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Abstract

The provision of advanced computational services within networks is rapidly becoming
both feasible and economical. We present a general approach to the problem of configur-
ing application sessions that require intermediate processing by showing how the session
configuration problem can be transformed to a conventional shortest path problem for uni-
cast sessions or to a conventional Steiner tree problem for multicast sessions. We study
both a capacity-constrained version of the problem and an unconstrained version and show,
through a series of examples, that the method can be applied to a wide variety of different
situations. Particularly, we show how to extend Dijkstra’s shortest path algorithm for use
on the constrained version, and show that this approach can make significantly better use
of network resources.
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1 Introduction

Advances in technology are making it possible to incorporate general purpose pro-
cessing capabilities in network routers. Network processor components with more
than ten RISC cores have become available and are starting to appear in high per-
formance routers from several different equipment vendors. Research in active net-
working [2],[6],[8] is exploring the potential of programmable routers, and other
approaches are being pursued by individual router vendors.

This paper is concerned with the problem of how to map application sessions onto
network resources, when those network resources may include computational ele-
ments that perform some service on behalf of the applications. For example, a video
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application might invoke a video compression service in the network to reduce its
use of network bandwidth. There may be several places in the network where the re-
quired compression and decompression service could be performed. We would like
to select the best locations that meet the application’s requirements. In this paper,
we describe a general methodology for configuring such applications so as to make
most effective use of network resources, including link bandwidth and the compu-
tational resources provided by the network. Our methodology is not restricted to
systems in which application services are provided at routers. It can also be used to
configure application services provided by network-attached servers.

We assume an operating environment in which application sessions are explicitly
configured when the application starts up. The configuration of an application ses-
sion includes selection of intermediate processing nodes and the network links used
for communication among the various components of the application. In our view,
this session-oriented approach is needed to enable efficient allocation of network
resources among competing applications. This is especially true for applications
that require a certain level of resources in order to achieve an acceptable quality
of service. However, even “best-effort” applications can benefit from a resource al-
location system that seeks to configure applications to take advantage of locations
where resources are plentiful, rather than simply letting them compete for resources
in locations where the required resources may be scarce.

Sections 2 through 6 describe various application scenarios that each raise differ-
ent resource configuration issues. In each case, we show how the problem can be
reformulated so that it can be solved in a similar fashion with the approach that
we propose. In Section 7 and 8, we discuss how to handle sessions that require
explicit resource reservation. We provide an overview of related work on resource
allocation and configuration in Section 9 and conclude in Section 10.

2 Routing Through One Processing Site

We start with the simplest version of the application configuration problem. In this
version, we have two participating end systems and there is some intermediate
computation that is to be performed somewhere in the network (possibly a format
translation, for example, allowing two otherwise incompatible end systems to share
information). There are a number of sites within the network where the processing
could occur, but not all of the sites may be able to perform the needed processing
(perhaps they are not capable of executing the required program, or perhaps their
computational resources are already fully committed to other tasks). The applica-
tion configuration system must select one of the sites within the network and select
network paths joining the end systems to the intermediate processing site. It should
do this in such a way as to minimize the use of network resources, including link
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bandwidth and processing “bandwidth.”

We can state the problem formally as follows. The network is represented by a
directed graph, � � �������
	 , in which the nodes correspond to routers and end
systems, while the edges correspond to links. Let ���� be a subset of the nodes
that represent sites where intermediate processing may occur. For brevity, we’ll
refer to these as red nodes. Each edge ��������	 has an associated cost ����������	 and
each red node � has an associated cost ������	 . Finally, we have a source vertex �
and a destination vertex � . Our objective is to find a least-cost path from � to � that
includes at least one red node. The cost of a path is the sum of the costs of its
links, plus the cost of the least cost red node along the path. Note that the overall
path from � to � may not be a simple path. See Figure 1 for an example of the
problem. The red nodes can be distinguished from the other nodes by the numbers
that indicate their processing costs. The heavy weight edges in the figure indicate
the best path from � to � that passes through at least one red node.
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Fig. 1. Network with Processing Sites

There is one fairly obvious approach to solving the problem. First, solve the single-
source shortest path problem [5] from � to all other nodes, considering link costs
only. Second, solve the single-destination shortest path problem to � from all the
other nodes. At the end of these two steps, for each vertex � , we know the cost of
the shortest path from � to � and from � to � . So we can simply iterate over all
nodes ����� and select the node that minimizes

� � �!�"��	$# � ���%�"�&	'#(�)����	

where
� �+*���,-	 denotes the length of the shortest path between * and , , considering

just the edge costs. For a graph with . vertices and / edges, this algorithm can
be implemented to run in 01��/2#(.4365�7�.$	 time. This is the same complexity as for
finding a shortest path in a graph, so we cannot expect to improve on it substantially.
The only real drawback of this method is that it does not readily generalize to more
complex situations. For that reason we consider an alternative approach that can be
applied more generally.

Our alternative approach is to transform the original problem to a conventional
shortest path problem on a different graph. We then solve this new problem using
standard methods and apply the results back to the original problem. The first step
in the transformation is to make two copies of the original graph � . We refer to
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Fig. 2. Transformed Network for Single Site Processing

these two copies as layers in the resulting graph and identify them as layer 1 and
layer 2. For each vertex � in the original graph, let � 
 denote the copy of � in layer
1 of the target graph and let ��� denote the copy of � in layer 2. The edges in the two
layers have the same costs as the corresponding edges in the original graph. Now,
for every node � � � , we add an edge ��� 
 ����� 	 in the target graph and let �)��� 
 ����� 	
be equal to the cost originally assigned to � . This completes the construction of
the target graph. See Figure 2 for an illustration of the construction. To solve our
original problem, we simply find a shortest path from � 
 to ��� in the target graph,
considering link costs only (see Figure 2). The resulting path can then be mapped
back to a path in the original graph by “projecting” the two layer path onto a single
layer.

The correctness of this procedure is easily established. First, note that the least cost
path from � 
 to ��� does correspond to a path (not necessarily a simple path) in the
original graph and the cost of the path is the same as the cost defined in the original
problem statement for the corresponding path in the original graph. Second, note
that there cannot be a cheaper solution to the original problem. If there were, this
solution would have to correspond to a path from � 
 to ��� in the target graph that is
cheaper than the given least-cost solution, a clear contradiction.

3 Routing Through Multiple Sites

We now consider a more general application configuration problem. There are again
two participating end systems, but here there are several intermediate computa-
tional steps that are to be performed at possibly different locations in the network.
For each step, there may be multiple sites where the processing could be done.
One simple example is secure data transmission, where the intermediate process-
ing steps include encryption and decryption processing. The encryption processing
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can be done at any of several nodes in the originating end system’s domain and
decryption processing can be done at any of several nodes in the destination end
system’s domain. We allow

�
intermediate processing steps for any

�����
.

We can state the problem formally as follows. The network is represented by a di-
rected graph, � � � � ���
	 , with each edge ��� �"� 	 having an associated cost �)��������	 .
As before, we have a source node � and a destination node � . For

�����	�
�
,

let ��� � � be a subset of the nodes. �� contains sites where the
�����

interme-
diate processing step may be performed. Accordingly, each node � � ��� has an
associated cost ��� ����	 . We define an admissible path from � to � to be a path (not
necessarily simple) that includes nodes from each of the ��� , appearing in order.
That is, a path � 
 �"��� ������� ����� is admissible, if there are integers

� 
 ������� � ��� that sat-
isfy
����� 
 ��������� ���!� / and ���#" �2�%$ for

���'&(�)�
. The list of nodes

�����+*�������� ������, 	 is called a site list for the path. An admissible path may have multi-
ple site lists. Note that a node may appear in a site list more than once. The cost of a
site list is the sum of the costs of its nodes and the cost of an admissible path is the
sum of the costs of its edges, plus the cost of its least expensive site list. Figure 3
shows an example of the problem. In this figure, nodes drawn with “thick” circles
are in � � , while the other nodes containing numbers are in � 
 .
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Fig. 3. Network for Multiple Site Processing

A brute force approach to solving this problem involves enumerating all possible
combinations of processing nodes and connecting them with the shortest paths.
However, the number of possible combinations grows proportionally to .

�
, making

this approach impractical, even for modest values of
�

.

Fortunately, the problem can be solved efficiently by reducing it to an ordinary
shortest path problem in a different graph. The target graph � has

� # � layers,
each layer being just a copy of the original graph, and numbered from 1 to

� # � .
For each node � in the original graph, we let �-� denote the copy of � in layer

�
.

Now, for every node � � �.� , we add an edge ���������/��0 
 	 in the target graph and let
�����/� �"�/��0 
 	 be equal to the cost �1� ����	 assigned to � in the original graph. See Figure 4
for an example of a target graph for a problem with

� �32 . To solve the original
problem, we find the shortest path from � 
 to � � 0 
 in the target graph. The resulting
path can be mapped back to a path on the original graph by “projecting” the path
back onto the original graph. In the projected path, the site list consists of nodes
each of which corresponds to an inter-layer edge used in the shortest path.
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Fig. 4. Transformed Network for Multiple Site Processing

The correctness of the procedure can be shown in a similar fashion as in Section 2.
Consider the least cost path from � 
 to � � 0 
 . It is easy to see that it corresponds to an
admissible path in the original graph and that its cost is the same as the cost of the
admissible path. Also note that there can exist no cheaper solution to the original
problem. Any cheaper solution would have to correspond to a path from � 
 to � � 0 

in the target graph, yielding a contradiction to the definition of the shortest path.

4 Applications that Alter Bandwidth

Certain processing steps performed on behalf of an application may alter properties
of the data. For example, processing steps that compress data can change its band-
width requirements by substantial amounts. We would like to be able to configure
compression and decompression processing in the network, so as to best exploit the
savings that can be obtained, while simultaneously accounting for the costs asso-
ciated with the compression algorithm itself. More generally, we want to be able
to configure arbitrary applications that modify the bandwidth requirements of the
processed data stream. Examples for applications that decrease the bandwidth of a
stream are data and image compression, filtering, and data merging. Applications
that increase the bandwidth of a data stream are data and image decompression,
forward error correction coding, certain encryption and authentication schemes,
etc.
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To quantify the changes in bandwidth, we define the bandwidth scale factor � � for
processing step

�
to be the ratio of the outgoing bandwidth to the incoming band-

width for processing step
�
. The application configuration problem introduced in

the previous section can be generalized to handle changes in bandwidth require-
ments. With the cost of links linear to the data bandwidth, the only change needed
is to the definition of the cost of an admissible path, to account for the changes in
the bandwidth of the data stream. Let � � � 
 �/����� � � be an admissible path, that
includes the site list � � ��� �+*��������&� � , 	 . The cost of � with respect to site list � is
given by

�+*�� 
�
$�� 
 �)��� $ ��� $ 0 
 	'# �������+* 	

#
�	�
� 
�
$�� �+* �


 � �)��� $ ��� $ 0 
 	'#(�)�����	��	&	

#
���� 
�
$�� �	� �


 � � � �)��� $ ��� $ 0 
 	'#(�)������ 	&	
# �����

#
� , � 
�
$�� ��,�� *

��� 
 � � ����� � � � 
 	 ������� $%�"� $ 0 
 	'# ����� � , 	&	

#
��� 
�
$�� � , ���


 � � ����� � � 	 ����� $ ��� $ 0 
 	

The cost of a path � , is the the minimum over all site lists � of � , of the cost of �
with respect to � .

The solution method of the previous section can also be generalized to handle band-
width scaling. The target graph is constructed as before, but the edge costs of the
target graph are modified as follows. For edges within layer

�
, the edge costs are

multiplied by � 
 � � ����� � ��� 
 . Edge costs from layer
�

to layer
� # � are multiplied by

� 
 � � ����� � ��� 
 . We solve the problem, as before, by finding a shortest path from � 
 to
� � 0 
 .

5 Optional Processing

Some network applications provide services that are not necessary for correct data
transmission, but which can improve the performance or quality of the connection.
These optional processing steps might decrease the transmission cost to some des-
tination nodes, but not necessarily to all. We now extend our method to handle such
cases.
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For concreteness, we use a simple example of a compression/decompression appli-
cation. The processing for compression and decompression incurs a cost, but the
intermediate data stream has a lower bandwidth ( ��� � ) which yields lower trans-
mission costs. Thus, for long-distance transmissions the processing overhead is
worthwhile, while for short distances, the cost of the added processing may exceed
the benefit. The problem can be solved using the method of the previous section. To
make the compression and decompression processing optional, for each vertex � in
the original graph, we add edges ��� 
 ����� 	 , linking layers 1 and 3. These edges are
assigned a cost of zero. Note, that for this method to work correctly, the bandwidth
of the decompressed data stream must match that of the original, uncompressed
data stream. In this case, we can actually use a slightly simpler target graph with
just two layers, and edges ��� 
 ��� � 	 for all vertices ��� � 
 and edges ��� � ��� 
 	 for all
vertices � � � � . The edges within layer 2 are scaled by the compression factor, as
are the edges from layer 2 to layer 1. In this case, the shortest path from � 
 to � 

yields the best configuration. If the path passes through layer 2 then compression is
performed at the nodes corresponding to the selected inter-layer edges.

The method can be extended to configuring sessions where different processing
stages are optional. However, when the effects on the bandwidth of the data stream
are more complex than in the simple compression/decompression example, a more
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complex target graph may be required. These more general cases can be solved us-
ing target graphs that have a source node � connected to multiple columns of layers,
where each column contains some subset of the layers for the complete processing,
and eventually connected to the destination � below the last layer of each column.
The general form of such a graph is illustrated in Figure 5. The columns of layers
connected from the source � and to the destination � represent possible choices of
processing sequences.

6 Configuring Multicast Sessions

So far, we have considered several types of different application configuration prob-
lems with two participating end system and the common objective to find an op-
timal path from one to the other. In this section, we show that our method can be
applied to multicast applications where there are multiple destinations, rather than
just one. For each of the source-destination paths, we want to include the same sort
of processing that we might apply to a unicast application. Our objective is to find a
way of selecting processing sites and links so that the processing requirements are
met, and so that the overall cost is minimized.
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Fig. 6. Transformed Network for Multicast with Compression

We illustrate the application of the method to multicast situations by considering
a video distribution application, where a source sends stored compressed video on
which decompression processing is performed at intermediate nodes, and then the
decompressed video is delivered to multiple receivers. As discussed earlier, we can
solve this problem for unicast applications using a two layer graph with “decom-
pression edges” from layer 1 to layer 2. The same target graph can be used for the
multicast problem, where we have a source and multiple destinations. See Figure 6
for an example of the target graph. The only real difference is that the objective
of the problem becomes finding a least-cost subtree of the two layer network with
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the source at the root, and the destinations at the leaves. This problem is a Steiner
Tree problem (as is the usual multicast routing problem), which is known to be NP-
complete [9]. More precisely, our case belongs to the directed Steiner Tree prob-
lem where the graph contains directed edges, and this particular subproblem is also
known to be NP-complete. While there is no known practical approximation algo-
rithms for the directed Steiner Tree problem, some methods currently used for the
conventional multicast tree problem may easily be applied to our multicast config-
uration problem. We do not discuss such methods further here; we simply note that
they can be applied to finding an appropriate tree in the target graph, and we can
then use this to produce a solution to the original multicast session configuration
problem.

7 Configuring Sessions in Capacity Constrained Networks

So far, we have not explicitly raised the issue of resource reservation and capac-
ity constraints. One way to account for the finite nature of network resources is to
simply omit from consideration those links and nodes that lack sufficient capacity
to handle a given application session. So for example, if an application session re-
quires 100 Mb/s of link bandwidth, we can simply remove from the network graph
all edges corresponding to links with less than 100 Mb/s of available bandwidth.
Similarly, if a session requires the equivalent of 50 MIPS of “CPU bandwidth” at
one processing site, we can omit all nodes that have less than 50 MIPS of available
capacity. Unfortunately, this does not quite work, since the problem specifically al-
lows edges and nodes to be used more than once by an application session. If our
example session were to use a given link twice, that link would require 200 Mb/s of
unused bandwidth in order to accommodate both uses. Similarly, a node that is used
in more than one processing step, must have sufficient available CPU bandwidth to
handle all the steps for which it is used.

Unfortunately, there appears to be no efficient solution to this problem that can
always find the best solution. Consider an instance of the session configuration
problem in which every node but the source and sink is a potential processing site.
There are .�� 2 intermediate processing steps (where . is the number of nodes
in the graph, including the source and sink), but each node has only enough CPU
bandwidth to perform one step. Problem instances like this correspond directly to
the
�

� -hard Hamiltonian path problem, so we cannot expect to find an efficient
algorithm that is even guaranteed to find a feasible solution, let alone a least cost
solution.

While we cannot solve the capacity-constrained version of the problem in all cases,
we can incorporate capacity constraints into our path search, so that in most situ-
ations we can find low cost session configurations with the required resources. In
this section, we show how this can be done, and demonstrate using simulation, that
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valid session configurations are rarely missed.

We focus here on unicast sessions that specify a processing requirement for each
step and a bandwidth requirement for each path segment between two consecu-
tive steps. As described in Section 4, the costs in the different layers are scaled to
account for such effects.

We use the same layered graph model discussed earlier. However, to find shortest
paths in the layered graph, we use an extension of Dijkstra’s shortest path algo-
rithm, that we call Dijkstra’s algorithm with “capacity tracking”. The algorithm
ensures that no path in the shortest path tree constructed by the algorithm exceeds
the available capacity of any resource. We start with a brief review of Dijkstra’s
shortest path algorithm.

Given a graph, and a source node � , Dijkstra’s algorithm computes a shortest path
tree rooted at � . Initially, the tree contains just � . The algorithm maintains a set � ,
of boundary vertices, which includes all nodes � that are connected to a vertex �
in the partial tree constructed so far, by a directed edge ��������	 . At the start of the
algorithm, � contains the nodes � , for which there is an edge of the form ��������	 . The
algorithm also maintains, for each vertex � , a tentative distance

� ����	 , which is the
length of the shortest path from � to � that has been found so far. It also maintains a
tentative parent � ����	 , which is the predecessor of � in a path from � of length

� ��� 	 .
The quantities

� ��� 	 and � ����	 are not defined for nodes that are neither in the tree,
nor in � .

At each step, Dijkstra’s algorithm selects a node � in � for which
� ����	 is minimum,

and adds it to the tree. It then examines each edge ��� ��� 	 . For each node � that
is neither in the tree nor in � , it adds � to � , setting � ���4	 to � and

� ���4	 to
� ����	

plus the length of ��� ��� 	 . For each node � that is in � , it compares
� ���4	 to

� ��� ��� 	
plus the length of the edge ��� ���4	 , and if it finds that

� ��� 	 is larger, it updates
� ���4	

and � ���4	 . If the set of boundary vertices is represented using a Fibonacci heap [5],
Dijkstra’s algorithm runs in 01��/ #(.4365�7�.$	 time, where . is the number of nodes
in the graph, and / is the number of edges.

When Dijkstra’s algorithm is applied to a layered graph, some of the paths in the
shortest path tree may contain edges on different layers that correspond to the same
link or router in the original network, from which the layered network was con-
structed. This may lead to over-use of resources. To prevent this, we modify the ba-
sic processing step, to include a check for over-used resources. In particular, when
a node � � is added to the tree (

�
denotes the layer in which the vertex appears), we

consider edges of the form ��� � ���%� 	 and ��� � ��� ��0 
 	 . Before processing an edge of the
form ��� �����%� 	 , we examine the path in the tree from � to � � and add up the capacities
required by all edges on the path that correspond to the original link ��� ���4	 . If this
total capacity, plus the capacity that would be used by the edge ��� � ���%� 	 exceeds
the available capacity of the link, then no action is taken with respect to that edge.
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Fig. 7. Blocked path in capacity tracking

Edges of the form ��� ����� ��0 
 	 are handled similarly. We refer to this procedure as
Capacity Tracking.

The extra time required by Capacity Tracking is 01�"� � / 	 � � .'	&	 , in the worst-case,
where / and . are the number of edges and nodes in the original network and

�
is the number of processing steps. This can be seen by noting that the checking
procedure is invoked no more than

� ��/(# .'	 times and each execution requires that
we traverse a path with no more than

� . � � edges.

The running time can be improved by maintaining an additional variable � ��� ��	 for
each vertex in the partial tree constructed so far. If �-� � � ��� ��	 , then ����� ��	 is the
sum of the capacities required from all edges on the tree path from � to � � that are
copies of the link ��������	 in the original network graph. Similarly, if � � � 
 � � ��� �+	 ,
then ����� ��	 is the sum of the capacities required from all edges on the tree path from
� to � � that correspond to the server � in the original network graph. Using these
additional variables, we can terminate the capacity tracking search from a node � �
back to � early, reducing the total time taken for Capacity Tracking to 01� � / .$	 .

In practice, the extra time required by Capacity Tracking is much smaller than the
worst-case analysis suggests, because networks are designed to have small diam-
eter, which means that the paths in the shortest path tree generally have far fewer
than
� . edges. If we let

�
denote the maximum number of edges in a path from the

root to a vertex in the shortest path tree, then the extra time required by Capacity
Tracking is 0 � � / � 	 . Even this result over-states the time required by Capacity
Tracking in practice. As will be seen later, running time measurements show that
Capacity Tracking takes less than double the time required by the original layered
graph algorithm in more realistic situations.

Capacity Tracking ensures that paths found by the algorithm do not over-use any
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Fig. 8. Torus network

resources. However, since the problem is
�

� -hard, we cannot expect it to always
find a valid path, even when a path exists. Consider the example shown in Fig-
ure 7(a). If each link in the original network graph has one unit of capacity and the
session requires one unit of capacity on each edge of the selected path, it can fail
to find a path, as shown in part (a) of the figure. The bold edges are the edges that
form the shortest path tree, at the time the path search terminates. Note that there is
no way to extend the tree further, since the only edge leaving vertex � � has already
been used in the top layer, and hence cannot be used again. On the other hand, there
is a path that could be used for this session, as shown in part (b).

8 Simulation Results

We performed a set of simulations for the session configuration problem to evaluate
Capacity Tracking, the heuristic algorithm presented in the previous section. We
also evaluated the following algorithms for performance comparison.

� Strict Resource Accounting: This algorithm simply implements the layered graph
algorithm on the network graph from which the links and processing nodes that
lack sufficient capacity to handle the maximum possible use by a given session
are omitted. So for example if a session has 2 processing steps that require a total
of 200 MIPS of processing capacity, then we omit inter-layer edges correspond-
ing to servers with less than 200 MIPS of available capacity.

� Loose Resource Accounting: This is not a practical algorithm but provides a
bound on the performance of realistic algorithms. It includes edges in the layered
graph if they have sufficient resources to be used even once by the application.
This may result in selecting paths for sessions that overuse resources.

� Static Shortest Path: This method uses the shortest path between a pair of nodes,
without considering competing traffic. If any resource on the static shortest path
lacks sufficient capacity to handle the session, this method fails. Because of this
fixed routing, configuration attempts are likely to be failed when resources are
heavily used.

Simulations were performed using four different network topologies.
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Fig. 9. Metropolitan Area Networks

� Torus: This network is based on a grid of 64 nodes where every node has an out-
going edge to each of its four neighbors, north, south, east and west along the grid
lines. The nodes at edges of the square grid also have links that “wrap around” to
the corresponding node at the opposite edge, resulting in a torus topology. The
network has 128 edges and each is assigned an equal cost and capacity. Figure 8
shows the network topology. A random subset of the nodes are designated as
servers, with the ability to perform processing. All servers have the same ca-
pacity and are shown as triangles in Figure 8. Note that there can be multiple
shortest paths between any two nodes in Torus. The Static Shortest Path routing
randomly fixes one of the shortest paths for routing sessions between each pair
of nodes.

� Random: This network is a random regular network with 64 nodes, each having
4 incident edges. We build the network starting with a random degree-bounded
tree that spans all 64 nodes, then we expand the network by adding edges ran-
domly until every node has exactly four incident edges. Again, every link has
the same capacity and the same cost. A random subset of the nodes are desig-
nated as servers, with the ability to perform processing. All servers have the same
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capacity.
� Metro 20: is a more realistic network configuration, spanning the 20 largest

metropolitan areas in the United States. The network topology is shown in Fig-
ure 9(a). Nodes that are capable of performing processing are shown as triangles.
Link costs are set equal to the physical distance between the nodes they connect,
reflecting the higher cost associated with links spanning greater distances. The
link capacities are selected to be large enough to handle the anticipated traffic.

The link dimensioning procedure used for this purpose is taken from [7],
which describes a constraint-based network design methodology and an inter-
active network design tool that implements it. We constrain the traffic in two
ways. First, the total traffic entering and leaving a node is chosen to be propor-
tional to the population of the metropolitan area represented by that node. Next,
for each node � , we constrain its traffic to every other node using constraints that
are proportional to the populations of the metropolitan areas represented by the
other nodes. Specifically, if

���
is the fraction of the population outside node � ,

that is associated with node � , then we limit the traffic between � and � to be
no more than

� ��� ��� times the total traffic entering and leaving node � . The fac-
tor of 1.3, was chosen to allow for some flexibility in the distribution of traffic,
reflecting the natural variations that occur in network traffic. Given these traffic
assumptions and a default path joining each pair of vertices, link dimensions can
be computed using linear programming. The resulting link capacities guarantee
that any traffic pattern satisfying the traffic constraints can be carried if the traf-
fic is routed along the default paths. The default path between a pair of vertices
is a shortest path containing at least one server, and can be found using a two
layer network. The servers along each default path are dimensioned to handle
the worst-case traffic load allowed by the traffic constraints. When performing
the simulations, we do not constrain the traffic to use just the default paths, but
the link dimensions are chosen, under the assumption that the default paths are
used. However, the Static Shortest Path method directly restricts sessions to use
the default paths.

� Metro 50: is a larger version of the Metro 20 network. It has a node for each of
the fifty largest metropolitan areas in US. The topology is shown in Figure 9(b).
The links and servers are dimensioned in the same way as Metro 20.

While Torus and Random are not particularly realistic network configurations, they
provide a more “neutral” context for evaluating the session configuration algo-
rithms than the somewhat idiosyncratic network topologies that arise from real
world considerations. By considering a variety of different networks, we hope to
avoid drawing conclusions that may be attributable purely to special properties of
a particular network.

There are several configuration parameters that affect the simulation results.

� Density of servers ( � ): The density of servers is just the ratio of the number
of nodes that can perform processing to the total number. In the results reported
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Fig. 10. Heuristics for session configurations

here � � 

� . The servers were randomly selected for Torus and Random and were

configured for Metro 20 and Metro 50 as shown in Figure 9(a) and Figure 9(b),
where servers are drawn as triangles.

� Session capacity requirement ( ����� ): The capacity that an individual session
uses at each link and server; ����� , is set to ��� of the average link capacity.

� Number of steps ( ��� �
	�� � ): The number of processing steps that a session requires.
In most of the results reported here, we set ��� �
	� ��� � .

� Offered load at links ( 0�� ): The average offered background traffic level on each
link. The simulation is done by generating background traffic levels indepen-
dently at each link and node, then attempting to connect random pairs of nodes.
This procedure was repeated multiple times to produce the reported results. Each
simulation run included over 2.5 million session setup attempts. The background
traffic was generated using an M/M/k/0 queueing model (

�
servers and zero

length queues, where
�

is the ratio of link capacity to session bandwidth).
� Offered load at servers ( 0 � ): The average offered background traffic level at each

server. For the results reported here, the offered load at the servers is the same as
the offered load on the links.

The selection of the end nodes of the sessions, was done completely randomly for
Random. For Torus, the selected node pairs were restricted to be exactly four hops
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Fig. 11. Configuration Cost

apart. For Metro 20 and Metro 50, the selection of the end nodes was weighted by
the populations of the cities, reflecting the higher traffic volumes expected in larger
cities.

Our primary performance metric is the blocking probability, which is the percent-
age of session configuration attempts that were unsuccessful. Figure 10 shows the
blocking probabilities for the various algorithms, as a function of the offered load.
The plots also show high blocking probability when the Static Shortest Path method
is used. Recall that the default paths were used in the dimensioning process, so this
restriction is worth considering, as a point of comparison. In general, however, the
lack of routing flexibility implied by this policy results in higher blocking proba-
bilities than with the other algorithms.

For all four networks, Capacity Tracking shows significant improvement over Strict
Resource Accounting and performs almost as well as Loose Resource Accounting
which is included as an idealized bound on algorithm performance.

For the Torus network, Capacity Tracking results in blocking probability less than
1% for load up to 80%. (See Figure 10(a).) Note that Torus has many paths between
selected end nodes, and therefore, there is a good chance for algorithms to find valid
paths while avoiding saturated links. Even then, Strict Resource Accounting does
relatively poorly, apparently because it often unnecessarily omits from the layered
graph resources (primarily servers) that may be required in some feasible paths.
Note that when all feasible paths are blocked by Strict Resource Accounting it fails
to find any configuration.

For Random, all algorithms experience higher blocking probability than for Torus.
The explanation appears to be the variety of paths available between endpoint pairs
in Torus and the limited separation between endpoints in the Torus simulation. In
the Random network, endpoints were simply selected at random, so many pairs are
likely to be further apart than the four hops that constrained the choice of endpoint
pairs in the Torus simulation. In Random, there also tends to be fewer good “second-
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Fig. 12. Configurations at 75% traffic load for Fifty metro areas

choice” paths, when the preferred path is not available.

For the more realistic Metro 20 and Metro 50 networks, blocking probabilities are
generally higher. For Metro 20, we note that many sessions must take “detours” to
pass through servers. For example, consider sessions between Pittsburgh and DC
or Seattle and Minneapolis. When the default path is too busy to accommodate ses-
sions, the “second-choice” paths typically require even longer detours. With Torus,
on the other hand, the second and third choices are often no worse than the default.
For Metro 50, the detours required to reach servers are generally smaller, but the
number of hops required between endpoints tends to be larger; for example, there
are 11 hops in the shortest path from New York to Los Angeles. Note that with
Capacity Tracking blocking probabilities of less than 1% are obtained for offered
loads of more than 70%.

We also measured the cost of the successful configurations. In Figure 11, we show
the configuration cost from all algorithms relative to the cost of the default shortest
path, which is a lower bound. All algorithms provide nearly optimal costs at low
loads, but deviate significantly at higher loads. For the Metro 50 network, the paths
produced using Capacity Tracking generally stay within about 10% of the lower
bound up to loads of 95%. For the Metro 20 network the cost rises to about 20%
above the lower bound at a load of 95%.

In another set of simulations, we varied the number of processing steps while fixing
the offered load at 75%. Figure 12(a) shows the effect of this on blocking proba-
bility for Metro 50. As we increase the number of processing steps, Strict Resource
Accounting has more sessions blocked due to unnecessary elimination of resources
from consideration, while Capacity Tracking experiences no increase in blocking.
Figure 12(b) shows the effect of increasing the number of processing steps on the
path quality.

Lastly, we measured the average time required for session configuration by the dif-
ferent algorithms. Figure 13 shows the results for Metro 50. For all algorithms, we
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Fig. 13. Time requirements for session configuration

varied the number of steps from 1 to 10. We observe that Capacity Tracking has
a computational cost less than twice that of Strict Resource Accounting algorithm
when ten processing steps are performed. Considering that sessions are likely to
have far fewer than 10 steps in the vast majority of applications, the superior block-
ing probability achieved with Capacity Tracking more than compensates for the
extra computational time.

9 Related Work

Resource discovery and resource allocation are important elements of network
programmability. The Darwin project [4] proposes a set of resource management
mechanisms that support customized network services. Their resource management
system is divided into four components, high-level resource allocation, run-time re-
source management, hierarchical resource scheduling and low-level resource allo-
cation. Within their system, a service broker component called Xena provides both
resource discovery and allocation. Xena formulates the resource allocation prob-
lem as a general optimization problem with multiple metrics. While this provides a
very flexible and general formulation, it makes it computationally infeasible to find
optimal solutions, even in simple situations. By contrast, our approach sacrifices
some degree of flexibility to enable rapid computation of optimal solutions in the
most common cases.

Different approaches are taken in [3] and [1]. Chae et al. [3] proposed a method
for network discovery where they focused on identifying topological properties re-
lated to services and resource states. Constrained network programmability is then
provided to applications based on these properties. In their work, topological prop-
erties are determined by distributing network queries and then aggregating results
back at the source, using a form of network fusion operation.
Another approach using market-based resource control mechanisms is considered
in [1]. In this work, resources are treated as trade goods, network nodes and links
as producers and applications as consumers. Service brokers are used to mediate
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access to resources between producers and consumers, using a form of currency
exchange, and enable varying levels of competition and cooperation.

10 Summary

The provision of advanced computational services within networks is rapidly be-
coming both feasible and economical. Such services, either by routers or by network-
attached processing sites, are potentially a significant benefit for network users, as
they can relieve individuals from the need to acquire, install, and maintain software
in end systems to perform required services. As such network services become
more widely used, it will become increasingly important for service providers to
have effective methods for configuring applications sessions so that they use re-
sources efficiently.

We have presented a general approach to the problem of configuring application
sessions that require intermediate processing. The method involves transformation
of the original problem to a conventional shortest path problem. We have shown,
through a series of examples, that the method can be applied to a wide variety of
different situations. We have also addressed an issue raised by sessions that reserve
resources and proposed an algorithm followed by the simulation study that showed
positive prospects of the algorithm. To make the ideas in this paper directly applica-
ble, it will be necessary to automate the methodology, so that resource management
software can automatically determine the best way to configure a session to satisfy
its requirements. The next step in reaching this objective is to develop a general way
of specifying application requirements for intermediate processing, that is expres-
sive enough to describe typical application scenarios, while being simple enough
for application programmers to use effectively.

We believe that given such a specification method, it will be possible for network
resource management software to combine information about network resource
availability and an application specification, to produce a graph that represents the
possible configurations of the application. By solving the appropriate optimization
problem on this graph (typically a shortest path problem), the network resource
management software will be able to automatically map the application to an ap-
propriate set of resources. This paper represents a crucial first step in a research
program that aims to achieve this objective.
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