Placing Serversin Overlay Networks

Sherlia Shi

Jonathan Turner

Department of Computer Science
Washington University in St. Louis
One Brookings Dr.
Campus Box 1045
St. Louis, MO 63130
{sherlia, jst} @cs.wustl.edu

ABSTRACT

Overlay networks are becoming a popular vehicle for de-
ploying advanced network services in the Internet. Typi-
cally, overlay networks are implemented by deploying service
nodes at suitably chosen sites in the network. The number of
distinct service nodes has a big influence on the operational
cost of an overlay network; meanwhile, the distance between
service nodes and end users has a big influence on the quality
of the service that can be provided through the commodity
Internet. In this paper, we study the problem of how to op-
timally place service nodes in a network, balancing the need
to minimize the number of nodes, while limiting the distance
between users and service nodes. We show that the design
problem is NP-hard and study the performance of heuristic
algorithms using simulations. For single domain, our algo-
rithms produce results that are within a few percent of an
easily computed lower bound. For multi-domain networks,
the performance ranges from close to the optimal to roughly
twice the optimal.

Keywords — overlay networks, network planning, quality-of-
service, set cover

1 INTRODUCTION

As the explosive growth of the Internet continues, service
providers are pushing more network functions towards the
network edges to reduce client access latency and achieve
better scalability. This distributed server model is often re-
ferred to as overlay network, since servers form an overlay
of unicast connections to cooperate and communicate over
the general Internet infrastructure. Content providers, such
as Akamai [19] and iBeam [8] are among the first to deploy
an overlay network of content distribution servers. Newer
value-added services such as Active Networks, also adopt the
overlay network approach.

In an overlay network, the communication channels be-
tween servers and clients and among server themselves are
through the commodity Internet. While the server-to-server
paths can be explicitly provisioned to ensure the available
bandwidth and latency requirements, it is generally not cost-

efficient to implement the resource management and reser-
vation functions on the more numerous client access paths.
Consequently, the quality of the services are determined
largely by the network locations of the deployed servers. The
current Internet has thousands of ISPs. In order to serve more
clients, servers are placed strategically at the peering points
of the networks to interconnect with as many ISPs as pos-
sible. However, operating and maintaining these distributed
servers represent a major cost for service providers, limiting
the number of servers that can be deployed. Additionally,
as the number of servers grows large, the cost of intercon-
necting these servers for data and state synchronization also
increases.

In this paper, we attempt to answer the following questions:
Given multiple networks and their estimated service parame-
ters, how many servers are needed and where to place them,
so that an overlay service provider can ensure the desired
service quality to all its clients. We envision that this imposi-
tion of the service quality constraints on server to client paths
is essential for the newer network services to achieve better
service quality in order to attract and retain customers. The
measure of service quality can vary from application to ap-
plication: it can be delay for real-time applications, or band-
width for content distribution applications, or a combination
of both. The connection from a client to its designated server
node can stay within an ISP domain or may cross multiple ISP
domains. Within an ISP network, the service provider can es-
timate these service quality parameters for a given client to a
potential server location based on the client’s network access
technology and the capacities of the internal routing paths.
Across the ISP domains, such estimation is also possible if
the peering path between networks is explicitly indicated or
if both networks guarantee a service level agreement from
which we can infer the service parameter. The details of such
estimation mechanisms are beyond the scope of this paper,
hereby we assume that we can decide in advance whether or
not placing a server at a specific location can provide a given
client with the desired level of service quality. In this paper,
we will simply use the network distance between a client and
a server as the service parameter; however, our methods can

apply to any generic metrics.

To answer the above question, we transform the placement
problem to the set cover problem [1] and solve it using both
linear programming (LP) relaxation and greedy heuristics.
An instance of the set cover problem is that given a base set
of elements and a family of sets that are subsets of this base
set, find the minimum number of sets such that their union
includes all elements in the base set. The server placement
maps to the set cover problem as follows: an element corre-
sponds to the network location of an edge router, which rep-
resents the aggregation of regional clients in an ISP network;
The base element set contains all the network locations of
edge routers; A set represents a potential server placement
at one of the network locations; Each set includes all the
network locations that are within the service range from the
server location represented by the same set. By solving the
set cover problem, we find the minimum number of servers
and their locations, that will cover all clients within the ser-
vice range. In this paper, we will only consider the uncapac-
itated version of the set cover problem, where the servers do
not have capacity limits and can serve as many clients as pos-
sible. We think this uncapacitated version is adequate since
it is typically cheaper to buy more bandwidth at one loca-
tion than to install a separate server. The set cover problem
is NP-Hard [11] and has worst case approximation ratio of
O(logn) [4,15]. We introduce a rounding technique to solve
the integer-programming formulation of the set cover prob-
lem based on the linear programming (LP) relaxation meth-
ods. The super-optimality of the LP problem provides a lower
bound to the IP formulation of the set cover problem. Using
simulation, we show that this rounding technique approaches
the lower bound very closely; in fact, it reaches the lower
bound for a number of network configurations. Meanwhile,
the greedy heuristic also provides good performance in all in-
stances with significantly less computation complexity.

We also vary the problem to allow primary and backup
servers. A primary server provides the guaranteed service
to clients, while a backup server is allowed to provide a re-
duced level of service quality and functions only when the
primary fails. Since more servers are qualified to perform as
backups, we can achieve better service reliability with only a
small increase in the required number of servers.

One important aspect of our study is the network model-
ing used in our simulation. Existing network modeling tools,
such as GT-ITM [21] and Tiers [3], can generate hierarchical
network graphs with probabilistic network interconnections,
however, they do not explicitly model the geographical lo-
cations of the network elements. In our model, we consider
the potential of co-located servers which can access multi-
ple networks from the same geographical location; this mir-
rors the behavior of co-location service providers in the cur-
rent Internet. With co-location, if two nodes of different net-
works are within a geographical vicinity, a server installed at
this location can service clients, who are within the service
range, in both networks. We show that these co-locations can

greatly reduce the number of required servers, since they can
avoid detours through the network peering points by provid-
ing shortcuts from one network to another.

The rest of the paper is organized as follows: in Section 2,
we discuss some of the related work; we describe the two net-
work models used in our simulation in Section 3; Section 4
introduce our methods using LP-relaxation and the greedy
heuristic; We present simulation results in Section 5 and con-
clude in Section 6.

2 RELATED WORK

Our formulation of the overlay network placement problem
is related to two other well-studied problems: the facility lo-
cation problem and the k-median problem. The facility lo-
cation problem minimizes the joint cost of server installa-
tion and the cost of connecting each client to its designated
server. This problem has been applied to designing and plac-
ing network concentrators. The k-median problem minimizes
the cost of connections between clients and servers under the
constraint that no more than & servers can be used. Both prob-
lems are NP-Hard. The best known approximation algorithms
can achieve constant ratio [5, 9, 18], if the connection cost is
symmetric and satisfies the triangle inequality. For arbitrary
cost, the worst case bound is O(logn). However, neither of
the problems can be applied directly to the design of over-
lay networks, since in the overlay model the communication
channels between clients and servers are over the commod-
ity Internet and do not incur any cost to service providers.
Rather, the major cost is the number of servers needed to ser-
vice all the clients and the access bandwidth required at each
server’s network interface.

Our model of server placement resembles more closely
to the set cover problem. The classic greedy algorithm for
solving set cover problem [10, 12] achieves an O(logn) per-
formance ratio. In geometric spaces, the problem is easier.
In [7], Hochbaum proposed a shifting strategy that gives an
(1 + ¢) performance ratio. Unfortunately, the interconnec-
tions between networks dictate that the network propagation
delay no longer exhibits the geometric properties of distance.

References [13, 14] studied the problem of placing cache
replicas in the network and formulated it as the k-median
problem: given a specific number of servers, what is the best
placement that achieves the highest average service level to
clients, where service level is indicated by access delay from
a client to its nearest replica. In [13], Qiu et al. proposed
several placement strategies including: a greedy strategy that
incrementally places replicas to achieve highest service qual-
ity; a hot-spot strategy that places replicas near the clients that
generate the greatest load. In [14], the authors also proposed
a max degree strategy by placing replicas in decreasing order
of nodes’ degrees. By simulating over several synthetic and
real network graphs, they concluded that the greedy strategy
performs remarkably well, achieving within 1.1 to 1.5 of the
lower bound.

Our approach to network design is from a different angle.
We are more interested in examining the necessary cost, in

this case the number of servers, if we want to provide all
clients a guaranteed service. This gives service providers
insight into the relation of network cost and the achievable
service quality, on which they can make further adjustment
to reflect their revenue stream, such as eliminating servers
that only serve small numbers of clients. Contrarily, the work
in [13,14] seeks to optimize the average service quality which
masks the number of unsatisfied customers. Additionally, the
performance of our approach, which is the number of re-
quired servers, is not susceptible to the cost metric of con-
nection paths, since we only use it to categorize clients as
serviceable or not by a server; while theirs is achieved for a
specific cost metric, namely the access delay. Since the con-
nection cost metric depends heavily on the application, it is
questionable if the same ratio could be achieved with a differ-
ent metric.

Another difference is that we model the network geograph-
ically and consider server co-locations. As networks over-
lap geographically, the number of potential server locations
is much fewer in number than the number of network nodes
need to be considered. In [13,14], they used network graphs
consisting of tens of thousands nodes for router-level graphs
and thousands of nodes for AS-level graphs. Consequently,
the optimal algorithm based on LP relaxation is too expen-
sive for their models. We think considering the geographical
locations of servers is a reasonable approach given the vast
presences of co-location providers. The reduced problem size
enables us to solve it more optimally. In Section 5, we com-
pare the performance of our algorithm both with co-location
and without, and show that with co-location we can reduce
the number of required servers to approximately half of that
with no network co-locations.

3 NETWORK MODELS

We model the networks using two types of graphs: random
graphs and geographic graphs. The latter consists of network
nodes located at the 50 largest US metropolitan areas. For
inter-domain network connectivities, we specify a set of pa-
rameters to determine the location and density of network
peering points. For intra-domain network connectivities, as
ISPs are not willing to disclose fully their network topol-
ogy, we assume that they are able to engineer and operate
their own networks with little or no congestion internally so
that the delays between the routers are dominated by the link
propagation delay. Consequently, we model the intra-domain
network as a complete graph. We assume the “hot-potato”
routing policy at the inter-domain level, which minimizes the
number of network domains crossed. Hence, traffic destined
to another domain is always sent to the nearest peering points
from the originator towards the destination domain. Although
such policy does not result in the best global routes, it is
widely used by the current inter-domain routing protocol: the
Border Gateway Protocol (BGP) [16]. We detail our parame-
ter choices for the two models below and summarize the pa-
rameters in Table 1.

Parameters | Interpretations

n network size as# of nodes

scale size of the network graph

N, probability of acity in anetwork

X, interconnection probability between two networks
TXscope scope of aregion for network interconnections
TXas interconnection density

vicinity maximum distance between co-located nodes

Table 1: Parameters for Generating Network Graphs

Random Graph

In the random graph model, nodes are randomly distributed
over a plane of size scale x scale. The number of nodes in
each network is uniformly drawn from the interval on [min,
max]. We divide the plane into fixed size of regions accord-
ing to the parameter TX .ope. NOdes in different networks are
allowed to interconnect with each other only if they are in the
same region; nodes in the same network are fully connected.
The interconnection probability TX,, decides if a pair of net-
works interconnect; we choose TX,, based on the size of the
two networks:

N>
X, = e e

where ny and no are number of nodes in the two networks,
« and (3 are the scale and shape parameters of the probability
distribution, respectively. So, two large networks are more
likely to interconnect than two smaller networks.

If two networks interconnect, we randomly select a num-
ber of regions to interconnect according to the interconnec-
tion density TX4,. If there are multiple nodes from each net-
work in the same region, we select the closest pair of nodes
as peers; if a region is selected, but one of the network does
not have any node in that region, we choose another region
until we met the peering density criterion, or we have consid-
ered all regions. We allow co-location nodes if nodes from
different networks are in a geometric vicinity of each other.
A server placed at a co-location can send traffic to all these
networks with no additional cost.

Geographic Graph

In the geographic model, we collect the 50 largest metropoli-
tan areas [20] as node locations. We then divide the US conti-
nent into 5 regions: northeast, north-central, southeast, south-
central and west, and categorize nodes into each region with
a certain amount of overlap. Details of the categorization
can be found in [17]. Unlike the random graph model where
all networks share the same geometric space, the geographic
model consists of two types of networks: regional networks
and national networks. Each city joins the network with prob-
ability V,,: the selection of nodes for a regional network con-
siders only nodes that belong to that region; while a national
network considers all 50 cities. As before, we interconnect
two networks with probability TX,,. The values of TX,, may
be different depending on the types of the two networks. For
example, two national networks will have TX, = 1, since

they are almost always interconnected; while two regional
networks are less likely to peer with each other directly but
to transit through a national network. We allow interconnec-
tions only if two network nodes are in the same city and use
TXys to decide the number of peering points of two networks.

4 FORMAL DEFINITIONS AND THE ALGO-
RITHMS

Given our network models and routing policy, we can com-
pute a routing table for each node 7 and the cost of each
routing path ¢(4,), which is the summation of hop distances
along the path. For each node ¢, we compute a set S which
includes all the nodes reachable from ¢ within the routing dis-
tance of C. If i has co-location nodes, then the set S also
includes all nodes reachable from each of these co-location
nodes within distance C. Let S, 55, ...,S,, be all the sets
computed. An integer programming formulation of the set
cover problem is:

Objective: minimize » " x; (1)
j=1

Subjectto: > ajx; > 1 fori=1...n (2)
j=1

z; € {0,1}

where z; is the selection variable of S, a;; is1ifi € S; and
0 otherwise.

A variation of the problem is to allow one primary and one
backup server to cover each node. A backup server is al-
lowed to cover more distance than the primary server. Let
T1,T>,...,T,, be all the backup sets, and b;; = 1ifi € T}
and 0 otherwise. The objective here is still to minimize the
number of selected sets but with the additional constraints of:

m

j=1

Since all nodes in the primary set are also in the backup
set centered at the same server, b;; = 1if a;; = 1; but a
primary server cannot service the same node as a backup —
the constraint in (3) ensures the selection of a different server
as the backup.

4.1 LP Relaxation-based Methods

The above formulation can be approximated by first solving
the LP relaxation of the problem optimally and then round-
ing the fractional values to integers. The LP relaxation of the
problem is to allow the selection variables x; to take frac-
tional values between [0, 1]. The LP relaxation can be solved
in polynomial time and the rounding can be done in O(n).
Reference [6] introduced a rounding algorithm which is a p-
approximation algorithm, where p = maxl-{zj a;;} is the
maximum number of sets covering an element. Although this
worst case result is not very promising, we are more inter-
ested in the average case performance. We refer to the round-
ing algorithm in [6] as the fixed-rounding (FR) algorithm:

Step 11 Solve the LP relaxation of the problem and let {=; }
be the optimal solution;

Step2: Output sets {S;[z} > 1 }.

The intermediate solution for the LP relaxation naturally
provides a lower bound = Zj x; for the set cover problem,
because the fractional solution is an optimal solution and the
LP relaxation is a super set of the set cover problem. We will
use this lower bound to evaluate the quality of the solutions
produced by our algorithms.

We have also devised an incremental-rounding (IR) al-
gorithm that imposes more restricted rules while selecting
sets based on the value of x7. Whenever we select a set,
we remove all the elements that satisfy the covering con-
straint in (2) due to the newly selected set. Let M de-
note the union of all elements covered after each step. For
the remaining uncovered elements in a set .S;, we compute
p; = max;{)_;a;t fori € S;\M. Among all the sets
that have selection variables greater than the inverse of p;,
we choose the set that has the largest number of remaining
uncovered nodes.

Step 1. Solve the LP relaxation of the problem and let {z }
be the optimal solution;
Step 2: Select set .S; such that :
2(a) S, has the largest number of uncovered elements;
20) = 5
Step 3: Repeat step 2 until all elements are covered.

The correctness of the algorithm holds: for each uncovered

node, at least one set has x;’f > <t — and pj > Zj ai;. By

D aii

selecting all sets whose values safisfy 2(b), we are guaran-
teed to cover all the nodes. Further more, since p; is non-
increasing in each repetition and p; < p, the set selection cri-
terion is more restrictive than that in the FR algorithm, which
in turn reduces the number of sets selected. Although the
worst case bound is the same for both algorithms, we observe
from our simulations that the IR algorithm typically performs
much better than the FR algorithm.

An alternative to rule 2(a) is to select the set with the great-
est 2 value, since the larger the value of the selection vari-
able, the more “essential” the set may be. For example, if a
node is covered by a single set, then the selection variable of
this set must be 1 and the set must be selected. However, most
of our simulations show that rule 2(a) generally performs bet-
ter than this alternative rule. One plausible explanation is that
rule 2(a) is more objective in attempting to include as many
uncovered nodes as possible, while the alternative rule first
selects those more “essential” sets, which may not contain
many nodes.

It is easy to see that both of the algorithms can still have
redundant sets in the final solution. To prune these extra sets,
we use a simple pruning algorithm as the final step to com-
plete the selection:

80

G—© lower bound

*—*IR
9 60 + S—©FR
g >—+ Greedy
3]
(]
S 40
@
o
g
z 20

%
0 200 400 600 800 1000
Number of Nodes

(a) Performance without the pruning routine

=
a1
T

=

G—© lower bound
*—*IR

S—©FR

>—+ Greedy

Number of Servers
[
o

a1
T

0 200 400 600 800 1000
Number of Nodes

(b) Performance with the pruning routine

Figure 1: Comparison of the FR, IR and the Greedy Algorithms

Step 1: Sort all selected sets in increasing order of set size;

Step 2: Starting from the smallest set, check if it can be re-
moved without leaving any of its nodes uncovered,;
If so, remove the set.

Step 3: Repeat Step 2 until all sets are checked.

4.2 Greedy Heuristics

A greedy algorithm is usually attractive due to its simplicity.
In [10, 12], Johnson and Lovész introduced a greedy algo-
rithm for the set cover problem with an O(log n) approxima-
tion ratio. The basic greedy attribute of the algorithm is to
select a set at every step that contains the maximum number
of uncovered elements. For the backup problem variant, we
extend the algorithm by treating any node that has not satis-
fied the constraints of (2) and (3) as equally uncovered. At
each step, we select a set that has the largest number of re-
maining uncovered nodes and repeat till there are no more
uncovered nodes.

4.3 Comparison of the FR, IR and the Greedy Algorithms

We first compare our incremental rounding (IR) algorithm
with the fixed rounding (FR) algorithm proposed in [6] and
with the greedy algorithm. The results are further compared
with the lower bound obtained as the optimal solution from
the LP method. The LP solver we used, is called PCx [2]
which is an interior-point based linear programming package.

We use a simple setup to investigate the relative perfor-
mance of these algorithms. The underlying network graph is
a single graph of randomly distributed nodes on a 100 by 100
unit length map. The service range of a server is 20 units.
Ideally, if nodes are perfectly positioned, this will give a so-
lution of [107 x [1297 = 9 selected servers regardless of
the node density. The lower bound we obtained is indeed not
far from the ideal and stays constant with the increase of the
node density as shown in Figure 1.

We show the performance of the rounding algorithms with
and without the pruning routine in Figure 1. As expected,
the FR algorithm performs badly with the increase of node
density, since the number of sets covering a single node in-
creases with node density, making the selection criterion less
strict. On the other hand, the IR algorithm is always the clos-

est to the lower bound. The FR algorithm does benefit greatly
from the pruning routine, achieving performance closer to the
lower bound, and is only slightly worse than the IR algorithm,
but better than the greedy algorithm. This relative perfor-
mance holds for other settings we have tried as well. In the
rest of the paper, we will mainly focus on the IR algorithm to
evaluate the placement methods in more complicated network
configurations.

5 SIMULATION RESULTS

It is challenging to select a representative set of simulations
that demonstrate the relationships among the methodologies,
the configurations and the results, given the vast number of
parameters. In order to concentrate on a few aspects which
we considered interesting, we have mostly used small and
uniform settings in the simulations presented in this section.
We do not claim our network models capture all the funda-
mental characteristics of the Internet, but we believe that the
combination of the random networks and the geographic net-
works provides a wide enough spectrum to give us some con-
fidence in the general utility of the methods. Throughout the
section, readers are referred to Table 1 for the definitions of
the parameters. Unless otherwise mentioned, we use the fol-
lowing default parameter values. For the random graph: the
scale is 100 by 100 units; the region size is 10 units and the
co-location vicinity is two units; « = 0.36 and 8 = 1.0; the
number of nodes are chosen on the interval [20, 100]. For the
geographic graph: the probability of including cities in the
networks is 0.6 for the regional networks and 0.8 for national
networks.

5.1 Single Network

We first present results on a single network for both the ran-
dom graph and the geographical graph. We perform simula-
tions on the following three scenarios: (a) £ = 1, with only
one primary server required to cover each node; (b) £ = 1
with one backup server; (c) £k = 1 with relaxation on the
server to client distance. The last scenario allows a compro-
mise on the service standard for a limited number of clients.
This allows service providers to be more cost effective and
not to install servers just for a few remotely located nodes.

40
O Lower Bound MLP (IR) OGreedy

30

| fjg—

10 20 50

Number of Servers
N
o

=
=)

Service Range (unit)

(a) Single Random Network: n. = 100

N
S)

O Lower Bound BLP (IR) O Greedy

i In e

400 800 1500

N
o

i
[N)

Number of Servers
®

I

Service Range (km)

(b) Single Geographical Network: n = 50

Figure 2: Variation on Server Service Range

40

ELower Bound BLP (IR) OGreedy

30 — —

20 — —

Number of Servers

o Lt
k = 1, w/ backup k=1,1=3 k=1,1=5

(a) Single Random Network: n = 100, scale = 100, range = 10

25

O Lower Bound BLP (IR) O Greedy

]

i
o

Number of Servers
=
1)

@

0

k =1, w/ backup k=1,1=3 k=1,1=5

(b) Single Geographlcal Network: n. = 50, range = 400 km

Figure 3: Variation on Different Service Requirement

The relaxation is done by including every node in at least [
server sets, even if it is not within the range of [servers. That
is, if a node is in the range of I’ < [servers, we add it to the
sets for the next I — I’ servers that it is closest to. Each result
for the random graph is averaged over 10 runs, while the re-
sult for the geographic graph is from a single run, since the
node locations are all fixed.

Figure 2 shows the number of required servers when vary-
ing service range. In general, both the IR and the greedy
algorithm closely track the lower bound.

Figure 3 shows the performance against the different ser-
vice requirements. The backup server range is twice that of
the primary server for both networks. It shows that the addi-
tion of the backup servers only increases the number of total
servers slightly. The service range relaxation is also effective
in reducing number of servers to about 75% and 55% of the
original number, with [= 3 and [= 5 respectively. How-
ever, the relaxation is useful only when the service range is
small. In Figure 3, the service range is 10 units and 400 km
in the network configurations, which covers about 7% and 8%
of the maximum distance in their respective networks. If we
double the service range, we find that the relaxation becomes
irrelevant since each node is likely to be included in multi-
ple sets already. Table 2 shows the average node to server
distance with and without the service range relaxation. Since
there may be multiple servers covering a node, we select the
closest server when computing the distance. Each result for
the random graph is the worst case among 10 runs.

Random Graph (unit) Geographic Graph (km)
range =10 range = 400 km
mean | std. | max mean std. max
=01 494 | 374 | 983 | 16749 | 140.11 | 398.79
=3 | 630 | 447 | 14.82 || 259.78 | 222.65 | 1013.42
=51 845 | 556 | 2536 || 304.69 | 23859 | 1114.78

Table 2: Average Client to Server distance

5.2 Multiple Networks

In this section, we study the relationships between server
placement and the density of network peering links. By
“peering links”, we mean both the peering and transit rela-
tionship between two ISPs. As these links aggregate and
transport traffic from one domain to another, their limited
capacities contribute significantly to the user experienced
network congestion. Additionally, these network exchange
points maybe located off the optimal path, resulting in longer
and more circuitous routes. One way to circumvent these con-
gestion points is to use co-location services, where servers
can access multiple networks and can route traffic directly to
these networks without going through the exchange points.
We demonstrate the relative performance with and without
server co-location in Figure 4.

For this simulation, we use two network configurations:
one is constructed from 5 random graphs, the other is con-
structed from 5 regional networks and 1 national network in
the geographic model. Hereafter, we will use the term m-n
to denote geographic networks consisting of m regional net-
works and » national networks. We use TX,, = 1, so every

-3
=3

[BLB with co- WIR with co- IR no co- |

]

o

IN
S

Number of Servers
N @
o)

H
5
I

0.2 0.4 0.6 0.8 1
Peering Density

(a) Random Network: 5 networks, 100 nodes per network, range = 20 units

20

ELB with coHocation
IR with co-ocation
OIR no co-ocation

1 n n

N
o

Number of Servers
=
o

o

0.2 0.4 0.6 0.8 1
Peering Density
(b) Geographic Networks: 5 regional networks, 1 national networks, total
nodes = 96, range = 800 km

Figure 4: Variation on Network Peering Density

Peering Random Network Geographic Network
Density 5 networks, 100 nodes per network 5regional, 1 national network, total 96 nodes
total links | co-location | no co-location || total links | co-location no co-location
0.2 83.05 22.16% 38.77% 11.6 17.24% 80.17%
04 158.05 23.28% 37.52% 18.9 10.05% 82.54%
0.6 238.60 21.42% 38.98% 274 6.20% 82.48%
0.8 317.75 22.19% 35.22% 36.3 8.82% 90.36%
1.0 410.1 21.24% 35.94% 45.2 7.30% 96.90%

Table 3: Number of Peering Links In Use

pair of networks is always interconnected, unless they do not
have any common presences in any of the peering regions.
The peering density in Figure 4 determines the number of
peering points of two networks.

Figure 4 shows the number of required servers for the lower
bound with co-location and the IR algorithm with and with-
out co-location. The co-location service reduces the number
of required servers by as much as 50% when peering is sparse.
The geographic graph appears to be more sensitive to the
peering density, as the performance of IR with no co-location
approaches the lower bound when the peering density ap-
proaches 1. This is because the peering link is “cheaper” in
a geographic network than in a random network. In the ge-
ographic network, two networks peer only if they both have
presences in the same metropolitan area, which means the de-
lay on the peering link is 0. On the other hand, the peering
link has a positive delay in the random graphs which adds
to the server to client delay. Additionally, the “hot-potato”
routing policy always selects the closest peering link rather
than the one with the lowest delay. These combined effects
shows that unless peering can guarantee a high level of qual-
ity, merely increase the peering density does not help reduc-
ing the client access delay. Table 3 summarizes the number
of links used in the two scenarios.

Figure 5 shows the relative performance ratio of the IR
algorithm, with and without co-location, against the lower
bound. We varied the number of random networks as 2, 5
and 10 and used two configurations for the geographic net-
works: 5-1 and 0-2. The results are mostly consistent with
that in Figure 4. Additionally, it suggests that on the random
networks, the performance of non co-located servers worsens

much more with the increase of the number of networks, as
compared to the performance of co-located servers.

Due to limited space, we have omitted the results that mea-
sure the average and the variance of server loads with differ-
ent placement strategies, and the results on the computational
complexity of the IR algorithm, compared with the greedy
algorithm. Interested readers can find these results in [17].

6 CONCLUSIONS

We have presented a server placement method in overlay
networks as an application of the set cover problem. The
placement strategy satisfies constraints on the server to client
paths, which indicate the obtainable service qualities along
the paths. We expect that network provisioning for quality of
service becomes more common as the Internet continues to
grow; and such an automated methodology is useful for ser-
vice providers to analyze the potential cost of network provi-
sioning.

We solved the set cover problem using methods based on
linear programming relaxation as well as greedy heuristics.
We also presented an incremental integer rounding algorithm
for the LP-relaxation based method. Our network settings
model explicitly the presence of co-location services, which
have become increasingly popular for business corporations
to out source their data servers. Our results indicate co-
location can save up to 50% of the server installation cost.
We also presented variance of the simple set cover problem to
allow backup servers and to allow distance relaxation. These
variances bring opportunities to provide more cost effective
services. Using simulation, we studied the behavior of the
algorithms under various network settings and observed the

25 14 25 T T
G—=©net 5-1, coloc
net 10 G—-+Inet 5-1, no coloc
[k’*‘g/a\a‘] net 10 *—net 0-2, coloc
o 27 J o h o 2r A—Anet0-2,nocoloc | |
T T T i
o © @
§ %//*/—*\%ﬁ% § net 5 A § 0
g 15T 4 g 12 4 S 15 q
E net 2 § g
L w L £
& 5 5
1r 4 net 1 ® @ %
05 ‘ ‘ ‘ 1 : : : 05 ‘ ‘ ‘
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Peering Density

(8 Random Network without co-location:
range = 20, 100 nodes per network.

(b) Random Network with co-location: range =
20, 100 nodes per network.

Peering Density
(c) Geographic Networks: range = 800 km.

Peering Density

Figure 5: Relative Performance Ratio Against Lower Bound

implication of network peering density and the characteristics
of server load distributions. Although, LP-relaxation based
methods are traditionally considered as too expensive and
complex to solve any practical problems, we find that it is
suitable and effective for our overlay network models and re-
sults in better performance than the greedy algorithm.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-
duction to Algorithms. MIT Press, 1990.

[2] J. Czyzyk, S. Mehrotra, M. Wagner, and S. Wright.
PCx User Guide, http://www-fp.mcs.anl.gov/otc/Tools/
PCx/.

M. B. Doar. A Better Model For Generating Test Net-
works. In Proc. of Globecom’96, Novemeber 1996.

(3]
[4] U. Feige. A Threshold of O(lnn) for Approximating
Set Cover. In Proc. of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, pages 314-
318, Philadelphia, Pennsylvania, May 1996.

S. Guha and S. Khuller. Greedy strikes back: Improved
Facility Location Algorithms. In Proc. of the 9th Annual
ACM-SIAM Symposium on Discrete Algorithms, 1998.

D. Hochbaum. Approximation Algorithms for NP-Hard
Problems. Brooks/Cole Publishing Co., 1996.

D. S. HochBaum and W. Maass. Approximation
Schemes for Covering and Packing Problems in Image
Processing and VLSI. Journal of the Association for
Computing Machinery, 32(1):130-136, January 1985.

iBeam Broadcasting Corp. http://www.ibeam.com.

(5]

(6]

[7]

(8]
(9]

K. Jain and V. Vazirani. Primal-dual Approximation
Algorithms for Metric Facility Location and k-median
Problems. In Proc. of the 40th IEEE Symposium on

Foundations of Computer Science, 1999.

[10] D. S. Johnson. Approximation Algorithms for Com-
binatorial Problems. Journal of Computer and System

Sciences, 9:256-278, 1974.

[11] R. M. Karp. Reducibility Among Combinatorial Prob-
lems. Complexity of Computer Computations, pages
85-103, 1972.

L. Lovasa. On the Ratio of Optimal Integral and
Fractional Covers. Discrete Mathematics, 13:383-390,
1975.

L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the
Placement of Web Server Replicas. In Proc. of IEEE
INFOCOM, 2001.

P. Radoslavov, R. Govindan, and D. Estrin. Topology-
Informed Internet Replica Placement. In Proc. of Sixth
International Workshop on Web Caching and Content
Distribution (WCW’01), June 2001.

R. Raz and S. Safra. A Sub-Constant Error-Probability
Low-Degree Test, and a Sub-Constant Error-Probability
PCP Characterization of NP. In ACM Symposium on
Theory of Computing, pages 475-484, 1997.

Y. Rekhter and T. Li. A Border Gateway Protocol 4
(BGP-4). Internet Engineering Task Force, RFC 1771,
March 1995.

S. Shi and J. Turner. Placing Servers in Overlay Net-
works. Technical Report WUCS-02-05, Washington
University, 2002.

D. B. Shmoys, Eva Tardos, and K. Aardal. Approxi-
mation Algorithms for Facility Location Problems. In
Proc. of the 29th ACM Symposium on Theory of Com-
puting, 1997.

Akamai Technologies, Inc. http://www.akamai.com.

U.S. Census Bureau. http://www.census.gov/
population/www/estimates/metropop.html.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to

Model an Internetwork. In Proc. of IEEE INFOCOM,
San Francisco, CA, 1996.

