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Abstract 

CAMs are the most popular practical method for impl-
ementing packet classification in high performance routers. 
Their principal drawbacks are high power consumption and 
inefficient representation of filters with port ranges. A 
recent paper [11] showed how partitioned TCAMs can be 
used to implement IP route lookup with dramatically lower 
power consumption. We extend the ideas in [11] to address 
the more challenging problem of general packet classifi-
cation. We describe two extensions to the standard TCAM 
architecture. The first organizes the TCAM as a two level 
hierarchy in which an index block is used to enable/disable 
the querying of the main storage blocks. The second 
incorporates circuits for range comparisons directly within 
the  TCAM memory array. Extended TCAMs can deliver 
high performance (100 million lookups per second) for 
large filter sets (100,000 filters), while reducing power 
consumption by a factor of ten and improving space 
efficiency by a factor of three. 

1.  Introduction 
Packet classification is a key technology for modern high 
performance routers. Packets received at a router input are 
classified to determine both the output port the packet should 
be sent to and to determine what, if any, special handling it 
should receive. Packet classification can be used to provide 
expedited forwarding of certain types of packets, to enforce 
security restrictions or to trigger traffic monitoring. The 
growing complexity of the Internet is creating new applica-
tions for packet classification, placing additional demands on 
the packet classification subsystem of routers and other 
packet handling devices. 

In the general packet classification problem, packets are 
classified according to a set of packet filters, which define 
patterns that are matched against incoming packets. Typi-
cally, packet filters specify possible values of the source and 
destination address fields of the IP header, the protocol field 
(often including flags) and the source and destination port 
numbers (for TCP and UDP). The address fields are often 

specified as address prefixes, although arbitrary bit masks of 
the address fields are commonly allowed in packet filters 
and this feature is used in real filter sets, although relatively 
infrequently. Filters typically specify a range of port num-
bers for matching packets. Protocols can be either specified 
exactly or as a wildcard. Some systems allow protocol val-
ues to be specified by bit masks as well, although it’s not 
clear how useful that feature is. 

A small example of a filter set appears in Figure 1. Here, 
the address fields are shown as four bits, rather than 32 to 
simplify the example. A dash in an address field indicates a 
bit position where the mask bit is zero. A dash for an entire 
entry indicates a wildcard which is matched by any packet. 
When a packet is received, the filter set is consulted to find 
the first matching filter in the set. The packet is then pro-
cessed according to the specified action. So for example, a 
packet with a source address of 0101, a destination address 
of 0011, a protocol field specifying TCP, a source port of 4 
and a destination port of 6 would be forwarded to output port 
5, since it matches the second filter in the set, but not the 
first. On the other hand, a packet with a source address of 
1111 and a destination address of 0100 would be dropped 
(regardless of other fields), since the first matching filter is 
number 6. 

Historically, the applications of general packet classifi-
cation have been limited to relatively low performance 
systems with relatively small numbers of packet filters. This 
has made it possible to match every incoming packet against 
the ordered list of filters and stop when the first matching 
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4. 1101 101- ICMP - - fwd 7
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7. 0101 ---- - - - fwd 4
8. 1--- 0--- - - - drop 
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filter in the list is encountered. This method does not scale 
effectively to high performance systems that must process 
tens of millions of packets per second and that may have 
much larger filter sets. While currently, most general packet 
filter sets are fairly small (most have a few hundred entries 
and very few exceed a few thousand), the size is expected to 
grow substantially in the future. 

The packet classification problem has been studied ex-
tensively in recent years. One early effort [13] proposed a 
grid-of-tries to look up 2D filters defined on source and des-
tination address. While very effective for 2D filters, it could 
not be applied directly to larger numbers of dimensions. The 
tuple-space search technique [14] is another general ap-
proach, in which filters are separated into classes based on 
the number of bits specified in each dimension. This allows 
a given class to be probed quickly using hashing, but since 
many classes may have to be probed for a given packet, it 
does not yield very high performance. The Recursive Flow 
Classification (RFC) algorithm [GU99a] has received much 
attention in recent years. RFC trades-off memory space 
against time to achieve faster lookups. While this is a legiti-
mate choice, the space efficiency of RFC can be surprisingly 
poor. It can use more than a kilobyte per filter, roughly 50 
times the memory needed to represent the filter. Another 
recent algorithm, Hicuts [GU99b] is similarly profligate in its 
use of memory. The Extended Grid of Tries [2] and Hyper-
cuts [17] algorithms are the first algorithms for the general 
problem that show some promise of achieving high perform-
ance, without requiring excessive amounts of memory.  

Perhaps the most popular method for packet classifica-
tion problem in practice, is to use Ternary Content 
Addressable Memory (TCAM). TCAMs stores data patterns 
in the form of (value, bit mask) pairs. A query word can be 
simultaneously compared against all the stored patterns. A 
query word q is said to match a stored pattern (v,m) if q & m 
= v & m, where the ampersand denotes the bit-wise logical 
and operation. One bit of TCAM storage can be imple-
mented using 16 transistors [MO94] compared to 6 
transistors for a word of SRAM. This 2.7x penalty, makes 
TCAMs less attractive than SRAM-based algorithms that 
use the same number of bits. However, as discussed earlier, 
high performance algorithms using SRAM typically use very 
large amounts of memory per stored filter, which offsets the 
cost advantage of SRAM. 

TCAMs suffer from two other shortcomings, in addition 
to their relatively high cost per bit. First, TCAMs require 
large amounts of power, more than 100 times the power of a 
similar amount of SRAM. They can account for a major part 
of the power consumption of a router line card. A recent 
paper [11] showed how partitioned TCAMs could signifi-
cantly reduce TCAM power consumption in IP route lookup. 
While this is of some interest, the availability of efficient 
SRAM-based route lookup algorithms [3, 12, 15, 18] limits its 
impact. In this paper, we explore how similar ideas can be 
applied to the more difficult problem of general packet clas-
sification. Another significant shortcoming of TCAMs is 

their inability to efficiently handle filters containing port 
number ranges. Such filters must be handled using multiple 
TCAM entries, and in the worst-case, it may take hundreds 
of TCAM entries to represent a single filter. We propose an 
extension to TCAMs that enables them to handle port ranges 
directly and argue that the added implementation cost of this 
extension is amply compensated by the improved handling 
of port ranges.  

Section II describes the extensions to TCAMs that are 
needed to enable high performance and cost-effective solu-
tions to the general packet classification problem. Section III 
describes a general algorithm for organizing a filter set in an 
extended TCAM to enable fast lookup. Section IV briefly 
presents the method we use to generate large packet filter 
sets, which reflect the characteristics of the much smaller 
filter sets that are typically available for use by researchers. 
In Section V we present results evaluating the performance 
of our algorithm, under a wide range of conditions. Conclud-
ing remarks are provided in Section VI. 

2. Extended TCAMs 
Ternary CAMs are perhaps the most popular implementation 
method for packet classification in high performance routers. 
TCAMs are becoming available in configurations with up to 
18 Mbits, roughly half the size of the largest SRAMs. An 18 
Mbit TCAM offers enough storage for up to 128K IPv4 fil-
ters, which is large enough to meet most near term needs for 
general packet classification solutions. 

As discussed above TCAMs have two major drawbacks. 
First, they consume a large amount of power, and second, 
they are inefficient when applied to filters with port number 
ranges. Some TCAMs have a feature that allows a query to 
be applied to a subset of the TCAM entries, instead of the 
entire set. Reference [11] has shown how such partitioned 
TCAMs can provide a lower power solution to the problem 
of IP lookup. We extend the partitioned TCAM concept and 
show that if we organize the set of filters in this extended 
TCAM appropriately, we can perform a lookup for a single 
packet, using a limited number of the TCAM blocks, rather 
than the entire TCAM, reducing the power consumption by 
more than an order-of-magnitude. To make this strategy 
effective, the TCAM must have a fairly large number of 
independent storage blocks. For example, we might organize 
a 128K filter TCAM into 512 blocks of 256 filters each. A 
lookup algorithm that limited its search to no more than say 
ten blocks would use just a few percent of the power that 
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1 279 26 949 29% 
2 183 24 553 33% 
3 68 12 128 53% 
4 158 10 418 37% 
5 264 176 1638 16% 
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would be required if every lookup were applied to the entire 
TCAM. 

Our modification to the TCAM architecture adds a spe-
cial storage block called an index to an ordinary partitioned 
TCAM. Each word in the index is associated with one of the 
main storage blocks. Conceptually, when a lookup is per-
formed on the modified TCAM, the index is consulted first, 
and then for each word in the index that matches the query 
word, a lookup is performed on the corresponding storage 
block. The lookups in the storage blocks are done in parallel 
and the address of the first matching entry in each block is 
returned. To resolve matches across multiple blocks, we 
associate a priority with each filter, which corresponds to its 
position in the original ordered list. The priority field of the 
first matching filter in a block is returned along with the ac-
tion field of the matching filter. The priorities are compared 
to determine which of the matching filters has the highest 
priority. The action field of this filter is returned as the result 
of the lookup. The modified TCAM can be pipelined to 
maintain the same operating frequency as a conventional 
TCAM. The index lookup is done on the first clock tick, 
followed by the lookup in the storage block on a second 
clock tick, followed by the priority resolution on a third 
clock tick. An extended TCAM with a clock rate of 100 
MHz can perform 100 million lookups per second. 

As mentioned above, a TCAM lookup is performed by 
comparing a query word against a set (value, mask) pairs. A 
word q matches a stored pair (v,m) if q & m = v & m. The 
(value, mask) matching paradigm works well for matching 
IP addresses, but is not well-suited to matching port number 
ranges. The usual way to handle a port number range in a 
filter, is to replace each filter with several filters, each cover-
ing a portion of the desired port range. This requires splitting 
the range into smaller ranges that can be expressed as (value, 
mask) pairs. For example, the range 2-10 can be partitioned 
into the set of patterns 001-, 01--, 100- and 1010, where the 
dashes denote bit positions where the mask is zero.  

In general, any sub-range of a k bit field can be parti-
tioned into 2(k−1) such patterns. Since port numbers are 16 
bits each, this means that a range in either the source or des-
tination port number field can require as many as 30 distinct 
TCAM entries. The problem becomes much worse if ranges 

are present in both the source and destination port number 
fields. In this case, we need a filter for all combinations of 
the sub-ranges for the two fields. This means that a single 
packet filter may require 900 TCAM entries. In practice, 
things aren’t nearly this bad, but they are still bad enough. 
Filter sets often use the port range 1024-65,535. This can be 
split into just six filters, but a filter containing this range in 
both the source and destination port number fields still needs 
36 TCAM entries. If even 10% of the filters in a large filter 
set contained such port number ranges, the average number 
of TCAM entries per filter would be 4.5, greatly increasing 
the effective cost of a TCAM-based solution. (We note that 
reference [5] describes a more efficient way to represent a set 
of ranges, but this method cannot be applied to matching 
multi-dimensional filters in TCAMs.) 

To better understand the magnitude of this issue, we 
studied five real-world filter sets and determined the mini-
mum number of TCAM entries required to represent the set, 
assuming that port ranges were decomposed in the most effi-
cient way. The results appear in Figure 2, which shows the 
number of TCAM entries required to represent each of the 
filter sets and the resulting storage efficiency. The storage 
efficiency ranges from as little as 16% to 53%, with an aver-
age of 34%, tripling the effective cost of TCAM-based 
solutions. 

One way to handle port ranges better is to extend the 
TCAM functionality to directly incorporate port range com-
parisons in the device. Such a TCAM would store a pair of 
16 bit values (lo,hi) for each port number field and include 
circuitry to compare a query word q against the stored val-
ues. Figure 3 shows the iterative structure of the required 
range check circuit. The circuit consists of a separate stage 
for each bit and the comparison proceeds from the most sig-
nificant bits to the least significant bits. The inter-stage 
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signal gi is high whenever the value of the high order bits of 
q (down to bit i) are numerically larger than the high order 
bits of hi. Similarly, the inter-stage signal li is high whenever 
the value of the high order bits of q are smaller than the high 
order bits of lo. The query value is in range if both g0 and l0 
are low. 

Figure 4 shows a circuit implementing the required logic 
for each stage, along with the storage elements for lo and hi. 
A standard CMOS implementation of this circuit uses 32 
transistors, twice as many as the standard TCAM storage 
cell. However, the impact of this on the cost of the entire 
TCAM is much smaller. The two port number fields repre-
sent 22% of a 144 bit TCAM word, suitable for IPv4 
(allowing 16 bits for the protocol field including flags, plus 
32 bits for an action field and priority). Doubling the transis-
tor count for this portion of the TCAM increases the total 
number of transistors per word by 22%. While this is a non-
trivial increase, it is a far smaller price to pay than the price 
implied by the inefficient representation of port ranges in 
standard TCAMs. In any application where port number 
ranges are present in more than a few percent of the filters, 
the added cost is easily justified. We use the term extended 
TCAM to refer to a TCAM with both of the modifications 
described. 

3. Classifiying Packets with Extended TCAMs 
To use extended TCAMs for packet classification, we need 
to partition the filter set into storage blocks and then associ-
ate each storage block with an appropriate index filter. The 
extended TCAM search will first identify all matching index 
filters, and then query the storage blocks associated with 
those matching index filters. This process is illustrated in 
Figure 5, which shows a set of two dimensional filters on 

four bit fields (one defined using ranges, one defined using 
bit-masks)  and the organization of those filters into TCAM 
blocks with an index block to the left (the figure does not 
show the priority and action fields). To perform a lookup on 
a packet with field values (2,10), we first check the index 
block and discover that the second and fourth index filters 
match the packet. Searching the second block, we find the 
matching filter (1-2, 1x1x) and searching the fourth block, 
we find the matching filter (0-14, 1010). In this example, the 
TCAM blocks are large enough for just four filters each, but 
a realistic implementation of the method would use TCAMs 
with blocks capable of storing hundreds of filters. Also note 
that the index block need not have the same number of en-
tries as the storage blocks. 

The key to making the search power-efficient is to organ-
ize the filters so that only a few TCAM blocks must be 
searched in order to find the desired matching filter for a 
given packet. We define the problem of organizing the filters 
precisely below, but first we introduce the following defini-
tion. 

Definition. Let f1 and f2 be filters defined on the same multi-
dimensional space. We say that f1 covers f2 if the region of 
the space that is defined by f1 completely contains the region 
defined by f2. Similarly, we say a set of filters F covers a 
filter f if the region defined by the union of the filters in F 
completely contains the region defined by f. 

Filter Grouping Problem. Given a set F of filters and inte-
gers k, m and r, find a set S of at most m filters and a 
bipartite graph G = (V,E ) with V=F ∪ S and E ⊆  F × S, that 
satisfy the following conditions. 

•  for every f in F, the neighbors (in G) of F  cover f, 
•  for every s in S, the degree (in G) of s is at most k, 
•  no point in the multi-dimensional space on which the 

filters are defined is covered by more than r members of 
S. 

S defines the set of index filters. The graph specifies the as-
signment of original filters to index filters and their 
associated storage blocks. The degree of a vertex for an in-
dex filter is equal to the number of filters in the storage 
block associated with that index filter. The bound k, on the 
degree, limits the number of filters per block; the bound m, 
on the size of S, limits the number of index filters and hence 
the number of TCAM blocks needed to hold the index; and 
the bound r, on the number of index filters covering any 
point in the space, limits the number of TCAM storage 
blocks that must searched (in addition to the index). The 
problem can be converted into an optimization problem, by 
minimizing any one of the three parameters, while leaving 
the other two as bounds. 

We use a heuristic filter grouping algorithm to organize 
the filters. The algorithm proceeds in a series of phases. 
Each phase recursively divides the multi-dimensional space 
into ever smaller regions, so each phase produces a separate 
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partition of the space. During each step in a phase, a region 
in the space is selected and divided into two parts with ap-
proximately the same number of filters. The algorithm 
returns a set S of index filters and a subset of the original 
filter set for each of the index filters.  

In all but the last phase, each sub-region created in that 
phase is associated with a set of filters that are contained 
entirely within the sub-region. These filters are assigned to 
this enclosing sub-region and are then ignored in later 
phases. The last phase also partitions the space, but some of 
the filters that remain at this stage, may not fall entirely 
within any of the sub-regions. Such filters are assigned to all 
the sub-regions created in the last phase which they intersect, 
meaning that there will be multiple TCAM blocks contain-
ing copies of these filters. 

A basic operation of the algorithm is to cut a region r of 
the multidimensional space into two sub-regions r1 and r2 
along one of the multiple dimensions. We represent each 
region by an index filter. To cut a filter along a “bit-mask 
dimension”, we select one of the mask bits for that dimen-
sion that is equal to zero, change it to 1 in both of the sub-
regions and assign the corresponding bit of the value field to 
0 in one sub-region and 1 in the other. All other fields of r1 
and r2 are inherited from r. To cut a filter along a “range 
dimension”, we simply divide a range (lo,hi) into two sub-
ranges (lo,m) and (m+1,hi) where lo≤m<hi. 

Let Fi be the set of filters that remain to be processed at 
the start of phase i and let Si be the set of sub-regions (index 
filters) created by the algorithm during phase i. At the start 
of phase i, we let Si be the entire multidimensional space. 
For any given r in Si, let σ(r) denote the set of filters in Fi 
that lie entirely within r and let χ(r) denote the set of filters 
in Fi that intersect the region defined by r but do not lie en-
tirely within r. In all but the last phase, we repeat the 
following step until for every region r in Si, σ(r) contains at 
most βk filters, where k is the size of the TCAM block and β 
is a parameter of the algorithm to be chosen later. 

Let r be a region in Si which maximizes |σ(r)|. 

Consider cuts that divide r into two sub-regions r1 and r2 
that satisfy 

{ } )()(,)(max 21 rrr σασσ ≤  

where α is another parameter, to be chosen later. Among 
all such cuts, select one that maximizes 

)()( 21 rr σσ ∪  

Replace Si with },{ 21 rrSi ∪ . 

At the end of the phase, for each region r, we assign up to k 
filters in σ(r) to region r. If σ(r) contains more than k filters, 
we select the k filters that have the largest volume in the 
multi-dimensional space. The filters assigned to region r will 
share a TCAM storage block in the final result and r will be 

the corresponding index filter. All filters that are assigned to 
a region in phase i are excluded from the filter set Fi+1 used 
in the next phase.  

Figure 6 illustrates one of the basic steps. In this exam-
ple, there are two dimensions. The horizontal axis is 
associated with a range dimension, and the vertical axis with 
a bit-mask dimension. Two candidate cuts are indicated by 
the dashed lines. Both cuts satisfy the splitting condition 
when α=2/3. In this case, the algorithm would select the 
horizontal cut, since this cut puts five of the six filters en-
tirely within one of the two sub-regions, while the vertical 
cut places only four within one of the sub-regions. 

The basic step in the last phase is similar. 

Let r be a region in Si that maximizes )()( rr χσ ∪ . 

Consider cuts that divide r into two sub-regions r1 and r2 
that satisfy 

{ } )()()()(,)()(max 2211 rrrrrr χσαχσχσ ∪≤∪∪
 

Among all such cuts, select one that maximizes 

)()( 21 rr σσ ∪  

If there are no cuts that satisfy this condition, select a cut 
that satisfies the condition used in the earlier phases. 

Replace Si with },{ 21 rrSi ∪ . 

The last phase terminates when all sub-regions r in Si satisfy 

krr ≤∪ )()( χσ  

or a splitting operation results in no decrease in 
)()( rr χσ ∪ . In the latter case, the last phase “fails” and 

the algorithm terminates. We can then re-run the algorithm, 
specifying a larger number of phases. We can continue in 
this manner, specifying more and more phases until the algo-
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rithm successfully runs to completion. Alternatively, we can 
avoid most of the redundant computation implied by this 
procedure, by simply rolling back to the start of the last 
phase on failure and continuing from that point. 

After the (successful) completion of the last phase, we let 

Ui iSS = . The elements of S define our index filters. For 
each r in S, the filters that were assigned to r during the exe-
cution of the algorithm are placed in the storage block 
associated with r. 

Figure 7 shows the result of an execution of the algo-
rithm with k=4. The first phase results in the three sub-
regions (0-15, 0xxx), (0-6, 1xxx) and (7-15, 1xxx), contain-
ing 4, 2 and 3 filters, respectively. The final phase terminates 
with two filters in the region (0-15, xxxx). This produces the 
TCAM configuration in Figure 5. 

4. Evaluating Packet Classification Algorithms 
It has been observed that “real” packet classification filter 
sets exhibit a considerable amount of structure.  In response, 
several algorithmic techniques have been developed which 
exploit this structure to accelerate search time or reduce 
storage requirements. Consequently, the performance of 
these approaches is subject to the statistical composition of 
the filter set.  

Despite the influence of filter set composition on the per-
formance of packet classification algorithms and devices, no 

benchmark suite of filter sets or systematic methodology 
exists for standardized performance evaluation. Due to secu-
rity and confidentiality issues, access to large “real” filter 
sets for statistical study and performance measurements of 
new classification techniques has been limited to a small 
subset of the research community.  

Performance evaluations using real filter sets are re-
stricted by the size and structure of the sample data. Some 
researchers have proposed ad hoc methods, such as inde-
pendently selecting filter fields from a one-dimensional 
distribution, to generate synthetic filter sets or modify the 
composition and number of filters in the filter set. 

In order to facilitate future research and provide a foun-
dation for a meaningful benchmark, we developed a 
technique for generating large synthetic filter sets which 
model the statistical structure of a seed filter set [16]. Along 
with scaling filter set size, the tool provides mechanisms for 
systematically altering the number and composition of filters 
as depicted in Figure 8.  Two adjustments, smoothing and 
scope, provide high-level adjustments for filter set genera-
tion and an abstraction from the low-level statistical 
characteristics. 

Previous work reported many statistical characteristics of 
filter sets useful for constructing fast search algorithms.  In a 
similar fashion, we extract statistics from seed filter sets in 
order to construct larger synthetic filter sets with similar 
structure and characteristics.  Selection of the relevant statis-
tics is based upon experience garnered from a study of five 
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firewall filter sets of modest size.  This study paid particular 
attention to the five-dimensional structure of the filter sets 
and the “correlation” among fields.  In the context of our 
discussion, “correlation” is generally defined as the probabil-
ity that two fields share the same value and will be defined 
more explicitly for the contexts in which it is used. 

The first important characteristic of seed filter sets is the 
tuple distribution.  We define the filter 5-tuple as a vector 
containing the following fields. 

•  t[0] - source address prefix length, [0...32] 

•  t[1] - destination address prefix length, [0...32] 

•  t[2] -, source port range width, the number of port 
numbers covered by the range, [0...216] 

•  t[3] - destination port range width, the number of port 
numbers covered by the range, [0...216] 

•  t[4] - protocol specification, Boolean value denoting 
whether or not a protocol is specified, [0,1] 

The tuple defines the five-dimensional structure of the 
filter without specifying the actual values for address pre-
fixes, port ranges, and protocol fields.  In order to provide a 
high-level measure of the specificity of the tuples in a seed 
filter set, we define a metric, scope, to be the base 2 loga-
rithm of the number of possible packet headers covered by 
the filter. 

( ) ( ) ( )]4[18]3[lg]2[lg]1[32]0[32 tttttscope −+++−+−=  

A seed filter set contains a finite list of tuples which are 
derived from the filters.  From the given seed filters, we 

generate a tuple distribution consisting of unique tuples and 
associated weights corresponding to the relative frequency 
of their occurrence in the seed filter set.  For each filter gen-
erated for the synthetic filter set, a tuple is selected from the 
tuple distribution according to the probabilities dictated by 
the relative weights.  We refer to this selected tuple as the 
target tuple. 

As filter sets scale in size, we anticipate that new tuple 
specifications will emerge in the set of unique tuples. In or-
der to allow for this possibility, we enable the creation of 
new tuples in a structured manner that preserves the struc-
ture present in the seed filter set. Using scope as a measure 
of distance, we would like new tuples to emerge “near” an 
existing tuple. We define a smoothing parameter, r, that con-
trols the maximum distance between a new tuple and the 
original tuple from which it “spawns”.  For values of r 
greater than zero, the process selects a radius i in the range 
[0…r] from a truncated geometric distribution; hence, the 
probability that we select the target tuple or a tuple near the 
original tuple is greater than the probability that we select a 
tuple farther away.  Once a radius is selected, the new tuple 
is generated by randomly selecting a direction of scope ad-
justment (increase or decrease) for each field, then randomly 
selecting i tuple fields and adjusting the scope by one unit 
for each chosen field, according to the chosen direction. In 
order to illustrate the effect of smoothing, the joint 
source/destination address prefix length distribution for a 
seed filter set and the resulting synthetic filter set created 
with r =16 are shown in Figure 9. 

In addition to smoothing, we provide control over the 
average scope of the synthetic filter set via a scope parame-
ter s.  Tuning the average scope of the synthetic filter set is 
useful for exploring its effect on the performance and capac-
ity of algorithms as well as modeling different network 
environments.  For example, as the number of flow-specific 
filters in a filter set increases we expect the average scope of 
the filters to decrease.  The smoothing parameter, s, is a rela-
tive adjustment to the average scope of the filter set; hence, 
it may take on values in the range [-104…104].   Adjusting 
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the average scope of the filter set consists of adjusting the 
tuple specifications of the filters in a manner very similar to 
the smoothing adjustment.  Once a target tuple is selected 
and adjusted for smoothing, a random tuple field is selected 
as the starting point for scope adjustment. The scope of the 
selected field is modified according to the sign of s (scope 
increased by one or decreased by one).  Tuple fields are ad-
justed in turn until s scope adjustments have been made or 
no more scope adjustments are possible. 

The remaining steps of the synthetic generation process 
essentially “fill in” filter fields as dictated by the tuple.  
While the tuple captures the joint source/destination address 
prefix length distribution, it does not characterize the struc-
ture of the address trees or similarity between address 
prefixes.  We model address tree structure as follows. For 
each level in each address trie for the seed filter set, we 
compute the frequency that a node has zero children, one 
child, and two children.  This is used to create a probability 
distribution that guides the generation of source and destina-
tion addresses. For nodes with two children, we also 
compute skew, which is the ratio of the weights of the left 
and right subtrees of the node. Subtree weight is defined to 
be the number of filters specifying prefixes in the subtree.  
An average skew value for each level is computed and 
stored with the child probability distributions for the level. 
We argue that the combination of the child and skew distri-
butions capture the most important characteristics of the 
data. 

Using the child and skew distributions, a source address 
tree specifying a branching probability for each node is dy-
namically created during the filter set generation process. 
The similarity between source and destination address pre-
fixes is captured through a “correlation” distribution, which 
is defined as the probability that the source address prefix 
and destination address prefix are the same up to a given 
level.  The child and skew distributions along with the “cor-
relation” distribution is used to dynamically generate the 
destination address tree during the synthetic generation 
process. 

While the tuple distribution captures the interdependence 
of port range widths and other tuple fields, it does not char-
acterize the choice of range bounds given a range width.  
Analysis of the specified port ranges in the set of firewall 
filter sets yielded an interesting result: all port range widths 
other than one (fully specified) correspond to a single port 
range.  This property makes selecting of bounds for port 
ranges given the range width trivial.  For fully specified 
ports, we make a uniform random selection from the range 
of possible port values.  For tuples that fully specify both 
port ranges, we account for the probability that both source 
and destination ports are the same. 

Finally, we must select a protocol if the tuple dictates a 
specified protocol field.  Clearly, a relationship exists be-
tween protocol specifications and port ranges.  Based our 
analyses, we chose to employ three probability distributions 
for protocol selection.  The first distribution is used when 

both port ranges are unspecified; the second is used when 
one port range is specified and the other is unspecified; and 
the third is used when both port ranges are specified.  The 
three distributions may differ significantly within a single 
seed filter set. 

In the next section, we report on how we have used the 
synthetic filter set generator to evaluate the performance of 
the filter grouping algorithm for extended TCAMs on a wide 
range of filter sets. We plan to continue to develop the filter 
set generator, with the objective of creating a standard 
benchmark and evaluation methodology for packet classifi-
cation algorithms and devices. 

5. Performance Results 
There are three key parameters that affect the performance 
of the filter grouping algorithm, α, β and the block size, k. 
These parameters affect the two key performance metrics of 
interest, the power efficiency and the storage efficiency.  

As our measure of power efficiency, we use the quantity 
(b+sk)/N, where b is the number of number of storage blocks 
used by the partitioning algorithm (this is equal to the num-
ber of entries in the index), s is the maximum number of 
storage blocks that must be searched for any packet (this is 
equal to the number of phases used by the filter grouping 
algorithm) and N is just the total number of filters in the 
original filter set. The numerator represents the total number 
of words in the TCAM that must be searched to perform a 
lookup (including the index) and the denominator is the 
number that would have to be searched if we were using a 
conventional TCAM. We refer to this quantity as the power 
fraction and we seek to make it as small as possible. As our 
measure of storage efficiency, we use N/(b+bk). Here, the 
denominator is the sum of the number of words used in the 
index plus the number used in the storage blocks required by 
the algorithm. 

We start our performance study by determining how the 
parameter choices affect the performance metrics. Figure 10 
shows the dependence on α. We observe that for small val-
ues of α, the power fraction is relatively high, but that it 
drops under .05 for α ≥ .75. The storage efficiency shows no 
strong dependence on α but is best for values between .6 
and .95. Figure 11 shows how the performance depends on 
β. Here, we observe that the power fraction increases from 
about .02 to just over .04. While this is a large relative in-
crease, the absolute magnitude of the power fraction remains 
acceptably small across the whole range of values. (A power 
fraction of .05 is small enough to ensure that the TCAM 
power consumption remains a small fraction of the overall 
power consumption of a router line card.) The impact of β 
on storage efficiency is more significant, increasing the stor-
age efficiency from about .72 to over .95. 

Figure 12 shows how the performance is affected by the 
size of the TCAM blocks. We observe that the power frac-
tion is strongly dependent on the block size, but generally 
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stays below 5% for the largest filter set for block sizes from 
32 to 128. We note that the optimal block size varies with 
the number of filters, with larger filter sets favoring larger 
block sizes. The power fraction is determined by the two 
terms, b/N and sk/N. The first term (which accounts for the 
power used to search the index) decreases as the block size 
grows, since with large blocks, we need fewer storage 
blocks. The second term grows with the block size. While s 
decreases as the block size k grows, the rate of decrease in s 
diminishes as k gets large. It’s the combination of these op-
posing effects that produce the sharp minimum seen in the 
power fraction. It may seem curious that the power fraction 
is larger for smaller filter sets. This is because the power 
fraction is measured relative to the power that would be con-
sumed by a TCAM that has exactly the right number of 
entries for the given filter set. While the absolute power lev-
els are smaller for the smaller filter sets, the reduction that 
can be obtained using extended TCAMs is also smaller. Fig-
ure 12 also shows that the storage efficiency peaks roughly 
coincide with the best power reductions. 

Based on these and other supporting data, we have con-
cluded that α=.8 and β=2 are the best choices for the first 

two parameters. For the block size, the best choice appears 
to be the largest power of 2 that is less than (1/2)N1/2. Of 
course, the block size is a little different from the other pa-
rameters, since it is a fixed characteristic of the extended 
TCAM device. So, this rule should be applied using the tar-
get device capacity. This will define the worst-case situation 
for that specific device, since power usage will generally be 
reduced for smaller filter sets. 

Figure 13 shows how the performance metrics are af-
fected by the size of the filter set. Results are shown for two 
different seed filter sets. As mentioned earlier, the relatively 
high power fractions for small filter sets reflect the fact that 
with small filter sets, the power required for a suitably sized 
TCAM is already small, leaving less room for improvement. 
For larger filter sets, where power reduction is most impor-
tant, the power fraction generally stays below 5%. The 
storage efficiency also seems to improve slightly with filter 
set size. 

Figure 14 shows how the performance varies as a func-
tion of the smoothness adjustment. For even small increases 
in r, we observe fairly marked deterioration in the power 
fraction and a smaller deterioration in the storage efficiency. 
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While the results still represent a 10:1 improvement over the 
standard TCAM, the degraded performance is somewhat 
disturbing. At this time, we are not in a position to explain it 
fully.   

Figure 15 shows the effect of the scope adjustment. A 
value of 0 means that the scope adjustment was not changed. 
A negative scope adjustment corresponds to more specific 
filters, a positive scope adjustment to less specific filters. We 
expect that as packet filter sets grow in size, there will be a 
natural tendency for the filters to become more specific. 
Hence, it is worth understanding how packet classification 
algorithms will perform under these circumstances. For 
these results, the smoothness adjustment was set to 16, so we 
observe the same, relatively large power fractions that we 
noted above. We see a marked improvement in power frac-
tion at a scope adjustment of −16 or less. This seems to 
make sense intuitively. As filters become more specific, we 
expect the filter grouping algorithm to separate them more 
easily. We expect that other packet classification algorithms 
are also likely to perform better as filter sets become more 
specific. 

6. Concluding Remarks 
Extended TCAMs appear to be a promising solution for high 

performance packet classification. They provide the per-
formance needed for OC-768 links, have moderate power 
requirements and are far more storage-efficient than high 
performance algorithmic solutions. There are several addi-
tional issues that remain to be explored.  

Perhaps the most important issue to be studied is incre-
mental updates. The filter grouping procedure described here 
is a computationally expensive procedure, which cannot 
reasonably be performed whenever we add or remove a fil-
ter. One way to handle incremental updates, in an extended 
TCAM with a fixed block size and total capacity is to at-
tempt to structure the filter set so that all storage blocks have 
roughly equal amounts of free space. This can be achieved 
by running the filter grouping algorithm with a value of k 
that is smaller than the actual block size. Subsequent filter 
additions can be handled by assigning them to storage blocks 
with unused space that cover the same part of the multi-
dimensional space that is spanned by the new filter. If new 
filters follow the same distribution as filters already in the 
filter set, one can reasonably expect most new filters to fit 
easily within the structure defined by the algorithm for the 
original filter set. Eventually, the addition of new filters will 
cause some storage blocks to fill up. If all the storage blocks 
that cover a given region of the space become full, it will 
become impossible to accommodate new filters that span 
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that part of the space. This problem can be avoided by 
periodically reorganizing the TCAM, after re-running the 
filter grouping algorithm. Alternatively, it may be possible to 
reorganize the TCAM incrementally. 

It’s natural to ask if there might be an advantage to using 
a two level index, instead of one level. When the block size 
gets small, the size of the index grows (since there are more 
storage blocks) and the power used to perform the index 
lookup becomes significant. Since the index is just a set of 
filters, we can apply the filter grouping algorithm to the in-
dex in exactly the same way, to construct an index into the 
set of index filters. This allows us to use smaller storage 
blocks, without being limited by the power consumption of 
the index. Unfortunately, smaller storage blocks have draw-
backs that may negate the power advantage. First, smaller 
blocks add area overhead to the TCAM device. Second, it 
seems likely that smaller blocks won’t handle incremental 
updates as well as large blocks. Indeed, the incremental up-
date issue may well motivate the use of larger blocks than 
one might otherwise choose, based on power considerations 
alone. 

Finally, it should be noted that the filter grouping algo-
rithm could reasonably be used as the basis for a more 
conventional packet classification algorithm using random 
access memory. A sequential algorithm can simulate the 

extended TCAM behavior by searching the index sequen-
tially, then searching the appropriate set of storage blocks 
(sequentially). Our power reduction measure corresponds 
directly to the fraction of the filter set that such an algorithm 
would have to examine. A version of the algorithm using a 
multi-layer index might well be competitive with other algo-
rithmic solutions. Indeed, the filter grouping algorithm has 
similarities to the Hypercuts algorithm [17] and was in fact, 
partly inspired by Hypercuts. A key difference is the use of 
multiple partitions of the multi-dimensional space. While it’s 
not clear that this approach would lead to a competitive, 
sequential algorithm, the question appears worthy of further 
investigation. 
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