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Abstract 
The Clos networks are a class of multistage switching network topologies that provide 
alternate paths between inputs and outputs, making it possible to minimize or eliminate 
the blocking that can otherwise occur in such networks. In his seminal paper in the Bell 
System Technical Journal in 1953, Charles Clos showed how these networks could be 
configured to make them nonblocking and effectively launched the systematic study of 
switching system performance, a field that has developed a rich technical literature and 
which continues to be very active and of continuing practical importance. This paper 
describes how Clos’ results have been generalized to systems that support connections 
with varying bandwidth requirements. These generalizations have extended the 
application of Clos networks well beyond their original technological context and have 
led to a number of interesting new results, especially in connection with systems that 
support multicast communication.  

1. Introduction 
In 1953, Charles Clos [1] showed that the class of switching networks that now bears his name was 
immune to the phenomenon of blocking that was the key performance limitation of the electromechanical 
telephone switching systems of that era. This was the first class of networks with sub-quadratic 
complexity to exhibit nonblocking performance. Clos’ seminal paper sparked the development of the 
theory of interconnection networks and the Clos networks still maintain a central role in the design of 
practical switching systems in applications ranging from telephone switching, to digital cross connects, to 
video production switchers, to IP routers. 

That fact that the Clos networks have maintained their relevance in the face of 50 years of rapid 
technological change reflects the fundamental nature of the performance benefits they confer. What is 
perhaps more remarkable than the continuing relevance of the networks is the enduring role of the theory 
that developed around them. Although that theory was developed to address the performance issues of 
telephone switches constructed from bulky electro-mechanical relays (called crosspoints), it retained its 
applicability through more than thirty years of technology development, including the introduction of 
large-scale integrated circuits and time-division digital telephone switches. While the original cost metric 
of crosspoint count lost much of its direct relevance in the integrated circuits era, the performance results 
of the original theory could be directly applied to the new technology through a simple transformation 
from modern time-division switch designs to the classical space-division switches. 

A more fundamental departure from the original framework was required with the introduction of 
integrated services networks and packet switching technology. Networks supporting integrated services 
had to consider connections with different bandwidth requirements, including voice, data, video and 
multimedia traffic streams. The broadband nature of many of these new services also had the effect of 
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ruling out ad-hoc adaptations of existing networks (such as ISDN), making necessary a rethinking of the 
technical foundations of networks. Initially both multirate circuit switching and connection-oriented 
packet switching were considered as potential technologies for broadband networks, but connection-
oriented packet switching, in the form of Asynchronous Transfer Mode (ATM) technology was soon 
chosen as the most promising technical solution. The development of a theory of multirate 
interconnection networks stemmed from the necessity of modelling a new generation of switches for 
broadband services. While the first studies were motivated by multirate circuit switches [3], the advent of 
ATM, re-oriented the research towards packet switching. 

This paper describes how the classical theory of nonblocking networks was generalized to 
accommodate multirate switching systems, with a particularly emphasis on the application of the new 
theory to Clos networks. What is perhaps most remarkable about the results reviewed here is their 
similarity to the classical results of the 1950s and ‘60s. While 50 years of technological development has 
given us systems with many millions of times the capability of those early telephone switches, the 
theoretical foundations have proved remarkably resilient. This is a testament to the enduring nature of 
Charles Clos’ insightful observations and the utility of the theory those observations spawned. 

2. Elementary Multirate Nonblocking Conditions for Clos Networks 
A symmetrical 3-stage Clos network is shown in Figure 1. There are three key parameters for this 
network: the number of switch modules in the first and third stages, the number of switch modules in the 
middle stage and the number of inputs (outputs) to the first (third) stage switch modules. These 
parameters are commonly denoted by r, m and n respectively and completely characterize the network. 
We use the notation C(n,m,r) to denote such a network and we let N=nr be the number of network inputs 
(and outputs). While we shall focus our attention in this paper on three stage networks, Clos networks 
with 5, 7 or more stages are also possible and most of the results described can be extended to cover these 
cases. 

In the classical theory of interconnection networks, a network is said to be strictly nonblocking if, 
there is no configuration of connections that can prevent the addition of a new connection between an idle 
input and an idle output. In 1953, Charles Clos showed that if m>2(n−1), C(n,m,r) is strictly nonblocking. 
The reason for this is that any first stage switch with an idle input has at most n−1 busy links connecting it 
to the middle stage, so from any idle input, there are at most, n−1 “unreachable” middle stage modules. 
When m>2(n−1), this is fewer than half the number of the middle stage switch modules. Similarly, fewer 
than half of the middle stage switch modules are unreachable from any idle output, meaning that there 
must be some middle stage switch module that can be reached from both sides. What made Clos’ 
observation important was that it showed, for the first time, that one could construct strictly nonblocking 
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Figure 1. Symmetric three stage Clos network, C(n,m,r) 
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networks with less than quadratic complexity. If one chooses n=r=(n/2)1/2 and m=2(n−1) the complexity 
of C(n,m,r) (measured in terms of crosspoint count) is just under 6N 3/2, compared to N  2 for a single stage 
switch. 

The development of time-division telephone switches in the 1970s was a major technological 
advance, allowing the data paths within switching systems to be “time-shared” among a large number of 
voice circuits. Important as time-division switching was, it had little impact on the theory of 
interconnection networks, since the different “timeslots” in time-division switches could be treated as 
parallel space-division switches, allowing earlier results to be re-interpreted in the new technological 
context. In the 1980s, the growing interest in integrated voice, data and video communication led 
researchers to consider multirate circuit switches in which multiple timeslots in a time-division switch 
could be used for a single application. This made things more interesting, since in this context an 
application session could now be blocked if there was no path through the switch with the number of 
timeslots needed by the application. The varying needs of different applications created more complex 
sets of conditions that could cause blocking. 

In the late 1980s and early 1990s, Niestegge [2] and Jajszczyk [3] derived nonblocking conditions 
for multirate time-division switching systems based on a three stage Clos network. In such systems, each 
of the links has k distinct timeslots, meaning that it can carry k circuits operating at a basic rate (typically 
64 Kb/s) or any equivalent combination of circuits, so long as the total number of timeslots required by all 
the circuits sharing a given link is no more than k. Niestegge and Jajszczyk showed that if we constrain 
circuits to use no more than B timeslots, then no circuit can be blocked so long as   
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The argument that leads to this result is a natural generalization of Clos’ original argument. Any first 
stage switch module that can accommodate a new session using w timeslots has at most nk−w timeslots 
that are in use on the links connecting it to switch modules in the second stage. A link cannot be used by a 
new circuit with w timeslots only if at least k−w+1 of its timeslots are already in use. This means that for 
any first stage switch that that can accommodate a new circuit with w timeslots there are at most 
 )1/()( +−− wkwnk  links connecting it to middle stage switches that are “too busy” to accommodate a 
new circuit using w timeslots. If m satisfies the inequality above, then this number is fewer than half the 
number of middle stage switches. By the same argument, fewer than half of the middle stage switches are 
unreachable from any output that can accommodate a new connection using w timeslots. Hence, there 
must be some middle stage switch that is reachable from both sides. Note that if B=1, the bound reduces 
to the original bound derived by Clos.  On the other hand, if we allow single circuits that use k/2 
timeslots, the number of middle stage switches needed to guarantee nonblocking operation doubles. 

At the same time that some researchers were studying the potential of multirate synchronous time-
division switching, others were studying an alternative form of switching that came to be known as 
Asynchronous Transfer Mode or ATM. ATM switching is a simplified form of packet switching, in which 
short fixed length packets are labeled with a virtual circuit identifier. The so-called labeled multiplexing 
scheme used in ATM allows more flexible transmission rates than is possible in synchronous switching. 
In particular, there is no intrinsic minimum rate in ATM, and rates need not be multiples of a fixed 
minimum rate. In addition, ATM switches are often designed with internal data paths that operate at 
higher speeds than the externals links. The ratio of the internal data rate to the external rate is referred to 
as the speed advantage or speedup of the system. 

 In 1989, Melen and Turner [4] generalized the model for multirate switching to accommodate ATM 
switching systems. They explicitly introduced the notion of speedup for multirate switching systems and 
derived nonblocking conditions for the multirate Clos network and other networks. The results for 
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C(n,m,r) were later improved by Chung and Ross [5] and by Liew et. al. [6]. If there is no lower bound on 
the rate of individual circuits, then this bound can be expressed as 
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where S is the speedup of the internal links and B is the maximum virtual circuit rate, which is expressed 
as a fraction of the bandwidth of the external links (so, 0<B≤1). The argument is similar to the one used 
by Niestegge. The amount of bandwidth in use at any first stage switch that can accommodate a new 
virtual circuit at rate w is at most n−w. In order for a link connecting the first stage switch to a middle 
stage switch to be too busy to accept a new connection of bandwidth w, the amount of traffic on the link 
must be greater than S−w. Thus, the number of inaccessible middle stage switches must be strictly less 
than (n−w)/(S−w). If the stated nonblocking condition holds, then this number is less than half the number 
of middle stage switches, meaning that blocking cannot occur. If there is a lower bound b on the virtual 
circuit rate and if b>S−B, then the switch is nonblocking if  bbnm /)(2 −> . Note that if b=B=1, this 
reduces to the original bound derived by Clos. We note that Kabacinski and Liotopoulos [7] have 
generalized these results to asymmetric Clos networks with non-homogeneous link speeds. 
It’s also interesting to note that since the cost of a multirate Clos network is proportional to S and to m/n, 
there is a tradeoff between m/n and S, as shown in Figure 2. Increasing m allows us to decrease S and vice 
versa, and the lowest cost is obtained when m=1 and S=n. Practical constraints often prevent the use of a 
single very fast middle stage switch, but there is clear advantage to using the largest speedup that is 
practical, especially when individual connections can use a large fraction of the capacity of the external 
links.  

3. Wide-Sense and Rearrangeably Nonblocking Variants 
Melen and Turner noted in [4] that in systems with b=0 and S=B=1, the multirate nonblocking condition 
for the Clos networks implies that the number of middle stage switches required for the Clos network to 
be strictly nonblocking is infinite. That is, there is no strictly nonblocking Clos network under these 
conditions. Indeed, we can make the much stronger statement that under these conditions every strictly 
nonblocking multirate network has a cost that grows as the product of the number of network inputs to the 
number of network outputs. This holds because under the given conditions, a connection with a very 
small bandwidth is sufficient to block a new connection with a bandwidth of B joining an input x to an 
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Figure 2. Cost tradeoff for C(n,m,r) 
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output y. This means that any link that can be reached by an input other than x and an output other than y 
can easily become too busy to accommodate the new connection. Consequently, any path from x to y 
must consist of one or more links reachable only from x followed by one or more links that are reachable 
only from y. At the boundary between these two path segments, there is a portion of a switch module that 
can be used only for connections between x and y (see Figure 3). So, for the network to be nonblocking, 
there must be such a dedicated path segment for every (input, output) pair. 

In spite of this, there are Clos networks that can be operated in a nonblocking fashion even when b=0 
and S=B=1. The key to this result is to carefully select the routes used by connections to avoid the 
situations that can cause blocking. A network in which blocking can be avoided through the judicious 
selection of routes is called a wide-sense nonblocking network. In this case, the key idea is to divide 
connections into two subsets according to their bandwidth and segregate the routes used by these two 
subsets. Melen and Turner [4] showed that if the middle stage switches were divided into one group that 
carries only small connections (those with rates no more than 0.5) and another that carries only large 
connections (those with rates greater than 0.5), that blocking could be avoided if the number of middle 
stage switches is at least 8n. Chung and Ross [5] showed that 6n middle stage switches were sufficient. A 
more sophisticated routing algorithm, called the quota scheme, was proposed by Gao and Hwang [8] in 
1997. In its simplest form, it consists of letting large connections use any middle stage switch, while 
routing small connections only through a subset of them. In [8] it was shown that, by first dividing the 
connections into two separate sets, as in [4 and 6], and then applying the quota scheme to the small ones, 
the number of middle stage switches needed to ensure nonblocking operation could be reduced to 5.75n. 
The possibility of a small further improvement was noted in [7]. 

In many practical contexts, the cost of strictly nonblocking and wide-sense nonblocking networks 
exceeds the practical benefits they confer. In such situations, switch designers are often interested in 
whether a given network is rearrangeably nonblocking. In the classical theory of interconnection 
networks, a network is said to be rearrangeably nonblocking if it is always possible to add a new 
connection linking an idle input to an idle output, by rearranging existing connections. Or equivalently, a 
rearrangeably nonblocking network is one where any set of compatible connection requests can be routed, 
all at once, rather than one-at-a-time. While rearrangement is rarely used in practice, this fundamental 
topological property is considered an important figure of merit that generally contributes to good 
performance. 

In the late fifties, Slepian [9] showed that three stage Clos networks were rearrangeably nonblocking 
so long as m≥n. This can be shown most simply be reformulating the problem of routing a set of 
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connections through a Clos network as a graph edge coloring problem, as illustrated in Figure 4. The 
graph used to determine the set of routes has one vertex for every first stage switch in the network and 
one vertex for every third stage switch in the network. An edge is added between a vertex in the first set 
and a vertex in the second set for every connection that needs to be routed from an input of the switch 
corresponding to the first vertex to an output of the switch corresponding to the second vertex. This is 
illustrated in Figure 4, where the (input, output) pairs at the top are used to construct the graph shown at 
left. Given this graph, the next step is to assign colors to the edges, in such a way that no two edges 
incident to the same first stage switch are assigned the same color. The colors assigned to the edges 
correspond to the middle stage switches used to carry the connections and the constraint on the colors 
corresponds to the constraint that no two connections in the same first (or third) stage switch can pass 
through the same middle stage switch. In Figure 4, the letters R, G and B denote the colors assigned to the 
edges and the diagram at right shows the corresponding set of routes. By a classical result from graph 
theory, the graph coloring can be done using no more than n colors, implying that the given set of 
connections can be routed using at most n middle stage switches.  

Slepian’s result was extended to the multirate environment by Melen and Turner in [4]. Their 
generalization uses the same bipartite graph to represent the set of connections, but now the edges of the 
bipartite graph are assigned weights between 0 and 1 that represent the bandwidth used by each of the 
connections. As before, we want to color the edges of the graph, but  now we allow edges incident to the 
same vertex to have the same color, so long as the total weight of the edges incident to a single vertex 
does not exceed a specified constant S, corresponding to the speedup of the switch. This is illustrated in 
Figure 5, where a set of multirate connections is listed at the top and the corresponding weighted graph is 
shown at left. This weighted graph coloring problem can be converted to an ordinary graph coloring 
problem by splitting each of the vertices and associating different subsets of the edges incident to the 
vertex with different “sub-vertices”. In particular, the n heaviest edges are all assigned to the same sub-
vertex, the next n heaviest edges are assigned to another sub-vertex, and so forth. This is illustrated in the 
middle part of Figure 5. When this splitting procedure has been applied to all vertices, the resulting graph 
has at most n edges incident to each vertex and so can be colored in the ordinary way (only one edge of 
each color) using just n colors. The coloring is shown in the middle part of Figure 5 and some of the 
corresponding routes are shown at the right. The assignment of edges to the sub-vertices ensures that the 
sum of the weights of like colored edges from the same original vertex is less than B+(n−B)/m. 
Consequently, the system is rearrangeably nonblocking if S≥B+(n−B)/m or if ( ) ( ) BS/Bnm −−≥ . Note 
the similarity to the previous result for the strictly nonblocking case. Note also that when m=n, a speedup 
of about 1+B is sufficient to make the network rearrangeably nonblocking. Melen and Turner also studied 
the case of Clos networks with more than three stages and showed that when m=n, these networks are also 
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rearrangeably nonblocking if the speedup is allowed to grow logarithmically with the number of stages. It 
remains an open question whether a constant speedup can suffice for networks with an unbounded 
number of stages. 

4. Routing Multicast Connections 
Up to this point, we have considered only point-to-point or unicast connections. It’s also interesting to 
consider the case of multicast in which connections can be made from an input to a set of outputs. Routes 
in multicast switches form trees, rooted at the inputs from which they originate. In the classical theory of 
interconnection networks, these trees must be edge disjoint. In the extension to multirate switching, the 
trees have an associated weight (representing the bandwidth of the connection) and are permitted to share 
links, so long as the sum of the weights on any given link does not exceed its capacity.  

Masson and Jordan [10] derived conditions under which a three stage Clos network is nonblocking 
for multicast for single rate networks. When specialized to symmetric networks, their nonblocking 
condition can be written )1)(1( max −+> nfm , where fmax is the maximum number of distinct third stage 
switches with outputs in the same multicast connection (for unrestricted multicast fmax=r). When 
generalized to multirate networks, the condition becomes 
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where },min{ max mfF = . The inclusion of m in the definition of F allows us to account for systems 
where a large speedup is used to allow m to be smaller than fmax. Note that when fmax=1, the result reduces 
to the standard unicast nonblocking condition. For systems that must handle large multicasts, the result is 
of limited practical use, because the nonblocking multicast network is usually impractically expensive 
(roughly (r+1)/2 times as expensive as the nonblocking unicast network if multicasts are permitted to 
reach all outputs and m≥r). However the result does point the way to more practical results. In [11], Yang 
and Masson showed that a much less expensive network could provide a limited form of nonblocking 
operation if a restriction is placed on the amount of branching a multicast connection can have in the first 
stage. Specifically, they showed that it is always possible to add a new multicast connection to C(n,m,r) if 
multicast branching in the first stage is limited to no more than f and 

)1)(( /1 −+> nrfm f  

By choosing f to make the right-hand side as small as possible, one obtains a nonblocking network for 
which the cost may not be impractically large. For example, for C(16,m,16), the best choice of f is 3, 
giving m>82.5, which results in a network whose cost is 2.7 times as large as for the nonblocking unicast 
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network. However, it must be noted that the nonblocking property obtained in this way is less than ideal. 
While we can always add a new multicast connection, we may not be able to add a new output to a pre-
existing multicast connection without rerouting the connection. According to the usual classification of 
nonblocking networks, this network is only rearrangeably nonblocking. However, since the required 
rearrangement is limited to the one connection being extended, this is a somewhat less onerous form of 
rearrangement. We call a multicast network in which it is always possible to add a new multicast 
connection, reroutably nonblocking, since in these networks any existing connection can be extended if 
we allow it to be re-routed. Zegura [12] extended Yang and Masson’s result to the multirate context. 
Here, the nonblocking condition becomes 

fr
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Bnfm /111 
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Later, Kim and Du [13] combined Yang and Masson’s approach with the quota scheme [8] to obtain a 
wide-sense nonblocking multicast network. 
Another way to obtain a reroutably nonblocking multicast network is to cascade two Clos networks, 
connecting the outputs of the first to the inputs of the second [14]. In this system, “branching” of 
multicast connections is limited to the second network. The first network is used to route connections to 
an entry point of the second network from which the multicast connection can be completed. Specifically, 
when routing a new multicast connection we route the connection through the most lightly loaded first 
stage switch in the second network. For single rate networks, the resulting nonblocking condition is 
m>2(n−1). In the multirate case, the network is reroutably nonblocking if  
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and BrnS )/11(1 −+≥ . This bound is just slightly larger than the bound that applies to the unicast case, 
showing that the cost of a reroutably nonblocking multicast network is only twice as large as the cost of a 
strictly nonblocking unicast network. A similar result can be obtained for a system with a single Clos 
network in which multicast connections are routed in two passes through the network, with multicast 
branching occurring only during the second pass. In systems where multicast is a relatively small part of 
the total traffic, this can be far more economical, since the extra system capacity required to make the 
system nonblocking for multicast is roughly the same as the fraction of the total outgoing traffic which 
belongs to multicast connections.  

5. Some Practical Considerations 
The results described here are based on a particular abstraction of multirate switching that applies to 
varying degrees in different system contexts. The key assumption is that the rates of different connections 
can simply be added together. This is completely appropriate for multirate circuit switches and for ATM 
switches carrying constant bit rate traffic. It has certain limitations when applied in contexts where 
connections have time varying rates. In such systems, there is not even a simple answer to the question of 
what the rate is. In situations where connections have a pre-specified peak rate (which is very common) 
one can take the connection rate to be the peak rate, but this can lead to under-utilization and is typically 
not an acceptable choice. On the other hand, in most system contexts, the connection peak rates are much 
smaller than the link capacities. In data networks for example, most applications have peak rates less than 
100 Mb/s, which is just 4% of an OC-48 link and 1% of an OC-192. In such situations the connection rate 
can be taken to be the average rate, with a small safety factor added. Of course, this applies only if the 
connection’s average rate is known in advance, or can be estimated with acceptable accuracy.  

The problem of deciding when a set of connections with time varying rates can be multiplexed 
together with acceptable performance has been studied extensively. These studies have led to the 
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formalization of the concept of an effective rate for a time varying connection. Effective rates can be 
added together and compared to a fixed capacity bound, in order to make connection admission and 
routing decisions. As one might expect, a connection’s effective rate lies between its average and its peak, 
and is close to the average when the peak rate is much smaller than the link capacity, and close to the 
peak when the peak is a large fraction of the link rate. The results described here can be applied using 
effective rates, but there are some subtleties that can affect the accuracy of the results. Specifically, 
because the effective rate is a function of the link capacity, a connection’s effective rate is smaller in 
systems with a large speedup than in systems with a more modest speedup. This effect tends to make the 
nonblocking conditions discussed above conservative, in the sense that they overestimate how large m 
must be to obtain nonblocking performance. 

Another practical concern is how to evaluate the cost of different system configurations. In the 
classical theory of nonblocking networks, the cost metric was the crosspoint count, which measured the 
number of elementary switching components that were needed to implement a switch module. The 
crosspoint count of a switch module is simply the product of the number of inputs and outputs it has. This 
metric is completely appropriate for systems constructed from electromechanical switches, where the 
crosspoints dominate the system cost, but it is not appropriate for systems constructed using integrated 
circuits with tens of millions of logic gates. In such systems, there are no crosspoints in the classical 
sense, but each switch component does still contain subsystems for which the cost grows in proportion to 
the product of the number of inputs and outputs. However, each component also contains subsystems for 
which the cost grows linearly with the number of inputs and outputs. This leads to a somewhat more 
complex, but still useful cost metric. The key issue when applying it, is to appropriately assign relative 
weights to the two components of the cost. For modern integrated circuits, the linear component has a 
much larger weight, but the quadratic component can still become important as the number of inputs and 
outputs of single switch modules gets large. The relative weights of these two components are inherently 
technology-dependent and must be adjusted with continuing advances in technology. Coppo et al. [15] 
has developed a generalized cost metric for ATM switching systems and used it to compare alternative 
Clos network configurations.  

While the lack of a simple, fixed cost metric is a little disturbing, from a theoretical standpoint, it’s 
important to recognize that one can still draw fairly broad conclusions about the effect of key system 
parameters on cost. For example, in C(n,m,r) one can still conclude that in any given technology, 
doubling m will double overall system cost, since it doubles the number of middle stage switches, the 
crosspoint counts of the first and third stage switches, the number of outputs of the first stage switches 
and the number of inputs of the third stage switches. Similarly, in any given technology, doubling S will 
double the cost, since the larger speedup typically must be obtained through increased parallelism. 

point-to-point routing multicasting

most lightly-loaded module

point-to-point routing multicasting

most lightly-loaded module

 
Figure 6 Adding multicast connection to cascaded Clos networks 
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6. Summary 
The development of the theory of multirate interconnection networks has attracted the interest of 
researchers both for its intrinsic intellectual appeal and its practical application to the development of 
broadband switching systems. In the late 1980s and 1990s, most major telecommunication equipment 
manufacturers developed ATM switching systems based on the intellectual framework provided by this 
theory.  

The recent shift in the telecommunications marketplace from ATM to IP technology has also been 
accompanied by a shift in how switching systems are designed. Most modern high performance routers 
are now implemented with a single high bandwidth switch surrounded by multiplexing stages that collect 
traffic from a large number of external links. This architecture can be viewed as a degenerate case of a 
Clos network with m=1 and as has been noted above, this is the best possible choice when the technology 
is available to move all the traffic in the system through a single switching stage. The rapid growth of the 
Internet has also led router vendors to develop multistage designs to allow the construction of systems 
with capacities exceeding 10 Tb/s. Current multistage router designs mostly use dynamic routing in which 
traffic is distributed through the multistage topology on a packet-by-packet basis, rather than a connection 
basis. This better fits the best-effort nature of IP networks, but makes it more difficult to deliver 
consistently high quality of service, to applications that require it. As the Internet’s role in modern life 
continues to grow, one can expect quality of service to become a more central concern for IP router 
vendors, possibly leading to renewed interest in systems that route on the basis of connections (or 
“flows”) for those application sessions that require consistently high performance. 

While the winds of technological change are hard to predict with any certainty, the enduring role of 
telecommunications networks in our modern information society and the role of switching systems in 
those networks seems secure. We can also expect that the Clos networks will retain their central place in 
the design of high performance switching systems of all kinds, and that the intellectual framework created 
to model their performance will continue to develop and evolve to meet the needs of new technologies 
and applications. 
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