
1

Packet Classification Using Extended TCAMs

Ed Spitznagel, David Taylor, Jonathan Turner
Applied Research Laboratory, Washington University, St. Louis, MO 63130-4899

{ews1,det3,jst}@arl.wustl.edu

Abstract

CAMs are the most popular practical method for impl-
ementing packet classification in high performance routers.
Their principal drawbacks are high power consumption and
inefficient representation of filters with port ranges. A
recent paper [11] showed how partitioned TCAMs can be
used to implement IP route lookup with dramatically lower
power consumption. We extend the ideas in [11] to address
the more challenging problem of general packet classifi-
cation. We describe two extensions to the standard TCAM
architecture. The first organizes the TCAM as a two level
hierarchy in which an index block is used to enable/disable
the querying of the main storage blocks. The second
incorporates circuits for range comparisons directly within
the TCAM memory array. Extended TCAMs can deliver
high performance (100 million lookups per second) for
large filter sets (100,000 filters), while reducing power
consumption by a factor of ten and improving space
efficiency by a factor of three.

1. Introduction
Packet classification is a key technology for modern high
performance routers. Packets received at a router input are
classified to determine both the output port the packet should
be sent to and to determine what, if any, special handling it
should receive. Packet classification can be used to provide
expedited forwarding of certain types of packets, to enforce
security restrictions or to trigger traffic monitoring. The
growing complexity of the Internet is creating new applica-
tions for packet classification, placing additional demands on
the packet classification subsystem of routers and other
packet handling devices.

In the general packet classification problem, packets are
classified according to a set of packet filters, which define
patterns that are matched against incoming packets. Typi-
cally, packet filters specify possible values of the source and
destination address fields of the IP header, the protocol field
(often including flags) and the source and destination port
numbers (for TCP and UDP). The address fields are often

specified as address prefixes, although arbitrary bit masks of
the address fields are commonly allowed in packet filters
and this feature is used in real filter sets, although relatively
infrequently. Filters typically specify a range of port num-
bers for matching packets. Protocols can be either specified
exactly or as a wildcard. Some systems allow protocol val-
ues to be specified by bit masks as well, although it’s not
clear how useful that feature is.

A small example of a filter set appears in Figure 1. Here,
the address fields are shown as four bits, rather than 32 to
simplify the example. A dash in an address field indicates a
bit position where the mask bit is zero. A dash for an entire
entry indicates a wildcard which is matched by any packet.
When a packet is received, the filter set is consulted to find
the first matching filter in the set. The packet is then pro-
cessed according to the specified action. So for example, a
packet with a source address of 0101, a destination address
of 0011, a protocol field specifying TCP, a source port of 4
and a destination port of 6 would be forwarded to output port
5, since it matches the second filter in the set, but not the
first. On the other hand, a packet with a source address of
1111 and a destination address of 0100 would be dropped
(regardless of other fields), since the first matching filter is
number 6.

Historically, the applications of general packet classifi-
cation have been limited to relatively low performance
systems with relatively small numbers of packet filters. This
has made it possible to match every incoming packet against
the ordered list of filters and stop when the first matching

This work supported by the National Science Foundation, ANI-
9813723 and the Defense Advanced Research Projects Agency, Contract
N660001-01-1-8930.

 source
address

dest
address

protocol

source
port

dest
port

action

1. 1-01 01-- TCP 2-4 7 fwd 3
2. 01-- 0--1 TCP 3-9 2-6 fwd 5
3. 110- 10-- UDP 1-7 4-6 fwd 2
4. 1101 101- ICMP - - fwd 7
5. 00-1 010- UDP 4 5 fwd 0
6. 111- 01-- - - - drop
7. 0101 ---- - - - fwd 4
8. 1--- 0--- - - - drop

Figure 1. Example packet filter setFigure 1. Example packet filter setFigure 1. Example packet filter setFigure 1. Example packet filter set

Appears in Proceedings of ICNP, 2003

- 2 -

filter in the list is encountered. This method does not scale
effectively to high performance systems that must process
tens of millions of packets per second and that may have
much larger filter sets. While currently, most general packet
filter sets are fairly small (most have a few hundred entries
and very few exceed a few thousand), the size is expected to
grow substantially in the future.

The packet classification problem has been studied ex-
tensively in recent years. One early effort [13] proposed a
grid-of-tries to look up 2D filters defined on source and des-
tination address. While very effective for 2D filters, it could
not be applied directly to larger numbers of dimensions. The
tuple-space search technique [14] is another general ap-
proach, in which filters are separated into classes based on
the number of bits specified in each dimension. This allows
a given class to be probed quickly using hashing, but since
many classes may have to be probed for a given packet, it
does not yield very high performance. The Recursive Flow
Classification (RFC) algorithm [GU99a] has received much
attention in recent years. RFC trades-off memory space
against time to achieve faster lookups. While this is a legiti-
mate choice, the space efficiency of RFC can be surprisingly
poor. It can use more than a kilobyte per filter, roughly 50
times the memory needed to represent the filter. Another
recent algorithm, Hicuts [GU99b] is similarly profligate in its
use of memory. The Extended Grid of Tries [2] and Hyper-
cuts [17] algorithms are the first algorithms for the general
problem that show some promise of achieving high perform-
ance, without requiring excessive amounts of memory.

Perhaps the most popular method for packet classifica-
tion problem in practice, is to use Ternary Content
Addressable Memory (TCAM). TCAMs stores data patterns
in the form of (value, bit mask) pairs. A query word can be
simultaneously compared against all the stored patterns. A
query word q is said to match a stored pattern (v,m) if q & m
= v & m, where the ampersand denotes the bit-wise logical
and operation. One bit of TCAM storage can be imple-
mented using 16 transistors [MO94] compared to 6
transistors for a word of SRAM. This 2.7x penalty, makes
TCAMs less attractive than SRAM-based algorithms that
use the same number of bits. However, as discussed earlier,
high performance algorithms using SRAM typically use very
large amounts of memory per stored filter, which offsets the
cost advantage of SRAM.

TCAMs suffer from two other shortcomings, in addition
to their relatively high cost per bit. First, TCAMs require
large amounts of power, more than 100 times the power of a
similar amount of SRAM. They can account for a major part
of the power consumption of a router line card. A recent
paper [11] showed how partitioned TCAMs could signifi-
cantly reduce TCAM power consumption in IP route lookup.
While this is of some interest, the availability of efficient
SRAM-based route lookup algorithms [3, 12, 15, 18] limits its
impact. In this paper, we explore how similar ideas can be
applied to the more difficult problem of general packet clas-
sification. Another significant shortcoming of TCAMs is

their inability to efficiently handle filters containing port
number ranges. Such filters must be handled using multiple
TCAM entries, and in the worst-case, it may take hundreds
of TCAM entries to represent a single filter. We propose an
extension to TCAMs that enables them to handle port ranges
directly and argue that the added implementation cost of this
extension is amply compensated by the improved handling
of port ranges.

Section II describes the extensions to TCAMs that are
needed to enable high performance and cost-effective solu-
tions to the general packet classification problem. Section III
describes a general algorithm for organizing a filter set in an
extended TCAM to enable fast lookup. Section IV briefly
presents the method we use to generate large packet filter
sets, which reflect the characteristics of the much smaller
filter sets that are typically available for use by researchers.
In Section V we present results evaluating the performance
of our algorithm, under a wide range of conditions. Conclud-
ing remarks are provided in Section VI.

2. Extended TCAMs
Ternary CAMs are perhaps the most popular implementation
method for packet classification in high performance routers.
TCAMs are becoming available in configurations with up to
18 Mbits, roughly half the size of the largest SRAMs. An 18
Mbit TCAM offers enough storage for up to 128K IPv4 fil-
ters, which is large enough to meet most near term needs for
general packet classification solutions.

As discussed above TCAMs have two major drawbacks.
First, they consume a large amount of power, and second,
they are inefficient when applied to filters with port number
ranges. Some TCAMs have a feature that allows a query to
be applied to a subset of the TCAM entries, instead of the
entire set. Reference [11] has shown how such partitioned
TCAMs can provide a lower power solution to the problem
of IP lookup. We extend the partitioned TCAM concept and
show that if we organize the set of filters in this extended
TCAM appropriately, we can perform a lookup for a single
packet, using a limited number of the TCAM blocks, rather
than the entire TCAM, reducing the power consumption by
more than an order-of-magnitude. To make this strategy
effective, the TCAM must have a fairly large number of
independent storage blocks. For example, we might organize
a 128K filter TCAM into 512 blocks of 256 filters each. A
lookup algorithm that limited its search to no more than say
ten blocks would use just a few percent of the power that

filter
set

filters with
ranges

TCAM
entries

storage
efficiency

1 279 26 949 29%
2 183 24 553 33%
3 68 12 128 53%
4 158 10 418 37%
5 264 176 1638 16%

Figure 2. Effect of ranges on TCAM effFigure 2. Effect of ranges on TCAM effFigure 2. Effect of ranges on TCAM effFigure 2. Effect of ranges on TCAM effiiiiciencyciencyciencyciency

- 3 -

would be required if every lookup were applied to the entire
TCAM.

Our modification to the TCAM architecture adds a spe-
cial storage block called an index to an ordinary partitioned
TCAM. Each word in the index is associated with one of the
main storage blocks. Conceptually, when a lookup is per-
formed on the modified TCAM, the index is consulted first,
and then for each word in the index that matches the query
word, a lookup is performed on the corresponding storage
block. The lookups in the storage blocks are done in parallel
and the address of the first matching entry in each block is
returned. To resolve matches across multiple blocks, we
associate a priority with each filter, which corresponds to its
position in the original ordered list. The priority field of the
first matching filter in a block is returned along with the ac-
tion field of the matching filter. The priorities are compared
to determine which of the matching filters has the highest
priority. The action field of this filter is returned as the result
of the lookup. The modified TCAM can be pipelined to
maintain the same operating frequency as a conventional
TCAM. The index lookup is done on the first clock tick,
followed by the lookup in the storage block on a second
clock tick, followed by the priority resolution on a third
clock tick. An extended TCAM with a clock rate of 100
MHz can perform 100 million lookups per second.

As mentioned above, a TCAM lookup is performed by
comparing a query word against a set (value, mask) pairs. A
word q matches a stored pair (v,m) if q & m = v & m. The
(value, mask) matching paradigm works well for matching
IP addresses, but is not well-suited to matching port number
ranges. The usual way to handle a port number range in a
filter, is to replace each filter with several filters, each cover-
ing a portion of the desired port range. This requires splitting
the range into smaller ranges that can be expressed as (value,
mask) pairs. For example, the range 2-10 can be partitioned
into the set of patterns 001-, 01--, 100- and 1010, where the
dashes denote bit positions where the mask is zero.

In general, any sub-range of a k bit field can be parti-
tioned into 2(k−1) such patterns. Since port numbers are 16
bits each, this means that a range in either the source or des-
tination port number field can require as many as 30 distinct
TCAM entries. The problem becomes much worse if ranges

are present in both the source and destination port number
fields. In this case, we need a filter for all combinations of
the sub-ranges for the two fields. This means that a single
packet filter may require 900 TCAM entries. In practice,
things aren’t nearly this bad, but they are still bad enough.
Filter sets often use the port range 1024-65,535. This can be
split into just six filters, but a filter containing this range in
both the source and destination port number fields still needs
36 TCAM entries. If even 10% of the filters in a large filter
set contained such port number ranges, the average number
of TCAM entries per filter would be 4.5, greatly increasing
the effective cost of a TCAM-based solution. (We note that
reference [5] describes a more efficient way to represent a set
of ranges, but this method cannot be applied to matching
multi-dimensional filters in TCAMs.)

To better understand the magnitude of this issue, we
studied five real-world filter sets and determined the mini-
mum number of TCAM entries required to represent the set,
assuming that port ranges were decomposed in the most effi-
cient way. The results appear in Figure 2, which shows the
number of TCAM entries required to represent each of the
filter sets and the resulting storage efficiency. The storage
efficiency ranges from as little as 16% to 53%, with an aver-
age of 34%, tripling the effective cost of TCAM-based
solutions.

One way to handle port ranges better is to extend the
TCAM functionality to directly incorporate port range com-
parisons in the device. Such a TCAM would store a pair of
16 bit values (lo,hi) for each port number field and include
circuitry to compare a query word q against the stored val-
ues. Figure 3 shows the iterative structure of the required
range check circuit. The circuit consists of a separate stage
for each bit and the comparison proceeds from the most sig-
nificant bits to the least significant bits. The inter-stage

gi−1

li−1

hii−1

loi−1

qi−1

gi+1

li+1

hii+1

loi+1

qi+1

gi

li

hii

loi

qi

.

gi= gi+1+ l′ i+1qi lo′ i li= li+1+ g′ i+1q′ i hii

gi−1

li−1

hii−1

loi−1

qi−1

gi+1

li+1

hii+1

loi+1

qi+1

gi

li

hii

loi

qi

.

gi= gi+1+ l′ i+1qi lo′ i li= li+1+ g′ i+1q′ i hii

Figure 3. Iterative structure of range check circuitFigure 3. Iterative structure of range check circuitFigure 3. Iterative structure of range check circuitFigure 3. Iterative structure of range check circuit

loi lo′ i

hiihi′ i

g′ i+1

l′ i+1

g′ i

l′ i

qi q′ i

loi lo′ i

hiihi′ i

g′ i+1

l′ i+1

g′ i

l′ i

qi q′ i

Figure 4Figure 4Figure 4Figure 4. Range check sub. Range check sub. Range check sub. Range check sub----circuitcircuitcircuitcircuit

- 4 -

signal gi is high whenever the value of the high order bits of
q (down to bit i) are numerically larger than the high order
bits of hi. Similarly, the inter-stage signal li is high whenever
the value of the high order bits of q are smaller than the high
order bits of lo. The query value is in range if both g0 and l0
are low.

Figure 4 shows a circuit implementing the required logic
for each stage, along with the storage elements for lo and hi.
A standard CMOS implementation of this circuit uses 32
transistors, twice as many as the standard TCAM storage
cell. However, the impact of this on the cost of the entire
TCAM is much smaller. The two port number fields repre-
sent 22% of a 144 bit TCAM word, suitable for IPv4
(allowing 16 bits for the protocol field including flags, plus
32 bits for an action field and priority). Doubling the transis-
tor count for this portion of the TCAM increases the total
number of transistors per word by 22%. While this is a non-
trivial increase, it is a far smaller price to pay than the price
implied by the inefficient representation of port ranges in
standard TCAMs. In any application where port number
ranges are present in more than a few percent of the filters,
the added cost is easily justified. We use the term extended
TCAM to refer to a TCAM with both of the modifications
described.

3. Classifiying Packets with Extended TCAMs
To use extended TCAMs for packet classification, we need
to partition the filter set into storage blocks and then associ-
ate each storage block with an appropriate index filter. The
extended TCAM search will first identify all matching index
filters, and then query the storage blocks associated with
those matching index filters. This process is illustrated in
Figure 5, which shows a set of two dimensional filters on

four bit fields (one defined using ranges, one defined using
bit-masks) and the organization of those filters into TCAM
blocks with an index block to the left (the figure does not
show the priority and action fields). To perform a lookup on
a packet with field values (2,10), we first check the index
block and discover that the second and fourth index filters
match the packet. Searching the second block, we find the
matching filter (1-2, 1x1x) and searching the fourth block,
we find the matching filter (0-14, 1010). In this example, the
TCAM blocks are large enough for just four filters each, but
a realistic implementation of the method would use TCAMs
with blocks capable of storing hundreds of filters. Also note
that the index block need not have the same number of en-
tries as the storage blocks.

The key to making the search power-efficient is to organ-
ize the filters so that only a few TCAM blocks must be
searched in order to find the desired matching filter for a
given packet. We define the problem of organizing the filters
precisely below, but first we introduce the following defini-
tion.

Definition. Let f1 and f2 be filters defined on the same multi-
dimensional space. We say that f1 covers f2 if the region of
the space that is defined by f1 completely contains the region
defined by f2. Similarly, we say a set of filters F covers a
filter f if the region defined by the union of the filters in F
completely contains the region defined by f.

Filter Grouping Problem. Given a set F of filters and inte-
gers k, m and r, find a set S of at most m filters and a
bipartite graph G = (V,E) with V=F ∪ S and E ⊆ F × S, that
satisfy the following conditions.

• for every f in F, the neighbors (in G) of F cover f,
• for every s in S, the degree (in G) of s is at most k,
• no point in the multi-dimensional space on which the

filters are defined is covered by more than r members of
S.

S defines the set of index filters. The graph specifies the as-
signment of original filters to index filters and their
associated storage blocks. The degree of a vertex for an in-
dex filter is equal to the number of filters in the storage
block associated with that index filter. The bound k, on the
degree, limits the number of filters per block; the bound m,
on the size of S, limits the number of index filters and hence
the number of TCAM blocks needed to hold the index; and
the bound r, on the number of index filters covering any
point in the space, limits the number of TCAM storage
blocks that must searched (in addition to the index). The
problem can be converted into an optimization problem, by
minimizing any one of the three parameters, while leaving
the other two as bounds.

We use a heuristic filter grouping algorithm to organize
the filters. The algorithm proceeds in a series of phases.
Each phase recursively divides the multi-dimensional space
into ever smaller regions, so each phase produces a separate

0-15, 0xxx
0-6, 1xxx

7-15, 1xxx
0-15, xxxx

1-13, 001x
2-3, 00xx

11-14, 011x
12-13, 0xxx

0-5, 1110
1-2, 1x1x

7-7, 110x
13-14, 11xx
11-15, 111x

9-10, xxx1
0-14, 1010

index block
0-15, 0xxx
0-6, 1xxx

7-15, 1xxx
0-15, xxxx

1-13, 001x
2-3, 00xx

11-14, 011x
12-13, 0xxx

0-5, 1110
1-2, 1x1x

7-7, 110x
13-14, 11xx
11-15, 111x

9-10, xxx1
0-14, 1010

index block

Figure 5. Search in an extended TCAMFigure 5. Search in an extended TCAMFigure 5. Search in an extended TCAMFigure 5. Search in an extended TCAM

- 5 -

partition of the space. During each step in a phase, a region
in the space is selected and divided into two parts with ap-
proximately the same number of filters. The algorithm
returns a set S of index filters and a subset of the original
filter set for each of the index filters.

In all but the last phase, each sub-region created in that
phase is associated with a set of filters that are contained
entirely within the sub-region. These filters are assigned to
this enclosing sub-region and are then ignored in later
phases. The last phase also partitions the space, but some of
the filters that remain at this stage, may not fall entirely
within any of the sub-regions. Such filters are assigned to all
the sub-regions created in the last phase which they intersect,
meaning that there will be multiple TCAM blocks contain-
ing copies of these filters.

A basic operation of the algorithm is to cut a region r of
the multidimensional space into two sub-regions r1 and r2
along one of the multiple dimensions. We represent each
region by an index filter. To cut a filter along a “bit-mask
dimension”, we select one of the mask bits for that dimen-
sion that is equal to zero, change it to 1 in both of the sub-
regions and assign the corresponding bit of the value field to
0 in one sub-region and 1 in the other. All other fields of r1
and r2 are inherited from r. To cut a filter along a “range
dimension”, we simply divide a range (lo,hi) into two sub-
ranges (lo,m) and (m+1,hi) where lo≤m<hi.

Let Fi be the set of filters that remain to be processed at
the start of phase i and let Si be the set of sub-regions (index
filters) created by the algorithm during phase i. At the start
of phase i, we let Si be the entire multidimensional space.
For any given r in Si, let σ(r) denote the set of filters in Fi
that lie entirely within r and let χ(r) denote the set of filters
in Fi that intersect the region defined by r but do not lie en-
tirely within r. In all but the last phase, we repeat the
following step until for every region r in Si, σ(r) contains at
most βk filters, where k is the size of the TCAM block and β
is a parameter of the algorithm to be chosen later.

Let r be a region in Si which maximizes |σ(r)|.

Consider cuts that divide r into two sub-regions r1 and r2
that satisfy

{ })()(,)(max 21 rrr σασσ ≤

where α is another parameter, to be chosen later. Among
all such cuts, select one that maximizes

)()(21 rr σσ ∪

Replace Si with },{ 21 rrSi ∪ .

At the end of the phase, for each region r, we assign up to k
filters in σ(r) to region r. If σ(r) contains more than k filters,
we select the k filters that have the largest volume in the
multi-dimensional space. The filters assigned to region r will
share a TCAM storage block in the final result and r will be

the corresponding index filter. All filters that are assigned to
a region in phase i are excluded from the filter set Fi+1 used
in the next phase.

Figure 6 illustrates one of the basic steps. In this exam-
ple, there are two dimensions. The horizontal axis is
associated with a range dimension, and the vertical axis with
a bit-mask dimension. Two candidate cuts are indicated by
the dashed lines. Both cuts satisfy the splitting condition
when α=2/3. In this case, the algorithm would select the
horizontal cut, since this cut puts five of the six filters en-
tirely within one of the two sub-regions, while the vertical
cut places only four within one of the sub-regions.

The basic step in the last phase is similar.

Let r be a region in Si that maximizes)()(rr χσ ∪ .

Consider cuts that divide r into two sub-regions r1 and r2
that satisfy

{ })()()()(,)()(max 2211 rrrrrr χσαχσχσ ∪≤∪∪

Among all such cuts, select one that maximizes

)()(21 rr σσ ∪

If there are no cuts that satisfy this condition, select a cut
that satisfies the condition used in the earlier phases.

Replace Si with },{ 21 rrSi ∪ .

The last phase terminates when all sub-regions r in Si satisfy

krr ≤∪)()(χσ

or a splitting operation results in no decrease in
)()(rr χσ ∪ . In the latter case, the last phase “fails” and

the algorithm terminates. We can then re-run the algorithm,
specifying a larger number of phases. We can continue in
this manner, specifying more and more phases until the algo-

0 2 4 6

6

4

2

0

a. 1-2, 0xx
b. 0-3, 001
c. 2-5, 10x
d. 3-4, 111
e. 4-5, 01x
f. 6-7, xx1

a e

d

c

b

f

f

f

f

0 2 4 6

6

4

2

0

a. 1-2, 0xx
b. 0-3, 001
c. 2-5, 10x
d. 3-4, 111
e. 4-5, 01x
f. 6-7, xx1

a e

d

c

b

f

f

f

f

Figure 6. One step of the filter grouping algFigure 6. One step of the filter grouping algFigure 6. One step of the filter grouping algFigure 6. One step of the filter grouping algoooorithmrithmrithmrithm

- 6 -

rithm successfully runs to completion. Alternatively, we can
avoid most of the redundant computation implied by this
procedure, by simply rolling back to the start of the last
phase on failure and continuing from that point.

After the (successful) completion of the last phase, we let

Ui iSS = . The elements of S define our index filters. For
each r in S, the filters that were assigned to r during the exe-
cution of the algorithm are placed in the storage block
associated with r.

Figure 7 shows the result of an execution of the algo-
rithm with k=4. The first phase results in the three sub-
regions (0-15, 0xxx), (0-6, 1xxx) and (7-15, 1xxx), contain-
ing 4, 2 and 3 filters, respectively. The final phase terminates
with two filters in the region (0-15, xxxx). This produces the
TCAM configuration in Figure 5.

4. Evaluating Packet Classification Algorithms
It has been observed that “real” packet classification filter
sets exhibit a considerable amount of structure. In response,
several algorithmic techniques have been developed which
exploit this structure to accelerate search time or reduce
storage requirements. Consequently, the performance of
these approaches is subject to the statistical composition of
the filter set.

Despite the influence of filter set composition on the per-
formance of packet classification algorithms and devices, no

benchmark suite of filter sets or systematic methodology
exists for standardized performance evaluation. Due to secu-
rity and confidentiality issues, access to large “real” filter
sets for statistical study and performance measurements of
new classification techniques has been limited to a small
subset of the research community.

Performance evaluations using real filter sets are re-
stricted by the size and structure of the sample data. Some
researchers have proposed ad hoc methods, such as inde-
pendently selecting filter fields from a one-dimensional
distribution, to generate synthetic filter sets or modify the
composition and number of filters in the filter set.

In order to facilitate future research and provide a foun-
dation for a meaningful benchmark, we developed a
technique for generating large synthetic filter sets which
model the statistical structure of a seed filter set [16]. Along
with scaling filter set size, the tool provides mechanisms for
systematically altering the number and composition of filters
as depicted in Figure 8. Two adjustments, smoothing and
scope, provide high-level adjustments for filter set genera-
tion and an abstraction from the low-level statistical
characteristics.

Previous work reported many statistical characteristics of
filter sets useful for constructing fast search algorithms. In a
similar fashion, we extract statistics from seed filter sets in
order to construct larger synthetic filter sets with similar
structure and characteristics. Selection of the relevant statis-
tics is based upon experience garnered from a study of five

0 2 4 6 8 10 12 14

14

12

10

8

6

4

2

0

a. 1-13, 001x
b. 2-3, 00xx
c. 9-10, xxx1
d. 11-14, 011x
e. 12-13, 0xxx
f. 0-14, 1010
g. 7-7, 110x
h. 0-5, 1110
i. 1-2, 1x1x
j. 13-14, 11xx
k. 11-15, 111x

a

b

c

d

e

f

g

h

j

k

c

c

c

c

c

c

c

i

i

0 2 4 6 8 10 12 14

14

12

10

8

6

4

2

0

a. 1-13, 001x
b. 2-3, 00xx
c. 9-10, xxx1
d. 11-14, 011x
e. 12-13, 0xxx
f. 0-14, 1010
g. 7-7, 110x
h. 0-5, 1110
i. 1-2, 1x1x
j. 13-14, 11xx
k. 11-15, 111x

a

b

c

d

e

f

g

h

j

k

c

c

c

c

c

c

c

i

i

Figure 7. Example of partitioning algorithmFigure 7. Example of partitioning algorithmFigure 7. Example of partitioning algorithmFigure 7. Example of partitioning algorithm

- 7 -

firewall filter sets of modest size. This study paid particular
attention to the five-dimensional structure of the filter sets
and the “correlation” among fields. In the context of our
discussion, “correlation” is generally defined as the probabil-
ity that two fields share the same value and will be defined
more explicitly for the contexts in which it is used.

The first important characteristic of seed filter sets is the
tuple distribution. We define the filter 5-tuple as a vector
containing the following fields.

• t[0] - source address prefix length, [0...32]

• t[1] - destination address prefix length, [0...32]

• t[2] -, source port range width, the number of port
numbers covered by the range, [0...216]

• t[3] - destination port range width, the number of port
numbers covered by the range, [0...216]

• t[4] - protocol specification, Boolean value denoting
whether or not a protocol is specified, [0,1]

The tuple defines the five-dimensional structure of the
filter without specifying the actual values for address pre-
fixes, port ranges, and protocol fields. In order to provide a
high-level measure of the specificity of the tuples in a seed
filter set, we define a metric, scope, to be the base 2 loga-
rithm of the number of possible packet headers covered by
the filter.

() () ()]4[18]3[lg]2[lg]1[32]0[32 tttttscope −+++−+−=

A seed filter set contains a finite list of tuples which are
derived from the filters. From the given seed filters, we

generate a tuple distribution consisting of unique tuples and
associated weights corresponding to the relative frequency
of their occurrence in the seed filter set. For each filter gen-
erated for the synthetic filter set, a tuple is selected from the
tuple distribution according to the probabilities dictated by
the relative weights. We refer to this selected tuple as the
target tuple.

As filter sets scale in size, we anticipate that new tuple
specifications will emerge in the set of unique tuples. In or-
der to allow for this possibility, we enable the creation of
new tuples in a structured manner that preserves the struc-
ture present in the seed filter set. Using scope as a measure
of distance, we would like new tuples to emerge “near” an
existing tuple. We define a smoothing parameter, r, that con-
trols the maximum distance between a new tuple and the
original tuple from which it “spawns”. For values of r
greater than zero, the process selects a radius i in the range
[0…r] from a truncated geometric distribution; hence, the
probability that we select the target tuple or a tuple near the
original tuple is greater than the probability that we select a
tuple farther away. Once a radius is selected, the new tuple
is generated by randomly selecting a direction of scope ad-
justment (increase or decrease) for each field, then randomly
selecting i tuple fields and adjusting the scope by one unit
for each chosen field, according to the chosen direction. In
order to illustrate the effect of smoothing, the joint
source/destination address prefix length distribution for a
seed filter set and the resulting synthetic filter set created
with r =16 are shown in Figure 9.

In addition to smoothing, we provide control over the
average scope of the synthetic filter set via a scope parame-
ter s. Tuning the average scope of the synthetic filter set is
useful for exploring its effect on the performance and capac-
ity of algorithms as well as modeling different network
environments. For example, as the number of flow-specific
filters in a filter set increases we expect the average scope of
the filters to decrease. The smoothing parameter, s, is a rela-
tive adjustment to the average scope of the filter set; hence,
it may take on values in the range [-104…104]. Adjusting

Seed
DB

-104 +104

0
Scope

0 104

Smoothing

0 128k

Size
Synth
DB

Seed
DB

-104 +104

0
Scope

-104 +104

0
Scope

0 104

Smoothing

0 128k

Size
Synth
DB

Figure 8. Conceptual view of the filter set generFigure 8. Conceptual view of the filter set generFigure 8. Conceptual view of the filter set generFigure 8. Conceptual view of the filter set generaaaatortortortor

1

32
32

1
0

5000
10000
15000

20000

25000
30000

35000

40000

45000

N
um

be
r o

f F
ilt

er
s

DA Prefix Length SA Prefix Length
1

32
32

1
0

2000
4000
6000
8000

10000
12000

14000

16000

18000

N
um

be
r o

f F
ilt

er
s

DA Prefix Length
SA Prefix Length

Figure 9. Source and destination prefix length distributions for seed filter set (left) and smoothed version (right)Figure 9. Source and destination prefix length distributions for seed filter set (left) and smoothed version (right)Figure 9. Source and destination prefix length distributions for seed filter set (left) and smoothed version (right)Figure 9. Source and destination prefix length distributions for seed filter set (left) and smoothed version (right)

- 8 -

the average scope of the filter set consists of adjusting the
tuple specifications of the filters in a manner very similar to
the smoothing adjustment. Once a target tuple is selected
and adjusted for smoothing, a random tuple field is selected
as the starting point for scope adjustment. The scope of the
selected field is modified according to the sign of s (scope
increased by one or decreased by one). Tuple fields are ad-
justed in turn until s scope adjustments have been made or
no more scope adjustments are possible.

The remaining steps of the synthetic generation process
essentially “fill in” filter fields as dictated by the tuple.
While the tuple captures the joint source/destination address
prefix length distribution, it does not characterize the struc-
ture of the address trees or similarity between address
prefixes. We model address tree structure as follows. For
each level in each address trie for the seed filter set, we
compute the frequency that a node has zero children, one
child, and two children. This is used to create a probability
distribution that guides the generation of source and destina-
tion addresses. For nodes with two children, we also
compute skew, which is the ratio of the weights of the left
and right subtrees of the node. Subtree weight is defined to
be the number of filters specifying prefixes in the subtree.
An average skew value for each level is computed and
stored with the child probability distributions for the level.
We argue that the combination of the child and skew distri-
butions capture the most important characteristics of the
data.

Using the child and skew distributions, a source address
tree specifying a branching probability for each node is dy-
namically created during the filter set generation process.
The similarity between source and destination address pre-
fixes is captured through a “correlation” distribution, which
is defined as the probability that the source address prefix
and destination address prefix are the same up to a given
level. The child and skew distributions along with the “cor-
relation” distribution is used to dynamically generate the
destination address tree during the synthetic generation
process.

While the tuple distribution captures the interdependence
of port range widths and other tuple fields, it does not char-
acterize the choice of range bounds given a range width.
Analysis of the specified port ranges in the set of firewall
filter sets yielded an interesting result: all port range widths
other than one (fully specified) correspond to a single port
range. This property makes selecting of bounds for port
ranges given the range width trivial. For fully specified
ports, we make a uniform random selection from the range
of possible port values. For tuples that fully specify both
port ranges, we account for the probability that both source
and destination ports are the same.

Finally, we must select a protocol if the tuple dictates a
specified protocol field. Clearly, a relationship exists be-
tween protocol specifications and port ranges. Based our
analyses, we chose to employ three probability distributions
for protocol selection. The first distribution is used when

both port ranges are unspecified; the second is used when
one port range is specified and the other is unspecified; and
the third is used when both port ranges are specified. The
three distributions may differ significantly within a single
seed filter set.

In the next section, we report on how we have used the
synthetic filter set generator to evaluate the performance of
the filter grouping algorithm for extended TCAMs on a wide
range of filter sets. We plan to continue to develop the filter
set generator, with the objective of creating a standard
benchmark and evaluation methodology for packet classifi-
cation algorithms and devices.

5. Performance Results
There are three key parameters that affect the performance
of the filter grouping algorithm, α, β and the block size, k.
These parameters affect the two key performance metrics of
interest, the power efficiency and the storage efficiency.

As our measure of power efficiency, we use the quantity
(b+sk)/N, where b is the number of number of storage blocks
used by the partitioning algorithm (this is equal to the num-
ber of entries in the index), s is the maximum number of
storage blocks that must be searched for any packet (this is
equal to the number of phases used by the filter grouping
algorithm) and N is just the total number of filters in the
original filter set. The numerator represents the total number
of words in the TCAM that must be searched to perform a
lookup (including the index) and the denominator is the
number that would have to be searched if we were using a
conventional TCAM. We refer to this quantity as the power
fraction and we seek to make it as small as possible. As our
measure of storage efficiency, we use N/(b+bk). Here, the
denominator is the sum of the number of words used in the
index plus the number used in the storage blocks required by
the algorithm.

We start our performance study by determining how the
parameter choices affect the performance metrics. Figure 10
shows the dependence on α. We observe that for small val-
ues of α, the power fraction is relatively high, but that it
drops under .05 for α ≥ .75. The storage efficiency shows no
strong dependence on α but is best for values between .6
and .95. Figure 11 shows how the performance depends on
β. Here, we observe that the power fraction increases from
about .02 to just over .04. While this is a large relative in-
crease, the absolute magnitude of the power fraction remains
acceptably small across the whole range of values. (A power
fraction of .05 is small enough to ensure that the TCAM
power consumption remains a small fraction of the overall
power consumption of a router line card.) The impact of β
on storage efficiency is more significant, increasing the stor-
age efficiency from about .72 to over .95.

Figure 12 shows how the performance is affected by the
size of the TCAM blocks. We observe that the power frac-
tion is strongly dependent on the block size, but generally

- 9 -

stays below 5% for the largest filter set for block sizes from
32 to 128. We note that the optimal block size varies with
the number of filters, with larger filter sets favoring larger
block sizes. The power fraction is determined by the two
terms, b/N and sk/N. The first term (which accounts for the
power used to search the index) decreases as the block size
grows, since with large blocks, we need fewer storage
blocks. The second term grows with the block size. While s
decreases as the block size k grows, the rate of decrease in s
diminishes as k gets large. It’s the combination of these op-
posing effects that produce the sharp minimum seen in the
power fraction. It may seem curious that the power fraction
is larger for smaller filter sets. This is because the power
fraction is measured relative to the power that would be con-
sumed by a TCAM that has exactly the right number of
entries for the given filter set. While the absolute power lev-
els are smaller for the smaller filter sets, the reduction that
can be obtained using extended TCAMs is also smaller. Fig-
ure 12 also shows that the storage efficiency peaks roughly
coincide with the best power reductions.

Based on these and other supporting data, we have con-
cluded that α=.8 and β=2 are the best choices for the first

two parameters. For the block size, the best choice appears
to be the largest power of 2 that is less than (1/2)N1/2. Of
course, the block size is a little different from the other pa-
rameters, since it is a fixed characteristic of the extended
TCAM device. So, this rule should be applied using the tar-
get device capacity. This will define the worst-case situation
for that specific device, since power usage will generally be
reduced for smaller filter sets.

Figure 13 shows how the performance metrics are af-
fected by the size of the filter set. Results are shown for two
different seed filter sets. As mentioned earlier, the relatively
high power fractions for small filter sets reflect the fact that
with small filter sets, the power required for a suitably sized
TCAM is already small, leaving less room for improvement.
For larger filter sets, where power reduction is most impor-
tant, the power fraction generally stays below 5%. The
storage efficiency also seems to improve slightly with filter
set size.

Figure 14 shows how the performance varies as a func-
tion of the smoothness adjustment. For even small increases
in r, we observe fairly marked deterioration in the power
fraction and a smaller deterioration in the storage efficiency.

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

α

st
or

ag
e

ef
fic

ie
nc

y

50,000 filters, β=2, bucket size=128
0.00

0.02

0.04

0.06

0.08

0.10

0.5 0.6 0.7 0.8 0.9 1

α

po
w

er
 fr

ac
tio

n
50,000 filters, β=2, bucket size=128

0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1

α

st
or

ag
e

ef
fic

ie
nc

y

50,000 filters, β=2, bucket size=128
0.00

0.02

0.04

0.06

0.08

0.10

0.5 0.6 0.7 0.8 0.9 1

α

po
w

er
 fr

ac
tio

n
50,000 filters, β=2, bucket size=128

Figure 10. Dependence of filter grouping algorithm performance on Figure 10. Dependence of filter grouping algorithm performance on Figure 10. Dependence of filter grouping algorithm performance on Figure 10. Dependence of filter grouping algorithm performance on αααα

0.5

0.6

0.7

0.8

0.9

1

1 1.2 1.4 1.6 1.8 2

β

st
or

ag
e

ef
fic

ie
nc

y

50,000 filters, α=.8, bucket size=128
0

0.02

0.04

0.06

0.08

0.1

1 1.2 1.4 1.6 1.8 2

β

po
w

er
 fr

ac
tio

n

50,000 filters, α=.8, bucket size=128

0.5

0.6

0.7

0.8

0.9

1

1 1.2 1.4 1.6 1.8 2

β

st
or

ag
e

ef
fic

ie
nc

y

50,000 filters, α=.8, bucket size=128
0

0.02

0.04

0.06

0.08

0.1

1 1.2 1.4 1.6 1.8 2

β

po
w

er
 fr

ac
tio

n

50,000 filters, α=.8, bucket size=128

Figure 11. Dependence of filter grouping algorithm performance on Figure 11. Dependence of filter grouping algorithm performance on Figure 11. Dependence of filter grouping algorithm performance on Figure 11. Dependence of filter grouping algorithm performance on ββββ

- 10 -

While the results still represent a 10:1 improvement over the
standard TCAM, the degraded performance is somewhat
disturbing. At this time, we are not in a position to explain it
fully.

Figure 15 shows the effect of the scope adjustment. A
value of 0 means that the scope adjustment was not changed.
A negative scope adjustment corresponds to more specific
filters, a positive scope adjustment to less specific filters. We
expect that as packet filter sets grow in size, there will be a
natural tendency for the filters to become more specific.
Hence, it is worth understanding how packet classification
algorithms will perform under these circumstances. For
these results, the smoothness adjustment was set to 16, so we
observe the same, relatively large power fractions that we
noted above. We see a marked improvement in power frac-
tion at a scope adjustment of −16 or less. This seems to
make sense intuitively. As filters become more specific, we
expect the filter grouping algorithm to separate them more
easily. We expect that other packet classification algorithms
are also likely to perform better as filter sets become more
specific.

6. Concluding Remarks
Extended TCAMs appear to be a promising solution for high

performance packet classification. They provide the per-
formance needed for OC-768 links, have moderate power
requirements and are far more storage-efficient than high
performance algorithmic solutions. There are several addi-
tional issues that remain to be explored.

Perhaps the most important issue to be studied is incre-
mental updates. The filter grouping procedure described here
is a computationally expensive procedure, which cannot
reasonably be performed whenever we add or remove a fil-
ter. One way to handle incremental updates, in an extended
TCAM with a fixed block size and total capacity is to at-
tempt to structure the filter set so that all storage blocks have
roughly equal amounts of free space. This can be achieved
by running the filter grouping algorithm with a value of k
that is smaller than the actual block size. Subsequent filter
additions can be handled by assigning them to storage blocks
with unused space that cover the same part of the multi-
dimensional space that is spanned by the new filter. If new
filters follow the same distribution as filters already in the
filter set, one can reasonably expect most new filters to fit
easily within the structure defined by the algorithm for the
original filter set. Eventually, the addition of new filters will
cause some storage blocks to fill up. If all the storage blocks
that cover a given region of the space become full, it will
become impossible to accommodate new filters that span

0.5

0.6

0.7

0.8

0.9

1

10 100 1,000

storage block size

st
or

ag
e

ef
fic

en
cy

α=.8, β=2

50K filters
25K

12.5K

0.00

0.02

0.04

0.06

0.08

0.10

10 100 1,000

storage block size

po
w

er
 fr

ac
tio

n

α=.8, β=2

50K filters

25K

12.5K

0.5

0.6

0.7

0.8

0.9

1

10 100 1,000

storage block size

st
or

ag
e

ef
fic

en
cy

α=.8, β=2

50K filters
25K

12.5K

0.00

0.02

0.04

0.06

0.08

0.10

10 100 1,000

storage block size

po
w

er
 fr

ac
tio

n

α=.8, β=2

50K filters

25K

12.5K

Figure 12. Dependence of filter grouping algoriFigure 12. Dependence of filter grouping algoriFigure 12. Dependence of filter grouping algoriFigure 12. Dependence of filter grouping algorithm performance on block size (thm performance on block size (thm performance on block size (thm performance on block size (kkkk))))

0.00

0.20

0.40

0.60

0.80

1.00

2K 4K 8K 16K 32K 64K 128K
number of filters

st
or

ag
e

ef
fic

ie
nc

y

0.00

0.05

0.10

0.15

0.20

2K 4K 8K 16K 32K 64K 128K
number of filters

po
w

er
 fr

ac
tio

n

0.00

0.20

0.40

0.60

0.80

1.00

2K 4K 8K 16K 32K 64K 128K
number of filters

st
or

ag
e

ef
fic

ie
nc

y

0.00

0.05

0.10

0.15

0.20

2K 4K 8K 16K 32K 64K 128K
number of filters

po
w

er
 fr

ac
tio

n

Figure 13. Effect of filter set sizeFigure 13. Effect of filter set sizeFigure 13. Effect of filter set sizeFigure 13. Effect of filter set size for two seed filter sets for two seed filter sets for two seed filter sets for two seed filter sets

- 11 -

that part of the space. This problem can be avoided by
periodically reorganizing the TCAM, after re-running the
filter grouping algorithm. Alternatively, it may be possible to
reorganize the TCAM incrementally.

It’s natural to ask if there might be an advantage to using
a two level index, instead of one level. When the block size
gets small, the size of the index grows (since there are more
storage blocks) and the power used to perform the index
lookup becomes significant. Since the index is just a set of
filters, we can apply the filter grouping algorithm to the in-
dex in exactly the same way, to construct an index into the
set of index filters. This allows us to use smaller storage
blocks, without being limited by the power consumption of
the index. Unfortunately, smaller storage blocks have draw-
backs that may negate the power advantage. First, smaller
blocks add area overhead to the TCAM device. Second, it
seems likely that smaller blocks won’t handle incremental
updates as well as large blocks. Indeed, the incremental up-
date issue may well motivate the use of larger blocks than
one might otherwise choose, based on power considerations
alone.

Finally, it should be noted that the filter grouping algo-
rithm could reasonably be used as the basis for a more
conventional packet classification algorithm using random
access memory. A sequential algorithm can simulate the

extended TCAM behavior by searching the index sequen-
tially, then searching the appropriate set of storage blocks
(sequentially). Our power reduction measure corresponds
directly to the fraction of the filter set that such an algorithm
would have to examine. A version of the algorithm using a
multi-layer index might well be competitive with other algo-
rithmic solutions. Indeed, the filter grouping algorithm has
similarities to the Hypercuts algorithm [17] and was in fact,
partly inspired by Hypercuts. A key difference is the use of
multiple partitions of the multi-dimensional space. While it’s
not clear that this approach would lead to a competitive,
sequential algorithm, the question appears worthy of further
investigation.

REFERENCES
1. Baboescu, F. and G. Varghese. “Scalable packet classifica-

tion,” Proc. of ACM Sigcomm, 9/2001.
2. Baboescu, F., S. Singh, and G. Varghese. “Packet Classifica-

tion for Core Routers: Is there an alternative to CAMs?”
Proceedings of Infocom, 2003.

3. Brodnik, A., S. Carlsson, M. Degemark, S. Pink.. “Small For-
warding Tables for Fast Routing Lookups,” Proc. ACM
SIGCOMM, 1997.

4. Buddhikot, M. S. Suri, and M. Waldvogel. “Space decomposi-
tion techniques for fast layer-4 switching,” Proc. of PHSN,

0.00

0.20

0.40

0.60

0.80

1.00

0 4 16 64
smoothness adjustment (r)

st
or

ag
e

ef
fic

ie
nc

y

0.00

0.05

0.10

0.15

0.20

0 4 16 64
smoothness adjustment (r)

po
w

er
 fr

ac
tio

n

0.00

0.20

0.40

0.60

0.80

1.00

0 4 16 64
smoothness adjustment (r)

st
or

ag
e

ef
fic

ie
nc

y

0.00

0.05

0.10

0.15

0.20

0 4 16 64
smoothness adjustment (r)

po
w

er
 fr

ac
tio

n

Figure 14. Effect of smoothness adjustment for two seed filter setsFigure 14. Effect of smoothness adjustment for two seed filter setsFigure 14. Effect of smoothness adjustment for two seed filter setsFigure 14. Effect of smoothness adjustment for two seed filter sets

0.00

0.20

0.40

0.60

0.80

1.00

-64 -16 -4 0 4 16
scope adjustment

st
or

ag
e

ef
fic

ie
nc

y

0.00

0.05

0.10

0.15

0.20

-64 -16 -4 0 4 16
scope adjustment

po
w

er
 fr

ac
tio

n

0.00

0.20

0.40

0.60

0.80

1.00

-64 -16 -4 0 4 16
scope adjustment

st
or

ag
e

ef
fic

ie
nc

y

0.00

0.05

0.10

0.15

0.20

-64 -16 -4 0 4 16
scope adjustment

po
w

er
 fr

ac
tio

n

Figure 15. Effect of scope adjustment for two seed filter setsFigure 15. Effect of scope adjustment for two seed filter setsFigure 15. Effect of scope adjustment for two seed filter setsFigure 15. Effect of scope adjustment for two seed filter sets

- 12 -

8/99.
5. Feldman, A. and S. Muthukrishnan, “Tradeoffs for packet

classification,” Proc. of Infocom, 3/2000.
6. Gupta, S. Lin, and N. McKeown, “Routing lookups in hard-

ware at memory access speeds,” Proceedings of Infocom 4/98.
7. Gupta, P. and N. McKeown. “Packet Classification on Mul-

tiple Fields,” Proc. ACM Sigcomm 9/99.
8. Gupta, P. and N. McKeown, “Packet classification using hier-

archical intelligent cuttings,” Proc. of Hot Intercon-nects, 8/99.
9. Lakshman, T. and D. Stidialis, “High speed policy-based

packet forwarding using efficient multi-dimensional range
matching,” Proc. of ACM Sigcomm, 9/98.

10. Montoye, Robert K., “Apparatus for Storing don’t care in a
content addressable memory cell,” United States Patent
#5,319,590, 6/94.

11. Narlikar, Girija, Anindya Basu, Francis Zane. “CoolCAMs:
Power-Efficient TCAMs for Forwarding Engines,” Proc. of In-
focom, 5/2003.

12. Srinivasan, V. and G. Varghese. “Fast IP Lookups using Con-
trolled Prefix Expansion,” Proc. ACM Sigmetrics, 6/98.

13. Srinivasan, V., G. Varghese, S. Suri, and M. Waldvogel. “Fast
and scalable layer 4 switching,” Proc. of ACM Sigcomm 9/98.

14. Srinivasan, V., S. Suri, and G. Varghese,. “Packet class-
ification using tuple space search,” Proc. of ACM Sigcomm,
9/99.

15. Taylor, David E., John W. Lockwood, Todd Sproull, Jonathan
S. Turner, David B. Parlour. “Scalable IP Lookup for Pro-
grammable Routers,” Proc. of Infocom, 6/02.

16. Taylor, David E. and Jonathan Turner. “Towards a Packet
Classification Benchmark,” Washington University Computer
Science Department Technical Report, WUCS-03-42, 5/2003.

17. Varghese, George, et. al. “Packet Classification Using Multi-
dimensional Cuts,” to appear in Proceedings of SIGCOMM,
2003.

18. Waldvogel, M. G. Varghese, J. Turner, B. Plattner. “Scalable
High-Speed Prefix Matching,” ACM Transactions on Com-
puter Systems, 2001.

