here, unbounded link capacities were used
in both networks. An example RDS computed by the LDF al-
gorithm is shown in Figure 3. The source for this example is

Fig. 3. Example RDS computed by the LDF algorithm

in Chicago and there are ten sinks at various locations around
the country (the sinks are designated by small squares on the
map). The cost of this solution is about 1.34 times the cost of
the lower bound.

Figure 4 shows how LDF performs on the torus. The first
chart shows the ratio of the cost of the solution produced by
LDF to the lower bound, as the number of cities increases from
1 to 50, while 	�� is fixed so that ��� � � � �

, where
�

is the
average demand per sink. Each data point represents the av-
erage of results from 100 independent problem instances. For
large numbers of cities, the LDF algorithm produces solutions
costing no more than about 1.6 times the lower bound. The
curves labeled LB*(2), LB*(3) and LB*(4) are related to the
lower bound and provide evidence (although no proof) that for
larger numbers of cites the lower bound is fairly loose. LB*(2)
is computed by first dividing the sinks into two sets, those to
the “left” of the source and those to the ”right” of the source.
Each of these subsets is then sorted by distance from the source
and each node is assumed to share its path to the source with all
nodes in the same subset that are at greater distance from the
source. LB*(3) (and LB*(4)) is computed similarly, by first di-
viding the sinks into three (respectively four) sets of nodes de-
fined by “pie-shaped” regions centered on the root, then sorting
the subsets by distance from the root and assuming the maxi-
mum possible sharing of paths among nodes in the same set.
For larger numbers of randomly distributed cities, it’s reason-
able to expect LB*(2), LB*(3) and LB*(4) to be no larger than
the cost of an optimal solution, although they do not consti-
tute true lower bounds. Note that for 50 sinks, LDF produces
solutions that average about 1.3 times LB*(3).

The second chart in Figure 4 shows how the performance of
LDF varies in comparison to the lower bound as 	�� is varied
so that ��� � � > �

varies from .2 to 5, while the number of sinks
is fixed at 25. For small values of ��� � � > �

, there is less to be
gained from sharing paths, so LDF performs better, relative to
the lower bound. For larger values of ��� � � > �

, there is much
more to be gained by sharing paths, so the gap between the

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0 5 10 15 20 25 30 35 40 45 50

R
e
l
a
t
i
v
e

c
o
s
t

Number of sinks

LDF

LB*(4)

LB*(3)

LB*(2)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0.2 0.5 1 2 5

LDF

LB*(4)

LB*(3)

LB*(2)

σ(D)/D

R
e
l
a
t
i
v
e

c
o
s
t

Fig. 4. Performance of LDF on torus network

lower bound and LDF gets larger. When ��� � � is five times the
average demand per sink, the cost of the solutions produced by
LDF increases to about 2.05 times the lower bound.

Figure 5 shows how LDF performs on the national network.
We note that LDF performs generally better in this case, than
for the torus, but the general character of the results remains
the same. We speculate that the improved performance arises
largely because the national network spans a greater east-west
distance than north-south, and that the large numbers of cities
are near the coasts meaning that often the root is near one of
the coasts, which makes it relatively easy for LDF to produce
solutions with large amounts of sharing. The wide variance
in the link lengths in the torus network may also contribute to
the reduced performance in that case (some links in the torus
network violate the triangle inequality, preventing them from
being used in any solution).

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0 5 10 15 20 25 30 35 40 45 50

R
e
l
a
t
i
v
e

c
o
s
t

Number of sinks

LDF

LB*(3)

LB*(2)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0.2 0.5 1 2 5

LB*(2)

LB*(3)

LDF

σ(D)/D

R
e
l
a
t
i
v
e

c
o
s
t

Fig. 5. Performance of LDF on national network

V. CONCLUSIONS

In this paper, we introduced the problem of configuring op-
timal reserved delivery subnetworks and developed a natural
approximation algorithm to solve the problem. Our algorithm
is based on the classical minimum cost augmentation algorithm
for minimum cost network flows. Our experimental results
show that the proposed algorithm works well in both artifi-
cial networks and more realistic network configurations. The
solutions produced in our experiments never exceed an easily
computed lower bound by more than a factor of two, and we
provide evidence to indicate that the true performance is sig-
nificantly better than implied by the comparison to the lower
bound.

REFERENCES

[1] R. K. Ahuja, T. Magnanti, and J. Orlin, Network Flows. Prentice Hall,
1993.

[2] M. Klein, “A primal method for minimal cost flows,” Management Sci-
ence, vol. 14, pp. 205–220, 1967.

[3] R. E. Tarjan, Data Structure and Network Algorithms, vol. 44. Society for
Industrial and Applied Mathematics, 1983.

[4] G. M. Guisewite and P. M. Pardalos, “Minimum concave-cost network
flow problems: Applications, complexity, and algorithms,” Annals of Op-
erations Research, vol. 25, pp. 75–99, 1990.

[5] G. M. Guisewite and P. M. Pardalos, “Algorithms for the single-source
uncapacitated minimum concave-cost network flow problem,” Journal of
Global Optimization, vol. 1, pp. 245–265, 1991.

[6] G. M. Guisewite and P. M. Pardalos, “Global search algorithms for mini-
mum concave-cost network flow problems,” Journal of Global Optimiza-
tion, vol. 1, pp. 309–330, 1991.

