
Stress Resistant Scheduling Algorithms for CIOQ Switches

Prashanth Pappu, Jonathan Turner
Department of Computer Science

Washington University in St. Louis, MO, USA�
prashant,jst � @arl.wustl.edu

Abstract

Practical crossbar scheduling algorithms for CIOQ
switches such as PIM and � -SLIP, can perform poorly un-
der extreme traffic conditions, frequently failing to be work-
conserving. The common practice of evaluating crossbar
scheduling algorithms according to the packet delay under
random admissible traffic tends to obscure significant dif-
ferences that affect the robustness of different algorithms
when exposed to extreme conditions. On the other hand,
algorithms such as LOOFA with provably good worst-case
performance, don’t lend themselves readily to high perfor-
mance implementation. We advocate evaluating crossbar
scheduling algorithms using targeted stress tests which seek
to probe the performance boundaries of competing alter-
natives. Appropriately designed stress tests can reveal key
differences among algorithms and can provide the insight
needed to spur the development of better solutions.

In this paper, we introduce the use of stress testing for
crossbar scheduling and use it to evaluate the performance
of PIM, � -SLIP and LOOFA. Our results show that PIM
and � -SLIP need large speedups in order to perform well
on stress tests, while LOOFA can deliver excellent perfor-
mance, even for speedups less than 1.5. We then develop im-
proved versions of PIM and � -SLIP, which take output queue
lengths into account, making them much more robust. We
also develop an algorithm which closely approximates the
behavior (and performance) of LOOFA, but which admits a
straightforward, high performance hardware implementa-
tion.

1 Introduction

The conceptual simplicity of an output queued router
makes it an ideal candidate for router architecture design.
An output queued router with N input and output ports,
buffers packets only at the outputs. When two or more
packets destined to the same output, arrive simultaneously
at different input ports, they are transferred immediately to

the output queue to avoid packet loss. Hence, the switching
fabric of an output queued router needs to be scaled with
the number of ports N. The increase in the link rates of in-
dividual ports and also the total number of ports supported
on a single switch makes the task of scaling the switch fab-
ric with the number of ports infeasible. Hence, most scal-
able switches employ some form of both input and out-
put queuing. This Combined Input and Output Queuing
(CIOQ) lets us use lower speed switching fabrics without
any packet loss. When two or more packets contend to go
to the same output, some of them are temporarily held in
the input queues before being transmitted to the outputs. In
typical CIOQ switches, the speedup of the switching fabrics
over individual link rates is a small constant.

The inputs in CIOQ switches maintain separate queues
for each output (called Virtual Output Queues (VOQ)) and
use a scheduling algorithm to determine which cells from
various inputs are transferred to outputs in a given cy-
cle. The use of VOQs helps alleviate the problem of
performance degradation due to head-of-line blocking [1].
The objective of the scheduling algorithms used in these
swtiches is to approximate the work conserving proper-
ties of a pure output queued switch. A number of stabil-
ity results have been proved regarding the performance of
scheduling algorithms under admissible traffic. A traffic
pattern is said to be admissible if no input or output is over-
subscribed. A maximum size matching has been shown to
be stable for i.i.d arrivals up to an offered load of 100%
when the traffic is uniform and admissible [2]. It has also
been demonstrated that a maximum weight matching algo-
rithm can lead to a maximum throughput of 100% for inde-
pendent and either uniform or non-uniform traffic [3]. The
weights used in these algorithms can be the lengths of vari-
ous VOQS or cell arrival times [4]. Unfortunately, the best
known algorithms for performing a maximum size match or
maximum weight match are too complex (�����	�
�� [5] and
���������������� [6] , respectively) for high speed implemen-
tations. Hence, a number of heuristic algorithms have been
proposed to approximate the behaviour of these complex al-
gorithms. PIM [7] and iSLIP [8] are examples of algorithms

1

which attempt to converge on a maximal matching and iLPF
[9] is an algorithm which approximates maximum weight
matching. Though, these algorithms are comparatively sim-
pler to implement, they do not match the performance of an
output queued switch under extreme traffic conditions.

Efforts have been made to design scheduling algorithms
which can retain the properties of output queued swtiches
under all traffic patterns. These worst case results usu-
ally need increased speedup in the switch to maintain their
throughput under all traffic conditions. Reference [10]
proposes a scheduling algorithm called Critical Cells First
(CCF) which (with speedup of 2) can exactly emulate an
output queued swtich, i.e, it is both work conserving and
preserves the cell ordering of an ideal output queued switch.
Reference [11] presents a simpler (����� �) algorithm called
Lowest Occupancy Output First Algorithm (LOOFA) which
keeps the switch work conserving under all traffic condi-
tions. This algorithm can be augmented with timestamps to
preserve the cell ordering in a switch with a speedup of 3.
However, these significant algorithms are also not practical
for high speed implementations.

For example, a switch with links operating at a rate of
10 Gb/s has less than 40 ns to make a scheduling decision!
This implies that often, it is the implementation simplicity
which is the primary factor in determining which schedul-
ing algorithms are used in most high speed routers. Hence,
these worst case results are only of theoretical interest and
limited use. On the other hand, it is non-tivial to arrive at
any definite conclusions about the performance of imple-
mentable scheduling algorithms, especially, under extreme
traffic conditions. This is particularly of concern because
of the unregulated nature of IP networks which can cause
sustained overloads at output ports of routers. There are a
number of factors which can lead to overload problems in
IP networks

� limited route diversity which makes congested links
common.

� use of route selection mechanisms which are not
guided by session bandwidth needs.

� sudden route changes which can cause rapid traffic
shifts.

� use of slow congestion control mechanisms.

� presence of malicious users.

These overload conditions in IP networks are essentially
inadmissible traffic patterns that can potentially cause
scheduling algorithms to underperform leading to a loss
in throughput. Hence, it is not clear how most practical
scheduling algorithms used in switches would perform un-
der more realistic, inadmissible traffic conditions in IP net-
works.

To study the performance of scheduling algorithms un-
der these extreme traffic conditions, we have designed a
stress test. This stress test is a traffic pattern which simu-
lates the unregulated nature of IP networks by overloading
the various outputs of a switch with the objective of bring-
ing about the worst case performance of the scheduling al-
gorithms. The test while not providing any conclusive ev-
idence, helps us in making meaningful distinctions among
algorithms operating under extreme conditions. We use this
stress test as a tool to gain insight into

� performance of practical scheduling algorithms under
extreme conditions

� performance of work conserving scheduling algo-
rithms under speedups ��� .

� in design of stress resistant scheduling algorithms
which maintain their throughput both under uniform
traffic and stress tests and still are simple enough to be
used in high speed implementations.

In this paper, we first study the performance of crossbar
scheduling algorithms PIM, iSLIP and LOOFA under uni-
form traffic and the stress test. We demonstrate that though
PIM and iSLIP perform well under uniform traffic, they
have low throughputs under the stress test. While LOOFA
has good throughput even under the stress test, it is too
complex for implementation. From the performance stud-
ies we observe that scheduling algorithms which favour
outputs with smaller queue lengths over those which have
greater queue lengths can maintain their throughput even
under extreme conditions. Using this insight, we present a
simple heuristic called the Lowest Layer Selection (LLS)
that we then use to create stress resistant but still imple-
mentable versions of PIM and iSLIP. These algorithms
called LLS-Random (LLS-R) and LLS-Slip (LLS-S) have
good performance under both stress test and uniform traf-
fic. We also present an approximate but implementable ver-
sion of LOOFA called approximate LOOFA (A-LOOFA)
which only maintains an approximate ordering of the out-
puts based on their queue lengths but is still stress resistant.

2 Stress Test

Most prior work compares the performance of schedul-
ing algorithms for CIOQ switches by measuring the average
queuing delay of packets for various traffic workloads. Av-
erage queuing delay as a metric can be used to study the
relative performance of two algorithms for a given work-
load. But, it is difficult to quantify the absolute performance
(throughput) of an algorithm using the measured average
queuing delays, especially, when the traffic workload is in-
admissible and/or non-uniform, where the inherent queuing

2

Phase 1 Phase 2 Phase 3 Phase 4

Figure 1. Example of stress test with 3 partic-
ipating inputs and 4 phases

delays of the packets due to the traffic sources tends to dom-
inate over the actual delays induced by the scheduling algo-
rithm. Even when the traffic is uniform, while the maximum
throughput achieved can be inferred from the measured av-
erage queuing delays, it is non-trivial to quantify the exact
throughput achieved at various traffic loads.

In this section, we use a metric called the miss fraction to
quantify the throughput achieved by a scheduling algorithm
used in a CIOQ switch. In a given measurement period,
let ��� be the number of cells forwarded by a switch using
scheduling algorithm

�
and ��� be the number of cells for-

warded by the ideal output queued switch when subjected
to the same workload as algorithm

�
. Then miss fraction is

defined as

miss fraction ���	� � �
�
�

Thus, the metric essentially determines the relative loss in
throughput of a switch using the given scheduling algorithm
as compared to the ideal output queued switch under the
same traffic conditions. The miss fraction proves to be a
particularly useful metric in inadmissible traffic conditions
where the average queuing delays are usually unbounded.

To test the performance of scheduling algorithms for
CIOQ switches under extreme and inadmissible traffic con-
ditions, we have designed a stress test. The stress test sim-
ulates unregulated traffic by causing sustained overloads at
various outputs of the router. Also, while stressing individ-
ual outputs, the test attempts to bring about the worst case
performance in the work-conserving nature of the schedul-
ing algorithm. To achieve this, the test takes an adversarial
approach to stressing various outputs with the goal of in-
creasing the miss fraction of the scheduling algorithm. The
adversarial approach of the stress test tries to create condi-
tions where,

1. A single output which has an empty queue has cells
queued for it at various inputs.

2. Inputs which have cells queued for an output with an
empty queue, also have cells queued for other outputs.

A traffic pattern which can create such conditions can po-
tentially cause a scheduling algorithm to incur greater miss

fractions. In particular, the stress test we have designed,
consists of a series of phases, as illustrated in Fig. 1. In
the first phase, the arriving traffic at each of several inputs
is sent to a single output. This causes each of the inputs
to build a backlog for the target output. The arriving traf-
fic at all inputs is then switched to a second output, causing
the accumulation of a backlog for the second output at each
of the inputs. Successive phases proceed similarly, creating
backlogs at each input for each of several outputs. During
the final phase, the arriving traffic at each of the inputs is
switched to distinct new outputs. Since, these inputs are the
only source of traffic for the new target outputs, they must
send packets to them as quickly as they come in, while si-
multaneously clearing the backlog for other outputs, in time
to prevent underflow at those outputs. This creates an ex-
treme condition that can cause underflow and increase the
miss fraction. The timing of the transitions is chosen to en-
sure that all the VOQs at each of the participating inputs still
have some backlog at the final transition. More specifically,
to create the worst case traffic conditions for a given algo-
rithm, the traffic is switched to a new target output when
the input backlog for the current target rises to the same
level as the input backlog for the previous target. However,
when comparing the performance of different schedulers,
the transition times and measurement periods are fixed and
the same test is applied to all algorithms. The stress test can
be varied by changing the number of participating inputs
and the number of phases.

Fig. 2 better illustrates the progress of a stress test.
Fig. 2(a) plots the queue lengths of various VOQs of the
first input ��� � , of a switch under a stress test with 3 partici-
pating inputs and 4 phases. (This test is illustrated in Fig. 1.)
The algorithm used in the example is PIM and the speedup
of the switch is ���� . The plot shows how the input directs
its traffic to a new output when the input backlog to the cur-
rent output equals that of the backlog to a previous output.
In the last phase input � is the only input sending traffic to
output � but it still accumulates a backlog to that output in-
dicating misses incurred by output � . Fig. 2(b) shows the
average miss fraction incurred by the algorithm in this test.
We use the interval from the beginning of the last phase to
the end of the simulation as a measurement period for the
average miss fraction due to the stress test. This explains
the spike in the miss fraction curve in Fig. 2(b). Algorithms
which have smaller miss fractions under these stress tests,
evidently maintain their throughput even in overload situa-
tions.

We note that the stress test only exemplifies a general ap-
proach to evaluating CIOQ algorithms under extreme con-
ditions. There may well be other stress test scenarios that
are more stressful at least for some algorithms and that al-
gorithms that are designed to perform well on the stress test
might perform poorly under other tests. However, the intu-

3

0 10000 20000 30000 40000 50000 60000 70000 80000
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Q
ue

ue
 L

en
gt

h VOQ(0,0)

VOQ(0,1)

VOQ(0,2)

VOQ(0,3)

(a) Queue Lengths

0 10000 20000 30000 40000 50000 60000 70000 80000
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
Fr

ac
tio

n

Avergage Miss Fraction

(b) Miss Fraction

Figure 2. Queue lengths of various VOQs and miss fraction for PIM under a stress test with 3
participating inputs and 4 phases. (N=16, speedup=1.5)

itive basis of the stress test provides good evidence for dis-
tinguishing among algorithms which perform well in over-
load situations and those that do not.

We study the performance of various centralized cross-
bar scheduling algorithms under the stress test and present
simple improvements which retain the desirable properties
of these algorithms and make them stress resistant.

3 Crossbar Schedulers

In this section, we first study the performance of the
crossbar scheduling algorithms, PIM, iSLIP and LOOFA by
measuring their miss fractions under uniform traffic and the
stress test. We show that the simple algorithms, PIM and
iSLIP perform poorly under the stress test though they have
good performance under uniform traffic. On the other hand,
LOOFA has good performance under the stress test at rea-
sonable speedups but is too complex for a high speed imple-
mentation. We note that the better performance of LOOFA
under the stress test is primarily due to its output ordering
and present heuristics to use this insight in designing stress
resistant algorithms in the next section.

3.1 Parallel Iterative Matching (PIM)

PIM is an iterative matching algorithm which attempts to
converge on a maximal match in multiple iterations. Each
iteration consists of three steps where

1. Each unmatched input sends a request to every output
for which it has a queued cell.

2. If an unmatched output receives any requests, it
chooses one randomly to grant.

3. If an input receives any grants, it choose one to accept
and notifies that output.

In [7], the authors show that the algorithm converges to a
maximal match in ����� � � � � iterations by showing that each
iteration eliminates 3/4 of the remaining requests. It is in-
teresting to note that this property is independent of the way
the inputs select a grant in the third step of the algorithm.

Also, since the outputs send their grants randomly, when
all the input queues are occupied, the probability that no
output will grant to a particular input in one iteration is
� ��� ��� � � � ��� � . Hence, in a single iteration, the throughput
of PIM is limited to � � ���� � for large N, which is approxi-
mately 63% for � � ��� .

3.2 Iterative Round Robin Matching with Slip
(iSLIP)

iSLIP, like PIM, is an iterative algorithm but is designed
to give higher throughputs even for a single iteration. The
algorithm iterates the following three steps

1. Each unmatched input sends a request to every un-
matched output for which it has a cell queued.

2. If an unmatched output receives any requests, it
chooses one that appears next in a fixed, round-robin
schedule starting from its input pointer. The output no-
tifies each input whether or not its request was granted.
The input pointer of the round-robin schedule is incre-
mented (modulo �) to one location beyond the granted
input if and only if the grant is accepted in step 3 of the
first iteration. The pointer is not incremented in subse-
quent iterations.

4

3. If an input receives a grant, it accepts the one that ap-
pears next in a fixed, round-robin schedule starting
from its own output pointer. The output pointer of
the round-robin schedule is incremented (modulo �)
to one location beyond the accepted output.

The iSLIP algorithm maintains good performance even
with a single iteration under heavy loads due to its desyn-
chronization effect. Step 2 of the algorithm causes different
outputs to send grants to different inputs, particularly, under
heavy loads, causing larger matches in single iteration.

3.3 Lowest Occupancy Output First Algorithm
(LOOFA)

LOOFA is also an iterative algorithm which iterates the
following steps till no more matches can be made

1. Each unmatched input sends a request to an output
with the lowest occupancy among those for which it
has at least one queued cell.

2. Each output, upon receiving requests from multiple in-
puts, selects one and sends a grant to that input.

It has been proven that a switch using LOOFA with a
speedup of 2 is work conserving under all traffic condi-
tions [11]. But the algorithm requires ���� � iterations to
perform correctly. This means that, unlike PIM and iSLIP,
the algorithm can have biased and unpredictable behaviour
when used with fewer iterations. For example, under uni-
form traffic and heavy loads when all inputs have cells
queued for all outputs, all the inputs send requests to the
same output in a single iteration! Such behaviour makes
LOOFA unsuitable for use in high speed implementations
where there is only time to perform a few iterations.

3.4 Performance Evaluation

We first measure the miss fractions of these algorithms
under uniform traffic for varying number of iterations,
where the cells arrive as a Bernoulli process and are uni-
formly distributed over all outputs. The speedup of the
switch is �� � implying that all queuing is done at the in-
puts. Fig. 3 and Fig. 4 show the difference between using
miss fraction and average queuing delay as a metric versus
offered load for PIM and iSLIP, respectively.

While the maximum load carried by a scheduler can be
determined from the delay plots, the miss fractions curves
also indicate the throughput achieved by the algorithms at
all loads. It can be inferred from Fig. 3(a) that the queuing
delays are unbounded for PIM for load � � � � and that the
miss fraction for PIM in Fig. 3(b) increases to 0.36 for an
offered load of 1. This is in agreement with the fact that
the throughput of PIM is limited to ����� (for � � � �) for

a single iteration. iSLIP on the other hand performs much
better even with a single iteration. The miss fraction curve
of iSLIP in Fig. 4(b) shows that for load � � � � the rate of
increase of miss fraction actually shows a sharp decrease.
This is due to the desynchronization effect of iSLIP which
comes into play when almost all VOQs have non-zero back-
logs which happens for load ��� ��� . The noise like varia-
tion seen in the curves where miss fraction is in the range�
� ��� ��� � � ��� ��� is due to the very fine granularity of obser-

vation.

To compare the performance of the algorithms under the
stress test, recall that the transitions times and the measure-
ment periods of the test have to be fixed for all algorithms.
To determine these basic parameters, we subject one of the
algorithms to a stress test where the transitions between var-
ious phases takes place when the backlog of the VOQ at an
input to a target output equals that of the backlog of a VOQ
to a previous output. We then compare the performance of
the rest of the algorithms under the same test with these ba-
sic parameters.

Fig. 5(a) and Fig. 5(b) compares the performance of
PIM, iSLIP and LOOFA under a stress test with 5 partici-
pating inputs and 12 phases at various speedups. In Fig. 5(a)
the basic parameters were determined to create worst case
traffic scenario for PIM(4) under a speedup of � � . We de-
note the test with these parameters as Test A. As can be
noted, PIM and iSLIP have poor performance under the
stress test. iSLIP has almost the same performance for it-
erations � and � and has miss fraction of � ��� even at a
speedup of � . PIM shows improvement with increase in it-
erations from � to � but still has a higher miss fraction at
various speedups when compared to LOOFA. LOOFA has
been proven to be work conserving for unlimited iterations
under all traffic conditions for a speedup of � . For this par-
ticular test, LOOFA needs a speedup of just �� � to eliminate
all underflow.

Fig. 5(b) compares the performance of the algorithms
under a stress test where the basic parameters were deter-
mined to create worst case traffic for LOOFA at a speedup
of � � (Test B). Again, LOOFA has zero miss fraction for
speedups � � � showing that the output ordering based on
queue lengths in LOOFA effectively reduces all underflow
even in extreme conditions. Though the same test doesn’t
cause PIM and iSLIP to perform as badly as in Fig. 5(a),
the performance of these algorithms does not match that of
LOOFA.

These tests demonstrate the underperformance of widely
used algorithms like PIM and iSLIP under overload traffic
conditions.

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 D
el

ay
 (i

n
ce

lls
)

PIM(1) PIM(2)

PIM(3)

PIM(4)

PIM(5)

PIM(1) PIM(2)

PIM(3)

PIM(4)

PIM(5)

(a) Delays

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load

0.0001

0.001

0.01

0.1

1

M
is

s
F

ra
ct

io
n

PIM(1)

PIM(2)

PIM(3)

PIM(4)
PIM(5)

(b) Miss Fraction

Figure 3. Average delays and miss fractions for various iterations of PIM, N=16, speedup=1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 D
el

ay
 (i

n
ce

lls
)

iSLIP(1) iSLIP(3)

iSLIP(2)

iSLIP(4)

iSLIP(5)

(a) Delays

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Load

0.0001

0.001

0.01

0.1

1
M

is
s

F
ra

ct
io

n

iSLIP(1)

iSLIP(2)

iSLIP(3)

iSLIP(4)

(b) Miss Fraction

Figure 4. Average delays and miss fractions for various iterations of iSLIP, N=16, speedup=1.0

4 Stress Resistant Algorithms

The better performance of LOOFA under the stress test
suggests that biasing outputs to favour those with smaller
queue lengths is the key to maintaining throughput even
under extreme traffic conditions. Unfortunately, complete
ordering of outputs and the large number of sequential iter-
ations needed to use this ordering can themselves be obsta-
cles to implementing these algorithms at high speeds. But,
we note that the traffic conditions that are in consideration
here are essentially persistent traffic conditions and that al-
gorithms which achieve and use even approximate or par-
tial ordering of outputs can perform significantly better than
those that do not take output backlogs into consideration at
all. In this section we introduce two simple heursitics

1. Lowest Layer Selection (LLS) heuristic which

achieves a coarser ordering of outputs based on their
queue lengths.

2. Odd-even sorting which achieves only an approxima-
tion of the ideal ordering of outputs but converges to
the ideal ordering under persistent traffic conditions.

We use LLS to design stress resistant variants of PIM and
iSLIP calles LLS-Random (LLS-R) and LLS-Slip (LLS-S).
We use the odd-even sorting technique to design an approx-
imate version of LOOFA called approximate LOOFA (A-
LOOFA). All these stress resistant algorithms have been de-
signed for high speed implementations.

4.1 Lowest Layer Selection

PIM and iSLIP perform poorly compared to LOOFA un-
der the stress test because they ignore output occupancies.

6

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
F

ra
ct

io
n

PIM(1)

PIM(4) iSLIP(1)
iSLIP(4)

LOOFA

(a) Test A

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
F

ra
ct

io
n

PIM(1)

PIM(4)
iSLIP(1)

iSLIP(4)

LOOFA

(b) Test B

Figure 5. Miss fractions for PIM, iSLIP and LOOFA under stress test with 5 participating inputs and
12 phases.

On the other hand, they perform well under uniform traffic
and also require fewer iterations to converge making them
more suitable for high speed implementations.

In this section, we describe a simple low-cost mechanism
that can be used to make PIM and iSLIP stress resistant.
The improved algorithms have the same performance under
uniform traffic and have greatly improved performance un-
der the stress test. The idea is to prioritize the outputs based
on their queue lengths since, underflow occurs only when
an output queue is empty. The various outputs of the switch
are divided into layers based on their queue length using
an exponentially graded scale. Fig. 8 shows an instance of
such a scale with � � layers. In this scale, queues with length���

are put in layer � , queues with length � � and
� � � are

put in layer � and so on. The queue length corresponding to
a layer � is given by

��� ��� . The last layer of the scale (� �)
holds all queues with lengths � ��� � �	� , indicating that the
scale doesn’t differentiate between outputs with the largest
queue lengths. Thus the layering of queue lengths

� achieves a coarser ordering of outputs based on queue
lengths.

� bigger layers are used for larger queue lengths, indi-
cating that there is less chance of underflow at outputs
with large queue lengths.

� beyond a queue length limit (indicated by the final
layer), all outputs are treated equal as it is not neces-
sary to order outputs with large queue lengths to avoid
underflow.

Hence, the number of layers itself is independent of the
number of ports of the switch (N) making it possible to use

. . .Layer

8 16 32 64 8*2 8*2
1514. . .

1 2 3 4 151413

Queue Length 8*2
13

Figure 8. Exponentially graded scale used in
assigning outputs to layers based on their
queue length.

a single scale with
�

to � � layers for high speed switches
with large numbers of ports. Also, the layers to which var-
ious queues belong can be trivially updated whenever cells
are added or removed from the various queues.

Algorithms use the layers to which the various out-
puts belong by employing a Lowest Layer Selection (LLS)
heuristic. The algorithms (LLS-R and LLS-S) in their ac-
cept phase give priority to outputs in the lowest layer. Thus,
the use of the Lowest Layer Selection heuristic in these
algorithms introduces a bias towards outputs with smaller
queue lengths. The exponential scale used in defining the
layers determines the extent of this bias, since the algo-
rithms still show their default behaviour to outputs which
belong in the same layer. A scale which has thin (and hence,
more) layers, forces the inputs to always accept outputs with
smaller queue lengths and a scale with thick layers causes
the inputs to pick outputs randomly (in case of PIM) or in
a round-robin order (in case of iSLIP) irrespective of the
queue lengths of the outputs since, outputs more often than
not will belong to the same layer.

The heuristic itself can be implemented at negligible cost

7

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
F

ra
ct

io
n

LLS−R(1)

LLS−R(4)

LLS−S(1)

LLS−S(4)

LOOFA

(a) Test A

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
F

ra
ct

io
n

LLS−S(1)
LLS−S(4)

LLS−R(1)
LLS−R(4)LOOFA

(b) Test B

Figure 6. Miss fractions for LLS-R, LLS-S (using 16 layers) and Loofa under stress test with 5 partic-
ipating inputs and 12 phases.

by maintaining per input grant vectors. These vectors have
� bit corresponding to each layer. When an output sends
a grant to an input in a scheduling algorithm, it also sets
the bit corresponding to the layer to which its queue length
belongs, in the input’s grant vector. The input can then eas-
ily find the lowest layer of all granting outputs by using a
priority encoder to find the first bit set to � in the grant vec-
tor. Also, for crossbars of moderate size (32 ports), we can
quickly determine the output with the smallest layer index
using an N-way minimum finding circuit.

4.1.1 Lowest Layer Selection - Random (LLS-R)

LLS-R is an interative matching algorithm which uses the
LLS heuristic and per input grant vectors to improve the
performance of PIM under the stress test. The LLS-R algo-
rithm iterates the following three steps.

1. Each unmatched input makes a request to every un-
matched output for which it has a queued cell.

2. If an unmatched output receives any requests, it
chooses one randomly to grant.

3. Inputs use their grant vectors to determine the lowest
layer among all the granting outputs and accept an out-
put belonging to this layer and notify that output.

It is evident that the algorithm is actually similar to Par-
allel Iterative Matching in the first two steps and differs only
in the accept phase where the inputs pick an output from the
lowest layer. Hence, the algorithm will still converge on a
maximal match in ����� � � � � iterations. The proof of this
claim is similar to the argument made in [7] for PIM.

4.1.2 Lowest Layer Selection - Slip (LLS-S)

LLS-S is a variant of the iSLIP algorithm obtained by using
the LLS heuristic and per input grant vectors. The algorithm
iterates the following three steps

1. Each unmatched input sends a request to every un-
matched output for which it has a cell queued.

2. If an unmatched output receives any requests, it
chooses one that appears next in a fixed, round-robin
schedule starting from its input pointer. The output no-
tifies each input whether or not its request was granted.
The input pointer of the round-robin schedule is incre-
mented (modulo �) to one location beyond the granted
input if and only if the grant is accepted in step 3 of the
first iteration. The pointer is not incremented in subse-
quent iterations.

3. Inputs use their grant vectors to determine the lowest
layer among all granting outputs, and accept an out-
put from this layer, that appears next in a fixed, round-
robin schedule starting from their output pointer. The
output pointer is then incremented (modulo �) to one
location beyond the accepted output.

Again, we note that LLS-S differs from iSLIP only in the
last step where the inputs select one of multiple outputs be-
longing to the lowest layer.

4.1.3 Performance Evaluation

We first note that in purely input queued switches (speedup
� � �), the algorithms, LLS-R and LLS-S behave exactly
like PIM and iSLIP, since all output queue lengths are 0.

8

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
Fr

ac
tio

n

4 layers
8 layers16 layers

LOOFA

(a) LLS-S

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
Fr

ac
tio

n

4 layers
8 layers

16 layers

LOOFA

(b) LLS-R

Figure 7. Miss fractions for LLS-R and LLS-S (single iteration) with varying layers under stress test
with 5 participating inputs and 12 phases (Test A)

This causes all the outputs to belong to the same layer (layer
�) and the algorithms follow their default behaviour. This
observation is also true for uniform random traffic under any
speedup, since, all the outputs have approximately the same
queue lengths and hence belong to the same layer. Thus
the performance of the LLS-R and LLS-S algorithms under
uniform random traffic at any load and speedup is identical.

Fig. 6 compares the performance of LLS-R, LLS-S and
LOOFA under a stress test with 5 participating inputs and
12 phases. Under both tests A and B, the algorithms show
greatly improved performance over PIM and iSLIP shown
in Fig. 5. With just a single iteration, LLS-R has zero miss
fraction for speedup � �� � (Fig. 6(a)) and has similar per-
formance even with � iterations. LLS-S also shows greatly
improved performance very similar to that of LOOFA even
for a single iteration. Under Test B (Fig. 6(b)), the algo-
rithms have almost identical performance.

Fig. 7 compares the performance of LLS-S and LLS-R
algorithms with varying number of layers. As can be seen
from the figures, the algorithms show improvement with in-
creasing number of layers and have performance compara-
ble to that of LOOFA with 16 layers. This comparison of
the performance of these algorithms with that of LOOFA
shows that these simple algorithms can potentially provide
high throughputs even in overload situations even by using
only approximate output ordering schemes.

4.2 Approximate LOOFA (A-LOOFA)

Although LOOFA itself is too complex for a high speed
implementation, it can be used as the basis for an algo-
rithm that is practical and which in practice, can provide
very similar performance. This algorithm, which we call

��
��

��
D

>C vi,j

ci−1,j

ri,j

ci,j

ri,j−1

Figure 9. Match Logic

Approximate LOOFA (A-LOOFA), can be implemented in
hardware in a way that makes it suitable for routers with
10 Gb/s links. Fig. 10 illustrates the basic concept behind
A-LOOFA and its implementation. At the left, we have a
set of row registers,

�
� (� � � � � � �), each containing

the number of some input. At the bottom, we have a set
of column register pairs, ���
	����	 � (� ��� � � � �) each
containing the number of an output (�
)and its associated
output queue length (in cells). The central area contains an
� � � array of VOQ occupancy bits � ��� 	 where � ��� 	 � � if
and only if input

�
� has one or more cells to send to output

� 	 . A-LOOFA attempts to maintains the set of column reg-
ister pairs in sorted order, so that ��� � � �

������� � � ��� � .
As will be explained shortly, it only approximates the sorted
order, in order to avoid a time-consuming sorting step.

9

3,0v

q0

v

v

v

v

v

v

v v

v

v

v v

v

v

v

3,1 3,2 3,3

2,0 2,1 2,2 2,3

1,0 1,1 1,2 1,3

0,0 0,1 0,2 0,3

q q q1 2 3

B B B B0 1 2 3

A

A

A

A

3

2

1

0

(a) Hardware Components

1 1 1

11

1

1 1

0 0

1

0

0 0

0

00

0

3

2

2

2

5 5

0 1

9

3

Input
number

Output

Queue Length

number

Check
indicates
match

(b) Example Operation

Figure 10. Principal hardware components and example operation of A-LOOFA

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
Fr

ac
tio

n

LOOFA
A−LOOFA

(a) Test A

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
is

s
Fr

ac
tio

n

LOOFA A−LOOFA

(b) Test B

Figure 11. Miss fractions for A-LOOFA and LOOFA under stress test with 5 participating inputs and
12 phases.

Matching in A-LOOFA is accomplished using a simple
combinational circuit. This circuit effectively implements
the � step iterative matching process required by LOOFA.
While it requires ���� � time to complete, the constant fac-
tor is determined by gate delays, making it small enough
to allow for high speed implementation. Fig. 9 shows the
match logic that is associated with the VOQ occupancy bit
� ��� 	 . The input signals � ��� 	 � � and � ��� � � 	 are high if output
� 	 is available for selection by input

�
� . If both are high

and � ��� 	 � � then
�
� is matched with �
	 and � ��� 	 and � ��� 	

are both pulled low. So,

� ��� 	 � � ��� 	 � � � � ��� 	�� � ��� � � 	 � � � � ��� 	 � � � � ��� 	�� ��� � � 	 �
� ��� 	 � � ��� � � 	 � � ��� 	�� � ��� 	 � � � � � � ��� � � 	�� � ��� 	�� ��� 	 � � �

To complete a matching operation, these signals must prop-

agate throughout the � � � array, but note that signals
propagate upward and to the right, so the delay is ��� times
the delay in each block, with each block contributing two
gate delays. For a modern .13 � m ASIC process, the gate
delays are 25-50 ps, allowing a match to be completed in
3.2-6.4 ns. A router with 10 Gb/s links and a speedup of 2
will need to complete a crossbar scheduling operation every
20 ns, making the matching delay small enough to allow for
high speed implementation.

In order for the approach described to exactly implement
LOOFA, it’s necessary to maintain the column register pairs
in sorted order. This is not practical in a high speed im-
plementation. Fortunately, we can still get good (although
not provably work-conserving) performance without sort-
ing. Because the queue lengths change slowly, we can

10

maintain an approximate sorted ordering by doing a pair of
nearest neighbor swaps (odd-even sorting) after each cross-
bar scheduling operation. Specifically, for all even

� �	� ,
we exchange the values of � 	 and � 	 with � 	�� � and � 	�� �
if � 	 � � 	�� � . Then for all odd

� � � � � , we exchange
the values of � 	 and � 	 with � 	�� � and � 	�� � if � 	 ��� 	�� � .
Whenever we perform such an exchange, we also exchange
the values of the VOQ occupancy bits in the corresponding
columns.

The combinational matching circuit favors inputs that
occupy “lower” rows in the array of VOQ occupancy bits.
To ensure fairness among the different inputs, we randomly
permute the rows of the array at the end of each crossbar
scheduling operation (both the row registers and the VOQ
occupancy bits). Specifically, for all even values of � � � ,
we generate a pseudo random bit � � . This is easy to do in
hardware. If � � � � , then all the values in row � are moved
to row � � � and the values in row � ��� are moved to row
��� ��� � � � . If � � � � , then all the values in row � are moved
to row ��� � � � � � and all values in row � � � are moved to row
� � � . This permutation scheme is based on the well-known
perfect shuffle, is easy to implement and ensures long-term
fairness.

There are a few other issues that need to be addressed
to complete the description of the implementation. First,
when we get a match, we need a way to pass the identity
of the matching input to the circuitry that controls the out-
put, so that the appropriate crossbar control signals can be
asserted. This requires a � ��� bit wide data path for each
row and column of the array and a switch that forwards the
value on row � to column

�
if there is a match at location

� � � � � . Second, we need a way to load new values in the
VOQ occupancy bit. To do this, the circuitry controlling an
input sends an output number along its row, which is com-
pared at each location � � � � � to � � � � . At the location where
these values match, the VOQ bit is selected to receive a new
value.

Finally, we need to maintain a connection between the
IO pins of the device and the registers associated with each
input and output. Since the pins of the device have a fixed
association with specific inputs and outputs, we need to
maintain connections between these fixed pin locations and
the associated registers, which are constantly exchanging
values, as the algorithm proceeds. This requires two special
purpose crossbars, one on the input side and one on the out-
put side. The crosspoint settings in these crossbars change
with each row and column swap to maintain the required
connections to the fixed IO pins. The output side cross-
bar carries a two bit signal from the output pins, indicating
whether a given output queue length is to increase by one,
decrease by one or stay the same. The input side crossbar
carries a � � ��� � bit signal indicating whether the VOQ
occupancy bit for a specified ouput is to be set, reset or stay

the same (note that during one operation cycle, only two
VOQs at any input can change their status).

The gate complexity of the A-LOOFA control circuit has
the form

�
� ��� ��� � �

�
� ��� � �

� �	��� � �
��� � , for

constants
�
� � �

���
. We estimate

�
�
� � � ,

�
� � � � ,�

�
� ��� and

��� � � � , yielding an overall estimate of less
than 90,000 gates. While not a trivial circuit, to be sure, it
is well within the capabilities of modern ASICs.

To compare the performance of LOOFA and A-LOOFA
we subjected both the algorithms to the stress tests, Test A
and Test B. As can be seen from Fig. 11, they have almost
identical performance under both tests indicating that even
partial ordering techniques like odd-even sorting used in A-
LOOFA can perform well due to the slowly changing nature
of the output queue lengths.

5 Conclusions

The problem of overload conditions in IP networks
makes it important to study the performance of practical
scheduling algorithms under extreme traffic conditions. The
stress test that we have presented in this paper, helps us to
determine which algorithms perform best under these con-
ditions. Using the stress test, we have studied the perfor-
mance of crossbar scheduling algorithms PIM, iSLIP and
LOOFA under overload conditions and have designed im-
proved and implementable stress resistant variants of these
algorithms, LLS-R, LLS-S and A-LOOFA which can main-
tain their throughput under both uniform traffic and stress
test.

References

[1] M. Karol, M. Hluchyj, and S. Morgan, “Input ver-
sus output queuing in a space division switch,” IEEE
Trans. Comm, vol. 35, no. 12, pp. 1347–1356, 1987.

[2] Sundar Iyer and Nick Mckeown, “Maximum size
matching and input queued switches,” in Proc. of the
40thth Allerton Conference on Communication, Con-
trol, and Computing, 2002.

[3] N. Mckeown, V. Anantharam, and J. Walrand,
“Achieving 100% throughput in an input queued
switch,” in Proc. of IEEE INFOCOM 96, San Fran-
cisco, CA, Mar. 1996.

[4] Nick Mckeown, Adisak Mekkittikul, Venkat Anan-
tharam, and Jean Walrand, “Achieving 100% through-
put in input queued switches,” IEEE Transations on
Communications, vol. 47, no. 8, aug 1999.

[5] J. E. Hopcroft and R. M. Karp, “An � �
	 � algorithm
for maximum matchings in bipartite graphs,” SIAM

11

journal of computing, vol. 2, no. 4, pp. 225–231, dec
1973.

[6] R. E. Tarjan, Data Structures and Network Algo-
rithms, Bell Labs, 1983.

[7] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P.
Thacker, “High speed switch scheduling for local area
networks,” ACM Transactions on Computer Systems,
vol. 11, pp. 319–352, Nov. 1993.

[8] N. McKweon, “islip: A scheduling algorithm for input
queued switches,” IEEE Transactions on Networking,
vol. 7, no. 2, Apr. 1999.

[9] Adisak Mekkittikul and Nick Mckeown, “A practical
scheduling algorithm to achieve 100% throughput in
input queued switches,” in Proc. of IEEE INFOCOM
98, San Francisco, CA, Apr. 1998.

[10] N. McKweon S-T. Chuang, A. Goel and B. Prabhakar,
“Matching output queueing with a combined input
output queued switch,” IEEE Journal of Selected Ar-
eas in Communication, vol. 17, no. 6, pp. 1030–1039,
June 1999.

[11] Pattabhiraman Krishna, Naimish S. Patel, Anna
Charny, and Robert j. Simcoe, “On the speedup re-
quired for work-conserving crossbar switches,” IEEE
Journal on Selected Areas of Communications, vol.
17, no. 6, pp. 1057–1065, June 1999.

12

