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Abstract— As the focus of networking research shifts from
raw performance to the delivery of advanced network services,
there is a growing need for open-platform systems for extensible
networking research. The Applied Research Laboratory at Wash-
ington University in Saint Louis has developed a flexible Network
Services Platform (NSP) to meet this need. The NSP provides
an extensible platform for prototyping next-generation network
services and applications. This paper describes the design of a
system-on-chip Packet Processor for the NSP which performs
all core packet processing functions including segmentation
and reassembly, packet classification, route lookup, and queue
management. Targeted to a commercial configurable logic device,
the system is designed to support gigabit links and switch fabrics
with a 2:1 speed advantage. We provide resource consumption
results for each component of the Packet Processor design.

I. MOTIVATION

ERFORMANCE has been a primary focus of network-

ing research for the past twenty years. At one time,
there was a large gap between raw network performance
and both the potential of the underlying technology and
the needs of emerging multimedia applications. Advances
in the field have largely closed the raw performance gap
leading to a fundamental shift in the focus of networking
research to enabling advanced network services. Specifically,
Field-Programmable Gate Arrays (FPGAs) now provide an
opportunity to consolidate packet processing functions on
a single device at low cost while retaining flexibility. The
key to advanced network services is the development of
extensible network technologies that can serve a wide range of
application requirements. Developing structured, yet flexible
extension mechanisms for advanced network services is a key
challenge. Structured network extensions use policies specified
by network administrators or user-initiated sessions to apply
plugins to packet flows. We believe that this approach can
make extensible networks viable by providing a supportive
environment for application developers and providing high-
performance via executable code and reconfigurable hardware.
We argue that structured extension mechanisms provide a
better foundation for advanced application delivery than the
capsule-based active networking model that has received much
attention in recent years [1].

Il. SYSTEM OVERVIEW

In order to facilitate research efforts in extensible networks
we have developed the Network Services Platform (NSP), an

open-platform extensible router capable of supporting next-
generation applications. A logical view of the NSP port
architecture is shown in Figure 1. Each port of the NSP
comprises a Packet Processor and one or more Processing
Elements. To support IP-over-ATM interfaces, the Packet
Processor supports reassembly on the ingress path. Packets
then undergo classification and route lookup. Based on the
results of this step, packets are queued for transmission to
either the output port associated with the next hop link or
the application plugin associated with a flow identifier in the
processing element. Packets destined for the switch fabric
are queued in virtual output queues and scheduled using a
Distributed Queuing (DQ) mechanism [2]. The switch fabric
carries packets in fixed length cells, requiring segmentation of
packets when sending them through the fabric and reassembly
on the output side. For more details on application plugins and
architectures for software and hardware processing elements,
we refer the reader to our previous work [3][4][5].

Egress processing is very similar to ingress processing.
Packets received from the switch must be reassembled, since
their constituent cells may become interleaved with cells of
other packets from different input ports. Egress packets do
not require route lookup, but must be classified in order
to support egress plugin processing and reserved bandwidth
flows. Packets belonging to outgoing flows with reserved
bandwidth are queued in rate controlled per flow queues.
Best-effort packets are distributed across a set of datagram
queues. This provides a degree of traffic isolation and yields
better performance for backlogged TCP traffic. Packets may
be processed by plugins at both ingress and egress ports.

In current high-performance routers, packet processors typi-
cally include separate devices for segmentation and reassembly
(SAR) or framing, packet classification, route lookup, queuing
and scheduling. Even systems employing network processors
typically require additional devices for packet classification
and route lookup. The remainder of this paper will focus on
the design and implementation of a system-on-chip Packet
Processor for the NSP. To our knowledge, this is the first
open source Packet Processor design capable of supporting
reserved flows and advanced application plugins in attached
processing elements. The NSP leverages components from
earlier research systems developed at Washington University
in Saint Louis. All components of the implementation platform
are described in Section V.



Input Sde Processing

Output Side Processing

Switch
Packet j]]]]—ﬂ%—» - k
—{E:}—» Classification ’—> : w ‘ Febric EE:]—’ E?Ca;tfication
& Route Lookup L : | ‘
reassembly [MT—=& reassembly
contexts TT virtual contexts TT
flow output m flow
Packet processing = queues Packet processing =
Processor queuss y y Processor queses | ]
Processing Processing
Element ? ﬁ Element % E
%—% ﬂ
plugins plugins
"7 Control "7
* Processor *
extension port extension port
Fig. 1. Logical view of the Network Services Platform (NSP) port architecture.
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packets can be interleaved on the link. To handle this, the ISAR
maintains multiple reassembly contexts. For traffic arriving
from the virtual interfaces of the link, the ISAR must insert
an NSP shim, an internal packet header used to communicate
information regarding packet handling throughout the NSP.
The contents and functionality of the shim are explained in
Section I11-D. The ISAR buffers and writes fixed size chunks
of arriving packets to the Packet Storage Manager (PSM).
The PSM passes a packet pointer to the ISAR which uniquely
identifies the packet in memory. A more detailed description
of the PSM is provided in Section Il1I-A.

Once an entire packet has been received by the ISAR, the
packet pointer, shim fields, and packet header fields are for-
warded to the Classification and Route Lookup (CARL) block.
The search algorithms used by CARL are briefly discussed in
Section H1-B. Upon completion of a lookup, CARL updates
the shim fields and, if necessary, makes copies of the packet
pointer and shim fields. Multiple copies are required in the
case of multicast flows or a non-exclusive filter match for
network monitoring. Note that only one copy of the packet
is stored in SDRAM, while multiple copies of the packet
pointer and shim fields may by stored in the Queue Manager

(QM). Based on the shim fields, the QM decides in which
queue to place the packet. The QM participates in a distributed
queueing algorithm [2] to determine appropriate rates for its
virtual output queues. It implements rate-controlled per-flow
queues for the outgoing link and dynamically regulates packet
flows to the processing elements in order to keep them busy,
without exceeding their processing capacity.

The packet pointer and shim fields of the next outgoing
packet are sent to the OSAR. The OSAR retrieves the packet
from the PSM, formats a frame, and transmits the cells of the
frame to either the switch (SW) or line card (LC) interface.
The OSAR also removes NSP shims from the headers of
packets transmitted to the link. For packets with copy counts
greater than one, the PSM keeps track of how many copies
of the packet have been sent. The following sub-sections
provide more detailed descriptions of the key components of
the Packet Processor and discuss inter-module communication
and multicast traffic support.



A. Packet Storage Manager (PSM)

The Packet Storage Manager (PSM) buffers variable length
IP packets in off-chip SDRAM. Memory is used efficiently
by dynamically allocating and deallocating fixed sized chunks
based on packet size. A list of pointers to free chunks is
maintained in a FIFO data structure. As shown in Figure 3,
the PSM s partitioned into four sub-modules: Chunk Writer,
Packet Reader, Free List Manager, and SDRAM Controller.
Chunk Writer allocates memory to incoming packets by
pulling chunks from the free list. It links chunks of the
same packet into a linked list. When a complete packet is
buffered, it returns a pointer to the first chunk as a packet
pointer. When a packet is to be read out, the corresponding
packet pointer is supplied to the Packet Reader which reads
all the chunks from SDRAM, by following the linked list.
Chunks allocated to unicast packets are released. Multicast
packets are read multiple times; hence, the chunks allocated
to multicast packets are not freed until all copies are read.
Whenever chunks associated with a packet are released, the
corresponding pointers are appended to the free chunk pointer
list.
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The Free List Manager appends free chunk pointers released
by the Packet Reader and supplies free chunk pointers to the
Chunk Writer as needed. Since the free chunk pointer list
is too big to be kept on-chip, it is maintained in SDRAM
with the stored packets. Pulling and appending chunk pointers
to the free list in SDRAM involves considerable latency and
can become a potential bottleneck; therefore, a portion of this
list is cached on-chip and used as a mini-list. When chunks
are needed, they are taken from the mini-list and when the
chunks are released, they are appended to the mini-list. Under
balanced traffic conditions, operations on the list maintained
in the SDRAM can be bypassed. When the cached mini-list
grows beyond a threshold, some of the pointers in it are sent to
the list maintained in the SDRAM. Similarly, when the mini-
list depletes below a threshold, some pointers are fetched from
the SDRAM list. It is important to note that these cases only
will occur during unbalanced traffic patterns and the SDRAM
bandwidth used to transfer the free list pointers is “free”.

Since each of these modules interacts with a single
SDRAM, the SDRAM Controller must arbitrate read/write
transactions of three modules. Sequential accesses to the same
SDRAM bank, referred to as a bank conflict, results in high
access latency. The SDRAM Controller attempts to avoid
bank conflicts by scheduling simultaneous requests from the
three modules. While this does not preclude worst-case access
patterns, it improves average case performance without adding
significant complexity.

B. Classification and Route Lookup (CARL)

The Classification and Route Lookup block (CARL) deter-
mines the processing and queuing actions to be performed for
each packet based on the packet header fields received from
the ISAR. A Queue Identifier (QID) for a specific transmission
or processing queue is passed to the Queue Manger (QM)
along with the packet pointer and other shim fields upon
completion of a lookup. As shown in Figure 4, CARL employs
three distinct classification blocks. Route Lookup performs a
Longest Prefix Match (LPM) on the IPv4 destination address
of ingress packets and returns the output port and interface for
the packet. An implementation of Eatherton and Dittia’s Tree
Bitmap algorithm, referred to as Fast IP Lookup (FIPL), is
used to search the set of prefixes in the route table [6][7]. Tree
Bitmap represents the set of stored prefixes as a compressed
multi-bit trie and supports fast incremental updates. The data
structure, next hops, and per-prefix packet counters are stored
in an off-chip SRAM shared between Route Lookup and Exact
Filter Match. Performance measurements of FIPL resulted in
a storage requirement of 6.3 bytes per prefix and performance
of over one million lookups per FIPL engine. The FIPL
design supports up to eight parallel lookup engines sharing a
single memory interface. Each FIPL engine performs one off-
chip memory access every eight clock cycles. The memory
controller in CARL interleaves the memory accesses from a
pair of FIPL engines and a pair of exact filter match engines.
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Fig. 4. Block diagram of CARL.

Exact Filter Match lookup block performs an exact match
on the packet 5-tuple! of ingress and egress packets. Exact
filters are used for reserved bandwidth flows and multicast
flows. The search technique employs a hash lookup with
chaining to resolve collisions. A hash key based on low-order
bits of the source and destination address is used to probe
an on-chip hash table containing “ingress valid” and “egress

1The packet 5-tuple refers to the IP source and destination address, the
transport protocol, and the transport source and destination ports.



valid” bits. If the appropriate bit for the packet being processed
is set, the hash key is used to index a table in off-chip SRAM.
Off-chip table entries can be chained together in linked lists
if multiple filters hash to the same key value. A pair of exact
match search engines operate in parallel and each exact match
search engine performs three memory accesses every eight
clock cycles.

The General Filter Match block performs a five-dimensional
filter match over the packet 5-tuple. This type of match
consists of a LPM on the source and destination IP address,
range match on the source and destination transport ports,
and exact match on the protocol field; however, any field
may be unspecified or “Don’t Care”. General filter matches
may be performed on ingress only, egress only, or both
ingress and egress packets. General filters are typically used
for network management and security; hence, our research
system is designed to handle a modest set of 32 filters. A
set of parallel search engines linearly probes a wide on-
chip memory containing the filter fields, priority, and QID.
To support transparent network monitoring, filters may be
exclusive or non-exclusive, and a search returns the highest
priority matching filter of each type.

The Input Demultiplexor feeds the appropriate packet fields
to the appropriate input FIFOs of the search engines, while
a copy of the header fields and packet pointer are placed in
the header FIFO. Packets not requiring classification or lookup
are placed in the bypass FIFO. The Result Aggregation and
Priority Resolution (RAPR) module retrieves results from the
three engines, performs priority resolution, makes copies of
packet headers if necessary, and forwards them to the QM.

C. Queue Manager

The Queue Manager (QM) manages separates sets of linked
list queues for packets going to the switch fabric, the outgoing
links and the Processing Elements. Packets going to the out-
going links can be placed either in a per-flow queue (for flows
with explicit bandwidth reservations) or in one of a set of best-
effort queues. The per flow queues are scheduled using Self-
Clocked Fair Queueing [8], a relatively simple but effective
virtual-based packet scheduler. To enable efficient handling
of large numbers of per flow queues, the implementation
uses approximate radix sorting, which trades off a bounded
amount of inter-packet jitter to obain processing times which
are independent of the number of flows. Packets that do not
belong to reserved flows are distributed among one of 64
best effort queues. The use of multiple queues provides traffic
isolation, preventing a few greedy flows from consuming all
the link bandwidth, and allows high throughput for TCP flows,
without the large amounts of buffering (and delay) typically
required by internet routers. The improved TCP performance
is obtained using Queue State Deficit Round Robin (QS-
DRR) packet scheduler [9], which effectively desynchronizes
backlogged TCP flows by adding hysteresis to the packet
discard policy. This dramatically reduces queue fluctuations
and greatly improves fairness among flows with different
round trip times.

Packets going to the Processing Elements are dynamically
regulated to limit the number of packets queued for processing

within the processing elements. Packets are forwarded to the
Processing Elements according to a schedule determined by
the processing capacities reserved for different flows.

Packet rates between the switch input ports and output ports
are regulated using a distributed queuing algorithm [2]. In
order to support distributed queueing, the QM maintains a
separate set of queues for each outgoing link of the NSP. Each
set includes per-flow queues for flows with reserved bandwidth
and a separate queue for best-effort traffic. The distributed
queueing algorithm periodically distributes information about
total reserved bandwidth and backlogs to all ports. The QMs at
each port use this information to adjust the rates at which they
forward packets to each port. The algorithm seeks to move
packets through the switch fabric as quickly as possible while
avoiding congestion in the fabric and ensuring that bandwidth
reservations are respected.

D. Inter-module Communication

To pass packet state information between functional blocks
of the NSP, a custom header field, called a shim, is used.
The shim is added to packets arriving from the links and
deleted from packets prior to transmitting them on the link.
Shims are used to carry information between ports as well
as between components of the Packet Processor, hence a
shim may assume one of two formats. InterPort shims carry
information between ports of the NSP, while IntraPort shims
carry information between components of the Packet Processor
and the processing element(s). InterPort shims contain fields
for the input port number and interface, output port number
and interface, and the Multicast Tree Position (MTP) which
will be described in the following sub-section. IntraPort shims
carry those fields as well as the packet pointer, Queue Identifier
(QID), queue length, and flags. Flags specify internal actions
such as “drop the packet” as well as special cases such
as multicast flow, no matching route or filter, and reserved
bandwidth flow.

E. Support for Multicast Traffic

The NSP implements multicast using an extension of a
unique binary tree multicast algorithm employed in an open-
platform Gigabit ATM switch [10]. In this approach a multi-
cast flow is broken down into binary copy steps and processed
in multiple passes. Employing binary copy allows the resource
usage to scale in the three dimensions of interest for multicast
routers. Memory space and bandwidth for lookup operations,
switch fabric bandwidth, and control overhead for adding and
removing nodes in the multicast tree scale linearly with the
number of copies. To integrate multicast traffic with the virtual
output queueing used for unicast traffic, the binary replication
steps are done in the Packet Processors. The Multicast Tree
Position (MTP) field allows one Packet Processor to store
multiple filters for a single multicast session; this allows one
port to participate in multiple binary copy steps. The MTP
field is included in every shim, but is only used for multicast
packets. This 8-bit field denotes the position of a packet or
filter in the binary tree. The initial bits of the MTP field
identify the left/right branches in the path from the root of the



tree to a given tree node. Because the number of bits needed
to identify such a path is variable, we add “padding” bits to
complete the 8 bit field. The padding bits consist of a single
0 followed by zero or more 1’s. With this encoding, the bits
that specify the path are those bits that precede the last 0.

IV. IMPLEMENTATION

The Network Services Platform leverages components from
earlier open-platform research systems developed at Wash-
ington University in Saint Louis. The Washington University
Gigabit Switch (WUGS), an eight port ATM switch based
on a multi-stage Benes topology, provides a high-performance
switch fabric [10]. Each port of the WUGS can be fitted with a
Field-programmable Port eXtender (FPX), a flexible platform
for various packet processing applications [11]. Among other
functionality, the FPX provides an in-datapath FPGA with
access to two SRAM and two SDRAM devices. A second FPX
can be added to the port to implement hardware plugins [5].
Software plugins are hosted on the Smart Port Card (SPC), an
add-on card with an embedded microprocessor and network
interface ASIC [12].

The target implementation device for the Packet Processor
is the Xilinx Virtex 2000E-6 FPGA of the FPX. While the
flexibility of this device is ideal for studying multiple queuing
and scheduling algorithms, its available resources and perfor-
mance posed significant challenges for the Packet Processor
design. Based on performance measurements and experience
with the target device, the target clock frequency for the design
was set at 75MHz. Given the target device performance and
worst-case traffic analysis, the Packet Processor was designed
to support a 1 Gb/s link, a 2:1 switch speedup, and a 200 Mb/s
processing element interface for a total throughput of 6.4 Gb/s.

System specification required approximately 40,000 lines
of VHDL code. The per-component normalized resource
utilization is shown in Figure 5. Total resource usage is
20,302 flip-flops, 22,033 4-LUTs (4-input lookup tables), and
125 BlockRAMs (4096 bit dual-port embedded memories).
Mapping these resources to the target device resulted in 99%
cell usage with 18% of the cells containing unrelated logic.
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Fig. 5. Normalized per-component resource usage of the Packet Processor.

V. CONCLUSIONS

The Packet Processor provides segmentation and reassem-
bly, packet classification, route lookup, and queue man-
agement support for an open-source, experimental Network
Services Platform. Combined ingress and egress processing,
split header and payload paths, minimal data movement,
and efficient lookup and scheduling algorithms result in an
efficient system-on-chip design. The primary challenges faced
in the development of the Packet Processor were defining and
mitigating worst-case traffic patterns. The design is imple-
mented using a commodity configurable logic device for use
with open-platform research systems developed at Washington
University in Saint Louis. In conjunction with hardware and
software processing elements, the Packet Processor enables
research on next-generation network services and applications
using the NSP.
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