
Configuring Sessions in Programmable Networks
with Capacity Constraints

Sumi Y. Choi and Jonathan Turner
Department of Computer Science, Campus Box 1045

Washington University, St. Louis, MO 63130-4899
{syc1, jst}@arl.wustl.edu

Abstract— The provision of advanced computational services
within networks is rapidly becoming both feasible and econom-
ical. As computational services become popular, it is important
to have effective methods for configuring application sessions so
that they use resources efficiently.

In this paper, we discuss the problem of configuring application
sessions that require intermediate processing. The problem was
introduced in an earlier paper, where we showed how to optimally
configure sessions in programmable networks by reducing the
session configuration problem to the problem of finding a shortest
path in a special graph constructed for the particular problem.
This layered graph method is quite flexible and can handle a variety
of specific session configuration problems. However, it does not
explicitly model limits on link bandwidth or processing capacity.
In this paper, we show that the optimal session configuration
problem is NP -hard when capacity is constrained. Neverthe-
less, we have found efficient heuristics for which the network
performance closely approximates the performance that can be
achieved with optimal session configurations.

I. INTRODUCTION

In this paper, we discuss the problem of configuring re-
sources to support application sessions in programmable net-
works. Specifically, we study how to most efficiently allocate
link bandwidth and the processing capacity of programmable
network elements. This problem was introduced in an earlier
paper [1], where we showed how to efficiently find the least-
cost configuration for unicast sessions, under the assumption
that there are no hard limits on the capacity of the various
resources. In this paper, we extend the earlier work to incor-
porate capacity constraints that arise naturally when resources
must be reserved for use by individual application sessions.

The motivation for programmable networks comes from two
forces. First, continuing advances in technology are making
it possible for network elements to be constructed using
programmable components, even in high performance systems.
Programmable components are attractive, because they make
systems more flexible and make it easier to correct deficiencies
that may be discovered only late in a product development
cycle. This growing use of programmable components in high
performance routers also creates an opportunity to perform
more complex, application-specific processing of packets as
they move through a network.

The second force motivating programmable networks, is
the desire of network operators to provide more advanced
services, and in general to make communication easier to
use and hence more attractive to an increasingly broad and

technically unsophisticated user population. The ability to em-
bed application-specific functionality within network elements
has the potential to enable a wide range of new applications
which may not be technically feasible or economically viable
otherwise.

There is a variety of possible approaches to realizing the
potential that programmable network technology has to offer.
Active networking [2], [3] is one such approach. In the best-
known variant of active networking, the so-called capsule
model, packets are interpreted by routers as programs to be
executed, rather than just data to be forwarded. More realistic
variants of active networking involve the dynamic execution of
trusted programs on behalf of individual application sessions,
in response to signaling messages exchanged at the start of
a session [4]. This work is oriented toward the latter view
of programmable networks. However, it can also be applied
in networks where the use of programmable elements is
controlled by administratively-determined policies, rather than
user-initiated signaling messages.

To illustrate the potential of programmable networks, con-
sider an example application. It involves an enterprise network
with multiple sites that communicate over the Internet. As
a matter of corporate policy, it is required that all commu-
nication between corporate sites be encrypted. This policy
can be implemented by configuring encryption modules in
programmable network elements, to encrypt all packets that
go between two sites. This might be combined with modules
for compressing video going between sites, to conserve the
use of Internet bandwidth.

In [1], we showed how to optimally configure sessions in
programmable networks by reducing the session configuration
problem to the problem of finding a shortest path in a special
graph constructed for the particular problem. This layered
graph method is quite flexible and can handle a variety of
specific session configuration problems. However, it does
not explicitly model limits on link bandwidth or processing
capacity, which is a significant limitation. In this paper, we
show that the optimal session configuration problem is NP -
hard when capacity is constrained. Nevertheless, we have
found efficient heuristics for which the network performance
closely approximates the performance that can be achieved
with optimal session configurations.

This paper is organized as follows. In Section II, we review
the optimal session configuration problem (without capacity

constraints) and show how it can be solved using the layered
graph method. In Section III, we extend the problem to include
capacity constraints and show that the problem is NP -hard.
In Section IV we introduce several heuristic algorithms and in
Section V, we present simulation results showing that the best
of the heuristics is able to provide excellent performance.

II. CONFIGURING SESSIONS WITH LAYERED NETWORKS

In the session configuration problem, we are given a graph
that represents the network, with nodes representing routers
or switches and edges representing communication links. Our
objective is to select a path for a session involving two
terminals s and t and one or more intermediate processing
steps r1, . . . , rk. For each processing step ri, there is a set of
routers Ri that contains potential candidates for performing
that step. A feasible path from s to t is a path that includes
at least one element from each of the sets R1, . . . , Rk, in the
proper order. An optimal path is one of the least cost, where
the cost of a path is the sum of the costs of the links on the
path and the costs of the nodes that are selected for carrying
out the processing steps.

The layered network method solves the session configura-
tion problem by reformulating the problem in another space,
where it can be solved as a conventional shortest path problem.
The resulting shortest path can then be mapped back to a path
in the original network graph, to produce the required session
configuration.

We illustrate the method, focusing on the transformation
that converts the network graph to a new graph called the
“layered network”. Let us consider a unicast session with a
single processing step, where R is the set of candidate nodes
that are capable of handling the processing step. We refer
to such nodes as servers in this paper. For this session, we
transform the original network graph into a “two layer” graph.
The layered network G′ includes two copies of the original
network graph G = (V,E). We refer to one copy as layer
0 and the other copy as layer 1. Also, for each node v in
G, we denote the copy of the node in layer 0 as v0 and the
copy in layer 1, v1. The cost of each edge in G is preserved in
both layers. We complete the layered network G′ by adding an
inter-layer edge (r0, r1) for each server r in R. Here, the cost
of each server r is applied to the new edge, (r0, r1). Figure 1
shows an example of a layered network.

d1

p1

p1

s0 1

2

2

1

2
3

1

1 1

2
1

1

1

2

2

1

23

1

1 1

2
1

1

1

1

Fig. 1. Layered Network with Shortest Path

Given the layered network G′, we compute the least cost
path from the node s0, (the copy of the source node s in
layer 0), to the node t1, (the copy of the destination node t

s

d

1

2

1

2 1

1 1

2 1

1

3

1
p

1
p

1

Fig. 2. Session Configuration

in layer 1). Note that G′ only has edge costs, so shortest path
algorithms can be applied directly. Figure 1 shows the least
cost path in the layered network.

For the final solution to the unicast session configuration
problem, the least cost path in G′ is mapped back to the
network graph G as follows. For each regular edge involved in
the path, we “project” it to the original copy in G. Similarly
for the inter-layer edge in the path, we “project” it to the
original server in G and mark it as the designated node for
the processing requested in the session graph. The projection
yields a legitimate configuration connecting the two terminals
and containing the server on the path. This configuration has
the least cost among all such configurations (this is proved in
[1]).

The layered network method can be generalized to an arbi-
trary number of processing steps. For a unicast that involves
two terminals s and t and processing with k consecutive steps,
we build the layered network with k+1 copies of the original
network where the copies are denoted layer 0 through layer
k. Between layer i − 1 and layer i, we add an inter-layer
edge (ri−1, ri) for each server r ∈ Ri, where Ri is the set of
candidate servers for step i. Then, the optimal configuration
is computed by finding the least cost path from s0 to tk in the
layered network and projecting it back to the original network.
Thorough descriptions and proofs with regard to the layered
network method are given in [1].

III. CAPACITY CONSTRAINED NETWORKS

Our original formulation of the session configuration prob-
lem does not take into account limits on the processing capac-
ities of the nodes and bandwidths of links. Some applications
require that a certain amount of link bandwidth and processing
capacity be reserved for the application, in order to ensure that
users experience an acceptable quality of service. To handle
such applications properly, the session configuration algorithm
must be extended to account for capacity constraints. For
example, consider a video conferencing application involving
intermediate processing steps to first compress the video,
then decompress it. To ensure subjectively satisfactory perfor-
mance, we need to ensure both that there is sufficient available
bandwidth at every link on the path, and that the servers have
sufficient processing capacity to perform the compression and
decompression steps with minimal delay.

To account for capacity constraints, we must extend the
session configuration problem to include capacity constraints

for both edges and nodes in the network graph. We also add
capacity requirements to the session model. That is, for each
processing step, we specify a processing requirement, and for
every path segment between two consecutive processing steps,
we specify a bandwidth requirement. A feasible solution is
one for which the demands placed on links and processing
resources do not exceed the available capacity. As before, we
seek a feasible solution of minimum overall cost.

Note that for applications that do not require intermediate
processing, it’s easy to find a minimum cost feasible solution.
In this case we can simply remove from the network all links
that lack the bandwidth needed for the session, and then find
a shortest path in the reduced network. The introduction of
intermediate processing steps complicates things, primarily
because the best session configuration need not correspond
to a simple path in the original network graph. In particular,
there is a possibility that in the best configuration there are
links and/or nodes that are used more than once. This makes
it difficult to find the best configuration, while ensuring that
each link and node is not over-used.

v

2,2
p

s

d

1,5
1,1

1,5
3,10

2,1

u

1,0

1,2

Cost, Capacity

Fig. 3. Application with a capacity restriction

To illustrate this, consider the video transcoding example,
in the network shown in Figure 3. In the figure, each link is
labeled with a pair of numbers, the first being the cost of the
link and the second being its available capacity. The shaded
node p, is the only one capable of performing the transcoding
required by the application. Note that if the bandwidth needed
for the video is ≤ 0.5, there is a path from the source node s to
the destination node d that passes through p and uses the edge
(u, v) twice. However, if the bandwidth of the session exceeds
0.5, there is no feasible configuration. If we attempt to solve
this problem using the layered network method, it’s not clear
what capacity should be assigned to edges on different layers.
If we assign the original capacity to all copies, the subsequent
shortest path computation could produce an infeasible path.
If we divide the capacity among the different layers, we may
prevent the discovery of some feasible paths.

The difficulty illustrated by this example is no acci-
dent. Indeed, the problem of optimally configuring a session
with capacity restrictions is intractable. Consider a capacity-
constrained network, G = (V,E) in which every pair of nodes
is joined by an edge, and where every node but s and t is
capable of performing processing and has one unit of available
capacity.

Now consider a session that requires |V | − 2 processing
steps, each of which requires one unit of processing capacity.
Any feasible solution to this problem must pass through all

the intermediate nodes and thus, any feasible path provides
a solution to the well-known Hamiltonian path problem [5],
which is known to be NP -complete. This argument shows that
not only is it difficult to find the best solution, but it is difficult
to find any feasible solution, even when all links have the same
capacity and cost, and all servers have the same capacity and
cost. Given the intrinsic intractability of the problem, we turn
next to a study of efficient heuristic algorithms, which can be
expected to have good performance in practice.

IV. HEURISTIC METHODS FOR CAPACITY CONSTRAINED

NETWORKS

In this section, we introduce two heuristic methods for
the optimal session configuration problem in a capacity-
constrained network. We focus on unicast sessions that specify
a processing requirement for each step and a bandwidth
requirement for each path segment between two consecutive
steps. Note that the bandwidth requirement can differ on
different path segments, since processing steps may expand
or reduce the amount of data. As described in [1], the costs
in the different layers are scaled to account for such effects.
Our heuristics extend the layered graph method to prevent
resources from being used beyond their current capacity.

The first heuristic is really a collection of similar algorithms,
that we refer to as selective edge inclusion algorithms. Each
modifies the layered graph to prevent links from being over-
used and then finds a shortest path in the modified graph. The
algorithms differ in the way they modify the layered graph.

• The strict inclusion method includes an edge in the
layered graph only if it has enough available capacity
so that it cannot be over-used, even if it is selected for
use in all layers. This policy applies to both intra-layer
and inter-layer edges. Since different processing steps
may require different amounts of processing capacity,
we include a given edge as an inter-layer edge only if
the sum of the capacities required for all the processing
steps is no larger than the available capacity of the server
represented by the inter-layer edges. Similarly, we include
a given intra-layer edge only if its capacity is no smaller
than the sum of the bandwidth requirements for all path
segments. Once the modified layered network is con-
structed, a shortest path from the source to the destination
is found. If none exists, the session configuration attempt
is rejected.

• The loose inclusion method includes an edge in all layers
if it has sufficient capacity to be used in any layer. If, after
a path is determined, the path is found to over-use some
edge, the path is discarded and the session configuration
attempt is rejected.

• The permissive loose inclusion method is not intended
as a practical algorithm, but is used in the simulation
study to provide a nominal bound on the performance
of the other algorithms. It works like the loose inclusion
method, except that it never rejects the path that is found,
even if the path over-uses some edge.

• The random inclusion method includes edges in a set of
selected layers for which the total capacity is no larger
than the edge capacity. For each edge, the layers are
selected randomly and independently. Once the modified
layered network is constructed, shortest path search is
done. If successful, the session is configured using that
path.

• The consecutive inclusion method picks a layer at random
and then goes through the remaining layers in consecutive
order, adding the edge to each layer in which the addition
does not violate the capacity constraint.

The selective edge inclusion methods are very simple to
implement and can perform reasonably well when the session
resource requirements are much smaller than the capacities of
the links and servers.

Our second heuristic is somewhat more complex but can
perform well, even when session resource requirements are
relatively large. The algorithm is an extension to Dijkstra’s
shortest path algorithm, and is called the capacity tracking
algorithm. We start with a brief review of Dijkstra’s shortest
path algorithm.

Given a graph, and a source node s, Dijkstra’s algorithm
computes a shortest path tree rooted at s. Initially, the tree
contains just s. The algorithm maintains a set S, of boundary
vertices, which includes all nodes v that are connected to a
vertex u in the partial tree constructed so far, by a directed
edge (u, v). At the start of the algorithm, S contains the nodes
v, for which there is an edge of the form (s, v). The algorithm
also maintains, for each vertex v, a tentative distance d(v),
which is the length of the shortest path from s to v that has
been found so far. It also maintains a tentative parent p(v),
which is the predecessor of v in a path from s of length d(v).
The quantities d(v) and p(v) are not defined for nodes that
are neither in the tree, nor in S.

At each step, Dijkstra’s algorithm selects a node v in S
for which d(v) is minimum, and adds it to the tree. It then
examines each edge (v, w). For each node w that is neither in
the tree nor in S, it adds w to S, setting p(w) to v and d(w) to
d(v) plus the length of (v, w). For each node w that is in S, it
compares d(w) to d(v, w) plus the length of the edge (v, w),
and if it finds that d(w) is larger, it updates d(w) and p(w). If
the set of boundary vertices is implemented using a Fibonacci
heap [6], Dijkstra’s algorithm runs in O(m + n log n) time,
where n is the number of nodes in the graph, and m is the
number of edges.

When Dijkstra’s algorithm is applied to a layered graph,
some of the paths in the shortest path tree may contain edges
on different layers that correspond to the same link or router
in the original network, from which the layered network was
constructed. This may lead to over-use of resources. To prevent
this, we modify the basic processing step, to include a check
for over-used resources. In particular, when a node vi is added
to the tree (i denotes the layer in which the vertex appears),
we consider edges of the form (vi, wi) and (vi, vi+1). Before
processing an edge of the form (vi, wi), we examine the path
in the tree from s to vi and add up the capacities required

u2

v2

w21 1

1 1
1

1 1

1

1
1

x2

t

u0

v0

w01 1

1 1
1

1 1

1

1
1

x0

s

u1

v1

w11 1

1 1
1

1 1

1

1
1

x1

1
1

1

Fig. 4. Link capacity tracking (Blocked)

1 1

1

1 1

1 1
1

1 1

1

1
1

u2

v2

w2

x2

t

u0

v0

w01 1

1 1
1

1 1

1

1
1

x0

s

u1

v1

w11 1

1 1
1

1 1

1

1
1

x1

Fig. 5. A valid configuration

by all edges on the path that correspond to the original link
(v, w). If this total capacity, plus the capacity that would be
used by the edge (vi, wi) exceeds the available capacity of the
link, then no action is taken with respect to that edge. Edges
of the form (vi, vi+1) are handled similarly. We refer to this
capacity checking procedure as link capacity tracking.

The extra time required by link capacity tracking is
O((km)(kn)), in the worst-case, where m and n are the
number of edges and nodes in the original network and k
is the number of processing steps. This can be seen by noting
that the checking procedure is invoked no more than k(m+n)
times and each execution requires that we traverse a path with
no more than kn − 1 edges.

Link capacity tracking ensures that paths found by the
algorithm do not over-use any resources. However, since the
problem is NP -hard, we cannot expect it to always find a
valid path, even when a path exists. Consider the example
shown in Figure 4. If each link in the original network graph
has one unit of capacity and the session requires one unit of
capacity on each edge of the selected path, it can fail to find
a path, as shown in Figure 4 of the figure. The bold edges are
the edges that form the shortest path tree, at the time the path
search terminates. Note that there is no way to extend the tree
further, since the only edge leaving vertex u2 has already been
used in the top layer, and hence cannot be used again. On the
other hand, there is a path that could be used for this session,
as shown Figure IV.

Fig. 6. Torus network

V. SIMULATION RESULTS

We performed a set of simulations for the session con-
figuration problem to evaluate the algorithms presented in
the previous section. Simulations were performed using four
different network topologies.

• Torus: This network is based on a grid of 64 nodes
where every node has an outgoing edge to each of its
four neighbors, north, south, east and west along the
grid lines. The nodes at edges of the square grid also
have links that “wrap around” to the corresponding node
at the opposite edge, resulting in a torus topology. The
network has 128 edges and each is assigned an equal
cost and capacity. Figure 6 shows the network topology
where servers are shown as triangles. A random subset
of the nodes are designated as servers, with the ability to
perform processing. All servers have the same capacity.

• Random: This network is a random regular network with
64 nodes, each having 4 incident edges. We build the
network starting with a random degree-bounded tree that
spans all 64 nodes, then we expand the network by adding
edges randomly until every node has exactly four incident
edges. Again, every link has the same capacity and the
same cost. A random subset of the nodes are designated
as servers, with the ability to perform processing. All
servers have the same capacity.

• Metro 20: is a more realistic network configuration,
spanning the 20 largest metropolitan areas in the United
States. The network topology is shown in Figure 7. Link
costs are set equal to the physical distance between the
nodes they connect, reflecting the higher cost associated
with links spanning greater distances. The link capacities
are selected to be large enough to handle the anticipated
traffic. The link dimensioning procedure used for this
purpose is taken from [7], which describes a constraint-
based network design methodology and an interactive
network design tool that implements it. We constrain
the traffic in two ways. First, the total traffic entering
and leaving a node is chosen to be proportional to the
population of the metropolitan area represented by that
node. Next, for each node u, we constrain its traffic to
every other node using constraints that are proportional
to the populations of the metropolitan areas represented
by the other nodes. Given these traffic assumptions and a
default path joining each pair of vertices, link dimensions
can be computed using linear programming. The resulting

Phoenix

St.Louis

PhiladelphiaChicago

San Diego

Detroit

Cleveland

Pittsburg

NY

Houston

Dallas

Seattle

Los Angeles

San Francisco

Minneapolis

DCDenver

Boston

Atlanta

Miami

Fig. 7. Metro 20 Network

Indianapolis

Kansas City

Sacramento

Atlanta

Cincinnati

Columbus

Charlotte

Detroit
Grand Rapids

DaytonChicago

Louisville

Cleveland

Providence

Phoenix

San Antonio
Tampa

Orlando

Portland

Nashville

Austin

Las Vegas

Hartford

NY

Philadelphia

Raleigh

Memphis

St.Louis

Rochester
Buffalo

Pittsburg

Houston

Dallas

New Orleans

Oklahoma City

Seattle

Los Angeles

San Diego

San Francisco

Salt Lake City

Milwaukee

Minneapolis

DC

Miami

West Palm Beach

Virginia Beach

Denver

Greensboro

Boston

Jacksonville

Fig. 8. Metro 50 Network

link capacities guarantee that any traffic pattern satisfying
the traffic constraints can be carried if the traffic is routed
along the default paths. The servers along each default
path are dimensioned to handle the worst-case traffic load
allowed by the traffic constraints.

• Metro 50: is a larger version of the Metro 20 network. It
has a node for each of the fifty largest metropolitan areas
in US. The topology is shown in Figure 8. The links and
servers are dimensioned in the same way as Metro 20.

While Torus and Random are not particularly realistic network
configurations, they provide a more “neutral” context for eval-
uating the session configuration algorithms than the somewhat
idiosyncratic network topologies that arise from real world
considerations. By considering a variety of different networks,
we hope to avoid drawing conclusions that may be attributable
purely to special properties of a particular network. There
are several configuration parameters that affect the simulation
results.

• Density of servers (P): The density of servers is just
the ratio of the number of servers to the total number
of nodes. In the results reported here P = 1

3 . The
servers were randomly selected for Torus and Random
and were configured for Metro 20 and Metro 50 as shown
in Figure 7 and Figure 8, where servers are drawn as
triangles.

• Session capacity requirement (BWs): The capacity that
an individual session uses at each link and server; BWs,
is set to 3% of the average link capacity.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Random Inclusion

Loose Inclusion

Strict

Link Capacity
TrackingConsecutive Inclusion

Permissive Loose

Default Shortest Path

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

B
lo

ck
in

g
Pr

ob
ab

il
it

y

Random Inclusion

Loose Inclusion

Strict Inclusion

Link Capacity
TrackingConsecutive Inclusion

Permissive Loose

Default Shortest

(a) Torus Network

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

B
lo

ck
in

g
Pr

ob
ab

il
it

y

Random
Inclusion

Loose Inclusion

Strict Inclusion

Link Capacity
Tracking

Consecutive
Inclusion

Permissive
Loose

Default Shortest Path

(b) Random Network

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

B
lo

ck
in

g
Pr

ob
ab

il
it

y

Loose InclusionStrict Inclusion

Random
Inclusion

Consecutive
Inclusion

Link Capacity
TrackingPermissive Loose

Default Shortest

(c) Twenty metro areas

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load
B

lo
ck

in
g

Pr
ob

ab
il

it
y

Loose Inclusion

Link Capacity
Tracking

Consecutive
Inclusion

Strict Inclusion

Random
Inclusion

Permissive
Loose

Default Shortest

(d) Fifty metro areas

Fig. 9. Heuristics for session configurations

1.00

1.10

1.20

1.30

1.40

1.50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

N
or

m
al

iz
ed

 P
at

h
C

os
t

Link Capacity Tracking

Permissive Loose

Loose Inclusion

Random Inclusion

Consecutive Inclusion

Strict Inclusion

(a) Twenty metro areas

1.00

1.10

1.20

1.30

1.40

1.50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Offered Load

N
or

m
ai

lz
ed

 P
at

h
C

os
t

Link Capacity Tracking

Permissive Loose

Loose Inclusion

Random Inclusion

Consecutive Inclusion

Strict Inclusion

(b) Fifty metro areas

Fig. 10. Configuration Cost

• Number of steps (Nsteps): The number of processing
steps that a session requires.

• Offered load at links (Ol): The average offered back-
ground traffic level on each link. The simulation is done
by generating background traffic levels independently at
each link and node using an M/M/k/0 queueing model
(k servers and zero length queues, where k is the ratio
of link capacity to session bandwidth), then attempting
to connect random pairs of nodes. Each simulation run
included over 2.5 million session setup attempts.

• Offered load at servers (Op): The average offered back-
ground traffic level at each server. For the results reported
here, the offered load at the servers is the same as the

offered load on the links.
The selection of the end nodes of the sessions, was done
completely randomly for Random. For Torus, the selected node
pairs were restricted to be exactly to four hops apart. For Metro
20 and Metro 50, the selection of the end nodes was weighted
by the populations of the cities, reflecting the higher traffic
volumes expected in larger cities.

Our primary performance metric is the blocking probability,
which is the percentage of session configuration attempts that
were unsuccessful. Figure 9 shows the blocking probabilities
for the various heuristics, as a function of the offered load.
The plots also show the blocking probability when paths are
constrained to use the default path. Recall that the default

paths were used in the dimensioning process, so this restriction
is worth considering, as a point of comparison. In general,
however, the lack of routing flexibility implied by this policy
results in higher blocking probabilities than with the other
algorithms.

For all four networks, Link Capacity Tracking outperformed
the heuristics that use Selective Inclusion. Also, note that Link
Capacity Tracking generally performs almost as well as the
permissive loose inclusion method, which is included as an
idealized bound on algorithm performance.

For Torus, every heuristic method except Loose Inclusion
results in blocking probability less than 1% for load up to 80%.
(See Figure 9(a).) Note that Torus has many paths between
selected end nodes, and therefore, the heuristics that avoid
overusing resources by ignoring some edges in the layered
graph still have a good chance of finding valid paths in
the reduced graph. On the other hand, Loose Inclusion does
relatively poorly, apparently because it often selects paths that
over-use resources (primarily servers).

For Random, all the better algorithms experience higher
blocking probability than for Torus. The explanation appears
to be the variety of paths available between endpoint pairs
in Torus and the limited separation between endpoints in
the Torus simulation. With Random endpoints were simply
selected at random, so many pairs are likely to be further
apart than the four hops that constrained the choice of endpoint
pairs in the Torus simulation. In Random, there also tend to
be fewer good “second-choice” paths, when the preferred path
is not available.

For the more realistic Metro 20 and Metro 50 networks,
blocking probabilities are generally higher. For Metro 20, we
note that many sessions must take “detours” to pass through
servers. For example, consider sessions between Pittsburgh
and DC or Seattle and Minneapolis. When the default path is
too busy to accommodate sessions, the “second-choice” paths
typically require even longer detours. With Torus, on the other
hand, the second and third choices are often no worse than the
default. For Metro 50, the detours required to reach servers are
generally smaller, but the number of hops required between
endpoints tends to be larger; for example, there are 11 hops
in the shortest path from New York to Los Angeles. Note that
with link capacity tracking, blocking probabilities of less than
1% are obtained for offered loads of more than 75%.

We also measured the cost of the successful configurations.
In Figure 10, we show the configuration cost from all heuristics
relative to the cost of the default shortest path, which is a
lower bound. All heuristics provide nearly optimal costs at
low loads, but deviate significantly at higher loads. The paths
produced using Link Capacity Tracking generally stay within
5 to 10% of the lower bound up to loads of 95%. For the
Metro 20 network the cost rises to about 20% more than the
lower bound at a load of 95%.

Lastly, we measured the average time required for session
configuration by the different algorithms. Figure 11 shows the
results for Metro 50. For all algorithms, we varied the number
of steps from 1 to 10. As can be seen, the algorithms based

0

0.0005

0.001

0.0015

0.002

0.0025

1 2 3 4 5 6 7 8 9 10

Number of steps

Se
co

nd
s

pe
r

co
nf

ig
ur

at
io

ns

Loose Inclusion

Random Inclusion

Consecutive Inclusion

Link Capacity Tracking

Strict Inclusion

Fig. 11. Time requirements for session configurations

on selective link inclusions are the fastest. On the other hand,
link capacity tracking remains reasonably competitive, with a
computational cost less than twice that of the best selective
inclusion algorithm when ten processing steps are performed.
Considering that sessions are likely to have far fewer than 10
steps in the vast majority of applications, the superior blocking
probability achieved with Link Capacity Tracking more than
compensates for the extra computational time.

VI. SUMMARY

Programmable network elements are expected to become
more common, in the years ahead, enabling advanced network
services that do more than simply transport bits from place to
place. As the use of advanced services grows, it will become
more important to understand how to configure application
sessions to make best use of the available resources.

In this paper, we have presented a general approach to
the problem of configuring application sessions that require
intermediate processing, and that require reserved capacity.
We have studied several heuristic algorithms for this prob-
lem, based on the layered graph method, including a novel
extension of Dijkstra’s shortest path algorithm, to account
for capacity constraints. Our simulation results demonstrate
that the link capacity tracking algorithm matches the best
performance that one can expect to achieve.

REFERENCES

[1] Sumi Y. Choi, Jonathan Turner, and Tilman Wolf, “Configuring session
in programmable networks,” Proceedings of IEEE Infocom 2001, Apr.
2001.

[2] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J.
Wetherall, and Gary J. Minden, “A survey of active network research,”
IEEE Communications Magazine, vol. 35, no. 1, pp. 80–86, Jan. 1997.

[3] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho
Miki, John B. Vicente, and Daniel Villela, “A survey of programmable
networks,” Computer Communication Review, vol. 29, no. 2, pp. 7–23,
Apr. 1999.

[4] Daniel Decasper, Guru Parulkar, Sumi Choi, John DeHart, Tilman Wolf,
and Bernard Plattner, “A scalable, high performance active network node,”
IEEE Network, January/February 1999.

[5] Michael R. Garey and David S. Johnson, Computers and Intractability:
A Guide to NP –completeness, Freeman, San Francisco, 1979.

[6] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Intro-
duction to Algorithms, McGraw-Hill Book Company, 1990.

[7] Hongzhou Ma, Inderjeet Singh, and Jonathan Turner, “Constraint based
design of atm networks, an experimental study,” Washington University
Computer Science Department Technical Report WUCS-97-15, 1997.

