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Abstract

Overlay networks are becominga popularvehiclefor deploying advancednetwork servicesin the
Internet. Overlay networks are implementedby deploying servicenodesat suitably chosensitesin
the network. Servicenodescommunicatewith usersthroughthe commaodity Internet, while among
themseles,they may useeitherthe commoditylnternetor dedicatecchannels.The numberof distinct
servicenodeshasabig influenceon theoperationatostof anoverlaynetwork; meanwhilethedistance
betweerservicenodesandendusershasa big influenceon the quality of the service.In this paperwe
studythe problemof how to optimally placeservicenodesn a network, balancinghe needto minimize
the numberof nodes,while limiting the distancebetweenusersandservicenodes. We shav thatthe
designproblemis NP-hardand study the performanceof heuristicalgorithmsusing simulation. For
singledomain,our algorithmsproduceresultsthatarewithin afew percentof aneasilycomputedower
bound. For multi-domainnetworks, the performanceangesrom closeto the optimalto roughly twice

theoptimal.
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1 Intr oduction

As theexplosive growth of the Internetcontinuesserviceprovidersarepushingmorenetwork functionsto-

wardsthenetwork edgedo reduceclientacces$ateny andachiare betterscalability Thisdistributedsener



modelis oftenreferredto asoverlaynetwork, sincesenersform anoverlayof unicastconnectionso cooper
ateandcommunicatemongthemseles. Contentproviders,suchasAkamai[1l] andiBeam[12] areamong
thefirst to deplg anoverlay network of contentdistribution seners. Newer value-addedervicessuchas
Active Networks, alsoadoptthe overlay network approachlin anoverlay network, boththe communication
channelshetweenseners and clients and amongseners are throughthe commodity Internet. However,
while the sener-to-sener pathscanbe explicitly provisionedto carrythetraffic, the resourcananagement
andresenationon the client accespathsarefar morecostly andaretypically notdone. Consequentlythe
guality of the servicesaredeterminedargely by network locationsof deplo/ed seners.

The currentinternethasthousandf ISPs. In orderto sene more clients, seners are placedstrate-
gically at the peeringpoints of thesenetworks to interconnectwith as mary 1ISPsas possible. However,
operatingandmaintainingthesedistributed senersrepresents major costfor serviceprovidersandlimits
the numberof senersthatcanbe deplo/ed. Additionally, asthe numberof senersgrows large, the costof
interconnectinghesesenersfor dataandstatesynchronizatioralsoincreases.

In this paper we attemptto answerthe following questions:Givenmultiple networksand their inter-
connectionshow manyserves are neededand wheee to locatethem,sothat serviceproviders canensue
servicequalitiesto all clients. Theimpositionof theservicequality constraint®n senerto client pathsis an
importantaspecbf this sener placemenproblem,aswe ervision thatit is essentiafor the never network
servicesto achiave betterservicequality in orderto attractandretain customers.The measureof service
quality variesfrom applicationto application,it canbe delayfor real-timeapplications,or bandwidthfor
contentdistribution applicationspr a combinationof both. Within anISP network, the serviceprovider can
estimataheseservicequality parameterfor agivenclientto a potentialsenerlocationbasedntheclient’'s
network accessechnologyandthe capacitief the internalrouting paths. Acrossthe ISP domains,such
estimationis achiezable if networks cooperateandexplicitly indicatein the routing messagethe peering
pathtaken by the given destination.Togetherwith the interdomainandthe intra-domainestimationsthe
providerscanthenestimatethe parametersThesemechanismarevariationsof QoSroutingmechanisms:
insteadof routing pacletsonto a paththathasthe desiredresourceswe estimatehe resource®n a known
path. The detailsof thesemechanismare beyond the scopeof this paper herebywe assumedhatwe can
decidein adwancewhetheror not a specificsener canprovide a given client with the guaranteedervice.
In this paper we will simply usethe network distancebetweena client anda sener to make the decision,

however, our methodscanapplyto ary genericmetrics.



To answerthe above question,we transformthe placemeniproblemto the setcover problem[3] and
solwe it usingboth linear programming(LP) relaxationand greedyheuristics. Briefly, an instanceof the
set cover problemis that given a baseset of elementsand a family of setsthat are subsetsof the base
set, find the minimum numberof setssuchthat their unionincludesall elementsn the baseset. The set
cover problemmapsfrom the sener placemenproblemasfollows: the baseelementsetcontainsall the
network locations,which arethe locationsof network edgeroutersrepresentinghe aggreation of clients
for a given network; A setrepresents potentialsener placementat one of the network locationsand
its elementsare all othernetwork locationsthat are within the servicerangefrom the sener. By solving
the setcover problem,we find the minimum numberof senersandtheir locations,that cover all clients
within the servicerange. In this papey we will only considerthe uncapacitatedersionof the setcover
problem,wherethe senersdo not have capacitylimits andcansene asmary clientsaspossible.We think
this uncapacitatedersionis adequatesinceit is typically cheapeito buy more bandwidthat onelocation
thanto install a separatesener. The setcover problemis NP-Hard[16] andhasworstcaseapproximation
ratio of O(logn) [7]. Using simulation,we shav that our combinedroundingtechniquesand a simple
pruningalgorithmapproachhelower boundvery closely;in fact, it reacheghelower boundfor anumber
of network configurationsMeanwhile the greedyheuristicalsoprovidesgoodperformancen all instances
with significantlylesscomputatiorcompleity.

Wealsovarytheproblemto allow primary andbadkupseners. A primarysenerprovidestheguaranteed
serviceto clients,while abackupseneris allowedto provide areducedevel of servicequality andfunctions
only whenthe primaryfails. Sincemoresenersarequalifiedto functionasbackupswe canachieve better
servicereliability with only aslightincreaseon thetotal numberof seners.

Oneimportantaspectof our studyis the network modelingusedin our simulation. Existing network
modelingtools, suchasGT-ITM [25] and Tiers [5], cangeneratehierarchicalnetwork graphswith prob-
abilistic network interconnectionshowever, they do not explicitly modelthe geographicalocation of the
networks. In our model,we consideithe potentialof co-locatedsenerswhich canaccessnultiple networks
from thesamegeographicalocation;this mirrorsthebehaior of co-locationserviceprovidersin thecurrent
Internet. Therefore whentwo network nodesof differentnetworks are within a geographicavicinity, an
installationof sener atthis locationcanserviceclients,who arewithin the servicerange,in bothnetworks.
We shaw thattheseco-locationscanreducea large numberof requiredseners,sincethey canavoid detours

throughthenetwork peeringpointsandprovide shortcutfrom onenetwork to another



Therestof the paperis organizedasfollows: in Section2, we discusssomeof the relatedwork; we
describghetwo network modelsusedin our simulationin Section3; Sectiond introduceour methodsausing

LP-relaxatiorandthegreedyheuristic;We presensimulationresultsin Section5 andconcludan Sectiong.

2 RelatedWork

The applicationof the setcover problemin network designhastwo variants:the facility locationproblem
andthe k-medianproblem. Thefacility locationproblemminimizesthejoint costof sener installationand
the costof connectingeachclient to its designatedener. This problemhasbeenappliedto designingand
placingnetwork concentratorsThe k-medianproblemminimizesthe costof connectiondetweerclients
and seners underthe constraintthat no morethan k£ seners canbe used. Both problemsare NP-Hard.
The bestknowvn approximationalgorithmscan achieze constantratio [8, 14,21], if the connectioncostis
symmetricandsatisfiegriangleinequality For arbitrarycost,the worstcaseboundis O(logn). However,

neitherof the problemscanbeapplieddirectly to thedesignof overlaynetworks, sincein the overlaymodel
the communicatiorchanneldetweerclientsandsenersare over the commoditylnternetanddo notincur
ary costto serviceproviders. Rathey the major costis the numberof senersneededo serviceall clients
andtheacces$andwidthrequiredat eachsener’s network interface.

Our modelof sener placemenmorecloselyresembleshe setcover problem.The classicgreedyalgo-
rithm for solving setcover problem[15,17] achiezesan O(log n) performanceatio. In geometricspaces,
the problemis easier In [11], Hochbaunproposeda shifting stratgy thatgivesan O(1 + ¢) performance
ratio. Unfortunately the interconnectionbetweemetworks dictatethatthe network propagatiordelayno
longerexhibits the geometrigpropertiesof distance.

Reference$18, 19] studiedthe problemof placingcachereplicasin the network andformulatedit as
the k-medianproblem: given a specificnumberof seners, whatis the bestplacementhat achieres the
highestaverageservicelevel to clients, whereservicelevel is indicatedby accesslelayfrom a client to
its nearesteplica. In [18], Qiu et al. proposedsereral placemenstratgiesincluding: a greedystratgy
thatincrementallyplacesreplicasto achiere highestservicequality; a hot-spotstratgy that placesreplicas
nearthe clientsthat generatehe greatestoad. In [19], the authorsalso proposeda max degreestratgy
by placingreplicasin decreasingrder of nodes’deggrees. By simulatingover several syntheticandreal

network graphsthey concludedhatthe greedystratgy performsremarkablywell, achiezing within 1.1to



1.50f thelower bound.

Our approachto network designis from a differentangle. We are moreinterestedn examiningthe
necessaryost,in this casethe numberof seners,if we wantto provide all clientsa guaranteedgervice.
This givesserviceprovidersinsightinto therelationof network costandthe achiezable servicequality, on
which they can make further adjustmento reflecttheir revenuestream,suchas eliminating seners that
only sene smallnumbersof clients. Contrarily thework in [18,19] seekd0 optimizethe averageservice
quality which masksthe numberof unhapy customers.Additionally, the performanceof our approach,
which is the numberof requiredseners,is not susceptibldo the costmetric of connectiorpaths,sincewe
only useit to categorizeclientsasserviceabler not by a sener; while theirsis achiered for a specificcost
metric, namelythe accesslelay Sincethe connectioncostmetric dependseaily onthe application,it is
guestionabléf the sameratio couldbeachieredwith a differentmetric.

Anotherdifferenceis that we modelthe network geographicallyand considersener co-locations.As
networks overlap geographicallythe numberof potentialsener locationsis muchfewer in numberthan
the numberof network nodesneedto be considered.In [18,19], they usednetwork graphsconsistingof
tensof thousandsiodesfor routerlevel graphsandthousand®f nodesfor AS-level graphs.Consequently
the optimal algorithmbasedon LP relaxationis too expensve for their models. We think consideringthe
geographicalocationsof senersis areasonablapproactgiventhevastpresencesf co-locationproviders.
Thereducedroblemsizeenablesisto solveit moreoptimally. In Sections, we compardheperformancef
our algorithmbothwith co-locationandwithout, andshav thatwith co-locationwe canreducethe number

of requiredsenersto approximatelyhalf of thatwith no network co-locations.

3 Network Models

It is a difficult taskto modelthe Internetin a credibleway, sinceit requiresa large amountof informa-
tion from thousandf network providers, mostof which are not willing to fully disclosetheir network
information. Earlier, topology generatorsuchasthe GT-ITM [25] and Tiers [5] createnetwork graphs
with hierarchiesandprobabilisticconnectiities. Recentstudyfrom [6] shavs thatseveralnetwork parame-
ters,suchasdegreedistribution, exhibit power-law propertiesnsteadof stronghierarchies.This spursnew
topologygeneratorsuchasBRITE [2] andInet[13] to generatagyraphswith powver law basedhodedegree

distribution. Furthermorestudyfrom [22] shavs thatthesepowerlaw basedgeneratorseemto produce



network structuresmorerepresentate of the Internet. However, the authorsconcedethat suchsimilarity

dependdargely onthe comparisormetric,amongwhich thereareno clearindicationasthe bestto charac-
terizethelnternet.Additionally, therealnetwork informationobtainedrom the BGProutingtablesplusthe

mappingfrom IP addresse® AS domainsarestill far from completeto representheInternet.

Giventhesddifficulties,we think it is betterto modelthe network with variationson network properties
usingsimplenetwork structuresThis alsohastheadvantageof allowing usto examinetherelationbetween
network parameterandthe result; comparatiely the Internetwould be too complec a structureto extract
ary suchinsight.

We thereforemodelthe networksusingtwo typesof graphs:randomgraphsandgeographigraphs.The
latter consistsof network nodeslocatedat the 50 largestUS metropolitanareas.For interdomainnetwork
connectiities, we specify a setof parameterso determinethe location and density of network peering
points. For intra-domainnetwork connectiities, as ISPsare not willing to disclosefully their network
topology we have to assumehatthey areableto engineetandoperatetheir own networks with little or no
congestiorinternally sothatthe delaybetweerroutersaredominatedoy propagatiordelay Consequently
we modeltheintra-domaimetwork asa completegraph.We usethe“hot-potato”routingpolicy attheinter
domainlevel, which minimizesthe numberof network domainscrossed Hence traffic destinedo another
domainis always pipedto the nearespeeringpointsfrom the originatortowardsthe destinationdomain.
Althoughsuchpolicy doesnotresultin the bestglobalroutes,it is widely usedby the currentinterrdomain
routingprotocol:the BorderGatavay Protocol(BGP)[20].

We realizeour settingsmay not be very realistic,however, we arenot awareof ary informationthatal-
lowsusto modelgeographicallfhe AS-level aswell astherouterlevel networks. TheNetgeatool [23] from
CAIDA is probablythe closesttool trying to resole this issue. It extractsinformationfrom the whois[9]
databas@ndattemptsto map Internethostsaccordingto their domainnames.But it is not clearto what
extentthis methodis accuratespeciallywhenlarge IP addresdlock canbe assignedo a singleentity and
thereis the possibleinconsisteng betweenwhois databasesAdditionally, it is alsonot possibleto deter
mineall thelocationsof network peeringpointsasmary ISPshave privatepeeringlinks in additionto their
point of presenceatthe public peeringpointssuchasatthe MAEs andNAPs. We detail our settingsfor the

two modelsbelov andsummarizeghe parametersn Tablel.



| Parameterg Interpretations

n network sizeas# of nodes

scale sizeof thenetwork graph

N, probability of a city in anetwork

X, interconnectiorprobability betweertwo networks
TXscope scopeof aregion for network interconnections
TXas interconnectiordensity

vicinity maximumdistancebetweerco-locatechodes

Tablel: Parametersor GeneratingNetwork Graphs

Random Graph

In therandomgraphmodel,networksoverlapeachotheronthe samegeometricspacewhosesizeis defined
by thescaleparameterThenumberof nodesn eachnetwork is uniformly dravn from theinterval on [min,
max]. Wedividethenetwork into fixedsizeof regionsaccordingo the parametell X, .p.; Nodedn different
networks are allowed to peerwith eachotheronly if they arein the sameregion. The interconnection
probability TX,, decidesif a pair of networks interconnectwe chooseTX,, basedon the size of the two
networks:

TXp = aeﬂ :15;2

wheren; andns arenumberof nodedn thetwo networks,a andg arethe scaleandshapeof the probability
distribution, respecirely.

If two networksinterconnectwe randomlyselecta numberof regionsto interconnecticcordingto the
interconnectiordensity TX,,. If therearemultiple nodesfrom eachnetwork in the sameregion, we select
the closestpair of nodesaspeers;f aregion is selectedput oneof the network doesnot have ary nodein
thatregion, we chooseanothemregion until we metthe peeringdensitycriterion, or we have consideredll
regions. We allow co-locationnodesif nodesfrom differentnetworks arein a geometricvicinity of each

other A sener placedata co-locationcansendtraffic to all thesenetworkswith no additionalcost.

GeographicGraph

In the geographianodel,we usethe 50 largestmetropolitanareag24] asnodelocations. We thendivide
the US continentinto 5 regions: northeastnorth-central southeastsouth-centrahndwest,andcateyorize
nodesinto eachregion with certainamountof overlap. Appendix A lists the cateyorizationof the metro

areas.Unlike the randomgraphmodelwhereall networks sharethe samegeometricspacethe geographic



model consistsof two typesof networks: regional networks and nationalnetworks. Eachcity joins the
network with probability NV,,: theselectionof nodesfor aregionalnetwork considersonly nodeshatbelong
to that region; while a nationalnetwork considersall 50 cities. As before,we useTX, to decideif two
networks will interconnecthowever, TX, could be differentdependson the type of the two networks, for
example two nationalnetworkswill have TX, = 1, sincethey arealmostalwaysinterconnectedyhile two
regional networks arelesslikely to peerwith eachotherdirectly but to transitthrougha nationalnetwork.
We allow interconnectionsnly if two network nodesarein the samecity, asbefore,we useTXy, to decide

the numberof peeringpointsof two networks.

4 Formal Definitions and the Algorithms

Givenour network modelsandrouting policy, we cancomputea routingtablefor eachnode: andthe cost
of eachrouting pathc(i, j), which is the summatiorof hop distanceslongthe path. For eachnodei, we
computea set.S which includesall the nodesreachablegrom 7 within the routing distanceof C. If 4 has
co-locationnodes,thenthe setS alsoincludesall nodesreachabldrom eachof theseco-locationnodes
within distanceC'. Let S, Ss, .. ., Sy, beall thesetscomputed An integerprogrammingormulationof the

setcover problemis:

m
Objective: minimize ) z; (1)
7j=1
m
Subjectto: > ayjm; > 1 fori=1...n (2)
7j=1
T € {0, 1}

wherez; is theselectionvariableof S;, a;; is 1if « € S; and0 otherwise.

A variationof the problemis to allow oneprimaryandonebackupsenerto cover eachnode.A backup
sener cancover twice the distanceof the primary sener. Let T',T5,...,T,, beall the backupsets,and
b;j = 1if i € T; and0 otherwise.The objective hereis still to minimize the numberof selectedsetsbut

with the additionalconstraintof:

m
Zbij$j22 fori=1...n 3)
j=1



Sinceall nodesin the primary setare alsoin the backupsetcenteredat the samesener, b;; = 1 if
a;; = 1, but we cannot have a primary sener also servicethe samenodeas the backupsener — the

constraintin (3) ensureshe selectionof a differentsener asthe backup.

4.1 LP Relaxation-basedViethods

The above formulation can be approximatedy first solving the LP relaxationof the problemoptimally
andthenroundingthefractionalvaluesto integers. The LP relaxationof the problemis to allow the selec-
tion variablesz; to take fractionalvaluesbetween[0, 1]. The LP relaxationcanbe solved in polynomial
time andthe roundingcanbe donein O(n). Referencq10] introduceda roundingalgorithmwhich is a
p-approximationalgorithm, wherep = maxi{zj a;j} is the maximumnumberof setscovering an ele-
ment. Although this worst caseresultis not very promising,we are more interestedn the averagecase

performanceWe referto theroundingalgorithmin [10] asthefixed-ounding(FR) algorithm:
Stepl: solvetheLP relaxationof the problemandlet {7} betheoptimalsolution;

Step2: outputsets{S;|z} > 1 }.

The intermediatesolutionfor the LP relaxationnaturally providesa lower bound= 3 ; z; for the set
cover problem,sincethefractionalsolutionis anoptimal solutionandthe LP relaxationis a supersetof the
setcover problem.We will usethislower boundto comparehealgorithmperformancen our simulations.

We have alsodevisedanincremental-ounding(IR) algorithmthatimposesmorerestrictedruleswhile
selectingsetsbasedon the valueof z;. Wheneer we selecta set,we remove all the elementghat satisfy
the covering constraintn (2) dueto thenewly selectedset.Let M denotethe unionof all elementsovered
after eachstep. For the remaininguncoveredelementsn a setS;, we computep; = max;{3>_; a;;} for
i € S;\M. We selecta setif its selectionvariableis greaterthantheinverseof p;; to breakties, we select

the setthathasthelargestnumberof remaininguncorerednodes.

Stepl: solwethelP relaxationof the problemandlet {x;} betheoptimalsolution;
Step2: selectsetS; suchthat:
2(a) S; hasthelargestnumberof uncoreredelements;
* 1.
2(b) Ty > P’
Step3: repeatstep2 until all elementsarecovered.

The correctnes®f the algorithm holds; sincefor eachuncorerednode, at leastone sethaving =7 >

Zla~ andp; > > ;aij. By selectingall setswhosevalue satisfies2(b), we guarantedo cover all the
j %




nodes.Furthermore,sincep; is non-increasingn eachrepetitionandp; < p, the setselectioncriterionis
morerestrictthanthatin the FR algorithm,whichin turn reduceghe numberof setsselected Althoughthe
worst caseboundis the samefor both algorithms,we obsere from our simulationsthatthe IR algorithm
typically performsmuchbetterthanthe FR algorithm.

An alternatve to thetie-breakrule in 2(a)is to selectthe setwith thegreatestr; value,sincethelarger
the value of the selectionvariable,the more“essential’the setmay be. For example,if a nodeis covered
by asingleset,thenthe selectionvariableof this setmustbe 1 andthe setmustbe selectedHowever, most
of our simulationsshawv that rule 2(a) generallyperformsbetterthanthis alternatve rule. One plausible
explanationis thatrule 2(a)is moreobjective in attemptingo includeasmary uncoserednodesaspossible,
while the alternatve rule first selectshosemore“essential’sets,which maynot containmary nodes.

It is easyto seethatboth of the algorithmscanstill have redundansetsin thefinal solution. To prune

theseextra sets,we usea simplepruningalgorithmasthefinal stepto completethe setselection:
Stepl: sortall selectedsetsin increasingorderof setsize;

Step2: startingfrom the smallestset, checkif it canbe removed without leaving ary of its
nodesuncorered.

Step3: repeatStep2 until all setsarechecled.

4.2 GreedyHeuristics

A greedyalgorithmis usuallyattractve dueto its simplicity. In [15,17], JohnsorandLovaszintroduceda
greedyalgorithmfor thesetcover problemwith anO(log n) approximatiorratio. Thebasicgreedyattribute
of the algorithmis to selecta setat every stepthat containsthe maximumnumberof uncoseredelements.
For the backupproblemvariance we extendon that model by treatingarny nodethat hasnot satisfiedthe
constraintof (2) and(3) asequallyuncovered. At eachstep,we selecta setthathasthe largestremaining

uncorerednodesandrepeatill thereareno moreuncoverednodes.

4.3 Comparisonof the FR, IR and the GreedyAlgorithms

We first compareour incrementakounding(IR) algorithmwith thefixedrounding(FR) algorithmproposed
in [10] andwith thegreedyalgorithm. Theresultsarefurthercomparedvith thelowerboundobtainedasthe
optimal solutionfrom the LP methods.The LP solver we used,is calledPCx[4] whichis aninteriorpoint

basedinearprogrammingpackage.
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We use a simple setupto investigatethe relatve performanceof thesealgorithms. The underlying
network graphis a single graphof randomly distributed nodeson a 100 by 100 unit lengthmap. The
servicerangeof a sener is 20 units. Ideally, if nodesare perfectly positioned,this will give a solutionof

%1 X [%1 = 9 selectedsenersregardlesof thenodedensity Thelower boundwe obtainedis indeed

notfarfrom theidealandstaysconstanwith theincreasenf the nodedensityasshavn in Figurel.
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Figurel: Comparisorof the FR, IR andthe GreedyAlgorithms

We shaw the performancef theroundingalgorithmswith andwithoutthe pruningroutinein Figurel.
As expectedthe FR algorithmperformsbadly with the increaseof nodedensity sincethe largestnumber
of setscovering a nodep, alsoincreasesvith nodedensitywhich makesthe selectioncriterion lessstrict.
Ontheotherhand thelR algorithmalwaysis the closesto thelower bound.The FR algorithmdoesbenefit
greatly from the pruning routine, achiering performancecloserto the lower bound,andis only slightly
worsethanthe IR algorithm,but betterthanthe greedyalgorithm. This relative performancenoldsfor other
settingswe have tried aswell. In therestof the paperwe will mainly focusonthelR algorithmto evaluate

the placemenmethodsn morecomplicatechetwork configurations.

5 Simulation Results

It is mostchallengingto selecta representate setof simulationsthat demonstratehe relationsbetween
the methodologiesthe configurationsand the results,given the vastnumberof parameters.In orderto

concentrateon a few aspectawvhich we considerednteresting,we have mostly usedsmall and uniform
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settingsin the simulationspresentedn this section. We do not claim our network modelscaptureall the
fundamentatharacteristicef the Internet,but we hopethe randomnetworks andthe geographimetworks
represensomedegreeof varianceghatallow usto examinethe behaior of our methodology Throughout
the section,readersare referredto Table 1 for the interpretationsof the parameters. Unlessotherwise
mentionedwe usethe following default parameteralues:the randomgraphscaleis 100 by 100 units; the
probability of network interconnections 1.0for bothnetwork configurationstheregion sizeis 10 unitsand
the co-locationvicinity is two unitsin the randomgraph;the probability of including citiesin theregional

networksis 0.6 and0.8for nationalnetworksin the geographimetworks.

5.1 SingleNetwork

We first presentresultson a single network for both the randomgraphandthe geographicafyraph. We
performsimulationon thefollowing threescenarios(a) ¥ = 1, whenonly oneprimaryseneris requiredto
covereachnode;(b) £ = 1 andwith onebackupsener;(c) kK = 1 with relaxationonsenerto clientdistance.
Thelastscenarids to allow remoteclientto connecto its nearessener, eventhedistancebetweerthemis
over thethreshold.This allows serviceprovidersto be morecosteffective andnot to install senersjust for
afew remotelylocatednodes.Therelaxationis doneby including every nodein atleastl sener sets.That
is, if anodedoesnot have enoughnumberof senersfrom theinitial transformatiordueto its location,we
includeit in thenext few nearesseners’ setstill we reachl seners. Theresultsfor therandomgraphis the

averageover 10 runs,while theresultfor thegeographigraphis from asinglerun, sincethe nodelocations

areall fixed.
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Figure2 shavs the numberof requiredsenerswhenvarying servicerange.ln general poththe IR and

the greedyalgorithmperformscloselywith the lower bound.
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Figure3: Variationon DifferentServiceRequirement

Figure3 shaws the performanceagainstthe differentservicerequirementsThe backupsener rangeis
twice that of the primary sener for both networks. It shawvs that the additionof the backupsenersonly
increaseghe numberof total senersslightly. The servicerangerelaxationis also effective in reducing
numberof senersto about55% and 75% of the original numbey with [ = 3 andl = 5 respectrely.
However, the relaxationis usefulonly whenthe servicerangeis small. In Figure 3, the servicerangeis
10 unitsand400 km in the two network configurationswhich coversabout7% and 8% of the maximum
distancein their respecire networks. If we doublethe servicerange,we find thatthe relaxationbecomes
irrelevant sinceeachnodeis likely includedin multiple setsalready Table2 shaws the averagenodeto
sener distancewith andwithout the servicerangerelaxation.Sincetheremaybe multiple senerscaovering
anode,we selectthe closestsener whencomputingthe distance.The resultsfor the randomgraphis the

worstcaseamonglOruns.

RandomGraph(unit) Geographidcsraph(km)
range= 10 range= 400km
mean| std. | max mean | std. max
=01 494 | 3.74| 9.83 || 167.49| 140.11| 398.79
=31 6.30 | 4.47| 14.82 || 259.78| 222.65| 1013.42
=51 845 | 556| 25.36 || 304.69| 238.59| 1114.78

Table2: AverageClientto Sener distance
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5.2 Multiple Networks

In this section,we studythe relationsbetweensener placementandthe densityof network peeringlinks.

We referto “peeringlinks” asboth the peeringandtransitrelationshipbetweentwo ISPs. As theselinks

aggr@ateandtransporttraffic from onedomainto anothertheir limited capacitiescontrikute significantly
to theuserexperiencedhetwork congestion Additionally, thesenetwork exchangepointsmaylocateoff the
optimal path,resultinglongerandmore circuitousroutes. Oneway to circumwent thesecongestiorpoints

is to useco-locationserviceswheresenerscanaccessnultiple networks and canroutetraffic directly to

thesenetworks without going throughthe exchangepoints. We demonstratehe relative performancewith

andwithout sener co-locationsn Figure4.
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Figure4: Variationon Network PeeringDensity

Peering RandomNetwork GeographidNetwork
Density 5 networks, 100 nodespernetwork 5 regional, 1 nationalnetwork, total 96 nodes
totallinks | co-location| no co-location|| totallinks | co-location| noco-location
0.2 83.05 22.16% 38.77% 11.6 17.24% 80.17%
0.4 158.05 23.28% 37.52% 18.9 10.05% 82.54%
0.6 238.60 21.42% 38.98% 27.4 6.20% 82.48%
0.8 317.75 22.19% 35.22% 36.3 8.82% 90.36%
1.0 410.1 21.24% 35.94% 45.2 7.30% 96.90%

Table3: Numberof PeeringLinks In Use
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For this simulation,we usetwo network configurations:oneis 5 randomgraphsthe otheris the geo-
graphicnetworks consistingof 5 regionalnetworksand1 nationalnetwork. Hereafterwe will usetheterm
m-nto denotethe geographimetworks consistingof m regional networks andn nationalnetworks. We
useTX, = 1, soevery pair of networks are alwaysinterconnectedunlessthey do not have ary common
presenced ary of the peeringregions. The x-axisin Figure4 decideshe numberof peeringregionsof
two networks. For randomgraph,aregionis afixedsizegrid dividing thetotal graphscale;from a peering
region, we selecta closestpair of nodesto interconnect.For geographigyraph,aregion is a metropolitan
area.

Figure4 shavsthenumberof requiredsenersfor thelower boundwith co-locationandthelR algorithm
with andwithout co-location. The co-locationservicereduceghe numberof requiredsenersby asmuch
as50% whenpeeringis sparse.The geographigraphappearso be moresensitie to the peeringdensity
asthe performanceof IR no co-locationapproachesghe lower boundwhenpeeringdensityapproached.
This is dueto that the peeringlink is “cheaper”’in a geographimetwork thanin a randomnetwork. In
the geographimetwork, two networks peeronly if they bothhave presencem the samemetropolitanarea,
which resultsthe delayon the peeringlink to be 0. Contrarily the peeringlink hasa positive delayin the
randomgraphswhich addsto thesenerto clientdelay Additionally, the“hot-potato”routingpolicy always
selectsthe closestpeeringlink ratherthanthe onewith the lowestdelay Thesecombinedeffects shavs
thatunlesspeeringcanguarantee high level of quality, merelyincreasehe peeringdensitydoesnot help
reducingtheclientaccesslelay Table3 summarizeshe numberof links usedin thetwo scenarios.

Figure5 shavs therelative performanceatio of the IR algorithm,with andwithout co-locationagainst
thelower bound.We variedthe numberof randomnetworksas2, 5 and10 andusedtwo configurationdor
thegeographimetworks: 5-1 and0-2. Theresultsaremostly consistentvith thatin Figure4. Additionally,
it suggestghat on the randomnetworks, the performanceof non co-locatedseners worsensmuch more

with theincreaseof the numberof networks,ascomparedo the performancef co-locatedseners.

5.3 Serwer Load

Throughouthis paperwe assumedhatthe costof installingandoperatinga separatesener far outweights
the costof buying morebandwidthat a location. In fact, in orderto be more costeffective, we aremore
interestedn how underutilized a sener canbe, thatis whatis the lowestfraction of clientssened by a

singlesener.
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Figure5: Relatve Performancdratio AgainstLower Bound

Figure6 shavstheaverageandminimal senerloaddistribution underthelR algorithmwith co-location.
As expected the averagesener load increasesith the increaseof servicerange. Theload distribution is
moreeven on therandomnetworks thanon the geographimetworks dueto the differentnodedistribution:
the geographimetworks have significantlyhighernodedensityon the eastsidethanon the westside.

However, the minimal load doesnot lift as much for both networks. It is easierto understanahis
effect in the geographimetworks, sincea few metropolitanareas suchas Seattleand Portland,are more
sgyregatedfrom therestof the areas.Consequentlyit requiresat leastone sener to cover andonly cover
thesetwo areas.Althoughit is lessobviously to be soin the randomnetworks, it seemgherearealways
a small numberof nodesthatare particularly further away from the restof the group. The curveslabeled
[ = 5 indicatesthe averageandminimal fraction of clientsserned by a singlesener whenwe enforceeach
nodeto beincludedin atleast5 sener sets. Theincreaseof the minimal sener load from the relaxationis

morevisible in the geographimetworksthanin therandomnetworks.

5.4 Computation Complexity

Althoughlinear programmingmethodsarewidely practicedn areassuchasoperationatesearclandman-
agementjts applicationin network designis lessprevalent. This often attributesto its compleity andits
lack of scalabilityto solve large probleminstancesThe sener placemenproblemin overlay networks, on

the otherhand,generallyhasinstance®f smallersizes,roughly on the orderof hundredsdueto the heary
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Figure6: Characteristicef Sener Load

geographicahggrgationof clientrepresentationdn this sectionwe quantifythe computatiortime for the
IR algorithmandcomparet with the greedyalgorithm. Theimplementatiorof the greedyalgorithmis not
optimizedbut it providesusa basicideaof the computatiorintensitywith the varianceoninstancesizes.

We ranthe simulationover threenetwork configurationdor eachtype of graphs.The network config-
urationsarechoseno be of small, mediumandlarge instancesizes,in termsof numberof network nodes.
Thelargestinstancesizeis beyondtherangeof whatwe consideredspotentialsener locationsfor overlay
networks, neverthelessye presentit to characterizéhealgorithmcomplexity.

Table 4 summarizeghe running time of the algorithms,which includesthe solving time of the IR
algorithmor the greedyalgorithmandthe time for the pruningroutine. In generalthe IR algorithmis very
time consumingespeciallyfor largeinstancesizes.This is particularlytruefor the geographimetworks, as
thetime of the greedyalgorithmincrease®nly slightly from net25-5to net250-10,while the time of the
IR algorithmgrows muchfaster Oneexplanationis that, whenthereis co-location,the numberof setsis
fixedat50, onefor eachmetroareabut the setsizechangesvith thenumberof network nodes.In this case,
the greedyalgorithmis ableto eliminatea large numberof nodesfor eachselectedsets,while for the LP
methodsijt doesnottake suchprogressie approachresultingin atremendousmountof computatiortime.

Throughoutour simulations the greedyalgorithmalwaysrequiresabout5% to 15% moresenersthan
that of the IR algorithm. Thoughthis maybetolerablein somecasesit could represent large sum of

additionalsener cost.On the otherhand,the IR algorithm,althoughnot assimpleasthe greedyalgorithm,
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RandomGraph Geographidsraph

netl | netl0 | net50 || net5-1 | net25-5| net250-10
Avg. nodes| 100 | 567 2978 87 430 2652
IR 0.08 | 1.85 | 468.75| 0.06 1.00 428.14
Greedy 0.01| 0.83 | 18.39 0.01 0.02 0.10

Table4: ComputationTime of the IR andGreedyAlgorithms(secs)

cansolve upto areasonabl@roblemsizewithout beingoverwhelminglytime consuming.Thereforewhen

conductingnfrequentietwork designprocesseghelR algorithmhastheultimateadvantageof costsavings.

6 Conclusions

We have presentedh sener placementnethodin overlay networks asan applicationof the setcover prob-
lem. The placemensatisfiesconstraintson the sener to client paths,which indicatethe achierable service
gualitiesalongthe path. We expectthatnetwork provisioningfor quality of servicebecomesnorecommon
asthe Internetcontinuesto grow; and suchan automatednethodologyis usefulfor serviceprovidersto
analyzethe potentialcostof network provisioning.

We solwved the setcover problemusing methodsbasedon linear programmingrelaxationas well as
greedyheuristics We alsopresente@nincrementalntegerroundingalgorithmfor the LP-relaxatiorbased
method. Our network settingsmodel explicitly the presencenf co-locationserviceswhich have become
increasinglypopularfor businesscorporationsto out sourcetheir dataseners. Our resultsindicate co-
locationcansave upto 50%o0f thesenerinstallationcost. We alsopresentedarianceof thesimplesetcover
problemto allow backupsenersandto allow distancerelaxation. Thesevariancedringsopportunitieso
provide morecosteffective services.Throughsimulation,we studiedthe behaior of the algorithmsunder
variousnetwork settingsand obsered the implication of network peeringdensityandthe characteristics
of sener load distributions. Although, LP-relaxationbasedmethodsare traditionally consideredas too
expensve and comple to solve ary practicalproblems,we find thatit is suitableand effective for our

overlay network modelsandresultsin betterperformancehanthatof the greedyalgorithm.
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A GeographicCategorization of Metr opolitan Areas

Regionnorth _central[17] =

Regionnorth _east[21]=

Regionwest[10]=

Regionsouth_central[12] =

Regionsouth_east[15]=
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