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Abstract

Packetsin the Internetcanexperiencelargequeueingdelays
during busy periods. Backboneroutersare generallyengi-
neeredto have large buffers, in which packetsmay wait as
long as half a second(assumingFIFO service,longer oth-
erwise). During congestionperiods,thesebuffers may stay
closeto full, subjectingpacketsto longdelays,evenwhenthe
intrinsic latency of the path is relatively small. This paper
studiesthe performanceimprovementsthat canbe obtained
by usingmoresophisticatedpacketschedulers,thanaretypi-
calof Internetrouters.Theresultsshow thatthelargebuffers
foundin WAN routerscontributeonly marginally to improv-
ing routerthroughput,andthe higherdelaysthat comewith
large buffersmakesthema dubiousinvestment.The results
alsoshow that betterpacket schedulingalgorithmscanpro-
ducedramaticimprovementsin fairness. Using ns-2simu-
lations,we show that algorithmsusingmultiple queuescan
significantlyoutperformRED andBlue,especiallyatsmaller
buffer sizes. Over a single-bottlenecklink, the variancein
TCP goodputusing the proposedmultiqueuepacket sched-
ulers is one-tenththat obtainedwith RED andone-fifththat
obtainedwith Blue. Givenatraffic mix of TCPflowswith dif-
ferentround-triptimes,longerround-triptime flows achieve�����

of their fair-shareusing multiqueueschedulers,com-
paredto � �	� underRED and Blue. We observe a similar
performanceimprovementfor multi-hoppaths.

1 INTRODUCTION

Backboneroutersin theInternetaretypically configuredwith
buffersthatareseveraltimestimeslargerthantheproductof
the link bandwidthandthe typical round-tripdelayon long
network paths. Suchbuffers candelaypacketsfor asmuch
ashalf a secondduringcongestionperiods.Whensuchlarge
queuescarryheavy TCPtraffic loads,andareservicedusing
the Tail Drop policy, the large queuesremaincloseto full


Thiswork is supportedin partby NSFGrantANI-9714698

mostof thetime. Thus,evenif eachTCPflow isabletoobtain
its shareof thelink bandwidth,theend-to-enddelayremains
very high. This is exacerbatedfor flows with multiple hops,
sincepacketsmay experiencehigh queueingdelaysat each
hop.Thisphenomenonis well-knownandhasbeendiscussed
by Hashem[1] andMorris [2], amongothers.

To addressthis issue,researchershave developedalterna-
tive queueingalgorithmswhich try to keepaveragequeue
sizeslow, while still providing high throughputandlink uti-
lization. The most popularof theseis RandomEarly Dis-
card or RED [3]. RED maintainsanexponentially-weighted
moving averageof the queuelengthwhich is usedto detect
congestion.Whentheaveragecrossesa minimumthreshold
( �������� ), packetsare randomlydroppedor marked with an
explicit congestionnotification(ECN) bit. Whenthe queue
length exceedsthe maximumthreshold( ���	����� ), all pack-
etsaredroppedor marked. RED includesseveralparameters
which must be carefully selectedto get good performance.
To make it operaterobustlyunderwidely varyingconditions,
onemusteitherdynamicallyadjusttheparametersor operate
usingrelatively largebuffer sizes[4, 5].

RecentlyanotherqueueingalgorithmcalledBlue [6], was
proposedto improve uponRED. Blue adjustsits parameters
automaticallyin responseto queueoverflow andunderflow
events.Whenthebuffer overflows,thepacketdroppingprob-
ability is increasedby a fixed increment( ��� ) andwhen the
buffer empties(underflows), the droppingprobability is de-
creasedby a fixed increment( ��� ). The updatefrequency
is limited by a freezetime parameter. Incomingpacketsare
thenrandomlydroppedor markedwith anECNbit. Although
Blue doesimproveoverRED in certainscenarios,its param-
etersarealsosensitive to differentcongestionconditionsand
network topologies.

In this paper, we investigatehow packet schedulersus-
ing multiple queuescan improve performanceover existing
methods.Our goal is to find schedulersthat satisfy the fol-
lowing objectives:� High throughputwhenbuffersareverysmall(a fraction

of the bandwidth-delayproduct). This allows queueing
delaysto bekeptlow.

� Insensitivityto operatingconditionsandtraffic. This re-
ducesthe needto tune parameters,or compromiseon



performance.

� Fair treatmentof different flows. This shouldhold re-
gardlessof differencesin round-tripdelayor numberof
hopstraversed.

The resultspresentedhereshow that both RED andBlue
are deficient in theserespects. Both perform fairly poorly
whenbuffer spaceis limited to asmall fraction of theround-
trip delay. Although Blue is less sensitive to parameter
choicesthanRED, it still exhibits significantparametersen-
sitivity. Both RED andBlue exhibit a fairly high variance
among individual TCP flow goodputseven over a single-
bottlenecklink.

Anotherregularly observed phenomenonfor queueswith
Tail Drop is big swingsin the occupancy of the bottleneck
link queue.Oneof the main causesfor this is the synchro-
nization of TCP sourcesgoing throughthe bottlenecklink.
AlthoughRED andBlue try to alleviate the synchronization
problemby usinga randomdroppolicy, they do not perform
well with bufferswhichareafractionof thebandwidth-delay
product. Whenbuffers arevery small, even with a random
droppolicy, thereis a high probability thatall flows suffer a
packetloss.However, with per-flow queueing,wecanexplic-
ity control the numberof flows that suffer a packet lossand
thussignificantlyreducesynchronizationamongflows.

We investigate queueing algorithms that use multiple
queues,to isolateflows from oneanother. Mostof theresults
reporteduseper-flow queues,but we alsoshow that compa-
rableperformancecanbe obtainedwhenqueuesareshared
by multiple flows. While algorithmsusingmultiple queues
have historically beenconsideredtoo complex, continuing
advancesin technologyhave madetheincrementalcostneg-
ligible, andwell worth the investmentif thesemethodscan
reducethe requiredbuffer sizesandresultingpacket delays.
We show, usingns-2simulations,thattheproposedqueueing
algorithmsrepresentmajorimprovementsoverexistingmeth-
ods,with respectto all threeof theobjectiveslistedabove.

Therestof thepaperis organizedasfollows. Section2 de-
scribesthenew multi-queuemethodsinvestigatedhere.Sec-
tion 3 documentstheconfigurationsusedfor thesimulations
andthe parametersusedfor RED andBlue. Section4 com-
paresthe performanceresultsof the proposedmulti-queue
methodsagainstRED,BlueandTail Drop. Section5 presents
a brief summaryof relatedwork andSection6 concludesthe
paper.

2 ALGORITHMS

As statedin theprevioussection,whenwe evaluatedcurrent
queueingdisciplinessuchasRED andBlue, we found that
they did not work well with small buffer sizes.Anotherbig
disadvantagewith boththesealgorithms(moresoin thecase
of RED), is theproblemof finding theright parametersfor a
given queue. Given our experimentsandprior work in this

area,it hasbeenshown that no single setof RED parame-
terswork for differentbottleneckbandwidths,differentflow
combinationsanddifferentqueuelengths.Thus,to beableto
effectively useRED,theparametersmustbefine tunedgiven
link bandwidth,buffer sizeandtraffic mix. In practice,this is
very difficult sincetheinput traffic mix is continuouslyvary-
ing.

Giventheseproblemswith existingcongestionbufferman-
agementalgorithms,we decidedto evaluatea fair queueing
discipline for managingTCP flows. We startedwith using
Deficit RoundRobin(DRR) [7]. DRRis anapproximatefair-
queueingalgorithmthat requiresonly ��� �"! work to process
a packet andthusit is simpleenoughto be implementedin
hardware. Also, sincethereareno parametersto setor fine
tune, it makes it usableacrossvarying traffic patterns. We
evaluatedthreedifferentpacket-discardpolicies.

1. DRR with LongestQueueDrop
Our first policy combined DRR with packet-discard
from the longestactive queue. For the rest of the pa-
per, we refer to this policy as plain DRR or DRR,
since this packet-discardpolicy is part of the original
DRR algorithm[7] andwasfirst proposedby McKen-
ney in [8]. Through our simulation study, we found
that plain DRR wasnot very effective in utilizing link
bandwidthor providing fair sharingamongcompeting
TCP flows over a single-bottlenecklink. DRR did per-
form significantlybetterthanRED andBluewhenthere
wereTCP flows with differentRTTs or the flows were
sentthroughmulti-bottlenecklink topology. However
its performancewas roughly comparableto RED over
a single-bottlenecklink using large buffers, andworse
for smallbuffer sizes.Thus,we investigatedtwo differ-
entenhancementsto thepacket-discardpolicy whichare
outlinedbelow.

2. Thr oughput DRR (TDRR)
In this algorithm, we storea throughputvalue associ-
atedwith eachDRR queue.The throughputparameter
is maintainedasanexponentiallyweightedaverageand
is usedin choosingthe drop queue. The exponential
weight usedin our simulationsis

�$# ��% �"��& . We found
that TDRR is not very sensitive to the weight parame-
terandperformedequallywell for weightsrangingfrom��# & to � # �('*),+

. Thediscardpolicy for a new packet ar-
rival whenthe link buffer is full, is to choosethequeue
with the highestthroughput(amongstthe currentlyac-
tive DRR queues)to drop a packet. Intuitively, this al-
gorithm shouldpenalizehigher throughputTCP flows
more and thus achieve better fairnessand our simula-
tion resultsdo confirm this. The drawbackof this pol-
icy is thatwe needto storeandupdatean extra param-
eterfor eachDRR queue,thetime averagingparameter,
which might requiretuning undersomecircumstances
(althoughour experienceto dateshows no significant
sensitivity to this parameter).



3. QueueStateDRR (QSDRR)
SinceTDRR hasan overheadassociatedwith comput-
ing and storing a weightedthroughputvalue for each
DRR queue,we investigateanotherpacket-discardpol-
icy which addssomehysteresisto plain DRR’s longest
queuedrop policy. The idea is that once we drop a
packetfrom onequeue,wekeepdroppingfrom thesame
queuewhenfacedwith congestionuntil thatqueueis the
smallestamongstall active queues.This policy reduces
the numberof flows that are affectedwhen a link be-
comescongested.This reducesthe TCP synchroniza-
tion effect and reducesthe magnitudeof the resulting
queuelengthvariations. A detaileddescriptionof this
algorithmis presentedin Figure1.

Let - be a state variable which is
undefined initially.

When a packet arrives and there is no
memory space left:

if - is not defined
Let - be the longest queue in the
system;

Discard one or more packets from
the front of - to make room
for the new packet;

else // - is defined
if - is shorter then all
other non-empty queues
Let - be the longest queue in the
system now;

Discard one or more packets
from the front of - to make
room for the new packet;

else
Discard one or more packets
from the front of - to make
room for the new packet;

Figure1: Algorithm for QSDRR

3 SIMULA TION ENVIRONMENT

In orderto evaluatetheperformanceof DRR,TDRRandQS-
DRR, we rana numberof experimentsusingns-2. We com-
paredtheperformanceoveravariedsetof network configura-
tionsandtraffic mixeswhich aredescribedbelow. In all our
experiments,we usedTCP sourceswith 1500 byte packets
andthedatacollectedis over a 100secondsimulationinter-
val. We ran experimentsusing TCP Renoand TCP Tahoe
andobtainedsimilar resultsfor both; hence,we only show
theresultsusingTCPRenosources.

Table1: RED parameters

RED���	�/. Max. dropprobability 0.010*1 Queueweight 0.001�������� Min. threshold � ��� of buffer���	� ��� Max. threshold Buffer size

Table2: Blue parameters

Blue��� Increment 0.0025�	� Decrement 0.00025243 '"'"5(' 6 ��� '
Hold-time 0.1s

For eachof the configurations,we varied the bottleneck
queuesize from a 100 packets to 20,000packets. 20,000
packetscorrespondsto a half-secondbandwidth-delayprod-
uctbuffer which is acommonbuffer sizedeployedin current
commercialrouters.We ranseveralsimulationsto determine
valuesof ���	�/. and 0 1 for RED that worked best for our
simulationenvironment,to ensurea fair comparisonagainst
our multi-queuebasedalgorithms.TheRED parameterswe
usedin our simulationsarein Table1. For Blue,we ransim-
ulationsoverourdifferentconfigurationsto comparethefour
setsof parametersusedby the authorsin their paperwhile
evaluatingBlue [6]. TheBlue parameterswe usedarein Ta-
ble2 andaretheonesthatgavethebestperformance.

3.1 SingleBottleneckLink
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Figure2: SingleBottleneckLink Network Configuration

The network configurationfor this set of experimentsis
shown in Figure 2. 7"8:9";<8>=?; #@#@# 8A9 B<B?C are the TCP sources,
eachconnectedby 10Mb/slinks to thebottlenecklink. Since
the bottlenecklink capacityis 500 Mb/s, if all TCP sources
sendatthemaximumrate,theoverloadratiois 2:1. Thedesti-
nations,named7ED 9 ;<D = ; #@#@# D 9 BFB C , aredirectly connectedto
the router G = . All 100 TCP sourcesare startedsimultane-
ouslyto simulateaworst-casescenariowherebyTCPsources
aresynchronizedin the network. In eachof the configura-
tions,thedelayshown is theone-waylink delay. Thus,round-
trip time (RTT) overa link is twice thelink delayvalue.



3.2 Multiple Round-Trip Time Configuration
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Figure3: Multiple Round-Trip TimeNetwork Configuration

The network configurationfor this set of experimentsis
shown in Figure 3. This configurationis usedto evaluate
theperformanceof thedifferentqueuemanagementpolicies
given two setsof TCP flows with widely varying round-trip
timesover the samebottlenecklink. The sourceconnection
setupis similar to thesingle-bottleneckconfiguration,except
for theaccesslink delaysfor eachsource.For 50sources,the
link delayis setto 20ms,while it is setto 100msfor theother
50 sources.

3.3 Multi-Hop Path Configuration
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Figure4: Multi-Hop PathNetwork Configuration

The network configurationfor this set of experimentsis
shown in Figure 4. In this configuration,we have 50 TCP
sourcestraversingthreebottlenecklinks and terminatingatGIH . In addition,on eachlink, thereare50 TCPsourcesact-
ing ascross-traffic. We usethis configurationto evaluatethe
performanceof thedifferentqueuemanagementpoliciesfor
multi-hopTCPflows competingwith shorterone-hopcross-
traffic flows.

4 RESULTS

We now presenttheevaluationof our multi-queuepoliciesin
comparisonwith Blue,RED andTail-Drop. We comparethe
queuemanagementpoliciesusingtheaveragegoodputof all
TCPflows asa percentageof its fair-shareasthemetric. We
alsoshow thegoodputdistribution of all TCPsourcesover a
single-bottlenecklink andthevariancein goodput.Thevari-
ancein goodputsis a metricof thefairnessof thealgorithm;
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Figure 6: Standarddeviation relative to fair-sharefor TCP
Renoflowsovera single-bottlenecklink

lower varianceimplies better fairness. For all our graphs,
we concentrateon the goodputsobtainedwhile varying the
buffer sizefrom 100 packetsto 5000packets. Note, for the
multi-queuealgorithms,the statedbuffer sizeis sharedover
all the queues,while with the single queuealgorithms,the
statedbuffer size is for that singlequeue.Sinceour bottle-
necklink speedis 500Mb/s, this translatesto a variationof
buffer time from 2.4msto 120ms.In all our simulations,we
noticedthatall thepoliciesbehavedin a similar fashionpast
the5000packetbuffer size.

4.1 Single-BottleneckLink

Thefirst setof graphs,shown in Figure5,comparesthedistri-
bution of goodputsfor all 100TCPRenoflows over thesim-
ulation run. For this experiment,the single-bottlenecklink
configurationis usedandthe buffer sizeis set to 200 pack-
ets. Thecloserthegoodputsareto eachother, the lower the
variance,which implies betterfairness. We notice that un-
der TDRR andQSDRR(Figures5(b), 5(c)), all TCP flows
hadgoodputsverycloseto themeanandthemeangoodputis
verynearthefair-sharethreshold.We noticethattheaverage
goodputunderDRR 5(a) is not asgoodasTDRR andQS-
DRR andit is evenslightly lower thanRED,sosimpleDRR
is not sufficient to prevent under-utilization of the link. In
thecaseof Blue (Figure5(d)), althoughthegoodputsof dif-
ferentTCP flows arecloseto eachother, the meangoodput
achievedis far below the fair-sharethresholdwhich leadsto
under-utilizationof thelink. Themeangoodputachievedus-
ing RED(Figure5(e))is closeto thefair-sharethreshold,but
the varianceis high. Also, a significantnumberof sources
areable to get more than their fair-shareof the bandwidth.
As expected,Tail Drop (Figure5(f)), performsmostpoorly,
with thehighestvariancein goodputsanda very low average
goodput.

Figure6 shows theratio of thegoodputstandarddeviation
of theTCPRenoflows to thefair sharebandwidthfor all al-
gorithmswhile varyingthebuffer size.Evenat higherbuffer
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Figure5: TCPRenoGoodputdistributionoversingle-bottlenecklink with 200pkt buffer

sizes,the goodputstandarddeviation underDRR and QS-
DRRis verysmallandtheratio to thefair sharebandwidthis
lessthan0.025.TDRRexhibitsahighergoodputstandardde-
viation, but it is still significantlybelow Blue, RED andTail
Drop. REDexhibitsabout10 timesthevariancecomparedto
QSDRRandDRR,while Blueexhibitsabout5 timesthevari-
ance.Overall,weobservethatthegoodputstandarddeviation
is between� �Y) � � of thefair sharebandwidthfor themulti-
queuepoliciescomparedto

+��
for Blue, � �	� for RED and�E� � for TailDrop. Thus,even for a single-bottlenecklink,

we observe that the multi-queuepolicies offer much better
fairnessto a setof TCPflows.

Finally, figure 7 illustrates the averagefair-shareband-
width percentagereceivedby theTCPRenoflows usingdif-
ferent buffer sizes. For small buffer sizes,i.e. under500
packets,TDRR andQSDRRoutperformRED significantly
andDRR is comparableto RED. It is interestingto notethat
evenata largebuffer sizeof 5000packets,all policiessignif-
icantly outperformBlue, includingTail Drop.

4.2 Multiple Round-Trip Time Configuration

For this configuration,we use100 TCP Renoflows over a
single bottlenecklink. 50 flows have a 40msRTT and 50
flows have a 200msRTT. Figure 8 shows the averagefair-
sharegoodputreceivedby eachset.As shown in Figure8(a),
bothRED andBlue allow the40msRTT flows to usealmost& ��� more bandwidththan their fair share. Tail Drop also
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Figure7: Fair shareperformanceoverasinglebottlenecklink

allows the40msRTT flows to usemorethantheir fair share
of thebandwidthfor buffer sizessmallerthan1000packets.
All theDRR-basedpoliciesexhibit muchbetterperformance
allowing only � �	� extra bandwidthto be usedby the 40ms
RTT flows. Both RED andBlue discriminateagainstlonger
RTT flows, as we observe in Figure 8(b), the 200msRTT
flows achieve only about � �	� of their fair-sharebandwidth
whereasusingtheDRR-basedpolicies,200msRTT flowsare
ableto achievealmost ] �	� of their fair-share.

At a very small buffer size of 100 packets, 200msRTT
flows usingDRR andQSDRRget about � �	� of their fair-
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Figure8: Fair shareperformanceof differentRTT flowsovera singlebottlenecklink

share. However, at this buffer size, whenall the flows are
active, thereis only onepacket perflow thatcanbebuffered.
Thiscausesthepoorperformanceof DRRandQSDRR,since
it becomesvery difficult to single out flows that are using
morebandwidth. Even with this limitation, whenwe move
to 200packets,bothDRR andQSDRRsignificantlyimprove
their performanceand200msRTT flows achieve about

���	�
of their fair-sharebandwidthon the average. SinceTDRR
maintainsan exponentiallyweightedthroughputaveragefor
eachflow, evenat thesmallestbuffer sizeof 100packets,it is
ableto deliveralmost ] ��� of thefair-sharebandwidthto the
200msRTT flows.

4.3 Multi-Hop Path Configuration

In this configuration,50 end-to-endTCPRenoflowsgo over
threehopsandhaveanoverall round-triptimeof 300ms.The
cross-traffic oneachhopconsistsof 50TCPRenoflowswith
a round-triptimeof 100ms(onehop).Figure9 illustratesthe
averagefair-sharegoodputreceivedby eachsetof flows. For
this configuration,TDRR andQSDRRprovide almosttwice
thegoodputof RED andTail Drop andfour timesthegood-
put providedby Blue for end-to-endflows. As shown in Fig-
ure 9(a), end-to-endflows achieve nearly

�(�	�
of their fair-

shareunderTDRRandQSDRRand
+����

underDRR.Under
RED andTail Drop, they canachieve only � �	� of their fair
share.For eventhesmallestbuffer sizeof a100packets,end-
to-endTCP flows underTDRR areable to achieve

�����
of

their fair-share. Using QSDRRand DRR, for the smallest
buffer size,their fair-shareis thesameasRED, but oncethe
buffer size increasesto 200 packets, their performanceim-
provessignificantly and they allow the end-to-endflows to
achievecloseto

���	�
and

+(�	�
respectively.

For thismulti-hopconfiguration,theend-to-endflows face
aprobabilityof packet lossateachhopunderREDandBlue.

Dueto congestioncausedby thecross-traffic, RED andBlue
will randomlydroppacketsat eachhop. Althoughthecross-
traffic flowswill haveagreaterprobabilityof beingpickedfor
adrop,theend-to-endflowsalsoexperiencerandomdropping
andthusachieve very poorgoodput.For Blue, this is further
exacerbated,sincedueto thehigh loadfrom thecross-traffic
flows, thediscardprobabilityremainshigh at eachhop. This
increasestheprobabilityof anend-to-endflow facingpacket
dropsat eachhopandthusfurtherreducingthegoodput.

Figure9(b)shows theaveragegoodputfor thecross-traffic
flows attachedto router G 9 . For DRR, TDRR andQSDRR,
the cross-traffic takesup the slackin the link andconsumes
about ���"& ) �E� �	� of its fair-sharebandwidth.For bothRED
andTail Drop, the link utilization is lower andalthoughthe
end-to-endflowsconsumeonly about� ��� of their fair-share,
the cross-traffic flows consume�"& ��� of their fair-shareand
thus leave about & � unutilized. Cross-traffic flows under
Blue consumeabout �"� �`) �a� ��� of their fair-share,leaving� �I)Y%����

unutilized.

4.4 Scalability Issues

Onedrawbackwith afair-queueingpolicy suchasDRRis that
we needto maintaina separatequeuefor eachactive flow.
Sinceeachqueuerequiresa certainamountof memoryfor
the linked list header, usedto implementthe queue,thereis
a limit on thenumberof queuesthata routercansupport.In
theworst-case,theremightbeasmany asonequeuefor every
packet stored.Sincelist headersaregenerallymuchsmaller
thanthepacketsthemselves,theseverity of thememoryim-
pactof multiple queuesis intrinsically limited. On theother
hand,sincelist headersaretypically storedin moreexpensive
SRAM, while thepacketsarestoredin DRAM, thereis some
legitimateconcernaboutthecostassociatedwith usinglarge
numbersof queues.Oneway to reducetheimpactof this is-
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Figure9: Fair Shareperformanceof end-to-endandcrosstraffic flowsovera multi-hoppathconfiguration

sueis to allow multiple flows to sharea singlequeue.While
this canreducetheperformancebenefitsobservedin thepre-
vioussections,it maybeappropriateto tradeoff performance
againstcost,at leastto someextent.To addressthis issue,we
ranseveralsimulationsevaluatingtheeffectsof mergingmul-
tiple flowsinto asinglequeue.Figure10illustratestheeffects
of varyingthenumberof queues.ThesourcesareTCPReno
andthetotalbuffer spaceis fixedat 1000packets.

Figure10(a)illustratesthe effect on the goodputreceived
by eachflow under different numbersof queues. For the
multipleround-triptimeconfigurationandthemulti-hoppath
configuration, we show the goodput for the 200ms RTT
(longerRTT) flows andtheend-to-end(multi-hop)flows re-
spectively. In boththeseconfigurations,theabovementioned
flowsaretheoneswhich receiveamuchlowergoodputcom-
paredto their fair shareunderexisting policiessuchasRED,
Blue andTail Drop. We observe that theeffect of increasing
thenumberof bucketsproducesdiminishingreturnsoncewe
go past10 buckets. In fact, thereis only a marginal increase
in thegoodputreceivedwhenwe go from 10 bucketsto 100
buckets. Sinceat eachbottlenecklink therearea 100 TCP
flows, this implies that our algorithmsarescalableandcan
performvery well evenwith one-tenththenumberof queues
asflows.

Wealsopresentthestandarddeviation in goodputreceived
by eachflow for differentnumbersof queuesin Figure10(b).
Theresultsarepresentedasa ratio of thestandarddeviation
to thefair sharebandwidthto betterillustratethemeasureof
the standarddeviation. We noticethat changingthe number
of queuesdoesnot have a significantimpacton thestandard
deviation of the goodputs,andthuswe do not loseany fair-
nessby usingfewer queues,relative to thenumberof flows.
Also, theoverall standarddeviation is below �"& � of thefair
sharegoodputfor all our multi-queuepolicies,regardlessof
thenumberof queues.

5 RELATED WORK

Our DRR-basedpolicies, TDRR and QSDRR,which com-
bine fair queueingandpacket discardpolicies,provide one
particular solution for managingvery small buffers while
maintainingvery high link utilization andgoodput. In this
section, we compareour approachwith other relatedap-
proaches.Onething to noteaboutall therelatedwork is that
noneof theapproacheshavebeentestedon multiplenetwork
configurationsor with heterogeneoustraffic. Also, our stud-
iesarealsoamongthefirst to simulatefairly largebottleneck
links with very small buffers (a fraction of the bandwidth-
delayproduct)anddifferentnetwork configurationsfor TCP
flows. Earlier studieswere limited to small bottlenecklink
capacitieswith buffersequalto thebandwidth-delayproduct.

5.1 Fair QueueingAlgorithms

Severalschedulingalgorithmsareknown in theliteraturefor
bandwidthallocationandtransmissionscheduling.Thesein-
cludethepacket-by-packetversionof GeneralizedProcessor
Sharing[9] (also known as WeightedFair Queueing[10]),
VirtualClock [11], StochasticFairnessQueueing[8], Self-
Clocked Fair Queueing[12], WeightedRoundRobin [13],
DeficitRoundRobin(DRR)[7] andFrame-basedFair Queue-
ing [14]. We choseDRR due to its simplicity and easeof
implementationin hardware.

5.2 FRED

Oneproposalfor usingRED mechanismsto provide fairness
is Flow-RED(FRED)[15]. TheideabehindFREDis to keep
statebasedon theinstantaneousqueueoccupancy of a given
flow. It definesa threshold, ���� 1 , which is the minimum
numberof packetseachsourceis allowedto queue.Whena
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new packet arrivesandthequeuesizeis greaterthan ���n����� ,
FRED will apply RED to sourceswhosebuffer occupancy
exceeds����� 1 . Althoughthis algorithmprovidesroughfair-
nessin many situations,sinceit maintainsa ���� 1 threshold
for all sources,it needsa largebuffer spaceto work well. We
have shown thatTDRR andQSDRRareableto provide fair-
sharingfor very small buffers even with a large numberof
flows. Also, sinceFREDdoesnot maintainlong-termstatis-
tics on a flow’s queueoccupancy, it cannotprotectagainst
misbehaving flows. On the otherhand,TDRR maintainsan
exponentially-weightedthroughputaveragefor eachflow, al-
lowing it to “remember”eventsmuchlongerin thepastthan
the queuetime constant;this allows it to enforcefairness,
evenfor smallbuffer sizes.

5.3 Self-Configuring RED

Self-configuringRED[16] is aproposalfor anadaptiveRED
policy that canself-parameterizegiven differentcongestion
types.This policy is similar to Blue, whereRED’s dropping
probability, �o�(� . is decreasedwhentheaveragequeuesize
fallsbelow ���n� ��� andincreasedwhentheaveragequeuesize
exceeds���	����� . This improvesover RED in reducingthe
queuesizevariations,but doesnot help provide betterfair-
sharingbetweenflows, suffering from the sameweaknesses
presentin RED.

5.4 TCP with per-flow queueing

Anotherproposalfor managingTCPbuffers is usingframe-
basedfair-queueing[14] with longestqueueor randomdis-
cardpolicy [17]. This policy is similar to plain DRR. How-
ever, it has a disadvantagein that the frame-basedfair-
queueingusestherateallocatedto eachflow in its scheduling

policy. This impliesthatit needsto know thenumberof flows
apriori, which is a difficult requirementto meet. We have
shown thatour multiqueuepoliciescanadaptto any number
of flows, even if the ratio of flows to queuesis 10:1. We
have alsoshown that a fair queueingschedulerwith longest
queuediscard(plainDRR)doesnotperformverywell overa
single-bottleneckconfigurationfor smallbuffers.

6 CONCLUSION

This paperhasdemonstratedtheinherentweaknessesin cur-
rent queuemanagementpoliciescommonlyusedin Internet
routers.Theseweaknessesincludelimited ability to perform
well underavarietyof network configurationsandtraffic con-
ditions, inability to provide a fair-sharingamongcompeting
TCPconnectionswith differentRTTs andrelatively low link
utilization andgoodputin routersthathave smallbuffers. In
order to addresstheseissues,we presentedTDRR andQS-
DRR, two differentpacket-discardpoliciesusedin conjunc-
tion with a simple, fair-queueingscheduler, DRR. Through
extensive simulations,we showed that TDRR and QSDRR
significantlyoutperformRED andBlue for variousconfigu-
rationsandtraffic mixesin boththeaveragegoodputfor each
flow andthevariancein goodputs.Forverysmallbuffersizes,
on theorderof & ) � �	� of thebandwidth-delayproduct,we
showed not just that our policiessignificantlyoutperformed
RED, Blue andTail Drop, but wereableto achieve nearop-
timal goodputand fairness.We alsoshowed that our algo-
rithms perform well even when memory is limited and we
have to aggregatemultiplesourcesinto onequeue.
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