
 1

Distributed Queueing in

Scalable High Performance Routers

Prashanth Pappu, Jyoti Parwatikar, Jonathan Turner and Ken Wong
Computer Science and Engineering Department

Washington University
St. Louis, MO 63130-4899

{prashant,jp,jst,kenw}@cse.wustl.edu

Abstract—This paper presents and evaluates distributed
queueing algorithms for regulating the flow of traffic through
large, high performance routers. Distributed queueing has a
similar objective to crossbar-scheduling mechanisms used in
routers with relatively small port counts, and shares some
common high level characteristics. However, the need to
minimize communication overhead rules out the iterative
methods that are typically used for crossbar scheduling, while the
ability to sub-divide the available bandwidth among different
ports provides a degree of freedom that is absent in the crossbar
scheduling context, where inputs must be matched to outputs.
Our algorithms are based on four ideas (1) backlog-proportional-
allocation of output bandwidth, (2) urgency-proportional-
allocation of input bandwidth, (3) dynamic reallocation of
bandwidth and (4) deferred underflow. Our algorithms guarantee
congestion-free operation of the switch fabric. Our performance
results show that for uniform random traffic, even a very modest
speedup is sufficient to reduce the loss of output link bandwidth
due to sub-optimal rate allocation to negligible levels, and that
even under extreme conditions, a speedup of two is sufficient to
eliminate such bandwidth loss.

Keywords - distributed queueing, switching systems, scalable
routers

I. INTRODUCTION
High performance routers must be scalable to hundreds or

even thousands of ports. As a practical matter, the highest
router capacities are generally achieved using multistage switch
fabrics with internal buffers and a small speedup relative to the
external links; that is, the internal data paths operate at speeds
that are faster than the external links by a small constant factor
(typically 2). In the presence of a sustained overload at an
output port, this can cause the switch fabric to become
congested with packets attempting to reach the overloaded
output, interfering with the flow of packets to other outputs.
The unregulated nature of traffic in IP networks makes such
overloads a normal fact of life, which router designers must
address, if their systems are to be robust enough to perform
well under the most demanding traffic conditions.

Distributed queueing is a method of managing the flow of
traffic through a large router in order to mitigate the worst
effects of demanding traffic conditions. Distributed queueing
borrows ideas developed for scheduling packet transmissions
through crossbar switches [1,6,7,8]. The core idea is the use of
Virtual Output Queues (VOQ) at each input. That is, each input
maintains separate queues for each output. (Queues are
implemented as linked lists, so the only per queue overhead is
for the queues’ head and tail pointers.) Packets arriving at
inputs are placed in queues corresponding to the outgoing link
they are to be forwarded on. In crossbar scheduling, a
centralized scheduler selects packets for transmission through
the crossbar, seeking to emulate, as closely as possible, the
queueing behavior of an ideal output queued switch. The
centralized scheduler used in crossbar scheduling makes
scheduling decisions every packet transmission interval. For
routers with 10 Gb/s links, this typically means making
scheduling decisions every 40 ns, a demanding requirement,
even for a router with a small number of links. For larger
routers it makes centralized scheduling infeasible.

Distributed queueing, unlike crossbar scheduling, does not
seek to schedule the transmission of individual packets.
Instead, it regulates the rates at which traffic is forwarded
through the interconnection network from inputs to outputs,
using coarse-grained scheduling. This means that it can only
approximate the queueing behavior of an ideal output-queued
switch, but does allow systems to scale up to larger
configurations than are practical with fine-grained scheduling.
In a router that implements distributed queueing, the Port
Processors (the components that terminate the external links,
make routing decisions and queue packets) periodically
exchange information about the status of their VOQs. This
information is then used to rate control the VOQs, with the
objective of moving packets to the output side of the router as
expeditiously as possible, while avoiding congestion within the
switch fabric. The time between successive rate adjustments is
chosen to make the overhead of distributed queueing
acceptably small (for example, 5% of the system bandwidth).
In a system with 1,000 links, each operating at 10 Gb/s, this
objective can be met with an update period of less than 100 µs.

This work supported by the Defense Advanced Research Projects
Agency, Contracts N66001-98-C-8510 and N660001-01-1-8930.

Appears in Proceedings of IEEE Infocom, 2003.

 - 2 -

Sc
al

ab
le

 S
wi

tc
h

Fa
br

ic

. .
 .

DQ

. . .
. . .

to output 1

to output n

1 1

n n

2 2

Sc
al

ab
le

 S
wi

tc
h

Fa
br

ic

. .
 .

DQ

. . .
. . .

to output 1

to output n

1 1

n n

2 2

Figure 1. Simplified router diagram

So long as the update period is kept small relative to end-to-end
delays (which are typically tens to hundreds of milliseconds in
wide area networks) the impact of coarse scheduling on the
delays experienced by packets can be acceptable.

While distributed queueing shares some features of crossbar
scheduling, it also differs in two important respects. First, the
distributed nature of these methods rules out the use of the
iterative matching methods that have proved effective in
crossbar scheduling, since each iteration would require an
exchange of information, causing the overhead of the algorithm
to increase in proportion to the number of iterations. On the
other hand, the focus on rate control provides some flexibility
in distributed queueing that is not present in crossbar
scheduling. In crossbar scheduling, it is necessary to match
inputs and outputs in a one-to-one fashion during each
scheduling operation. In distributed queueing, we allocate the
interface bandwidth at each input and output and are free to
subdivide that bandwidth in whatever proportions will produce
the best result. These differences lead to different specific
solutions, although high level ideas can be usefully transferred
between the two contexts.

Section II introduces a simple algorithm for distributed
queueing, which illustrates two of the key ideas behind our
approach. The performance of this basic algorithm is studied in
Section III using simulation. In Section IV, we identify several
shortcomings of this algorithm and show how they can be
corrected. These improvements are evaluated in Section V. In
Section VI, we introduce a more complex distributed queueing
algorithm that more closely approximates the queueing
behavior of an ideal output-queued switch. Finally, in section
VII, we show how distributed queueing can be extended to
provide fair sharing among individual flows.

II. BASIC DISTRIBUTED QUEUEING
This section describes a basic algorithm for distributed

queueing, which will form the basis of a more complete
algorithm that will be developed later. The basic algorithm is
intended for use in a system that uses FIFO queueing at each
output and seeks to emulate (approximately) the behavior of an
ideal output-queued switch. Our primary objective is to avoid
congestion within the switch fabric. All our algorithms meet
this objective. Our second objective is to avoid underflow, that
is, situations where an output link is idle while there are
packets destined for that output in some VOQ. Our algorithms
can meet this second objective if the speedup of the
interconnection network is large enough. The third objective is
to approximately match the queueing behavior of an ideal
output-queued switch. More specifically, packets should leave
the system in the same order they arrived. The algorithms we
focus on in Sections II-V do not meet this objective, but in
Section VI, we show how they can be extended to address this
issue. Note, that because of the approximate nature of
distributed queueing, the objectives can only be met in an
approximate sense. For example, the first objective is
considered met if the amount of traffic sent to an output during
a single update period of the distributed queueing algorithm
does not exceed the amount that can be forwarded from the
interconnection network to an output port during an update
period. The switch fabric is expected to have sufficient internal

storage capacity to accommodate any short term congestion
that may occur during an update period.

Fig. 1 is a simplified block diagram of a router that
implements the basic distributed queueing algorithm. Each
output port contains a FIFO queue and each input port contains
a set of n virtual output queues, one for each output of the
system. The VOQs are rate controlled by a Distributed
Queueing Controller (DQ). The DQs periodically exchange
information about the VOQs and the output queues.
Specifically, in the basic algorithm, each port periodically (with
period T) reports the size of its backlog going to each output.
The backlog from input i to output j is called B(i,j). These
values are summed to obtain the total input-side backlog to
output j (denoted B(+,j)) . Each input port receives a copy of
B(+,j) for all j and a report on the backlog in the output queue
at output j for all j (denoted B(j)). These values are used to
determine the rates of the VOQs. To meet our primary
objective of congestion avoidance, we require that for all i and j

),(/),(),(),(jBjiBSLjihijirate +⋅=≤ (1)

where rate(i,j) is the allocated rate from input i to output j, L is
the bandwidth of the external links and S is the speedup of the
system, so SL is the bandwidth of the interface between the
switch fabric and the ports. It’s easy to see that this meets the
congestion avoidance objective since for each output j, the sum
(over all inputs i) of the values hi(i,j) equals SL. Note also, that
when rates are allocated in proportion to the magnitude of the
input backlogs, all input backlogs are cleared at the same time
(assuming no new traffic arrives). This is the motivation for the
backlog-proportional-allocation used by the algorithm.

Condition (1) ensures there is no congestion at any output-
side interface, but we also need to allocate the bandwidth at the
interface between each input port and the switch fabric. When
allocating each port’s input-side bandwidth, the objective is to
divide the bandwidth among the different VOQs at the port, so
as to keep each output supplied with a sufficient stream of
packets to avoid underflow of its output queue. The amount of
bandwidth that must be allocated to a given VOQ depends on
the size of the backlog at the output (outputs with large
backlogs have a less urgent need for more packets than outputs
with empty queues) and the amount of traffic being supplied to

 - 3 -

Table 1. Notation

n number of ports (links)
S speedup of switch relative to external links
L bandwidth of external links
T duration of dist. queueing update period
B(i,j) size of backlog at input i going to output j
B(+,j) B(1,j) + ⋅ ⋅ ⋅ + B(n,j)
B(j) size of backlog at output j
lo(i,j) lower bound on rate from i to j
hi(i,j) upper bound on rate from i to j, determined by the

traffic at output j
hi′(i,j) upper bound on rate from i to j, determined by the

traffic at input i
rate(i,j) rate assigned from i to j

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
load

m
is

s f
ra

ct
io

n

n =16
speedup=1

1.1
1.2
1.3

1.4

1.5

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.1 1.2 1.3 1.4 1.5 1.6
speedup

m
is

s
fr

ac
tio

n

load =.7load =.95

n =16

Figure 2. Performance of BUP with uniform random traffic

phase 1 phase 2 phase 3 phase 4phase 1 phase 2 phase 3 phase 4

Figure 3. Example of stress test

the output by other inputs (an input that is the sole source of
packets for a given output has the full responsibility for
ensuring that the output queue does not underflow). These
observations lead naturally to a second condition on the rates.

))(),(/(),(),(),(jBjBjiBLjilojirate ++⋅=≥ (2)

Note that if this condition is met with equality for all i, then all
of the VOQs going to output j will become empty at the same
time that the output queue becomes empty, in the absence of
any new traffic. Unfortunately, it is not always possible to
satisfy condition (2). In particular, it is not possible if
lo(i,+)>SL for some i where lo(i,+) = lo(i,1) + ⋅ ⋅ ⋅ + lo(i,n). The
algorithm allocates all the available bandwidth at the input
interface in proportion to the values of lo(i,j), in the hope of
avoiding future situations in which condition (2) cannot be
satisfied. We refer to this strategy as urgency-proportional-
allocation since it divides the bandwidth at an input port in
proportion to the urgency of the outputs’ need for more data to
avoid underflow. The resulting allocation rule is

),(/),(),(),(+⋅=′≤ ilojiloSLjiihjirate (3)

Satisfying condition (3) ensures that there is no over-allocation
of the bandwidth at any input interface and leads to the actual
allocation rule used by the algorithm.

)},(),,(min{),(jiihjihijirate ′= (4)

We refer to the algorithm as the Backlog and Urgency
Proportional Allocation Algorithm or BUP for short. Note that
for input i to compute rate(i,j), the only dynamically changing
values it needs are B(i,j), B(+,j) and B(j). The last two of these
quantities must be sent to input i once in each update period,
meaning that each input must receive a total of 2n values each
update period. While this does mean that the update period
must grow with the number of ports, systems with thousands of
ports can be implemented while keeping both the update
periods and the overhead acceptably small.

III. PERFORMANCE RESULTS FOR BUP
This section reports performance simulation results for the

BUP algorithm. We start with a baseline simulation of a 16 port
router carrying uniform random traffic. More precisely, during
each update period, each input receives data addressed to a
single, randomly selected output. The performance metric is the
ratio of the output link bandwidth effectively lost due to
underflow, to the total input traffic. This quantity is referred to
as the miss fraction. As can be seen from Fig. 2, for speedups
greater than 1.3, the miss fraction is less than 1%, an arguably
negligible amount. It’s interesting to note that at high traffic
loads, the lost link capacity is actually lower than at more
moderate loads. The explanation for this is simply that at high
traffic loads, output queues are less likely to be empty, and
underflow can only occur when they are empty. Since the loss
of link capacity is most significant at higher loads (when the
need for the lost capacity is greatest), this indicates that BUP
can provide good performance, even with a modest speedup.

To test our distributed queueing algorithms under more
demanding traffic conditions, we have contrived a stress test to
probe their performance limits. The test consists of a series of
phases, as illustrated in Fig. 3. In the first phase, the arriving
traffic at each of several inputs is sent to a single output. This

 - 4 -

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of phases

w
or

st
-c

as
e

m
in

 ra
te

 su
m speedup=1.5, 5 inputs 1.75,4 2,4

2.25,5

2.5,6
2.75,7

Figure 5. Worst-case performance of BUP Algorithm for stress test

causes each of the inputs to build up a backlog for the target
output. The arriving traffic at all the inputs is then switched to a
second output, causing the accumulation of a backlog for the
second output. Successive phases proceed similarly, creating
backlogs at each input for each of several outputs. During the
last phase, the arriving traffic at all but the first input is
stopped. The traffic at the first input is switched to a new
output. Since the first input is the only source of traffic for this
last target output, it must send packets to it as quickly as they
come in, while simultaneously clearing the accumulated
backlogs for the other outputs, in time to prevent underflow at
those other outputs. This creates an extreme condition that can
lead to underflow. The timing of the transitions between phases
is chosen to ensure that all VOQs still have some backlog at the
final transition. More specifically, the traffic is switched to a
new target output when the input backlog for the current target
rises to the same level as the input backlog for the previous
target. The stress test can be varied by changing the number of
participating inputs and the number of phases.

Results from a stress test with two inputs, five phases and a
speedup of 1.5, are shown in Fig. 4. The top left chart shows
the VOQ lengths at one of the inputs and the chart at the top
right shows the output queue lengths. The units of storage are
normalized; in particular, 1 unit of storage is equal to the
amount of data that can be sent on an external link during one
update period of the algorithm. The bottom left chart shows the
minimum rate values at one input needed to avoid underflow
(these are shown in a cumulative form). The bottom right chart
shows the allocated rates at one input. In the rate curves, the
output link rates are normalized to 1. Note first that the sum of

the minimum rates (lo(1,+)) exceeds the available bandwidth
briefly at the start of the last phase (at about time 5800). As the
backlogs for the first four outputs are cleared, the minimum
rate sum drops down again, but the brief excursion above 1.5
causes a small backlog to form in the VOQ going to output 5.
This backlog is soon cleared from the VOQ and transferred to
the output where a small backlog (barely visible on the top
right chart) remains for the remainder of the test. A similar test
run with a speedup of 2 instead of 1.5, results in a maximum
value for the minimum rate sum of about 1.35, meaning that
underflow does not occur and providing a comfortable margin.

Fig. 5 shows the maximum value for the minimum rate sum

0

100

200

300

400

500

600

700

800

900

1,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

time

in
pu

t q
ue

ue
 le

ng
th

s

B (1,1)

B (1,2)
B (1,3)
B (1,4)
B (1,5)

speedup=1.5

0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

time

ou
tp

ut
 q

ue
ue

 le
ng

th

B(1)

B(2)

B(3)

B(4)

B(5)

speedup=1.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

time

m
in

 ra
te

 s
um

s

lo(1,1) +lo(1,2)

+lo(1,3)

+lo(1,4)

+lo(1,5)

speedup=1.5

first phase
second

critical rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

time

m
in

 ra
te

 s
um

s

lo(1,1) +lo(1,2)

+lo(1,3)

+lo(1,4)

+lo(1,5)

speedup=1.5

first phasefirst phase
secondsecond

critical ratecritical rate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

time

al
lo

ca
te

d
ra

te
 s

um
s

rate(1,1)
+rate(1,2)

+rate(1,3)

+rate(1,4)

+rate(1,5)

speedup=1.5

critical rate

first phase
second

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

time

al
lo

ca
te

d
ra

te
 s

um
s

rate(1,1)
+rate(1,2)

+rate(1,3)

+rate(1,4)

+rate(1,5)

speedup=1.5

critical ratecritical rate

first phasefirst phase
secondsecond

Figure 4. Stress test results for BUP algorithm (2 inputs, 5 phases)

 - 5 -

obtained from a whole series of stress tests. The number of
phases is varied on the horizontal axis and the worst-case
minimum rate sum is shown on the vertical axis. Each curve is
labeled with the speedup and the number of inputs used in the
test run that produced the largest minimum rate sum for that
speedup. Note that the minimum rate sum can be made to
exceed the available switch bandwidth even for a speedup of 2,
meaning that underflow can occur. With larger speedups, none
of the stress test configurations cause underflow.

IV. IMPROVEMENTS TO THE BUP ALGORITHM
The BUP algorithm has been implemented in an

experimental router at Washington University. This system is
described in detail in [5]. During testing, we found that when
queue lengths were short, the rate assignments would fluctuate
rapidly. The BUP algorithm assigns a rate of zero to a zero
length VOQ, but can assign a large rate to a VOQ, which is
short, but accounts for a large share of the traffic to a given
output. To make the assignment of rates more stable, we
modified the expressions for lo and hi as shown below.

)),(/()),((),(jBnjiBSLjihi +++= ββ
)))(),(/(),((),(jBjBjiBLjilo +++= β

where β<<1/n is a small constant. The inclusion of β in the
calculation of lo and hi ensures that even very short (or empty)
VOQs are assigned at least a small non-zero rate. This

stabilizes the rates and also serves to “preallocate” otherwise
unused bandwidth to short VOQs, allowing for more rapid
forwarding of packets that arrive during the update period, after
a rate allocation has been done.

Fig. 6 shows a set of real-time measurements on the
experimental router, using this modified version of the BUP
algorithm. This stress test was for two inputs, five phases and a
speedup of 1.5. While the experimental measurements agree
very well with the simulation results, there are some
differences at a fine timescale. Particularly, at the end of the
stress test, there are non-trivial rate fluctuations. These
fluctuations are much smaller that those observed without the
modifications to lo and hi but are not insignificant. These
fluctuations are not observed in the simulation, because the
simulation model omits many of the fine-grained details of the
real system.

Fig. 4 reveals another shortcoming of BUP. In particular, in
the allocated rate plot, note that during the second phase
(starting at about time 4,000), the total allocated rate is less
than the available bandwidth of 1.5, even though input 1 has
backlogs for both outputs 1 and 2 and could send at a higher
rate during this period. During the second phase, lo(1,2) grows
relative to lo(1,1) (because B(1,2) is increasing, while B(1,1) is
decreasing). So, output 2 gets allocated a larger and larger
share of the bandwidth at input 1 during this phase. However,

lo(1,1)
+lo(1,2)

+lo(1,3) +lo(1,4)

+lo(1,5)
SL

+rate(1,5)

+rate(1,3)

+rate(1,2)

rate(1,1)

+rate(1,4)SL

B(1)

B(1,1)

B(5)
B(1,5)

B(2)

B(1,2)

lo(1,1)
+lo(1,2)

+lo(1,3) +lo(1,4)

+lo(1,5)
SL

+rate(1,5)

+rate(1,3)

+rate(1,2)

rate(1,1)

+rate(1,4)SL

B(1)

B(1,1)

B(5)
B(1,5)

B(2)

B(1,2)

Figure 6. Experimental measurements of BUP algorithm

 - 6 -

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
load

m
is

s f
ra

ct
io

n

speedup =1
1.1

1.35

1.3

1.2

Figure 8. Performance of BUP-RD algorithm with uniform random traffic the traffic going to output 2 cannot use its full “share” of the

bandwidth at input 1, because if it did so, it would cause
congestion at output 2. The basic algorithm does not check for
such over-allocation and hence cannot re-allocate the
bandwidth that can’t be used by output 2, to output 1. If it did
re-allocate, the backlog to output 1 would clear more quickly
reducing its need for bandwidth later in the stress test and
making underflow less likely. This observation suggests a
refinement to BUP, which performs the appropriate re-
allocation. The code fragment shown below assigns rates to
VOQs at input i.

R = SL; X = lo(i,+);
repeat n times
 let j be an unassigned queue with the smallest
 ratio hi(i,j)/lo(i,j);

hi′(i,j) = R⋅lo(i,j)/X;
rate(i,j) = min{hi′(i,j),hi(i,j)};
R = R − rate(i,j); X = X − lo(i,j);

The first statement inside the loop determines the order in
which rates are allocated to the different VOQs at input i. The
purpose of this is to ensure that those VOQs, which might
otherwise be allocated more bandwidth than they can use are
selected first, so that their unused allocations can be
redistributed among the remaining VOQs. VOQ j gives up
bandwidth to others if hi′(i,j) > hi(i,j); that is, if its allocation is
limited by its share of the available bandwidth at output j. Note
that this condition can be written hi(i,j)/lo(i,j) < R/X. Since the
right side is independent of j, the VOQ that minimizes
hi(i,j)/lo(i,j) satisfies the condition, if any unassigned VOQ
does. Hence, the desired effect can be achieved by first sorting
the VOQs according to the ratio hi(i,j)/lo(i,j), then allocating
the bandwidth to the VOQs in the sorted order.

There is another, more subtle over-allocation that can occur
in BUP. Consider a situation in which output j has a small
backlog in its output queue and input i has a small backlog for
output j. More specifically, suppose that B(i,j)=B(j)= 1% of the
amount of data that can be received on a link during an update
period. If all other VOQs sending to output j are empty, then
the basic algorithm sets lo(i,j)=L/2. However, if no new packets
arrive at input i for output j, it can sustain a rate of no more
than 2% of this amount, over a full update period. By assigning
what is arguably an unrealistically high value to lo(i,j), BUP
allocates more bandwidth to output j than it is likely to use,
bandwidth, which might be used to better effect by other VOQs
at input i. To correct this situation, we can modify the
definition of lo(i,j) to

}/),(
)),(),(/(),(min{),(

LTjiB
jBjBjiBLjilo

+
+++=

β
β

where T is the duration of an update period. Putting together
the various refinements to the basic algorithm gives the
following algorithm for computing the VOQ rates at input i.

)),(/()),((),(jBnjiBSLjihi +++⋅= ββ for all j;

; allfor }/),(
)),(),(/(),(min{),(

jLTjiB
jBjBjiBLjilo

+
+++=

β
β

R = SL; X = lo(i,+);
repeat n times
 let j be an unassigned queue with the smallest
 ratio hi(i,j)/lo(i,j);
 hi′(i,j) = R⋅lo(i,j)/X;
 rate(i,j) = min{hi′(i,j),hi(i,j)};
 R = R − rate(i,j); X = X − lo(i,j);

The dynamic reallocation of bandwidth is the third key idea
embodied in our distributed queueing algorithms.

The BUP algorithm does a fairly good job of avoiding
situations where lo(i,+)>SL. However, it cannot always avoid
them, and when it does find itself in such a situation, its
strategy for allocating bandwidth does not produce the best
possible result. This can be seen clearly from Fig. 4. At the
very start of the last phase, the urgency-proportional bandwidth
allocation strategy, allots some bandwidth to each of the VOQs
at input 1. This leads to immediate underflow at output 5, since
output 5 has no output-side backlog it can use to supply the
link. Outputs 1 through 4 however, do have such backlogs, and
outputs 1 and 2, in particular, have such large backlogs that we
can reasonably delay forwarding packets to them in order to
increase the rate assigned to output 5. This observation leads to
our final modification of the BUP algorithm which seeks to
defer underflow as long as possible.

Consider an input i for which lo(i,+)>SL. If input i sends to
output j at a rate r<lo(i,j), while all other inputs h send to
output j at rate lo(i,h), output j will underflow at time

))),(),((/()()(rjilojloLjBrU j +−+−=
To delay the occurrence of underflow as long as possible,

we allocate the input bandwidth among the different VOQs so
as to maximize the smallest of the Uj values. This is illustrated
graphically in Fig. 7, which shows four of the Uj functions for a

U2(r)

U3(r)

U4(r)

r3 r1r2 r

Uj(r)

U1(r)

lo(i,1)

U2(r)U2(r)

U3(r)U3(r)

U4(r)U4(r)

r3r3 r1r1r2r2 r

Uj(r)

U1(r)

lo(i,1) r

Uj(r)

U1(r)

lo(i,1)

U1(r)U1(r)

lo(i,1)

Figure 7. Graphical interpretation of deferred underflow strategy

 - 7 -

given input i. The curve for each Uj(r) is drawn with a
discontinuity at r=lo(i,j). At this point, each curve becomes
infinite. The horizontal line in the figure intersects three of the
curves. These intersections define three rates and the level of
the horizontal line defines the time at which the outputs
associated with those VOQs will underflow, if the VOQs are
assigned those three rates. To delay underflow as long as
possible, we want to find the highest line for which the
corresponding rates are no more than SL.

The algorithm obtained by combining the previous
refinements with the deferred underflow extension is called the
BUP-RD algorithm for BUP with Reallocation and Deferred
underflow.

V. PERFORMANCE OF BUP-RD ALGORITHM
This section reports simulation results for the BUP-RD

algorithm. As for the original BUP algorithm, we start with a
baseline simulation of a 16 port router carrying uniform
random traffic. The results are shown in Fig. 8. Comparing to
Fig. 2, we can see that the BUP-RD algorithm yields
significantly, although not dramatically better performance, for
uniform random traffic.

A more telling comparison comes from comparing the
stress test results in Figs. 4 and 9. We see that for the BUP-RD,
the peak in the minimum rate sum is significantly reduced,
although it still slightly exceeds the available bandwidth at the
input. However, note that in spite of this, there is no underflow,

as can be seen from the charts showing the VOQ and output
queue lengths.

Fig. 10 shows results for a wide a range of different stress
test configurations. We see that there is significant
improvement in the min rate sums, relative to BUP. The right-
hand chart shows the miss count for the stress test, comparing
BUP and BUP-RD. The miss count is the total of the missed
opportunities to transmit data on the outgoing links, due to the
scheduling algorithm’s inability to move data through the
network quickly enough. The units are the amount of data that
can be sent on a link during one update period.

Finally, Fig. 11 shows measurements of our experimental
router, implementing BUP-RD. These results are for a stress
test that is comparable to the simulation results in Fig. 9 and
show similar overall behavior.

Both BUP and BUP-RD achieve our primary objective of
eliminating switch congestion under all input traffic conditions
(in the approximate sense that no more traffic is sent to the
switch during an update period than it can forward). The
performance results provide strong evidence that a small
speedup can suffice to avoid underflow, under all possible
traffic conditions. We have not been able to analytically
determine the smallest speedup needed to avoid underflow in
the worst-case. Note that the results reported in [4] showing
that a speedup of 2 can suffice for crossbar scheduling, do not
apply to this case, since those results rely on a specific
centralized scheduling algorithm with unrealistically high
complexity.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Time

M
in

 R
at

e
Su

m
s

speedup =1.5, 2 inputs, 5 phases

lo (1,1)

lo (1,3)

lo (1,4)
lo (1,5)

lo (1,2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Time

A
llo

ca
te

d
Ra

te
 S

um
s

speedup =1.5, 2 inputs, 5 phases

rate (1,1)

rate (1,5)
rate (1,3)

rate (1,2)

rate (1,4)

0

50

100

150

200

250

300

350

400

450

500

4,000 4,500 5,000 5,500 6,000
Time

Q
ue

ue
 L

en
gt

h
speedup =1.5, 2 inputs, 5 phases

B (1,2)

B (1,4)

B (1,3)

B (1,1)

B (1,5)

0

100

200

300

400

500

600

700

800

900

1,000

4,000 4,500 5,000 5,500 6,000
Time

Q
ue

ue
 L

en
gt

h

B (2)

B (3)
B (4)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Time

M
in

 R
at

e
Su

m
s

speedup =1.5, 2 inputs, 5 phases

lo (1,1)

lo (1,3)

lo (1,4)
lo (1,5)

lo (1,2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Time

A
llo

ca
te

d
Ra

te
 S

um
s

speedup =1.5, 2 inputs, 5 phases

rate (1,1)

rate (1,5)
rate (1,3)

rate (1,2)

rate (1,4)

0

50

100

150

200

250

300

350

400

450

500

4,000 4,500 5,000 5,500 6,000
Time

Q
ue

ue
 L

en
gt

h
speedup =1.5, 2 inputs, 5 phases

B (1,2)

B (1,4)

B (1,3)

B (1,1)

B (1,5)

0

100

200

300

400

500

600

700

800

900

1,000

4,000 4,500 5,000 5,500 6,000
Time

Q
ue

ue
 L

en
gt

h

B (2)

B (3)
B (4)

Figure 9. Stress Test Results for BUP-RD Algorithm (2 inputs, 5 phases)

 - 8 -

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of phases

m
in

 ra
te

 su
m

1.5,5

1.75,4

2,5

2.75,10
2.5,8

2.25,7

0
50

100
150
200
250
300
350
400
450
500

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of phases

m
is

s c
ou

nt

BUP 1.5,5

BUP-RD 1.75,5

BUP, 1.7,5

BUP-RD 1.5,5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of phases

m
in

 ra
te

 su
m

1.5,5

1.75,4

2,5

2.75,10
2.5,8

2.25,7

0
50

100
150
200
250
300
350
400
450
500

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of phases

m
is

s c
ou

nt

BUP 1.5,5

BUP-RD 1.75,5

BUP, 1.7,5

BUP-RD 1.5,5

Figure 10. Worst-case performance of BUP-RD algorithm for stress test

VI. TIME-SLICED DISTRIBUTED QUEUEING
As mentioned in Section II, we prefer algorithms that order

the outgoing packets in the same way that an ideal output
queued switching does. A looser version of this property,
appropriate for distributed queueing, is that packets destined
for the same link that arrive at about the same time, leave the
system at about the same time. The backlog-proportional-
allocation method used by our algorithms does approximate
this for static traffic flows, in a certain weak sense.
Specifically, consider an algorithm in which rate(i,j)=
αB(i,j)/B(+,j) where α is a constant at least equal to the link
rate. Assuming a large enough speedup to avoid congestion,
this rate assignment will maintain input side backlogs that are
proportional to the relative rates. More precisely, for any output
j for which traffic is arriving at a rate faster than α, the
allocated rates and the backlogs will be proportional to the rates
at which traffic arrives. Consequently, packets that arrive at the
same time will be transferred to the output at approximately the
same time. We have chosen not to use this strict version of the
backlog-proportional-allocation method in our algorithms,
since it requires a very large speedup to avoid congestion at
inputs, making it impractical.

The backlog-proportional-allocation heuristic can badly
misorder packets when rates change suddenly. For example,
suppose several inputs are sending to output j and all have large
backlogs. Then suppose an input i which had not previously
had any packets for output j starts receiving packets for j.
While input i will receive a small share of the bandwidth going
to j, some of its packets will nonetheless reach output j well
before packets from the other inputs that arrived earlier
(possibly much earlier).

We now describe an alternative approach that can come
much closer to approximating the same-time-in, same-time-out
property. This approach seeks to regulate the VOQ rates so as
to transfer packets through the switch based on when they
arrived. Ports periodically exchange information about the
amount of data they have received for each outgoing link
during the most recent update interval. Let A(i,j,t) be the
amount of data received at input i for output j during update
period t. These values are stored in a data structure at output j,

for all inputs, and used to determine target rates at which the
inputs should send to it. The target rates are chosen to keep the
inputs synchronized with each other, with respect to output j.
As with the earlier algorithms, we define upper and lower
bounds on rates, then use the lower bounds as the basis for
allocating input bandwidth. We start by determining, for each
output j, the smallest time period t1, for which

∑
≤

>+
1

),,(
t

SLTjA
τ

τ

where T is the duration of the update period. We then let

∑
<

+−=
1

),,()(
t

jASLTjR
τ

τ

and then let

+
+= ∑

<

)(
),,(
),,(

),,()/1(),(
1

1

1

jR
tjA
tjiA

jiATjihi
tτ

τ

If these values are summed over all i, the result is SL, meaning
that if rate(i,j)≤hi(i,j) for all i and j, there will be no congestion
in the switch. We use a similar procedure to determine a target
lower bound rate lo(i,j). We first determine, for each j, the
smallest time period t2, for which

LT
jBjB

jBjdjA
t
∑
≤ ++

+=>+
2

)(),(
),()(),,(

τ
τ

d(j)/T is the rate at which the inputs collectively must forward
data to output j to avoid underflow at output j. We next let

∑
<

+−=
2

),,()()(
t

jAjdjr
τ

τ

and then let

+
+= ∑

<

)(
),,(
),,(

),,()/1(),(
2

2

2

jr
tjA
tjiA

jiATjilo
tτ

τ

If rate(i,j)≥hi(i,j) for all i and j, we can both avoid
underflow and can avoid misordering packets by more than the
distributed queueing update period. As with the original
algorithm, there is a possibility that a given input may not be
able to satisfy all these inequalities. As before, the lo values are

 - 9 -

used to allocate the input side bandwidth, subject to the
constraint on the output side bandwidth.

R = SL; X = lo(i,+);
repeat n times
 let j be an unassigned queue with the smallest
 ratio hi(i,j)/lo(i,j);
 hi′(i,j) = R⋅lo(i,j)/X;
 rate(i,j) = min{hi′(i,j),hi(i,j)};
 R = R − rate(i,j); X = X − lo(i,j);

 As before, small offsets can be incorporated into the
definitions of hi and lo to improve the stability of the rates
when buffers are short.

There are a few details that have been glossed over in the
above presentation for clarity of exposition. For example, we
have neglected the case where there is no t1 for which

∑
≤

>+
1

),,(
t

SLTjA
τ

τ

In this case, the entire current backlog can be cleared in a
single update period, and the bandwidth is allocated in
proportion to the backlogs. We have also omitted discussion of
the data structure that can be used to efficiently determine the
values of t1 and t2. A data structure that combines ideas from

binary search trees and heaps can be used for this purpose. We
leave a fuller treatment of these issues and the performance of
this algorithm to a later paper.

VII. FAIR DISTRIBUTED QUEUEING
In routers that support fair queueing [2,3], packets

belonging to different user data flows are placed in different
queues and the packet scheduler for each link attempts to give
each flow an equal share of the link bandwidth. The addition of
a fair queueing packet scheduler at each output of a router
implementing one of the distributed queueing algorithms
described above, can give each flow a fair share of the output
bandwidth, only so long as there are no significant input-side
backlogs. For overloaded links, the algorithms discussed so far
cannot ensure that each flow receives its fair share. To provide
fair distributed queueing, it’s necessary to augment the scalable
router architecture as shown in Fig. 12. Note that each output
has separate queues for each flow and that each input has per-
flow queues as well. The queues at each input are grouped
according to the output they forward packets to. A distributed
queueing controller (DQ) regulates the rates at which packets
are forwarded from each group of queues.

To ensure that each flow gets its share of the output link
bandwidth, the switch fabric bandwidth should be allocated

lo(1,1)
+lo(1,2)

+lo(1,3)
+lo(1,4)

+lo(1,5)SL

+rate(1,5)

+rate(1,3)

+rate(1,2)

rate(1,1)

+rate(1,4) SL

B(1)

B(1,1)

B(5)

B(1,5)B(2)
B(1,2)

lo(1,1)
+lo(1,2)

+lo(1,3)
+lo(1,4)

+lo(1,5)SL

+rate(1,5)

+rate(1,3)

+rate(1,2)

rate(1,1)

+rate(1,4) SL

B(1)

B(1,1)

B(5)

B(1,5)B(2)
B(1,2)

Figure 11. Experimental performance of BUP-RD

 - 10 -

. . .

Sw
itc

h
Fa

br
ic

. . .

dq

. . .

. . .

. . .

to output 1

to output 2

to output n

. . .

Sw
itc

h
Fa

br
ic

. . .

dq

. . .

. . .

. . .

to output 1

to output 2

to output n

Figure 12. Router with Fair Distributed Queueing

among the inputs in proportion to the number of backlogged
queues they have. Define N(i,j) to be the maximum of the
number of backlogged queues at input i going to output j and
the number of backlogged queues at output j containing packets
from input i. Our basic strategy will be to allocate bandwidth in
proportion to the N(i,j) values. However, this can result in
excessive allocations to inputs that have lots of backlogged
queues but few packets, making it important to incorporate a
reallocation mechanism in the determination of the lower and
upper bounds on the rates. To calculate hi(i,j),

R = SL; X = N(+,j);
repeat n times
 let i be an unassigned input with the smallest
 value of B(i,j)/N(i,j);
 hi(i,j) = min {R N(i,j)/X, B(i,j)/T};
 R = R − hi(i,j); X = X − N(i,j);

We use a similar procedure to calculate lo(i,j).

R = LB(+,j)/(B(+,j)+B(j)); X = N(+,j);
repeat n times
 let i be an unassigned input with the smallest
 value of B(i,j)/N(i,j);
 lo(i,j) = min {R N(i,j)/X, B(i,j)/T};
 R = R − lo(i,j); X = X − N(i,j);

Given these values for hi and lo, we proceed with the rate
assignment, as before.

R = SL; X = lo(i,+);
repeat n times
 let j be an unassigned queue with the smallest
 ratio hi(i,j)/lo(i,j);
 hi′(i,j) = R⋅lo(i,j)/X;
 rate(i,j) = min{hi′(i,j),hi(i,j)};

R = R − rate(i,j); X = X − lo(i,j);

This version can be extended to supported weighted fair
queueing, by replacing the quantities N(i,j), with values that
represent the weights of the backlogged queues going from

input i to output j. We expect that with a modest speedup this
algorithm can ensure fair treatment of all flows under all traffic
conditions. We plan to study the performance in detail in a
separate paper.

VIII. SUMMARY
In this paper we have introduced distributed queueing

algorithms to regulate the flow of traffic in large-scale routers.
While distributed queueing has similarities with crossbar
scheduling, it differs in significant ways. Our algorithms are
based on four ideas (1) backlog-proportional-allocation of
output bandwidth, (2) urgency-proportional-allocation of input
bandwidth and (3) dynamic reallocation and (4) deferred
underflow. Our algorithms guarantee congestion-free operation
of the switch fabric and our performance results show that a
small speedup is sufficient to avoid underflow, even under
fairly extreme traffic conditions.

These algorithms are being developed for use in an
experimental extensible router [5], that has been developed at
Washington University. This system is built around a scalable
switch fabric and its port processors contain a large Field
Programmable Gate Array, with sufficient logic and off-chip
memory resources to implement all IP packet processing and
queueing functions in hardware. Each port processor also
includes an embedded general-purpose processor that can
handle exceptional conditions and can be used to dynamically
extend the router’s functionality.

REFERENCES
[1] Anderson, T., S. Owicki., J. Saxe and C. Thacker. “High speed switch

scheduling for local area networks,” ACM Trans. on Computer Systems,
11/93.

[2] Bennett, J. and H. Zhang. “Worst-case fair weighted fair queueing,”
Proceedings of Infocom, 1995.

[3] Bennett, J. and H. Zhang. “Hierarchical packet fair queueing
algorithms,” in Proceedings of SIGCOMM, 1996.

[4] Shang-Tse Chuang, Ashish Goel, Nick McKeown, Balaji Prabhakar
“Matching output queueing with a combined input output queued
switch,” IEEE Journal on Selected Areas in Communications, Dec.
1999, pp. 1030-1039.

[5] Kuhns, Fred, John Dehart, Anshul Kantawala, Ralph Keller, John
Lockwood, Prashanth Pappu, W. David Richard, David Taylor, Jyoti
Parwatikar, Ed Spitznagel, Jon Turner and Ken Wong. “Design and
evaluation of a high performance dynamically extensible router.”
Proceedings of the DARPA Active Networks Conference and Exposition,
5/2002.

[6] McKeown, N., V. Anantharam and J. Walrand. “Achieving 100%
throughput in an input-queued switch,” Proceedings of Infocom, 1996.

[7] McKeown, N., M. Izzard., A. Mekkittikul, W. Ellersick and M.
Horowitz. “The Tiny Tera: a packet switch core,” Hot Interconnects,
1996.

[8] McKeown , Nick. “iSLIP: a scheduling algorithm for input-queued
switches,” IEEE Transactions on Networking, Vol 7, No.2, April 1999.

[9] Zhang, L. “Virtual Clock: a net traffic control algorithm for packet
switched networks,” ACM Trans. on Computer Systems, 5/91

