
 1

Resilient Cell Resequencing in
Terabit Routers

Jonathan Turner
Department of Computer Science and Engineering

Washington University in St. Louis
Jon.Turner@wustl.edu

Abstract

Multistage interconnection networks with internal cell buffering and dynamic
routing are among the most cost-effective architectures for multi-terabit inter-
net routers. One of the key design issues for such systems is maintaining cell
ordering, since cells are subject to varying delays as they pass through the in-
terconnection network. The most flexible and scalable approach to cell
resequencing uses timestamps and a time-ordered resequencing buffer at each
router output port. Conventional, fixed-threshold resequencers can perform
poorly in the presence of extreme traffic conditions. This paper explores alter-
native resequencer designs that are more tolerant of such traffic. These
alternatives include a novel adaptive resequencer that adjusts the time cells
spend waiting in the resequencing buffer, based on the recent history of the in-
terconnection network delay. The design is straightforward to implement and
requires only constant time per cell, making it suitable for systems with link
speeds of up to 40 Gb/s. We show that the combination of adaptive resequenc-
ing and appropriately designed interconnection networks can limit
resequencing errors to negligible levels without requiring large resequencing
latencies.

Keywords - resequencing, high performance routers

1. Introduction
The rapid growth of the internet in recent years has stimulated the development of high per-
formance routers with aggregate capacities of more than 1 Tb/s. One of the most scalable
architectures for high performance routers uses a multistage interconnection network made up
of individual switch elements capable of buffering data to resolve short-term contention for
internal links. Although these systems forward variable length packets on their external links,
the interconnection networks typically switch data in the form of fixed length cells. Routing in
these systems typically takes one of two forms. In systems that use static routing, all cells that
belong to a single application level flow are routed along a single path. Systems that use dy-

Appears in Proceedings of the Allerton Conference on Communication,
Control and Computing, 2003

 - 2 -

namic routing, route each cell independently of every other cell. Static routing has been used
in ATM switches, which associate switch paths with virtual circuits and which select paths
based on knowledge of virtual circuit resource requirements. Dynamic routing is more appro-
priate for IP routers, which are designed primarily, to support a best-effort datagram service.

Dynamic routing has the drawback that cells following different paths through the inter-
connection network can experience different delays, causing cells to get out of order. While IP
networks do not require that packets be delivered in order, the impact of misordered packets
on end-to-end performance has led to a defacto requirement that packet order be preserved
under normal operating conditions. This requires the introduction of mechanisms for rese-
quencing cells after they pass through the interconnection network, to put them back in their
original order. There are two primary options for implementing resequencing, the first uses
sequence numbers and the second uses timestamps.

The use of sequence numbers for resequencing is conceptually straightforward. Each of the
n router inputs maintains a separate sequence number for each of the n router outputs. When
input i has a cell to send to output j, it adds a field to the cell header containing the current
value of the sequence number for j. It then increments the sequence number. Each output uses
the sequence numbers in the cell headers to reorder the cells from each input. When a cell is
received out of order, it is buffered temporarily until the cells with the “missing” sequence
numbers are received. The most efficient way for the output to handle this is for it to maintain
an array, indexed by sequence number for each input. Arriving cells are inserted into the array
according to their sequence number and whenever a cell is present in the slot corresponding to
the next expected sequence number, it is forwarded and the next sequence number is incre-
mented. The use of sequence numbers has several drawbacks. The first is that it scales poorly,
requiring separate resequencing arrays at each output for each input. Second, sequence num-
bers must be initialized when the line cards for individual ports are brought on-line, after
being temporarily out-of-service. The enabling of one line card requires the initialization of
sequence numbers at n other line cards. Third, auxiliary mechanisms are needed to handle
cells that are lost in the interconnection network. While such losses are very rare in systems
that use inter-stage flow control, the resequencing mechanism must be robust enough to han-
dle them gracefully when they do occur. Finally, sequence numbers cannot be easily extended
to handle multicast cells, copies of which are sent to multiple outputs. The only general way to
handle this case is to associate separate sequence numbers with each multicast flow, making it
necessary for outputs to maintain a very large number of separate resequencing arrays.

Timestamps provide a simpler alternative for resequencing cells. In this approach, input
ports add a timestamp field to each cell, when it is sent into the interconnection network. Out-
puts maintain a single resequencing buffer, from which they forward cells in the order of their
timestamps. To allow “slow cells” time to catch up with “fast cells”, time-based resequencers
typically hold cells in the resequencing buffer until the difference between the current time
and their timestamp exceeds a fixed age threshold. The standard time-based resequencer
works well, so long as no output port experiences an extended overload period. Under these
conditions, the delays experienced by cells are generally modest, which means that the age
threshold can be kept fairly small (say 10 µs), without significant risk that cells will be for-
warded in the wrong order. However, in systems where outputs can experience long overload
periods, the delays of arriving cells can also become long. One can attempt to address this by
increasing the age threshold, but this has the negative side-effect of increasing the system’s
minimum latency. In any case, unless one can bound the duration and severity of overload pe-
riods, it’s difficult to select an age threshold which one can be confident is large enough.

The research literature contains surprisingly few papers that address the problem of rese-
quencing in routers and switches. The technical report [TU91] describes one implementation of
a resequencer and an assessment of its performance under simulated traffic. The patent by
Henrion [HE92] describes a simpler implementation using radix-sorting based on timestamps,

 - 3 -

which requires constant time to process each cell, using a simple state machine plus memory.
This implementation was apparently re-discovered (and re-patented!) in [PA02]. Reference
[DE97] develops an analytical model for evaluating resequencing performance. Reference
[YA99] describes a multistage interconnection network, which forwards cells in timestamp or-
der throughout the interconnection network, eliminating the need for a separate resequencer.

In this paper, we study how to make time-based resequencers robust even under extreme
operation conditions. We first show how to extend a conventional time-based resequencer to
improve its performance. Then, we introduce the concept of adaptive resequencing and de-
scribe a particular type of adaptive resequencer, which adjusts the age threshold at each output
to reflect the recent history of the delay experienced by cells reaching that output. During pe-
riods of increasing delay, the age threshold is increased and during periods of low delay, the
age threshold is decreased. We derive conditions under which the resequencer correctly rese-
quences all cells and use simulation to study its performance and show that it can perform
well under even the most extreme operating conditions.

2. Fixed Threshold Resequencing
Time-based resequencers use timestamps inserted in cells when they enter an interconnection
network to resequence them after they leave the network. The usual form of time-based rese-
quencing uses a fixed age threshold T. Conceptually, arriving cells are placed in a queue that
is ordered by their timestamps. If the age of the first cell in the queue (the difference between
the current time and its timestamp) is greater than T, it is removed from the queue and for-
warded. We note that a fixed threshold resequencer never stores more than T cells. Since at
most one cell can arrive at the resequencer during each cell time, a resequencer with T cells
must have at least one cell that arrived T cell times earlier, making it eligible for forwarding.
Thus, a resequencer with T cells cannot grow any further. So long as the resequencer has
space to hold T cells, no cells need be discarded due to lack of storage space.

Henrion [HE92] described an efficient resequencer implementation that requires constant
time to process each cell. This implementation is illustrated in Figure 1. Its primary compo-
nent is an array of T pointers. Each pointer in the array points to a (possibly empty) list of
cells. When a cell with timestamp t is received, it is added to the list at position t modulo Τ.
When the current time modulo T is equal to τ, the list at position τ is appended to a separate
list of outgoing cells. Cells are forwarded to the resequencer output directly from this list. If
no cell experiences a delay of greater than T in the interconnection network, the resequencer is
guaranteed to forward cells in the order in which they entered the network. Cells that are de-
layed by more than T in the interconnection network can either be discarded upon reception at
the resequencer (this approach is used in ATM switches, which do not allow the propagation
of out-of-order cells) or can be inserted directly into the output list. Of course, cells that go
directly to the output list are potentially misordered relative to cells that left the resequencer

0
1
2
3
4
5
6
7

ts=15

current time modulo 8

arriving packet

outgoing packets

0
1
2
3
4
5
6
7

ts=15

current time modulo 8

arriving packet

outgoing packets

Figure 1. Time-Based Resequencer

 - 4 -

earlier. Because the number of bits used to represent the timestamp field in the cell header is
finite, cells that are delayed for more time than can be represented by the timestamp field may
not be detected as late, when they arrive at the resequencer. It is fairly straightforward to avoid
this issue, either by allocating enough bits to the timestamp to allow for the worst-case delay,
or by checking for excessively delayed cells within the network and discarding them before
they reach the output.

One additional requirement for any time-based resequencer is a mechanism for synchroniz-
ing the time reference at the various line cards. This can be accomplished using a simple time
synchronization protocol that operates between adjacent components to measure the round-
trip delay on each interconnecting link. Knowing the round-trip delay, it becomes straightfor-
ward to synchronize the time reference in the components at the ends of the link. By
extending such a protocol across all the components, we can achieve system-wide synchroni-
zation. The synchronization need only be approximate. While small differences in time
references at different ports do alter the resequencing delays experienced by different cells,
they do not affect the correctness of the resequencing operation. It is important to exercise
care when adjusting the time references during on-going operation, in order to avoid misorder-
ing. When making incremental adjustments, it is sometimes necessary to momentarily
suspend transmission of cells from individual input ports. Such adjustments are required very
infrequently, making the performance impact negligible.

The basic resequencer works very well for simple uniform random traffic in which cells ar-
rive independently at the inputs and are assigned independent random destinations. Figure 1
contains two charts which demonstrate this. Both of these charts (and subsequent ones as
well) are for a three stage interconnection network with a Clos topology constructed from 8×8
switch elements, each with a fully shared buffer with a capacity of 512 cells. The entire inter-
connection network has 64 inputs and outputs. The first stage switch elements distribute cells
evenly across their outputs. Specifically, each input to a first stage switch element routes each
cell that it receives, to outputs in a round-robin fashion. The internal links of the interconnec-
tion network can forward cells at a higher rate than the external links. The ratio of the internal
link rate to the external link rate is called the speedup. Note that the resequencer operates at
the internal cell rate. The conversion to the link rate occurs in the link queueing subsystem
that follows the resequencer. Cells are discarded if the link queue fills up. This prevents con-
gestion at an output from causing congestion within the interconnection network. The first
chart in Figure 2 shows results for a fixed threshold of 128 cells and several different speed-
ups. The second chart is for a fixed load of 100% with varying speedup and threshold. With a
threshold of 128, a speedup is 1.05 is sufficient to limit the late probability to 10−5.

Unfortunately, real traffic is not nearly as benign as uniform random traffic. Fixed thresh-
old resequencers can perform poorly during sustained overload periods. Figure 3 shows the

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.01 1.03 1.05 1.07 1.09
Speedup

La
te

 P
ro

ba
bi

lit
y

simple random traffic
fixed threshold

input load = 1.0

T =64

128

256
1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.95 0.96 0.97 0.98 0.99 1.00
Input Load

La
te

 P
ro

ba
bi

lit
y

simple random traffic
fixed threshold, T =128

speedup=1.01

1.03

1.05
1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.01 1.03 1.05 1.07 1.09
Speedup

La
te

 P
ro

ba
bi

lit
y

simple random traffic
fixed threshold

input load = 1.0

T =64

128

256
1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.95 0.96 0.97 0.98 0.99 1.00
Input Load

La
te

 P
ro

ba
bi

lit
y

simple random traffic
fixed threshold, T =128

speedup=1.01

1.03

1.05

Figure 2. Performance of fixed threshold resequencer for simple random traffic

 - 5 -

results of a “stress test” in which a 2:1 overload is directed toward a specific target output.
The overload period lasts from time 400 to time 1000. Note that before the overload period
begins, the resequencer contains about 100 cells and the oldest cell has an age close to 128,
the resequencer’s age threshold. The overload causes the resequencer to fill up and causes the
delay in the network to grow. Once the network delay becomes larger than the age threshold,
arriving cells are discarded, since they are older than the age threshold when they arrive. This
causes the resequencer occupancy to drop to zero. After the overload period ends, it takes
some additional time for the backlog in the network to clear. Once this happens, the network
delay drops below the age threshold again and the resequencer starts to fill, allowing correct
operation to be restored.

Fixed threshold resequencers can also perform poorly under traffic conditions that are less
contrived than the stress test. Figure 4 shows how a fixed threshold resequencer performs in
the presence of bursty random traffic. In this case, each input is assigned a random target out-
put to which it sends cells. The target outputs are randomly switched each cell time, leading to
a geometrically distributed holding time for each target. The chart shows that as the mean
dwell time increases from 1 to 10, the resequencer performance deteriorates rapidly, due to
increasing delay in the interconnection network. While larger speedups help, performance
continues to deteriorate with longer dwell times. Of course, one can reduce the probability of
cells arriving late by increasing the age threshold, but this increases the minimum delay ex-
perienced by all cells.

One way to improve the performance of a fixed threshold resequencer is to continue to ac-

0
50

100
150
200
250
300
350
400
450

250 500 750 1000 1250 1500 1750 2000

Time

resequencer
occupancy

age of
oldest cell

network delay

poor
performance

overload

age
threshold

fixed, strict, T =128

Figure 3. Performance of strict, fixed threshold resequencer under stress test

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 2 3 4 5 6 7 8 9 10
Mean Dwell Time

La
te

 P
ro

ba
bi

lit
y speedup =1.1

1.3
1.5

bursty traffic
strict, fixed, T =128

Figure 4. Performance of strict, fixed threshold resequencer for bursty traffic

 - 6 -

cept cells that arrive late. Not all such arriving cells will produce sequencing errors, so one
can reasonably expect some improvement in performance if such cells are accepted and for-
warded. Conceptually, such a resequencer inserts all arriving cells into a time-ordered list,
forwarding them in order of their timestamps, so long as their age is at least equal to the age
threshold. We call this variant a loose, fixed threshold resequencer to distinguish it from the
original strict, fixed threshold resequencer. Note that if we attempt to implement a loose rese-
quencer using Henrion’s implementation and simply inserting late-arriving cells into the
output list, we will not get the desired behavior, since the output list is not time-ordered.
Consequently, such a design would lead to large numbers of out-of-order cells during periods
when the output is overloaded.

Fortunately, it is possible to extend Henrion’s implementation to approximate the desired
behavior, while retaining constant time processing per cell. First, we increase the size of the
array of pointers to S, where S is substantially larger than T. For example, for T=128, we
might choose S=1024. An arriving cell with a timestamp of τ is inserted into the list at posi-
tion (τ + T) modulo S. Next, we eliminate the output list. Instead, we maintain a pointer p into
the array. The next cell to go out is selected from the list that p points to. When the list that p
points to becomes empty, p is advanced either to the array entry whose index is the current
time modulo S, or to the next non-empty list in the array, whichever comes “first”. When an
arriving cell is inserted “behind” p’s position in the array, p is reset to point to the position
where the arriving cell was inserted. This generally occurs during overload periods. When the
overload period ends, p will advance forward through the array, until it “catches up” to the
position corresponding to the current time. Note that if p points to a list with several entries, it
may temporarily lag behind the position corresponding to the current time. However, since the
expected size of each list is at most one, so long as the output is not overloaded, p will gener-
ally stay within a few positions of the current time, in the absence of overload.

To maintain constant time operation, we need a mechanism to quickly advance p past
empty positions in the array. In a hardware implementation, this can be done easily using a
vector of fast forward bits. For example, if S=1024, we can organize these as 32 words of 32
bits each, in an on-chip SRAM, together with a summary word in which bit i =1 if and only if
some bit in word i of the main vector is equal to 1. With this arrangement, two memory ac-
cesses are sufficient to skip past any empty lists. This approach can comfortably handle values
of S as large 214, which is more than adequate in practice. Arriving cells with an age larger
than S can either be discarded or inserted into the list that p currently points to. This does
cause some deviation from the desired behavior under extreme conditions, but for large
enough S, this deviation may be small enough to be acceptable. Note that in the implementa-

0
50

100
150
200
250
300
350
400
450

250 500 750 1000 1250 1500 1750 2000

Time

age
threshold

overload

age of
oldest cell

network
delay

resequencer
occupancy

fixed, loose, T =128

Figure 5. Performance of loose, fixed threshold resequencer for stress test

 - 7 -

tion, some care must be taken to handle the “wraparound” cases correctly. We neglect these
details here.

Figure 5 shows how a loose, fixed threshold resequencer performs for the same stress test
that we applied earlier to the strict resequencer. Note that during the overload period, the rese-
quencer fills and the age of the oldest cell continues to grow along with the network delay,
generally staying well ahead of the network delay, meaning that arriving cells never arrive too
late to be correctly resequenced. The performance for bursty traffic is also much better than
the strict resequencer, as shown in Figure 6. Note that the scale of the horizontal axis is three
times larger than in Figure 4. For these results, an arriving cell is counted as “late” if some
other cell with a smaller timestamp than the arriving cell has already been forwarded from the
resequencer. While the loose resequencer performs significantly better than the strict rese-
quencer, it can still perform poorly when the average dwell time becomes large, especially
when the speedup is small.

3. Adaptive Resequencing
We can improve on the performance of fixed threshold resequencers, by making the age
threshold variable, rather than constant. An adaptive resequencer adjusts the age threshold in
response to the recent delay history, increasing the threshold during periods of large delay
and decreasing it when the delay shrinks. One form of adaptive resequencer uses two con-
stant parameters, W and ∆. W is referred to as the window size and ∆ as the short term delay
difference bound. Time is divided up into measurement intervals of length W. The algorithm
maintains two variables, δ0 and δ−1. At any time, δ0 is the maximum interconnection network
delay that has been observed at the input to the resequencer during the current measurement
interval. Similarly, δ−1 is the maximum delay observed during the previous measurement in-
terval. The age threshold is adjusted each cell time by making it equal to ∆ + max{δ0, δ−1}.
Thus, during periods of rising delay, the age threshold grows. When the delay drops, the age
threshold drops also. The following theorem defines conditions under which the adaptive re-
sequencer correctly resequences received cells.
Theorem. Let c1 and c2 be two cells, which enter an interconnection network at times τ1 and
τ2, going to a common output, and experiencing delays of d1 and d2 respectively. If τ1<τ2 and
(d1−d2) − (τ2−τ1) ≤ ∆≤W, then an adaptive resequencer with window size W and short term de-
lay difference bound ∆, will forward c1 before c2.

Proof. Clearly if c1 reaches the output first, then the adaptive resequencer will forward the
cells in the correct order. Assume then that c2 reaches the output first. The condition on ∆ can
be rewritten as (τ1+d1) ≤ (τ2+d2) + ∆, which means that cell c1 reaches the output no more than
∆ time units after c2. Since ∆≤W, c1 arrives either in the same measurement interval as c2, or in

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30
Mean Dwell Time

La
te

 P
ro

ba
bi

lit
y

speedup =1.1

1.3

1.5

strict,fixed, T =128
bursty traffic

Figure 6. Performance of loose, fixed threshold resequencer for bursty traffic

 - 8 -

the immediately following measurement interval. Consequently, between the time c2 arrives
and the time c1 arrives, the age threshold is never less than ∆+d2. This implies that c2 must still
be waiting in the resequencer when c1 arrives. Since the resequencer forwards cells in time-
stamp order, c1 will be forwarded before c2. !

The theorem says that so long as no later arriving cell beats an earlier arriving cell to the
output by more than ∆, the adaptive resequencer forwards them in the correct order. For cells
that arrive at nearly the same time, the magnitude of (τ2−τ1) is close to zero, so we can view ∆
as a bound on the short term delay variation.

The adaptive resequencer can be implemented by extending the implementation of the
loose, fixed threshold resequencer. The implementation maintains the two variables δ0 and δ−1
and the current age threshold T = ∆ + max{δ0, δ−1}. Arriving cells with a timestamp of τ are
inserted into the list at position τ +T modulo S. The age threshold is updated using the time-
stamp in the cell, before the cell is inserted. This ensures that the cell is always inserted at
least ∆ positions ahead of the pointer p.

When the network delay decreases, the adaptive resequencer delays the reduction in the
age threshold for twice as long as is necessary to correctly resequence cells. We can modify
the design to respond more quickly by maintaining information for k finer-grained measure-
ment windows and letting the current age threshold be ∆ plus the maximum delay in any of

0
50

100
150
200
250
300
350
400
450

250 500 750 1000 1250 1500 1750 2000

Time

age
threshold

network
delay

age of
oldest cell

resequencer
occupancy

overload adaptive, W =∆=32

Figure 7. Performance of adaptive resequencer on stress test

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30 40 50 60
Mean Dwell Time

La
te

 P
ro

ba
bi

lit
y

bursty traffic, adaptive, ∆=64

speedup =1.1

1.3

1.5

late+input loss

Figure 8. Performance of adaptive resequencer for bursty traffic

 - 9 -

the k most recent windows. This modified resequencer will forward cells in the proper order
so long as later arriving cells beat earlier arriving cells by no more than ∆ and ∆≤(k −1)W.

Figure 7 shows how the adaptive resequencer performs on the stress test with W = ∆ = 32.
Note how the age threshold increases with the network delay and then falls when the network
delay starts to drop. It also remains just slightly below the age of the oldest cell. Observe that
the number of cells stored in the resequencer stays below 65.

Figure 8 shows how the adaptive resequencer performs under bursty traffic conditions with
W = ∆ = 64. We see a significant improvement over the fixed threshold resequencers (note that
the range of the horizontal axis is twice as large as in Figure 6). For large dwell times, the in-
terconnection network’s buffers fill up, limiting its ability to forward the traffic. This effect
leads to the flattening of the curves for the late probability at large dwell times. In this chart,
we also show the loss probability for the input buffer that precedes the interconnection net-
work (the results are plotted cumulatively, so the dotted curves are the sum of the input loss
probability plus the probability that a cell reaching the resequencer is late). Increasing the size
of the switch element buffers would enable the system to handle larger mean dwell times, with
the limit growing roughly in proportion to the amount of buffering available.

There are two important points to take away from Figure 8. First, so long as the dwell
times are within the range that the interconnection network can handle, the resequencing delay
is negligible. Second, when the dwell times exceed the buffering capacity of the interconnec-
tion network, the delay variability increases, causing the resequencer performance to
deteriorate. While we do not expect systems to normally operate under the extreme conditions
that the larger dwell times represent, it is still worthwhile to find ways to improve perform-
ance under these conditions.

One way to improve the performance in this situation is to increase ∆, but it turns out that
increasing ∆ does not, by itself, yield a substantial improvement. A closer examination of the
interconnection network delay shows that a large fraction of the variation in the delay comes
from the first stage of the interconnection network. Recall that the first stage switch elements
distribute cells from each of their inputs in round-robin fashion across their outputs. This cell
distribution strategy works well to minimize the differences in the lengths of second stage
queues going to the same third stage switch element. However, small differences in the rates
at which different center stage switches accept cells, can over time, lead to large differences in
the lengths of queues in a given first stage switch element. A simple way to correct this prob-
lem is to reduce the amount of buffering in the first stage switch elements. While this causes a

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

20 40 60 80 100 120 140 160 180 200

∆

La
te

 P
ro

ba
bi

lit
y

first stage
buffer capacity

256
128

32

64

bursty traffic, dwell=100, speedup=1.2

adaptive
resequencer

512

Figure 9. Effect of ∆ and first stage buffer capacity on adaptive resequencer performance

 - 10 -

small reduction in the throughput of the interconnection network, it leads to a very substantial
improvement in the resequencing performance as shown in Figure 9. We see here that for the
smallest first stage buffer capacities and ∆ ≥ 120, the probability of resequencing errors drops
to under 10−7 making them a negligible consideration from a practical perspective (especially,
considering the extreme operating conditions being considered). The throughput reduction
that results from reducing the buffer capacity of the first stage switch elements from 512 to 32
is about 2%. Note also that in a system supporting 10 Gb/s links, the delay added by the rese-
quencer is less than 5 µs. To put this in perspective, the link queueing delays on heavily
loaded links in a wide area network can be well over 100 ms, so the delay added for rese-
quencing is insignificant.

4. Concluding Remarks
In this paper, we have studied the performance of time-based resequencers under extreme traf-
fic conditions. We have shown that while the conventional, fixed threshold resequencer
performs poorly, we can get substantially better performance by resequencing cells that ex-
ceed the age threshold on arrival. We introduced a simple type of adaptive resequencer that
performs better yet and can be implemented in hardware so that it requires just constant time
to process each cell. Finally, we showed that with a minor modification to the operation of the
interconnection network, the frequency of resequencing can be made negligible, even under
the most extreme conditions.

In closing, we note that it’s important to consider resequencing performance in the design
of an interconnection network. The method used to distribute traffic over the available alter-
nate paths can have a significant impact. More sophisticated switch element designs limit the
use of the shared buffer capacity [CH96], so that no single output can consume all the available
space. In systems with inter-stage flow control, this means that separate flow control bits are
needed for each output of a switch element. This leads to the need for more complex queueing
mechanisms. While such mechanisms are feasible and practical, it is important to understand
how they affect delay variability in the interconnection network and the impact of that vari-
ability on resequencing performance.

REFERENCES
[CH96] Choudhury, Abhijit K. and Ellen L. Hahne, “Dynamic Queue Length Thresholds in a Shared Memory

ATM Switch,” Proceedings of Infocom, 3/96.
[DE97] De Schepper, Bart, Bart Steyaert and Herwig Bruneel. “Cell Resequencing in an ATM Switch,”

SMACS Research Group, Laboratory for Communications Engineering, University of Ghent, Belgium.
unpublished technical report, 5/97.

[HE92] Henrion, Michel. “Resequencing system for a switching node.” U.S. Patent #5,127,000, 6/92.
[TU91] Turner, Jonathan. “Resequencing Cells in an ATM Switch,” Washington University, Computer Sci-

ence Department, WUCS-91-21, 2/91.
[TU93] Turner, Jonathan. “Data Packet Resequencer for a High Speed Data Switch,” U.S. Patent #5,260,935,

11/93 and U.S. Patent #5,339,311, 8/94
[YA99] Yasukawa, Seisho, Naoaki Yamanaka, Eiji Oki and Ryusuke Kawano. “High-Speed Multi-Stage ATM

Switch Based on Hierarchical Cell Resequencing Architecture and WDM Interconnection. IEICE
Transactions on Electronics, 2/99.

[PA02] Park, Jae-Hyun. “Data packet resequencer,” U.S. Patent # 6,434,148, August, 2002.

