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Abstract

Pacletsin the Internetcanexperiencdarge queueingdelays
during busy periods. Backboneroutersare generallyengi-
neeredto have large buffers, in which paclets may wait as
long as half a second(assumingFIFO service,longer oth-

erwise). During congestionperiods,thesebuffers may stay
closeto full, subjectingpaclketsto long delays evenwhenthe
intrinsic lateng of the pathis relatively small. This paper
studiesthe performancdamprovementsthat can be obtained
by usingmoresophisticategbacket schedulersthanaretypi-

cal of Internetrouters.Theresultsshowv thatthelarge buffers
foundin WAN routerscontribute only maminally to improv-

ing routerthroughput,andthe higherdelaysthat comewith

large buffers makesthema dubiousinvestment.The results
alsoshaow that betterpaclet schedulingalgorithmscan pro-
ducedramaticimprovementsin fairness. Using ns-2 simu-
lations, we show that algorithmsusing multiple queuescan
significantlyoutperformRED andBlue, especiallyat smaller
buffer sizes. Over a single-bottleneclink, the variancein

TCP goodputusing the proposedmultiqueuepaclet sched-
ulersis one-tenththat obtainedwith RED and one-fifththat
obtainedvith Blue. Givenatraffic mix of TCPflowswith dif-

ferentround-triptimes,longerround-triptime flows achieve
80% of their fair-shareusing multiqueueschedulerscom-
paredto 40% underRED and Blue. We obsere a similar
performanceémprovementfor multi-hop paths.

1 INTRODUCTION

Backboneoutersin thelnternetaretypically configuredwith
buffersthatareseveraltimestimeslargerthanthe productof
the link bandwidthand the typical round-trip delayon long
network paths. Suchbuffers candelay packetsfor asmuch
ashalf a secondduring congestiorperiods.Whensuchlarge
gueuesarry heary TCPtraffic loads,andareservicedusing
the Tail Drop policy, the large queuesremaincloseto full
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mostof thetime. Thus,evenif eachTCPflow is ableto obtain
its shareof thelink bandwidth the end-to-enddelayremains
very high. This is exacerbatedor flows with multiple hops,
since paclets may experiencehigh queueingdelaysat each
hop. Thisphenomenois well-known andhasbeendiscussed
by Hashen{1] andMorris [2], amongothers.

To addresghis issue,researcherbave developedalterna-
tive queueingalgorithmswhich try to keep averagequeue
sizeslow, while still providing high throughputandlink uti-
lization. The mostpopularof theseis RandomEarly Dis-
card or RED [3]. RED maintainsanexponentially-weighted
moving averageof the queuelengthwhich is usedto detect
congestionWhenthe averagecrossesa minimumthreshold
(minyy,), packetsare randomlydroppedor marked with an
explicit congestiomotification (ECN) bit. Whenthe queue
length exceedsthe maximumthreshold(max;;), all pack-
etsaredroppedor marked. RED includesseveral parameters
which mustbe carefully selectedto get good performance.
To make it operaterobustly underwidely varyingconditions,
onemusteitherdynamicallyadjustthe parametersr operate
usingrelatively large buffer sizes[4, 5].

RecentlyanotherqueueingalgorithmcalledBlue [6], was
proposedo improve upon RED. Blue adjustsits parameters
automaticallyin responsdo queueoverflow and underflav
events.Whenthebuffer overflows,the pacletdroppingprob-
ability is increaseddy a fixed increment(d1) andwhenthe
buffer empties(underflavs), the dropping probability is de-
creasedby a fixed increment(d2). The updatefrequengy
is limited by a freezetime parameter Incoming packetsare
thenrandomlydroppedor markedwith anECN bit. Although
Blue doesimprove over RED in certainscenariosits param-
etersarealsosensitve to differentcongestiorconditionsand
network topologies.

In this paper we investigatehow paclet schedulersus-
ing multiple queuescanimprove performanceover existing
methods. Our goalis to find schedulerghat satisfy the fol-
lowing objectves:

¢ High throughputwhenbuffers are verysmall (a fraction
of the bandwidth-delayproduct) This allows queueing
delaysto be keptlow.

¢ Insensitivityto operating conditionsandtraffic. Thisre-
ducesthe needto tune parameterspr compromiseon



performance.

e Fair treatmentof different flows This shouldhold re-
gardlesof differencesn round-tripdelayor numberof
hopstraversed.

The resultspresentedhereshov that both RED andBlue
are deficientin theserespects. Both perform fairly poorly
whenbuffer spaces limited to asmall fraction of theround-
trip delay Although Blue is less sensitve to parameter
choicesthanRED, it still exhibits significantparametesen-
sitivity. Both RED and Blue exhibit a fairly high variance
amongindividual TCP flow goodputseven over a single-
bottlenecHKink.

Anotherregularly obsened phenomenorior queueswith
Tail Drop is big swingsin the occupang of the bottleneck
link queue. One of the main causedor this is the synchro-
nization of TCP sourcesgoing throughthe bottlenecklink.
Although RED andBlue try to alleviate the synchronization
problemby usinga randomdrop policy, they do not perform
well with bufferswhich area fractionof thebandwidth-delay
product. When buffers are very small, even with a random
drop policy, thereis a high probability thatall flows suffer a
pacletloss.However, with perflow queueingye canexplic-
ity controlthe numberof flows that suffer a paclet lossand
thussignificantlyreducesynchronizatioramongflows.

We investigate queueing algorithms that use multiple
gueuesto isolateflows from oneanother Most of theresults
reporteduseperflow queuesput we alsoshav thatcompa-
rable performancecan be obtainedwhen queuesare shared
by multiple flows. While algorithmsusing multiple queues
have historically beenconsideredtoo comple, continuing
adwancesn technologyhave madethe incrementaktostneg-
ligible, andwell worth the investmentf thesemethodscan
reducethe requiredbuffer sizesandresultingpaclet delays.
We shaw, usingns-2simulationsthatthe proposedjueueing
algorithmsrepresentnajorimprovementsverexistingmeth-
ods,with respecto all threeof the objectiveslistedabove.

Therestof the paperis organizedasfollows. Section2 de-
scribesthe new multi-queuemethodsnvestigatechere. Sec-
tion 3 documentghe configurationsusedfor the simulations
andthe parametersisedfor RED andBlue. Section4 com-
paresthe performanceresultsof the proposedmulti-queue
methodsagainsRED, Blue andTail Drop. Section5 presents
abrief summaryof relatedwork andSection6 concludeghe
paper

2 ALGORITHMS

As statedin the previous section,whenwe evaluatedcurrent
gueueingdisciplinessuchas RED and Blue, we found that
they did not work well with small buffer sizes. Anotherbig
disadantagewith boththesealgorithms(moresoin the case
of RED), is the problemof finding theright parametersor a
given queue. Given our experimentsand prior work in this

area,it hasbeenshavn that no single setof RED parame-
terswork for differentbottleneckbandwidths differentflow

combinationsaanddifferentqueudengths.Thus,to beableto

effectively useRED, the parametersnustbefine tunedgiven

link bandwidth buffer sizeandtraffic mix. In practice thisis

very difficult sincetheinputtraffic mix is continuouslyary-

ing.

Giventheseproblemsawith existing congestiorbuffer man-
agementlgorithms,we decidedto evaluatea fair queueing
discipline for managingTCP flows. We startedwith using
Deficit RoundRobin(DRR) [7]. DRRis anapproximatéair-
queueingalgorithmthatrequiresonly O(1) work to process
a paclet andthusit is simple enoughto be implementedn
hardware. Also, sincethereare no parameterso setor fine
tune, it makesit usableacrossvarying traffic patterns. We
evaluatedthreedifferentpaclet-discardolicies.

1. DRR with LongestQueueDrop

Our first policy combined DRR with paclet-discard
from the longestactive queue. For the restof the pa-
per, we refer to this policy as plain DRR or DRR,

sincethis paclet-discardpolicy is part of the original

DRR algorithm[7] and wasfirst proposedby McKen-
ney in [8]. Through our simulation study we found

that plain DRR was not very effective in utilizing link

bandwidthor providing fair sharingamongcompeting
TCP flows over a single-bottleneckink. DRR did per

form significantlybetterthanRED andBlue whenthere
were TCP flows with differentRTTs or the flows were
sentthrough multi-bottlenecklink topology However
its performancewas roughly comparableio RED over
a single-bottleneckink usinglarge buffers, and worse
for small buffer sizes.Thus,we investigatedwo differ-

entenhancement® thepaclet-discarcolicy whichare
outlinedbelow.

2. Throughput DRR (TDRR)
In this algorithm, we store a throughputvalue associ-
atedwith eachDRR queue. The throughputparameter
is maintainedasan exponentiallyweightedaverageand
is usedin choosingthe drop queue. The exponential
weight usedin our simulationsis 0.03125. We found
that TDRR is not very sensitve to the weight parame-
terandperformedequallywell for weightsrangingfrom
0.5 to 1.0e — 6. Thediscardpolicy for a new pacletar-
rival whenthe link buffer is full, is to choosethe queue
with the highestthroughput(amongstthe currently ac-
tive DRR queues)o drop a paclet. Intuitively, this al-
gorithm should penalizehigher throughput TCP flows
more and thus achieve betterfairnessand our simula-
tion resultsdo confirm this. The drawvbackof this pol-
icy is thatwe needto storeandupdatean extra param-
eterfor eachDRR queuethetime averagingparameter
which might requiretuning undersomecircumstances
(althoughour experienceto date shovs no significant
sensitvity to this parameter).



3. QueueStateDRR (QSDRR)

Since TDRR hasan overheadassociatedvith comput-
ing and storing a weightedthroughputvalue for each
DRR queuewe investigateanothermaclet-discardpol-

icy which addssomehysteresigo plain DRR’s longest
gueuedrop policy. The ideais that once we drop a

pacletfrom onequeuewe keepdroppingfrom thesame
gueuewhenfacedwith congestioruntil thatqueuds the

smallestamongstll active queues.This policy reduces
the numberof flows that are affectedwhena link be-

comescongested. This reducesthe TCP synchroniza-
tion effect and reducesthe magnitudeof the resulting
gueuelengthvariations. A detaileddescriptionof this

algorithmis presentedn Figurel.

Let Q be a state variable which is
undefined initially.

When a packet arrives and there is no
menory space left:

if @ is not defined
Let @Q be the |ongest queue in the
system

Di scard one or nore packets from
the front of Q@ to nmake room
for the new packet;

else // @Q is defined

if Q is shorter then all
ot her non-enpty queues
Let @Q be the |ongest queue in the

system now;,

Di scard one or nore packets
fromthe front of @ to naeke
room for the new packet;

el se
Di scard one or nore packets

fromthe front of Q to nake
room for the new packet;

Figurel: Algorithm for QSDRR

3 SIMULATION ENVIRONMENT

In orderto evaluatetheperformancef DRR, TDRR andQS-
DRR, we rana numberof experimentsusingns-2. We com-
paredtheperformanceveravariedsetof network configura-
tionsandtraffic mixeswhich aredescribecbelow. In all our
experiments,we used TCP sourceswith 1500 byte paclets
andthe datacollectedis over a 100 secondsimulationinter-

val. We ran experimentsusing TCP Renoand TCP Tahoe
and obtainedsimilar resultsfor both; hence,we only show

theresultsusingTCP Renosources.

Tablel: RED parameters

RED
mazx, | Max. dropprobability 0.01
Wy Queueweight 0.001
Ming, Min. threshold 20% of buffer
mazxyy, Max. threshold Buffer size
Table2: Blue parameters
Blue
dl Increment | 0.0025
d2 Decrement| 0.00025
freeze_time | Hold-time 0.1s

For eachof the configurations,we varied the bottleneck
queuesize from a 100 pacletsto 20,000 paclets. 20,000
paclketscorrespondso a half-secondbandwidth-delayrod-
uct buffer which is acommonbuffer sizedeployedin current
commerciakrouters.We ran several simulationsto determine
valuesof max, andw, for RED that worked bestfor our
simulationervironment,to ensurea fair comparisoragainst
our multi-queuebasedalgorithms. The RED parametersve
usedin our simulationsarein Table1. For Blue, we ransim-
ulationsover our differentconfigurationgo comparethefour
setsof parameteraisedby the authorsin their paperwhile
evaluatingBlue [6]. TheBlue parametersve usedarein Ta-
ble 2 andarethe onesthatgave the bestperformance.

3.1 SingleBottleneckLink

10 Mb/s

500 Mb/s

50ms

Figure2: SingleBottleneckLink Network Configuration

The network configurationfor this set of experimentsis
shavn in Figure 2. {S;,S5,,...S100} arethe TCP sources,
eachconnectedy 10Mb/slinks to thebottlenecKink. Since
the bottlenecklink capacityis 500 Mb/s, if all TCP sources
sendatthemaximumrate,theoverloadratiois 2:1. Thedesti-
nations,named{D;, D», ...D199}, aredirectly connectedo
the router Ry. All 100 TCP sourcesare startedsimultane-
ouslyto simulateaworst-casecenariovherebyTCPsources
are synchronizedn the network. In eachof the configura-
tions,thedelayshavnis theone-waylink delay Thus,round-
trip time (RTT) overalink is twice thelink delayvalue.



3.2 Multiple Round-Trip Time Configuration

10 Mb/s

10 Mb/s
20ms

Figure3: Multiple Round-Tip Time Network Configuration

The network configurationfor this set of experimentsis
shawvn in Figure 3. This configurationis usedto evaluate
the performanceof the differentqueuemanagemenpolicies
giventwo setsof TCP flows with widely varying round-trip
timesover the samebottlenecklink. The sourceconnection
setupis similarto the single-bottleneckonfiguration except
for theaccesdink delaysfor eachsource.For 50 sourcesthe
link delayis setto 20ms,while it is setto 100msfor theother
50 sources.

3.3 Multi-Hop Path Configuration

Figure4: Multi-Hop PathNetwork Configuration

The network configurationfor this set of experimentsis
shawvn in Figure4. In this configuration,we have 50 TCP
sourcestraversingthree bottlenecklinks and terminatingat
R3. In addition,on eachlink, thereare50 TCP sourcesact-
ing ascross-trafic. We usethis configurationto evaluatethe
performanceof the differentqueuemanagemenpoliciesfor
multi-hop TCP flows competingwith shorterone-hopcross-
traffic flows.

4 RESULTS

We now presenthe evaluationof our multi-queuepoliciesin
comparisorwith Blue, RED andTail-Drop. We comparethe
gueuemanagemenpoliciesusingthe averagegoodputof all
TCPflows asa percentagef its fair-shareasthe metric. We
alsoshav the goodputdistribution of all TCP sourcesver a
single-bottleneckink andthevariancein goodput.Thevari-
ancein goodputss a metric of thefairnessof thealgorithm;
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Figure 6: Standarddeviation relative to fair-sharefor TCP
Renoflows over a single-bottleneckink

lower varianceimplies betterfairness. For all our graphs,
we concentrateon the goodputsobtainedwhile varying the
buffer sizefrom 100 pacletsto 5000 paclets. Note, for the
multi-queuealgorithms,the statedbuffer sizeis sharedover
all the queueswhile with the single queuealgorithms,the
statedbuffer sizeis for that single queue. Sinceour bottle-
necklink speeds 500 Mb/s, this translatego a variation of
buffer time from 2.4msto 120ms.In all our simulationswe
noticedthatall the policiesbehaedin a similar fashionpast
the 5000paclet buffer size.

4.1 Single-BottleneckLink

Thefirst setof graphsshownin Figure5, compareshedistri-
bution of goodputgor all 100 TCP Renoflows overthe sim-
ulation run. For this experiment,the single-bottlenecKkink
configurationis usedandthe buffer sizeis setto 200 pack-
ets. The closerthe goodputsareto eachother, the lower the
variance,which implies betterfairness. We notice that un-
der TDRR and QSDRR (Figures5(b), 5(c)), all TCP flows
hadgoodputsrery closeto the meanandthemeangoodputis
very nearthefair-sharethreshold. We noticethatthe average
goodputunderDRR 5(a) is not asgood as TDRR and QS-
DRR andit is evenslightly lowerthanRED, sosimpleDRR
is not sufficient to prevent underutilization of the link. In
the caseof Blue (Figure5(d)), althoughthe goodputsof dif-
ferent TCP flows are closeto eachother the meangoodput
achievedis far below the fair-sharethresholdwhich leadsto
undetrutilization of thelink. The meangoodputachiezedus-
ing RED (Figure5(e))is closeto thefair-sharethreshold put
the varianceis high. Also, a significantnumberof sources
are ableto get morethantheir fair-shareof the bandwidth.
As expected,Tail Drop (Figure5(f)), performsmostpoorly,
with the highestvariancein goodputsanda very low average
goodput.

Figure6 shavs theratio of the goodputstandardieviation
of the TCP Renoflows to the fair sharebandwidthfor all al-
gorithmswhile varying the buffer size. Evenat higherbuffer
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DRRis very smallandtheratioto thefair sharebandwidthis
lessthan0.025. TDRR exhibits ahighergoodputstandardie-
viation, but it is still significantlybelov Blue, RED andTail

Drop. RED exhibits about10timesthe variancecomparedo
QSDRRandDRR,while Blue exhibits about5 timesthevari-
ance.Overall,we obsenethatthegoodputstandardieviation
is betweer2% — 4% of thefair sharebandwidthfor themulti-

queuepoliciescomparedo 6% for Blue, 10% for RED and
12% for TailDrop. Thus, evenfor a single-bottlenechink,

we obsene that the multi-queuepolicies offer much better
fairnesgo a setof TCPflows.

Finally, figure 7 illustratesthe averagefair-shareband-
width percentageeceied by the TCP Renoflows usingdif-
ferent buffer sizes. For small buffer sizes,i.e. under500
paclets, TDRR and QSDRR outperformRED significantly
andDRR is comparabld¢o RED. It is interestingto notethat
evenatalarge buffer sizeof 5000paclets,all policiessignif-
icantly outperformBlue, including Tail Drop.

4.2 Multiple Round-Trip Time Configuration

For this configuration,we use100 TCP Renoflows over a
single bottlenecklink. 50 flows have a 40msRTT and 50
flows have a 200msRTT. Figure 8 shows the averagefair-
sharegoodputreceivedby eachset. As shaovn in Figure8(a),
bothRED andBlue allow the 40msRTT flows to usealmost
50% more bandwidththan their fair share. Tail Drop also

90 -

Fair Share (%)

*—% Tail Drop

60

. . .
2000 3000 4000

Buffer Size (pkts)

.
1000 5000

Figure7: Fair sharegperformanceverasinglebottleneckink

allows the 40msRTT flows to usemorethantheir fair share
of the bandwidthfor buffer sizessmallerthan 1000 paclets.
All the DRR-basedgoliciesexhibit muchbetterperformance
allowing only 10% extra bandwidthto be usedby the 40ms
RTT flows. Both RED andBlue discriminateagainstionger
RTT flows, aswe obsere in Figure 8(b), the 200msRTT
flows achieve only about40% of their fair-sharebandwidth
whereasisingthe DRR-basegolicies,200msRTT flows are
ableto achieve almost90% of their fair-share.

At a very small buffer size of 100 paclets, 200msRTT
flows using DRR and QSDRRget about40% of their fair-
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Figure8: Fair shareperformancef differentRTT flows over a singlebottlenecKink

share. However, at this buffer size, whenall the flows are
active, thereis only onepaclet perflow thatcanbe buffered.
This causeshepoorperformancef DRRandQSDRR since
it becomesvery difficult to single out flows that are using
more bandwidth. Even with this limitation, whenwe move
to 200 paclets,bothDRR andQSDRRsignificantlyimprove
their performanceand200msRTT flows achiese about80%
of their fair-sharebandwidthon the average. Since TDRR
maintainsan exponentiallyweightedthroughputaveragefor
eachflow, evenatthesmallesbuffer sizeof 100 paclets,it is
ableto deliver almost90% of thefair-sharebandwidthto the
200msRTT flows.

4.3 Multi-Hop Path Configuration

In this configuration 50 end-to-endlr CP Renoflows go over
threehopsandhave anoverallround-triptime of 300ms.The
cross-trafic on eachhop consistf 50 TCP Renoflows with
around-triptime of 100ms(onehop). Figure9 illustratesthe
averagefair-sharegoodputrecevedby eachsetof flows. For
this configuration, TDRR and QSDRRprovide almosttwice
the goodputof RED andTail Drop andfour timesthe good-
put providedby Blue for end-to-endlows. As shavn in Fig-
ure 9(a), end-to-endlows achiere nearly80% of their fair-
shareunderTDRR andQSDRRand60% underDRR. Under
RED andTail Drop, they canachieve only 40% of their fair
share For eventhesmallesbuffer sizeof a 100 paclets,end-
to-end TCP flows underTDRR are able to achiese 80% of
their fair-share. Using QSDRR and DRR, for the smallest
buffer size,their fair-shareis the sameasRED, but oncethe
buffer sizeincreasegso 200 paclets, their performancem-
proves significantly and they allow the end-to-endflows to
achiese closeto 80% and60% respectiely.

For this multi-hop configurationthe end-to-endlows face
aprobability of pacletlossateachhopunderRED andBlue.

Dueto congestiorcauseddy the cross-trafic, RED andBlue
will randomlydrop pacletsat eachhop. Althoughthe cross-
traffic flowswill haveagreateprobabilityof beingpickedfor
adrop,theend-to-endlowsalsoexperienceaandomdropping
andthusachieve very poorgoodput.For Blue, thisiis further
exacerbatedsincedueto the high load from the cross-trafic
flows, the discardprobability remainshigh at eachhop. This
increaseshe probability of an end-to-endlow facingpaclet
dropsat eachhopandthusfurtherreducingthe goodput.

Figure9(b) shavs theaveragegoodputfor the cross-trafic
flows attachedo router R;. For DRR, TDRR andQSDRR,
the cross-trafic takesup the slackin thelink andconsumes
aboutl15 — 120% of its fair-sharebandwidth.For bothRED
andTail Drop, thelink utilization is lower and althoughthe
end-to-endlows consumeonly about40% of their fair-share,
the cross-trafic flows consumel 50% of their fair-shareand
thus leave about 5% unutilized. Cross-trafic flows under
Blue consumeabout120 — 140% of their fair-share Jeaving
20 — 30% unutilized.

4.4 Scalability Issues

Onedrawbackwith afair-queueingpolicy suchasDRRis that
we needto maintaina separatequeuefor eachactive flow.
Sinceeachqueuerequiresa certainamountof memoryfor
thelinked list headerusedto implementthe queue thereis
alimit onthe numberof queueghataroutercansupport.In
theworst-casetheremightbeasmary asonequeudor every
paclet stored. Sincelist headersaaregenerallymuchsmaller
thanthe pacletsthemseles,the severity of the memoryim-
pactof multiple queuess intrinsically limited. On the other
hand sincelist headergretypically storedin moreexpensve
SRAM, while the pacletsarestoredin DRAM, thereis some
legitimateconcernaboutthe costassociatedvith usinglarge
numbersof queues Oneway to reducetheimpactof thisis-
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Figure9: Fair Shareperformanceof end-to-endandcrosstraffic flows overa multi-hop pathconfiguration

sueis to allow multiple flows to sharea singlequeue.While
this canreducethe performancéenefitsobsenedin the pre-
vioussectionsijt maybeappropriateo tradeoff performance
againsttost,atleastto someextent. To addresshisissue we
ranseveralsimulationsevaluatingtheeffectsof mergingmul-
tiple flowsinto asinglequeue.FigurelOillustratestheeffects
of varyingthe numberof queuesThe sourcesare TCP Reno
andthetotal buffer spacas fixed at 1000paclets.

Figure 10(a)illustratesthe effect on the goodputreceved
by eachflow under different numbersof queues. For the
multiple round-triptime configuratiorandthe multi-hoppath
configuration, we shav the goodputfor the 200ms RTT
(longerRTT) flows andthe end-to-endmulti-hop) flows re-
spectvely. In boththeseconfigurationsthe above mentioned
flows aretheoneswhich receve a muchlower goodputcom-
paredto their fair shareunderexisting policiessuchasRED,
Blue andTail Drop. We obsene thatthe effect of increasing
thenumberof bucketsproducediminishingreturnsoncewe
go past10 buckets. In fact, thereis only a maminal increase
in the goodputrecevedwhenwe go from 10 bucketsto 100
buckets. Sinceat eachbottlenecklink therearea 100 TCP
flows, this implies that our algorithmsare scalableand can
performvery well evenwith one-tentithe numberof queues
asflows.

We alsopresenthe standardieviationin goodputreceved
by eachflow for differentnumbersof queuesn Figure10(b).
Theresultsare presentedsa ratio of the standarddeviation
to the fair sharebandwidthto betterillustratethe measureof
the standarddeviation. We noticethat changingthe number
of queuegdoesnot have a significantimpacton the standard
deviation of the goodputsandthuswe do not loseary fair-
nessby usingfewer queuesrelative to the numberof flows.
Also, the overall standarddeviation is belov 15% of the fair
sharegoodputfor all our multi-queuepolicies, regardlessof
thenumberof queues.

5 RELATED WORK

Our DRR-basedpolicies, TDRR and QSDRR,which com-
bine fair queueingand paclet discardpolicies, provide one
particular solution for managingvery small buffers while

maintainingvery high link utilization and goodput. In this
section, we compareour approachwith other related ap-
proachesOnething to noteaboutall the relatedwork is that
noneof theapproachebave beentestedon multiple network
configurationsor with heterogeneousaffic. Also, our stud-
iesarealsoamongthefirst to simulatefairly large bottleneck
links with very small buffers (a fraction of the bandwidth-
delayproduct)anddifferentnetwork configurationdor TCP
flows. Earlier studieswere limited to small bottlenecklink

capacitieswith buffersequalto the bandwidth-delayroduct.

5.1 Fair QueueingAlgorithms

Severalschedulingalgorithmsareknown in theliteraturefor
bandwidthallocationandtransmissiorscheduling. Thesein-
cludethe paclet-by-paclet versionof GeneralizedProcessor
Sharing[9] (also known as WeightedFair Queueing[10]),
VirtualClock [11], StochasticFairnessQueueing[8], Self-
Clocked Fair Queueing[12], Weighted Round Robin [13],
Deficit RoundRobin(DRR)[7] andFrame-baseHair Queue-
ing [14]. We choseDRR dueto its simplicity and easeof
implementatiorin hardware.

5.2 FRED

Oneproposalfor usingRED mechanismso provide fairness
is Flow-RED (FRED)[15]. TheideabehindFREDis to keep
statebasedon theinstantaneougueueoccupanyg of a given
flow. It definesa threshold,ming, which is the minimum
numberof packetseachsourceis allowedto queue.Whena
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new pacletarrivesandthe queuesizeis greaterthanmingy,

FRED will apply RED to sourceswhosebuffer occupang

exceedsmin,. Althoughthis algorithmprovidesroughfair-

nessin mary situations sinceit maintainsa min, threshold
for all sourcesit needsalarge buffer spaceto work well. We

have shavn that TDRR andQSDRRareableto provide fair-

sharingfor very small buffers even with a large numberof

flows. Also, sinceFRED doesnot maintainlong-termstatis-
tics on a flow’s queueoccupanyg, it cannotprotectagainst
misbehaing flows. On the otherhand, TDRR maintainsan
exponentially-weightedhroughputaveragefor eachflow, al-

lowing it to “remember’eventsmuchlongerin the pastthan
the queuetime constant;this allows it to enforcefairness,
evenfor smallbuffer sizes.

5.3 Self-Configuring RED

Self-configuringRED [16] is aproposafor anadaptve RED
policy that can self-parameterizgiven differentcongestion
types. This policy is similar to Blue, whereRED's dropping
probability, maz,, is decreaseavhenthe averagequeuesize
fallsbelon ming, andincreasedvhentheaveragequeuesize
exceedsmaxy,. This improvesover RED in reducingthe
gueuesize variations,but doesnot help provide betterfair-
sharingbetweerflows, suffering from the sameweaknesses
presenin RED.

5.4 TCP with per-flow queueing

Anotherproposalfor managingT CP buffersis usingframe-
basedfair-queueing[14] with longestqueueor randomdis-
cardpolicy [17]. This policy is similar to plain DRR. How-
ever, it has a disadwantagein that the frame-basedfair-
gueueingusesherateallocatedo eachflow in its scheduling

policy. Thisimpliesthatit needdo know thenumberof flows
apriori, which is a difficult requirementto meet. We have
shavn thatour multiqueuepoliciescanadaptto any number
of flows, eveniif the ratio of flows to queuesis 10:1. We
have alsoshawvn that a fair queueingschedulemith longest
queuediscard(plain DRR) doesnot performvery well overa
single-bottleneckonfigurationfor smallbuffers.

6 CONCLUSION

This paperhasdemonstratethe inherentweaknessem cur-
rent queuemanagemenpoliciescommonlyusedin Internet
routers.Theseweaknessescludelimited ability to perform
well underavarietyof network configurationandtraffic con-
ditions, inability to provide a fair-sharingamongcompeting
TCP connectionwith differentRTTs andrelatively low link
utilization andgoodputin routersthathave smallbuffers. In
orderto addresgheseissueswe presentedDRR and QS-
DRR, two differentpaclet-discardpoliciesusedin conjunc-
tion with a simple, fair-queueingschedulerDRR. Through
extensve simulations,we shoved that TDRR and QSDRR
significantly outperformRED andBlue for variousconfigu-
rationsandtraffic mixesin boththeaveragegoodputfor each
flow andthevariancdan goodputs For very smallbuffer sizes,
ontheorderof 5 — 10% of thebandwidth-delayproduct,we
shaved not just that our policies significantly outperformed
RED, Blue andTail Drop, but wereableto achiese nearop-
timal goodputandfairness. We also shoved that our algo-
rithms performwell even when memoryis limited and we
have to aggreyatemultiple sourcesnto onequeue.
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