
 1

 
Distributed Queueing in  

Scalable High Performance Routers

Prashanth Pappu, Jyoti Parwatikar, Jonathan Turner and Ken Wong 
Computer Science and Engineering Department 

Washington University 
St. Louis, MO 63130-4899 

{prashant,jp,jst,kenw}@cse.wustl.edu 
 
 

Abstract—This paper presents and evaluates distributed 
queueing algorithms for regulating the flow of traffic through 
large, high performance routers.  Distributed queueing has a 
similar  objective to crossbar-scheduling mechanisms used in 
routers with relatively small port counts, and shares some 
common high level characteristics. However, the need to 
minimize communication overhead rules out the iterative 
methods that are typically used for crossbar scheduling, while the 
ability to sub-divide the available bandwidth among different 
ports provides a degree of freedom that is absent in the crossbar 
scheduling context, where inputs must be matched to outputs. 
Our algorithms are based on four ideas (1)  backlog-proportional-
allocation of output bandwidth, (2) urgency-proportional-
allocation of input bandwidth, (3) dynamic reallocation of 
bandwidth and (4) deferred underflow. Our algorithms guarantee 
congestion-free operation of the switch fabric. Our performance 
results show that for uniform random traffic, even a very modest 
speedup is sufficient to reduce the loss of output link bandwidth 
due to sub-optimal rate allocation to negligible levels, and that 
even under extreme conditions, a speedup of two is sufficient to 
eliminate such bandwidth loss. 

Keywords - distributed queueing, switching systems, scalable 
routers 

I.  INTRODUCTION 
High performance routers must be scalable to hundreds or 

even thousands of ports.  As a practical matter, the highest 
router capacities are generally achieved using multistage switch 
fabrics with internal buffers and a small speedup relative to the 
external links; that is, the internal data paths operate at speeds 
that are faster than the external links by a small constant factor 
(typically 2). In the presence of a sustained overload at an 
output port, this can cause the switch fabric to become 
congested with packets attempting to reach the overloaded 
output, interfering with the flow of packets to other outputs. 
The unregulated nature of traffic in IP networks makes such 
overloads a normal fact of life, which router designers must 
address, if their systems are to be robust enough to perform 
well under the most demanding traffic conditions. 

Distributed queueing is a method of managing the flow of 
traffic through a large router in order to mitigate the worst 
effects of demanding traffic conditions. Distributed queueing 
borrows ideas developed for scheduling packet transmissions 
through crossbar switches [1,6,7,8]. The core idea is the use of 
Virtual Output Queues (VOQ) at each input. That is, each input 
maintains separate queues for each output. (Queues are 
implemented as linked lists, so the only per queue overhead is 
for the queues’ head and tail pointers.) Packets arriving at 
inputs are placed in queues corresponding to the outgoing link 
they are to be forwarded on. In crossbar scheduling, a 
centralized scheduler selects packets for transmission through 
the crossbar, seeking to emulate, as closely as possible, the 
queueing behavior of an ideal output queued switch. The 
centralized scheduler used in crossbar scheduling makes 
scheduling decisions every packet transmission interval. For 
routers with 10 Gb/s links, this typically means making 
scheduling decisions every 40 ns, a demanding requirement, 
even for a router with a small number of links. For larger 
routers it makes centralized scheduling infeasible. 

Distributed queueing, unlike crossbar scheduling, does not 
seek to schedule the transmission of individual packets. 
Instead, it regulates the rates at which traffic is forwarded 
through the interconnection network from inputs to outputs, 
using coarse-grained scheduling. This means that it can only 
approximate the queueing behavior of an ideal output-queued 
switch, but does allow systems to scale up to larger 
configurations than are practical with fine-grained scheduling. 
In a router that implements distributed queueing, the Port 
Processors (the components that terminate the external links, 
make routing decisions and queue packets) periodically 
exchange information about the status of their VOQs. This 
information is then used to rate control the VOQs, with the 
objective of moving packets to the output side of the router as 
expeditiously as possible, while avoiding congestion within the 
switch fabric. The time between successive rate adjustments is 
chosen to make the overhead of distributed queueing 
acceptably small (for example, 5% of the system bandwidth). 
In a system with 1,000 links, each operating at 10 Gb/s, this 
objective can be met with an update period of less than 100 µs. 
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Figure 1. Simplified router diagram 

So long as the update period is kept small relative to end-to-end 
delays (which are typically tens to hundreds of milliseconds in 
wide area networks) the impact of coarse scheduling on the 
delays experienced by packets can be acceptable.  

While distributed queueing shares some features of crossbar 
scheduling, it also differs in two important respects. First, the 
distributed nature of these methods rules out the use of the 
iterative matching methods that have proved effective in 
crossbar scheduling, since each iteration would require an 
exchange of information, causing the overhead of the algorithm 
to increase in proportion to the number of iterations. On the 
other hand, the focus on rate control provides some flexibility 
in distributed queueing that is not present in crossbar 
scheduling. In crossbar scheduling, it is necessary to match 
inputs and outputs in a one-to-one fashion during each 
scheduling operation. In distributed queueing, we allocate the 
interface bandwidth at each input and output and are free to 
subdivide that bandwidth in whatever proportions will produce 
the best result. These differences lead to different specific 
solutions, although high level ideas can be usefully transferred 
between the two contexts.  

Section II introduces a simple algorithm for distributed 
queueing, which illustrates two of the key ideas behind our 
approach. The performance of this basic algorithm is studied in 
Section III using simulation. In Section IV, we identify several 
shortcomings of this algorithm and show how they can be 
corrected. These improvements are evaluated in Section V. In 
Section VI, we introduce a more complex distributed queueing 
algorithm that more closely approximates the queueing 
behavior of an ideal output-queued switch. Finally, in section 
VII, we show how distributed queueing can be extended to 
provide fair sharing among individual flows. 

II. BASIC DISTRIBUTED QUEUEING 
This section describes a basic algorithm for distributed 

queueing, which will form the basis of a more complete 
algorithm that will be developed later. The basic algorithm is 
intended for use in a system that uses FIFO queueing at each 
output and seeks to emulate (approximately) the behavior of an 
ideal output-queued switch. Our primary objective is to avoid 
congestion within the switch fabric. All our algorithms meet 
this objective. Our second objective is to avoid underflow, that 
is, situations where an output link is idle while there are 
packets destined for that output in some VOQ. Our algorithms 
can meet this second objective if the speedup of the 
interconnection network is large enough. The third objective is 
to approximately match the queueing behavior of an ideal 
output-queued switch. More specifically, packets should leave 
the system in the same order they arrived. The algorithms we 
focus on in Sections II-V do not meet this objective, but in 
Section VI, we show how they can be extended to address this 
issue. Note, that because of the approximate nature of 
distributed queueing, the objectives can only be met in an 
approximate sense. For example, the first objective is 
considered met if the amount of traffic sent to an output during 
a single update period of the distributed queueing algorithm 
does not exceed the amount that can be forwarded from the 
interconnection network to an output port during an update 
period. The switch fabric is expected to have sufficient internal 

storage capacity to accommodate any short term congestion 
that may occur during an update period. 

Fig. 1 is a simplified block diagram of a router that 
implements the basic distributed queueing algorithm. Each 
output port contains a FIFO queue and each input port contains 
a set of n virtual output queues, one for each output of the 
system. The VOQs are rate controlled by a Distributed 
Queueing Controller (DQ). The DQs periodically exchange 
information about the VOQs and the output queues. 
Specifically, in the basic algorithm, each port periodically (with 
period T) reports the size of its backlog going to each output. 
The backlog from input i to output j is called B(i,j). These 
values are summed to obtain the total input-side backlog to 
output j (denoted B(+,j)) . Each input port receives a copy of 
B(+,j) for all j and a report on the backlog in the output queue 
at output j for all j (denoted B(j)). These values are used to 
determine the rates of the VOQs. To meet our primary 
objective of congestion avoidance, we require that for all i and j 

),(/),(),(),( jBjiBSLjihijirate +⋅=≤                         (1) 

where rate(i,j) is the allocated rate from input i to output j, L is 
the bandwidth of the external links and S is the speedup of the 
system, so SL is the bandwidth of the interface between the 
switch fabric and the ports. It’s easy to see that this meets the 
congestion avoidance objective since for each output j, the sum 
(over all inputs i) of the values hi(i,j) equals SL.  Note also, that 
when rates are allocated in proportion to the magnitude of the 
input backlogs, all input backlogs are cleared at the same time 
(assuming no new traffic arrives). This is the motivation for the 
backlog-proportional-allocation used by the algorithm.   

Condition (1) ensures there is no congestion at any output-
side interface, but we also need to allocate the bandwidth at the 
interface between each input port and the switch fabric. When 
allocating each port’s input-side bandwidth, the objective is to 
divide the bandwidth among the different VOQs at the port, so 
as to keep each output supplied with a sufficient stream of 
packets to avoid underflow of its output queue. The amount of 
bandwidth that must be allocated to a given VOQ depends on 
the size of the backlog at the output (outputs with large 
backlogs have a less urgent need for more packets than outputs 
with empty queues) and the amount of traffic being supplied to 
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Table 1. Notation 
 
n number of ports (links) 
S speedup of switch relative to external links 
L bandwidth of external links 
T duration of dist. queueing update period 
B(i,j) size of backlog at input i going to output j 
B(+,j) B(1,j) + ⋅ ⋅ ⋅ + B(n,j) 
B(j) size of backlog at output j 
lo(i,j) lower bound on rate from i to j 
hi(i,j) upper bound on rate from i to j, determined by the 

traffic at output j 
hi′(i,j) upper bound on rate from i to j, determined by the 

traffic at input i 
rate(i,j) rate assigned from i to j 
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Figure 2. Performance of BUP with uniform random traffic 
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Figure 3. Example of stress test 

the output by other inputs (an input that is the sole source of 
packets for a given output has the full responsibility for 
ensuring that the output queue does not underflow). These 
observations lead naturally to a second condition on the rates. 

))(),(/(),(),(),( jBjBjiBLjilojirate ++⋅=≥           (2) 

Note that if this condition is met with equality for all i, then all 
of the VOQs going to output j will become empty at the same 
time that the output queue becomes empty, in the absence of 
any new traffic. Unfortunately, it is not always possible to 
satisfy condition (2). In particular, it is not possible if 
lo(i,+)>SL for some i where lo(i,+) = lo(i,1) + ⋅ ⋅ ⋅ + lo(i,n). The 
algorithm allocates all the available bandwidth at the input 
interface in proportion to the values of lo(i,j), in the hope of 
avoiding future situations in which condition (2) cannot be 
satisfied. We refer to this strategy as urgency-proportional-
allocation since it divides the bandwidth at an input port in 
proportion to the urgency of the outputs’ need for more data to 
avoid underflow. The resulting allocation rule is 

),(/),(),(),( +⋅=′≤ ilojiloSLjiihjirate                    (3) 

Satisfying condition (3) ensures that there is no over-allocation 
of the bandwidth at any input interface and leads to the actual 
allocation rule used by the algorithm. 

)},(),,(min{),( jiihjihijirate ′=                                (4) 

We refer to the algorithm as the Backlog and Urgency 
Proportional Allocation Algorithm or BUP for short. Note that 
for input i to compute rate(i,j), the only dynamically changing 
values it needs are B(i,j), B(+,j) and B(j). The last two of these 
quantities must be sent to input i once in each update period, 
meaning that each input must receive a total of 2n values each 
update period. While this does mean that the update period 
must grow with the number of ports, systems with thousands of 
ports can be implemented while keeping both the update 
periods and the overhead acceptably small. 

III. PERFORMANCE RESULTS FOR BUP 
This section reports performance simulation results for the 

BUP algorithm. We start with a baseline simulation of a 16 port 
router carrying uniform random traffic. More precisely, during 
each update period, each input receives data addressed to a 
single, randomly selected output. The performance metric is the 
ratio of the output link bandwidth effectively lost due to 
underflow, to the total input traffic. This quantity is referred to 
as the miss fraction. As can be seen from Fig. 2, for speedups 
greater than 1.3, the miss fraction is less than 1%, an arguably 
negligible amount. It’s interesting to note that at high traffic 
loads, the lost link capacity is actually lower than at more 
moderate loads. The explanation for this is simply that at high 
traffic loads, output queues are less likely to be empty, and 
underflow can only occur when they are empty. Since the loss 
of link capacity is most significant at higher loads (when the 
need for the lost capacity is greatest), this indicates that BUP 
can provide good performance, even with a modest speedup.  

To test our distributed queueing algorithms under more 
demanding traffic conditions, we have contrived a stress test to 
probe their performance limits. The test consists of a series of 
phases, as illustrated in Fig. 3. In the first phase, the arriving 
traffic at each of several inputs is sent to a single output. This 
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Figure 5.  Worst-case performance of BUP Algorithm for stress test 

causes each of the inputs to build up a backlog for the target 
output. The arriving traffic at all the inputs is then switched to a 
second output, causing the accumulation of a backlog for the 
second output. Successive phases proceed similarly, creating 
backlogs at each input for each of several outputs. During the 
last phase, the arriving traffic at all but the first input is 
stopped. The traffic at the first input is switched to a new 
output. Since the first input is the only source of traffic for this 
last target output, it must send packets to it as quickly as they 
come in, while simultaneously clearing the accumulated 
backlogs for the other outputs, in time to prevent underflow at 
those other outputs. This creates an extreme condition that can 
lead to underflow. The timing of the transitions between phases 
is chosen to ensure that all VOQs still have some backlog at the 
final transition. More specifically, the traffic is switched to a 
new target output when the input backlog for the current target 
rises to the same level as the input backlog for the previous 
target. The stress test can be varied by changing the number of 
participating inputs and the number of phases. 

Results from a stress test with two inputs, five phases and a 
speedup of 1.5, are shown in Fig. 4. The top left chart shows 
the VOQ lengths at one of the inputs and the chart at the top 
right shows the output queue lengths. The units of storage are 
normalized; in particular, 1 unit of storage is equal to the 
amount of data that can be sent on an external link during one 
update period of the algorithm. The bottom left chart shows the 
minimum rate values at one input needed to avoid underflow 
(these are shown in a cumulative form). The bottom right chart 
shows the allocated rates at one input. In the rate curves, the 
output link rates are normalized to 1. Note first that the sum of 

the minimum rates (lo(1,+)) exceeds the available bandwidth 
briefly at the start of the last phase (at about time 5800). As the 
backlogs for the first four outputs are cleared, the minimum 
rate sum drops down again, but the brief excursion above 1.5 
causes a small backlog to form in the VOQ going to output 5. 
This backlog is soon cleared from the VOQ and transferred to 
the output where a small backlog (barely visible on the top 
right chart) remains for the remainder of the test. A similar test 
run with a speedup of 2 instead of 1.5, results in a maximum 
value for the minimum rate sum of about 1.35, meaning that 
underflow does not occur and providing a comfortable margin.  

Fig. 5 shows the maximum value for the minimum rate sum 
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Figure 4. Stress test results for BUP algorithm (2 inputs, 5 phases) 
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obtained from a whole series of stress tests. The number of 
phases is varied on the horizontal axis and the worst-case 
minimum rate sum is shown on the vertical axis. Each curve is 
labeled with the speedup and the number of inputs used in the 
test run that produced the largest minimum rate sum for that 
speedup. Note that the minimum rate sum can be made to 
exceed the available switch bandwidth even for a speedup of 2, 
meaning that underflow can occur. With larger speedups, none 
of the stress test configurations cause underflow. 

IV.  IMPROVEMENTS TO THE BUP ALGORITHM 
The BUP algorithm has been implemented in an 

experimental router at Washington University. This system is 
described in detail in [5]. During testing, we found that when 
queue lengths were short, the rate assignments would fluctuate 
rapidly. The BUP algorithm assigns a rate of zero to a zero 
length  VOQ, but can assign a large rate to a VOQ, which is 
short, but accounts for a large share of the traffic to a given 
output. To make the assignment of rates more stable, we 
modified the expressions for lo and hi as shown below. 

)),(/()),((),( jBnjiBSLjihi +++= ββ  
)))(),(/(),((),( jBjBjiBLjilo +++= β  

where β<<1/n is a small constant. The inclusion of β in the 
calculation of lo and hi ensures that even very short (or empty) 
VOQs are assigned at least a small non-zero rate. This 

stabilizes the rates and also serves to “preallocate” otherwise 
unused bandwidth to short VOQs, allowing for more rapid 
forwarding of packets that arrive during the update period, after 
a rate allocation has been done. 

Fig. 6 shows a set of real-time measurements on the 
experimental router, using this modified version of the   BUP 
algorithm. This stress test was for two inputs, five phases and a 
speedup of 1.5. While the experimental measurements agree 
very well with the simulation results, there are some 
differences at a fine timescale. Particularly, at the end of the 
stress test, there are non-trivial rate fluctuations. These 
fluctuations are much smaller that those observed without the 
modifications to lo and  hi but are not insignificant. These 
fluctuations are not observed in the simulation, because the 
simulation model omits many of the fine-grained details of the 
real system.  

Fig. 4 reveals another shortcoming of BUP. In particular, in 
the allocated rate plot, note that during the second phase 
(starting at about time 4,000), the total allocated rate is less 
than the available bandwidth of 1.5, even though input 1 has 
backlogs for both outputs 1 and 2 and could send at a higher 
rate during this period. During the second phase, lo(1,2) grows 
relative to lo(1,1) (because B(1,2) is increasing, while B(1,1) is 
decreasing). So, output 2 gets allocated a larger and larger 
share of the bandwidth at input 1 during this phase. However, 
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Figure 6. Experimental measurements of BUP algorithm 
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Figure 8. Performance of BUP-RD algorithm with uniform random traffic the traffic going to output 2 cannot use its full “share” of the 

bandwidth at input 1, because if it did so, it would cause 
congestion at output 2. The basic algorithm does not check for 
such over-allocation and hence cannot re-allocate the 
bandwidth that can’t be used by output 2, to output 1. If it did 
re-allocate, the backlog to output 1 would clear more quickly 
reducing its need for bandwidth later in the stress test and 
making underflow less likely. This observation suggests a 
refinement to BUP, which performs the appropriate re-
allocation. The code fragment shown below assigns rates to 
VOQs at input i. 

R = SL; X = lo(i,+); 
repeat n times 
  let j be an unassigned queue with the smallest 
  ratio hi(i,j)/lo(i,j); 

hi′(i,j) = R⋅lo(i,j)/X; 
rate(i,j) = min{hi′(i,j),hi(i,j)}; 
R = R − rate(i,j); X = X − lo(i,j); 
 

The first statement inside the loop determines the order in 
which rates are allocated to the different VOQs at input i. The 
purpose of this is to ensure that those VOQs, which might 
otherwise be allocated more bandwidth than they can use are 
selected first, so that their unused allocations can be 
redistributed among the remaining VOQs. VOQ j gives up 
bandwidth to others if hi′(i,j) > hi(i,j); that is, if its allocation is 
limited by its share of the available bandwidth at output j. Note 
that this condition can be written hi(i,j)/lo(i,j) < R/X. Since the 
right side is independent of j, the VOQ that minimizes 
hi(i,j)/lo(i,j) satisfies the condition, if any unassigned VOQ 
does. Hence, the desired effect can be achieved by first sorting 
the VOQs according to the ratio hi(i,j)/lo(i,j), then allocating 
the bandwidth to the VOQs in the sorted order. 

There is another, more subtle over-allocation that can occur 
in BUP. Consider a situation in which output j has a small 
backlog in its output queue and input i has a small backlog for 
output j. More specifically, suppose that B(i,j)=B(j)= 1% of the 
amount of data that can be received on a link during an update 
period. If all other VOQs sending to output j are empty, then 
the basic algorithm sets lo(i,j)=L/2. However, if no new packets 
arrive at input i for output j, it can sustain a rate of no more 
than 2% of this amount, over a full update period. By assigning 
what is arguably an unrealistically high value to lo(i,j), BUP 
allocates more bandwidth to output j than it is likely to use, 
bandwidth, which might be used to better effect by other VOQs 
at input i. To correct this situation, we can modify the 
definition of lo(i,j) to 

}/),(
)),(),(/(),(min{),(

LTjiB
jBjBjiBLjilo

+
+++=

β
β  

where T is the duration of an update period. Putting together 
the various refinements to the basic algorithm gives the 
following algorithm for computing the VOQ rates at input i. 

)),(/()),((),( jBnjiBSLjihi +++⋅= ββ  for all j; 

; allfor }/),(
)),(),(/(),(min{),(

jLTjiB
jBjBjiBLjilo

+
+++=

β
β   

R = SL; X = lo(i,+); 
repeat n times 
  let j be an unassigned queue with the smallest  
  ratio hi(i,j)/lo(i,j); 
 hi′(i,j) = R⋅lo(i,j)/X; 
 rate(i,j) = min{hi′(i,j),hi(i,j)}; 
 R = R − rate(i,j); X = X − lo(i,j); 
 

The dynamic reallocation of bandwidth is the third key idea 
embodied in our distributed queueing algorithms. 

The BUP algorithm does a fairly good job of avoiding 
situations where lo(i,+)>SL. However, it cannot always avoid 
them, and when it does find itself in such a situation, its 
strategy for allocating bandwidth does not produce the best 
possible result. This can be seen clearly from Fig. 4. At the 
very start of the last phase, the urgency-proportional bandwidth 
allocation strategy, allots some bandwidth to each of the VOQs 
at input 1. This leads to immediate underflow at output 5, since 
output 5 has no output-side backlog it can use to supply the 
link. Outputs 1 through 4 however, do have such backlogs, and 
outputs 1 and 2, in particular, have such large backlogs that we 
can reasonably delay forwarding packets to them in order to 
increase the rate assigned to output 5. This observation leads to 
our final modification of the BUP algorithm which seeks to 
defer underflow as long as possible. 

Consider an input i for which lo(i,+)>SL. If input i sends to 
output j at a rate r<lo(i,j), while all other inputs  h send to 
output j at rate lo(i,h), output j will underflow at time 

))),(),((/()()( rjilojloLjBrU j +−+−=  
To delay the occurrence of underflow as long as possible, 

we allocate the input bandwidth among the different VOQs so 
as to maximize the smallest of the Uj values. This is illustrated 
graphically in Fig. 7, which shows four of the Uj functions for a 
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Figure 7. Graphical interpretation of deferred underflow strategy 
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given input i. The curve for each Uj(r) is drawn with a 
discontinuity at r=lo(i,j). At this point, each curve becomes 
infinite. The horizontal line in the figure intersects three of the 
curves. These intersections define three rates and the level of 
the horizontal line defines the time at which the outputs 
associated with those VOQs will underflow, if the VOQs are 
assigned those three rates. To delay underflow as long as 
possible, we want to find the highest line for which the 
corresponding rates are no more than SL.  

The algorithm obtained by combining the previous 
refinements with the deferred underflow extension is called the 
BUP-RD algorithm for BUP with Reallocation and Deferred 
underflow. 

V. PERFORMANCE OF BUP-RD ALGORITHM 
This section reports simulation results for the BUP-RD 

algorithm. As for the original BUP algorithm, we start with a 
baseline simulation of a 16 port router carrying uniform 
random traffic.  The results are shown in Fig. 8. Comparing to 
Fig. 2, we can see that the BUP-RD algorithm yields 
significantly, although not dramatically better performance, for 
uniform random traffic.  

A more telling comparison comes from comparing the 
stress test results in Figs. 4 and 9. We see that for the BUP-RD, 
the peak in the minimum rate sum is significantly reduced, 
although it still slightly exceeds the available bandwidth at the 
input. However, note that in spite of this, there is no underflow, 

as can be seen from the charts showing the VOQ and output 
queue lengths.  

Fig. 10 shows results for a wide a range of different stress 
test configurations. We see that there is significant 
improvement in the min rate sums, relative to BUP. The right-
hand chart shows the miss count for the stress test, comparing 
BUP and BUP-RD. The miss count is the total of the missed 
opportunities to transmit data on the outgoing links, due to the 
scheduling algorithm’s inability to move data through the 
network quickly enough. The units are the amount of data that 
can be sent on a link during one update period. 

Finally, Fig. 11 shows measurements of our experimental 
router, implementing BUP-RD. These results are for a stress 
test that is comparable to the simulation results in Fig. 9 and 
show similar overall behavior. 

Both BUP and BUP-RD achieve our primary objective of 
eliminating switch congestion under all input traffic conditions 
(in the approximate sense that no more traffic is sent to the 
switch during an update period than it can forward). The 
performance results provide strong evidence that a small 
speedup can suffice to avoid underflow, under all possible 
traffic conditions. We have not been able to analytically 
determine the smallest speedup needed to avoid underflow in 
the worst-case. Note that the results reported in [4] showing 
that a speedup of 2 can suffice for crossbar scheduling, do not 
apply to this case, since those results rely on a specific 
centralized scheduling algorithm with unrealistically high 
complexity. 
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Figure 9. Stress Test Results for BUP-RD Algorithm (2 inputs, 5 phases) 
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Figure 10. Worst-case performance of BUP-RD algorithm for stress test 

VI. TIME-SLICED DISTRIBUTED QUEUEING 
As mentioned in Section II, we prefer algorithms that order 

the outgoing packets in the same way that an ideal output 
queued switching does. A looser version of this property, 
appropriate for distributed queueing, is that packets destined 
for the same link that arrive at about the same time, leave the 
system at about the same time. The backlog-proportional-
allocation method used by our algorithms does approximate 
this for static traffic flows, in a certain weak sense. 
Specifically, consider an algorithm in which rate(i,j)= 
αB(i,j)/B(+,j) where α is a constant at least equal to the link 
rate. Assuming a large enough speedup to avoid congestion, 
this rate assignment will maintain input side backlogs that are 
proportional to the relative rates. More precisely, for any output 
j for which traffic is arriving at a rate faster than α, the 
allocated rates and the backlogs will be proportional to the rates 
at which traffic arrives. Consequently, packets that arrive at the 
same time will be transferred to the output at approximately the 
same time. We have chosen not to use this strict version of the 
backlog-proportional-allocation method in our algorithms, 
since it requires a very large speedup to avoid congestion at 
inputs, making it impractical. 

The backlog-proportional-allocation heuristic can badly 
misorder packets when rates change suddenly. For example, 
suppose several inputs are sending to output j and all have large 
backlogs. Then suppose an input i which had not previously 
had any packets for output j starts receiving packets for j. 
While input i will receive a small share of the bandwidth going 
to j, some of its packets will nonetheless reach output j well 
before packets from the other inputs that arrived earlier 
(possibly much earlier).  

We now describe an alternative approach that can come 
much closer to approximating the same-time-in, same-time-out 
property. This approach seeks to regulate the VOQ rates so as 
to transfer packets through the switch based on when they 
arrived. Ports periodically exchange information about the 
amount of data they have received for each outgoing link 
during the most recent update interval. Let A(i,j,t) be the 
amount of data received at input i for output j during update 
period t. These values are stored in a data structure at output j, 

for all inputs, and used to determine target rates at which the 
inputs should send to it. The target rates are chosen to keep the 
inputs synchronized with each other, with respect to output j. 
As with the earlier algorithms, we define upper and lower 
bounds on rates, then use the lower bounds as the basis for 
allocating input bandwidth. We start by determining, for each 
output j, the smallest time period t1, for which 

∑
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1
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where T is the duration of the update period. We then let 

∑
<

+−=
1

),,()(
t

jASLTjR
τ

τ  

and then let 










+
+= ∑

<

)(
),,(
),,(

),,()/1(),(
1

1

1

jR
tjA
tjiA

jiATjihi
tτ

τ  

If these values are summed over all i, the result is SL, meaning 
that if rate(i,j)≤hi(i,j) for all i and j, there will be no congestion 
in the switch. We use a similar procedure to determine a target 
lower bound rate lo(i,j). We first determine, for each j, the 
smallest time period t2, for which 
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d(j)/T is the rate at which the inputs collectively must forward 
data to output j to avoid underflow at output j. We next let 
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If rate(i,j)≥hi(i,j) for all i and j, we can both avoid 
underflow and can avoid misordering packets by more than the 
distributed queueing update period. As with the original 
algorithm, there is a possibility that a given input may not be 
able to satisfy all these inequalities. As before, the lo values are 
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used to allocate the input side bandwidth, subject to the 
constraint on the output side bandwidth. 

R = SL; X = lo(i,+); 
repeat n times 
  let j be an unassigned queue with the smallest  
  ratio hi(i,j)/lo(i,j); 
 hi′(i,j) = R⋅lo(i,j)/X; 
 rate(i,j) = min{hi′(i,j),hi(i,j)}; 
 R = R − rate(i,j); X = X − lo(i,j); 
 

 As before, small offsets can be incorporated into the 
definitions of hi and lo to improve the stability of the rates 
when buffers are short.  

There are a few details that have been glossed over in the 
above presentation for clarity of exposition. For example, we 
have neglected the case where there is no t1 for which 

∑
≤

>+
1

),,(
t

SLTjA
τ

τ  

In this case, the entire current backlog can be cleared in a 
single update period, and the bandwidth is allocated in 
proportion to the backlogs. We have also omitted discussion of 
the data structure that can be used to efficiently determine the 
values of t1 and t2. A data structure that combines ideas from 

binary search trees and heaps can be used for this purpose. We 
leave a fuller treatment of these issues and the performance of 
this algorithm to a later paper. 

VII. FAIR DISTRIBUTED QUEUEING 
In routers that support fair queueing [2,3], packets 

belonging to different user data flows are placed in different 
queues and the packet scheduler for each link attempts to give 
each flow an equal share of the link bandwidth. The addition of 
a fair queueing packet scheduler at each output of a router 
implementing one of the distributed queueing algorithms 
described above, can give each flow a fair share of the output 
bandwidth, only so long as there are no significant input-side 
backlogs. For overloaded links, the algorithms discussed so far 
cannot ensure that each flow receives its fair share. To provide 
fair distributed queueing, it’s necessary to augment the scalable 
router architecture as shown in Fig. 12. Note that each output 
has separate queues for each flow and that each input has per-
flow queues as well. The queues at each input are grouped 
according to the output they forward packets to. A distributed 
queueing controller (DQ) regulates the rates at which packets 
are forwarded from each group of queues. 

To ensure that each flow gets its share of the output link 
bandwidth, the switch fabric bandwidth should be allocated 
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Figure 11. Experimental performance of BUP-RD 
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Figure 12. Router with Fair Distributed Queueing 

among the inputs in proportion to the number of backlogged 
queues they have. Define N(i,j) to be the maximum of the 
number of backlogged queues at input i going to output j and 
the number of backlogged queues at output j containing packets 
from input i. Our basic strategy will be to allocate bandwidth in 
proportion to the N(i,j)  values. However, this can result in 
excessive allocations to inputs that have lots of backlogged 
queues but few packets, making it important to incorporate a 
reallocation mechanism in the determination of the lower and 
upper bounds on the rates. To calculate hi(i,j), 

R = SL; X = N(+,j); 
repeat n times 
 let i be an unassigned input with the smallest 
  value of B(i,j)/N(i,j); 
 hi(i,j) = min {R N(i,j)/X, B(i,j)/T}; 
 R = R − hi(i,j); X = X − N(i,j); 
 

We use a similar procedure to calculate lo(i,j).  

R = LB(+,j)/(B(+,j)+B(j)); X = N(+,j); 
repeat n times 
 let i be an unassigned input with the smallest 
  value of B(i,j)/N(i,j); 
 lo(i,j) = min {R N(i,j)/X, B(i,j)/T}; 
 R = R − lo(i,j); X = X − N(i,j); 
 

Given these values for hi and lo, we proceed with the rate 
assignment, as before. 

R = SL; X = lo(i,+); 
repeat n times 
  let j be an unassigned queue with the smallest  
  ratio hi(i,j)/lo(i,j); 
 hi′(i,j) = R⋅lo(i,j)/X; 
 rate(i,j) = min{hi′(i,j),hi(i,j)}; 

R = R − rate(i,j); X = X − lo(i,j); 
 

This version can be extended to supported weighted fair 
queueing, by replacing the quantities N(i,j), with values that 
represent the weights of the backlogged queues going from 

input i to output j. We expect that with a modest speedup this 
algorithm can ensure fair treatment of all flows under all traffic 
conditions. We plan to study the performance in detail in a 
separate paper. 

VIII. SUMMARY 
In this paper we have introduced distributed queueing 

algorithms to regulate the flow of traffic in large-scale routers. 
While distributed queueing has similarities with crossbar 
scheduling, it differs in significant ways. Our algorithms are 
based on four ideas (1) backlog-proportional-allocation of 
output bandwidth, (2) urgency-proportional-allocation of input 
bandwidth and (3) dynamic reallocation  and (4) deferred 
underflow. Our algorithms guarantee congestion-free operation 
of the switch fabric and our performance results show that a 
small speedup is sufficient to avoid underflow, even under 
fairly extreme traffic conditions. 

These algorithms are being developed for use in an 
experimental extensible router [5], that has been developed at 
Washington University. This system is built around a scalable 
switch fabric and its port processors contain a large Field 
Programmable Gate Array, with sufficient logic and off-chip 
memory resources to implement all IP packet processing and 
queueing functions in hardware. Each port processor also 
includes an embedded general-purpose processor that can 
handle exceptional conditions and can be used to dynamically 
extend the router’s functionality. 
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