
1

Design of Wavelength Converting Switches for
Optical Burst Switching

Jeyashankher Ramamirtham, Jonathan Turner, Joel Friedman

Abstract— Optical Burst Switching (OBS) is an experimental
network technology that enables the construction of very high ca-
pacity routers, using optical data paths and electronic control. In
this paper, we study wavelength converting switches using tunable
lasers and wavelength grating routers, that are suitable for use in
optical burst switching systems and evaluate their performance.
We show how the routing problem for these switches can be for-
mulated as a combinatorial puzzle or game, in which the design
of the game board corresponds to the pattern of permutation used
at the input sections of the switch. We use this to show how the
permutation pattern affects the performance of the switch, and to
facilitate the design of interconnection patterns that yield the best
performance. We give upper bounds on the number of different
wavelength channels that can be routed through such switches (re-
gardless of the interconnection pattern), and show that for 2 × 2
switches, there is a simple permutation pattern that achieves these
bounds. For larger switches, randomized permutation patterns
produce the best results. We study the performance of optical
burst switches using wavelength converting switches based on sev-
eral different permutation patterns. We also present a novel rout-
ing algorithm called the most available wavelength assignment and
evaluate its benefits in improving the switch throughput. Our re-
sults show that for a typical configuration, the switch with the best
permutation pattern has more than 87% of the throughput of a
fully nonblocking switch.

Index Terms—Optical Burst Switching, Wavelength Converting
Switches, Wavelength Routers

I. INTRODUCTION

The transmission capacity of optical fibers has been increas-
ing at a tremendous rate as a result of DWDM technology. Al-
though terabit capacity IP routers based on electronics are now
starting to appear, there remains a serious mismatch between
the transmission capacity of DWDM fibers and the switching
capacity of electronic routers. Since DWDM links are capable
of supporting hundreds of channels operating at rates of 10 Gb/s
each, it can take 5-10 equipment racks to hold the electronic
line cards needed to terminate the channels from just a single
fiber. Optical burst switching seeks to reduce the cost and com-
plexity of these systems by replacing much of this electronics
with optical components. OBS is a hybrid switching technology
that uses electronics to control routing decisions, but keeps data
in optical form as it passes through each OBS router. By ex-
ploiting the high channel counts of advanced WDM systems, it

J. Ramamirtham and J. Turner are with Applied Research Laboratory, De-
partment of Computer Science and Engineering, Washington University in St.
Louis, MO, USA. E-mail: {jai,jst} @arl.wustl.edu. This work is
supported by the Advanced Research Projects Agency and Rome Laboratory
(contract F30602-97-1-0273)

J. Friedman is with the departments of Computer Science and Mathemat-
ics, University of British Columbia, Vancouver, BC V6T 1Z4 (V6T 1Z2 for
Mathematics), CANADA, jf@cs.ubc.ca. Research supported in part by an
NSERC grant.

achieves excellent statistical multiplexing performance with lit-
tle or no buffering. Further details on OBS can be found in [1],
[2], [3], [4], [5], [6].

In this paper we focus on the design of the basic switch ele-
ments that are used to construct large OBS routers. In particu-
lar, we study the design of the wavelength converting switches
that are the key building block needed to implement these sys-
tems. Although, there have been a number of studies of optical
packet switching in recent years [7], [8], [9], [10], [11], [12],
[13], it is not yet clear how the required optical components can
be implemented to make them cost-competitive with electronic
alternatives.

Recent dramatic advances in tunable lasers have created new
architectural options for wavelength converting switches and
appear to hold considerable promise for the design of prac-
tical optical switching systems. This paper examines a spe-
cific type of wavelength converting switch that uses tunable
wavelength converters and passive Wavelength Grating Routers
(also known as Arrayed Waveguide Grating Multiplexors or
AWGMs). This type of switch is attractive because WGRs are
relatively simple to fabricate, are inexpensive and consume no
power. Unfortunately, the use of wavelength routers introduces
the possibility of blocking. In this paper we evaluate the impact
of this blocking on the statistical multiplexing performance of
a switch element in an OBS router. Our results show that the
WGR-based switch can achieve more than 87% of the through-
put obtained with a fully nonblocking switch.

We show that the performance of a WGR-based switch is
strongly dependent on the pattern of permutation used at the in-
put sections of the switch. This is done by first formulating the
routing problem in the WGR switch as a combinatorial puzzle
or game, in which the design of the game board corresponds
to the permutation patterns. We use this correspondence to ex-
plore alternative designs and evaluate the performance of the
resulting system, using simulation. Also, we show that the puz-
zle can be viewed as a bipartite matching problem. This leads
directly to a method for rearranging existing connections in a
switch to accommodate new connections that might otherwise
have to be rejected. We also present a novel routing algorithm
to forward the bursts through the switch without rearrangement
and evaluate the performance of the algorithm through simula-
tion. We find that the routing algorithm is helpful in improv-
ing performance for regular permutation patterns but is not that
beneficial for random game boards.

The rest of the paper is organized as follows. In Section II,
we give a brief overview of the optical burst switching concept
and explain where this work fits in the OBS context. We present
the design of the WGR-based wavelength converting switch in
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Fig. 1. Burst Switching Concept

Section III. In Section IV, we show how to model blocking
in the WGR-based switch as a combinatorial puzzle and show
how the problem of solving the puzzle can be reformulated as
a matching problem in a bipartite graph. We study the design
of game boards and the “solvability” of puzzles on these game
boards in Section V. In Section VI, we present a game formula-
tion that models the routing of bursts, as they arrive in an actual
burst switch. We present simulation results showing how the
blocking characteristics of the switch designs affect the statis-
tical multiplexing performance of a switch element in an OBS
router. We also describe a routing algorithm for forwarding
bursts and evaluate its performance through simulation. Finally,
we present some concluding remarks in Section VII.

II. BURST SWITCHING ARCHITECTURE

The basic burst switching concept is illustrated in Fig. 1. The
transmission links carry data on tens or hundreds of wavelength
channels and user data bursts can be dynamically assigned to
any of these channels by the OBS routers. One (or possibly
several) channel on each link is reserved for control informa-
tion that is used to control the dynamic assignment of the re-
maining channels to user data bursts. When an end system has
a burst of data to send, an idle channel on the access link is
selected and the data burst is sent on that channel. Shortly be-
fore the burst transmission begins, a Burst Header Cell (BHC)
is sent on the control channel, specifying the channel on which
the burst is being transmitted and the destination of the burst.
The OBS router, on receiving the BHC, assigns the incoming
burst to an available channel on the outgoing link leading to-
ward the desired destination and establishes a path between the
specified channel on the access link and the channel selected to
carry the burst. It also forwards the BHC on the control chan-
nel of the selected link, after modifying the cell to specify the
channel on which the burst is being forwarded. This process is
repeated at every router along the path to the destination. The
BHC also includes an Offset field which contains the time be-
tween the transmission of the first bit of the BHC and the first
bit of the burst, and a Length field specifying the time duration
of the burst. The offset and length fields are used to time the
switching operations in the OBS routers, and the offset field
is adjusted by the routers to reflect variations in the process-
ing delays encountered in the routers’ control subsystems. If a

router does not have idle channels available at the output port,
the burst can be stored in a buffer, or in a bufferless system, is
discarded.

Reference [3] describes a scalable OBS router architecture
consisting of a set of Input/Output Modules (IOM) that inter-
face to external links and a multistage interconnection network
of Burst Switch Elements (BSE). The interconnection network
uses a Benes topology, which provides parallel paths between
any input and output port. A three stage configuration com-
prising d port switch elements can support up to d2 external
links (each carrying many WDM channels). The topology can
be extended to 5, 7 or more stages. In general, a 2k − 1 stage
configuration can support up to dk ports. For example, a 5 stage
network constructed from 8 port BSEs would support 512 ports.
If each port carried 256 channels at 10 Gb/s each, the aggregate
system capacity would be 1, 310 Tb/s.

Input IOMs process the arriving BHCs, performing routing
lookups and inserting the number of the output IOM into BHCs
before passing them on. The BSEs use the output port number
to switch the burst through to the proper output. Each of the
components that does electronic processing on the cell keeps
track of the time spent and updates the offset field in the BHC
to maintain synchronization with the burst. Additional details
can be found in [3].

III. WGR-BASED SWITCH DESIGN

Each BSE in a burst switch requires a wavelength convert-
ing switch, capable of switching an optical signal from any of
the BSE’s d input fibers to any of its d output fibers (Fig. 2).
A BSE with d = 8 and h = 256 wavelengths would have an
aggregate throughput of 2 Tb/s, assuming 10 Gb/s per wave-
length. Since bursts can arrive at unpredictable times, a BSE
must be able to switch bursts to different wavelengths on the
output fibers, in order to provide acceptable statistical multi-
plexing performance at typical traffic intensities. Wavelength
conversion technologies are discussed in [14], [15].

The WGR-based switch design we are interested in is shown
in Fig. 3. Each of the d input sections consists of four compo-
nents, an optical demultiplexor, a bank of tunable wavelength
converters, a wavelength grating router and a bank of opti-
cal multiplexors. The router and the multiplexors are joined
through a fixed permutation pattern. We will see that the block-
ing characteristics of the switch depend critically on the choice
of this permutation pattern. Each output section consists of a

h wavelengths
per fiber

d input and
output fibers

Fig. 2. Wavelength converting switch with d input/output fibers and h wave-
length channels per fiber
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Fig. 3. Wavelength switch using Tunable Wavelength Converters (TWC) and
Passive Wavelength Grating Routers (WGR)

single optical multiplexor. Each input section is connected to
each output section by an optical fiber carrying up to h optical
signals on different optical wavelengths. Since each wavelength
can be used only once on each output fiber, the signals arriving
at an output section from different input sections must use dis-
tinct wavelengths.

In high performance optical networks, hundreds of different
optical signals may be carried on a single fiber, using different
wavelengths of light. The optical demultiplexor in each input
section separates these signals, so that they can be individu-
ally switched to different output fibers. The tunable wavelength
converters use a tunable laser and an optical modulator to trans-
fer the information carried on one input wavelength to a differ-
ent (and dynamically selectable) output wavelength. This wave-
length conversion is needed to allow input signals on different
input fibers to be switched to the same output fiber, even if the
input signals are carried on the same wavelength. The wave-
length grating router is a passive optical device that switches
optical signals based on their wavelength. Specifically, an opti-
cal signal carried on wavelength i at input j is switched to out-
put (j + i)modh where h is the number of wavelengths. Thus,
the choice of wavelength used for a given signal determines
which output section the signal is forwarded to. In general,
there are h/d different wavelengths that can be used by a given
input signal to reach a different output, but different inputs may
use different sets of wavelengths to reach the same output. The
permutation patterns used in each of the input sections deter-
mine these wavelength sets. Since a given input channel is not
able to use any wavelength to reach a given output fiber, block-
ing can occur. That is, there may be situations where all of the
wavelengths that can be used to get to a desired output are in
use at the output causing blocking to occur, even when there
are free wavelengths available on the outgoing link.

There is an alternative nonblocking design that replaces the
WGR with a crossbar. In a system using such a switch, a signal
from an input can be routed to any output if there are fewer than
h signals already being sent to the output. This design is sig-
nificantly more complex than the WGR-based design because
WGRs are much simpler devices than crossbars. We believe
that WGR-based switches may offer a more cost-effective so-
lution. We show that the performance of switches using WGRs

O0 O1 O2 O3

O0O1 O2 O3

O0 O1O2 O3

O0 O1 O2O3

I0
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I2

I3

λ0 λ1 λ2 λ3

Fig. 4. Routing matrix of a 4 × 4 WGR

is close to that achieved with nonblocking switches. A demon-
stration of a combination of tunable wavelength converters and
wavelength routers has been discussed in Reference [16].

IV. DESIGN OF WGR-BASED SWITCHES

In this section we study the routing problem in WGR-based
switches and show how the blocking performance of these
switches is affected by the permutation pattern used within each
of the input sections of the switch. First however, we briefly re-
view the routing properties of wavelength grating routers.

A. Wavelength Grating Router properties

An h × h WGR is a passive static wavelength-routing de-
vice that provides complete connectivity between its inputs and
outputs, by passively routing h2 optical connections on h wave-
lengths [17]. The use of a WGR has several advantages includ-
ing easy fabrication, commercial availability and relatively low
cost. A WGR has a fixed cyclical-permutation-based routing
pattern between its input and output ports. A connection at in-
put i using wavelength k gets routed to the same wavelength on
output (i + k) mod h, ∀ i , k ∈ [0, h − 1]. The routing pattern
for a 4 × 4 WGR is shown in Fig. 4. A connection at input I2

using wavelength λ3 gets routed to output O1 and a connection
at input I3 using wavelength λ0 gets routed to output O3.

B. Routing Multiple Channels Simultaneously

In this section, we show how the problem of simultaneously
routing a set of channels through a WGR-based switch can be
formulated as a combinatorial puzzle. This formulation makes
it easier to understand the intrinsic structure of the problem,
yielding insights that are useful in design and analysis.

The puzzle is played on a game board made up of dh2

squares arranged in h columns and dh rows. The board is di-
vided into d square blocks of h rows each. Each square has one
of d different colors, with each row containing h/d squares of
each color and each column containing h squares of each color.
To setup the puzzle we place colored tokens beside some or all
of the rows. A setup can include at most h tokens of any color.
An example of a setup game board with d = 2 and h = 8 is
shown in Fig. 5(a). To solve the puzzle, we must place each
token on a square of the same color, in the row where the token
was placed. The token placement must also satisfy the con-
straint that no two tokens of the same color be placed in the
same column. An example solution to the puzzle is shown in
Fig. 5(b).



4

(a) Example puzzle setup (b) Example solution

Fig. 5. An example puzzle setup and solution

Each row in the puzzle corresponds to one of the h input
channels on one of the d input fibers. More specifically, row
i in block j of the game board corresponds to input channel
i of input fiber j. The color of the token that is placed by a
row corresponds to the output fiber that the corresponding in-
put channel is to be switched to. More specifically, placing a
token of color r on row i of block j corresponds to switching
channel i of input fiber j to output fiber r. The columns of the
array correspond to different output wavelengths. Placing a to-
ken in a particular column corresponds to choosing that output
wavelength. The color of each square corresponds to the output
that is reached if the wavelength converter for the input channel
corresponding to that square’s row is tuned to the wavelength
corresponding to the column. So, placing a token of color r in
column q of row i of block j corresponds to switching channel
i of input fiber j to channel q of output fiber r. Note that the
puzzle rule requiring that no two tokens of the same color oc-
cupy the same column, corresponds to the requirement that no
two input signals going to the same output fiber use the same
wavelength.

In order to complete the correspondence between the puz-
zle and the routing problem, we note that within each block,
the rows must have closely related color patterns, in order to
model the routing characteristics of the WGRs. Specifically,
the pattern of colors within each row can be obtained from the
previous row’s pattern by a cyclic rotation of one column. This
relationship only holds within each block. There is no require-
ment that different blocks have similar color patterns. The color
pattern for each block corresponds to the permutation pattern
within the input sections of the switch. This is illustrated in
Fig. 6 which shows two example configurations of a system
with d = 2 and h = 8 and the corresponding game boards.

Whenever the puzzle has a solution, it means that there is a
way to route the input signals to the output channels that are
specified by the tokens placed by each row. If the puzzle does
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Fig. 6. Two configurations and the corresponding game boards of a system
with d = 2 and h = 8

not have a solution, then there is no way to route all the chan-
nels simultaneously. If, for all possible puzzle setups, there is a
solution, the switch is rearrangeably non-blocking. It is easy to
see that the switch in Fig. 6a is not rearrangeably non-blocking,
since the puzzle setup in which tokens of one color are placed
in even-numbered rows and tokens of the other color are placed
in odd-numbered rows, has no solution. On the other hand, this
setup does have a solution when played on the game board in
Fig. 6b.

To generalize the problem of routing connections simultane-
ously, we restrict the number of tokens of a particular color to
some value k ≤ h.

Definition IV.1: A game board is k-solvable if every puzzle
setup with at most k tokens of each color has a solution.

We show below that no game board is h-solvable. Fortu-
nately, in practice, it can be sufficient to find game boards that
are k-solvable for values of k fairly close to h.

C. Routing problem as a bipartite matching problem

The problem of solving the puzzle can be reformulated as a
matching problem in a bipartite graph. We start by constructing
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the bipartite graph. The graph consists of two subsets of ver-
tices; let us call them the “left” and “right” subsets. The “left”
subset includes vertex u(i, j) that corresponds to row j in block
i of the game board (or channel j of input fiber i). The “right”
subset includes a node v(q, r) that corresponds to color q and
column r (or channel r of output fiber q). We include the edge
{u(i, j), v(q, r)} in the graph if the color of the token in row j
of block i is q and the color of the square in column r of row i
and block j is q. In terms of the WGR switch, you include the
edge if the signal on input fiber i, channel j is to be switched
to output fiber q, and you can reach output fiber q using wave-
length r.

In each row of the game board, there are h/d squares of the
color corresponding to output q or h/d wavelengths that switch
signals to output q. Thus, for each token that is placed at row
j of block i, there are h/d edges that are drawn from the “left”
subset to the “right” subset. This is illustrated in Fig. 7 for a
system with 2 input fibers and 8 wavelengths per fiber. The
token placed in row 4 of block 1 has four squares of the same
color as the token’s. This results in 4 edges in the bipartite
graph from vertex (2, 4) to vertices corresponding to output 2.
Similarly, 4 edges are drawn from vertex (2, 6) for the token
placed at row 6 of input fiber 2.

Now find a maximum size matching in this bipartite graph.
If there is an edge for every token, you have a solution. In
particular, if {u(i, j), v(q, r)} is in the matching, then put the
token in block i and row j in column r (equivalently, tune the
wavelength converter for channel j of input fiber i to output
wavelength r).

One observation about this graph is that it breaks apart into
separate subgraphs corresponding to the different outputs. This
just corresponds to the fact that the placement of tokens of one
color is independent of the placement of tokens of other col-
ors. Using a well-known maximum size matching algorithm
based on max flows in unit networks, one can solve the puzzle
in O(h5/2) time, assuming a solution exists.

The connection with matching also yields an algorithm for
rearranging existing connections to accommodate new ones,
which corresponds directly to the augmenting path algorithm
for bipartite graphs. This can be described in terms of the game

board as follows. If it is not possible to place a token of color
x in row r1 (satisfying the required constraints), then find an
“x-augmenting path” in the game board starting at some square
of color x in row r1. Call this square (r1, c1) where c1 is the
column number. An x-augmenting path in the game board is a
sequence of squares (r1, c1), (r2, c2), (r3, c3), ..., (rm, cm) sat-
isfying the following properties:

• All squares in the sequence have color x.
• Squares (r2, c1), (r3, c2), ..., (rm, cm−1) all contain a to-

ken of color x.
• There is no token of color x in column cm.

Given such a path, we place a token on (r1, c1) and for 1 < i ≤
m we move the token on square (ri, ci−1) to (ri, ci).

We can find such a path by performing a breadth-first search
through the game board. We construct the search tree as fol-
lows. The nodes, Ni (1 < i ≤ hd), of the tree correspond to
the rows of the game board. To place a token of color x in row
r1, let Nr1 be the root node of the tree. If column c in row r1

has a square of color x and row rk has a token of color x in col-
umn c, then we add an edge from Nr1 to Nrk

in the tree. There
are h/d nodes adjacent to node Nr1 . We can construct the tree
by recursively adding nodes at distance 1 from the newly added
nodes. The search stops when we have a row that has a column
with no token of color x placed in it; that is, we can move the
token in the row to this free column.

V. FINDING GOOD GAME BOARDS

The design of a game board has a big influence on our ability
to solve the puzzle. Since the game board design corresponds
to the permutation pattern of the input section, this means that
the permutation pattern affects the likelihood of blocking. The
game board in Fig. 6a has many puzzle setups that have no solu-
tion, making it a poor design, from the perspective of the puzzle
solver. What makes it a poor design is that many rows have ex-
actly the same pattern of colors. This means that if tokens of
the same color are placed in these rows, the number of columns
they have to choose from is limited, and may be smaller than the
number of tokens. This suggests that a good game board design
will be one in which different rows have different patterns, and
in particular, have as few columns in common as possible with
squares of the same color.

A game board is k-solvable if and only if in each of its as-
sociated bipartite graphs, there is a matching of size t between
any set of t ≤ k inputs and all its outputs. By the well-known
Marriage Theorem for bipartite matching, such a matching ex-
ists if and only if every set of t ≤ k nodes in the “left” subset
has at least t neighbors in the “right” subset. We can restate
this in terms of the puzzle, as follows. For a given game board
and a fixed color (call it blue), we say that row i covers those
columns in which it has a blue square. Similarly, we say that
a set of rows covers those columns for which there is a blue
square in at least one of the given rows. A game board is k-
solvable if and only if for all colors j and all r ≤ k, all sets of
r rows cover at least r columns.

A. Upper bounds on puzzle solvability

We first show that no game board is h-solvable. Consider an
arbitrary game board and color blue. There are exactly h blue
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squares in any column of the game board, meaning that there
are dh − h squares that are not blue. If we select any h rows
from among the dh − h rows that do not have blue squares in
the given column, then any puzzle setup that has blue tokens
in these h rows is unsolvable, since none of the tokens can be
placed in the selected column, and we must place each of the
h tokens in a distinct column. Similarly, if we consider any
i ≤ d − 1 columns, there must be at least (d − i)h rows that
do not contain blue squares in any of these columns. So, any
puzzle setup that has blue tokens in more than h − i of these
rows is unsolvable. These results make it clear that we cannot
expect to construct a WGR-based switch that will guarantee our
ability to place more than h − d + 1 tokens of the same color.
Fortunately, the value of h is typically much larger than d for
configurations of practical interest, which means that the degree
of blocking implied by this limitation may be acceptable. This
gives us

Theorem V.1: For any k-solvable game board on d colors and
h columns, k ≤ h − d + 1

For larger values of d, we can get a stronger bound using the
following theorem.

Theorem V.2: Let G be a game board on d colors and h
columns and let s be any integer that satisfies

dh
(
h − (h/d)

)s
/hs ≥ h − s + 1

where xr = x(x − 1) . . . (x − r + 1). If G is k-solvable, then
k ≤ h − s − 1.

For h = 256 and d = 8, 15 is the largest value of s that
satisfies the inequality, giving a limit of 240 on the solvability
of game boards with h = 256 and d = 8. If we increase d to
16, the largest s increases to 41 and the limit becomes 214. If
we fix a value of d and let h → ∞, the theorem implies that
k ≤ h − �logd/(d−1) d�. Since logd/(d−1) d is roughly d ln(d)
for larger values of d, we can use h − d ln d as an estimate of
the bound, which for larger values of d is significantly smaller
than the h−d+1 implied by Theorem V.1. However, for h >>
d, even this stronger bound does not rule out the existence of
practically useful game boards.

To prove Theorem V.2, consider an arbitrary game board G.
Fix a color (call it blue) and choose s random columns from G.
For any row r, the probability that r does not have a blue square
in any of the s columns is (h − h/d)s/hs. So the expected
number of rows that do not have a blue square in any of the s
columns is dh(h − h/d)s/hs. So, there must be some set of s
columns, S, for which there are at least dh(h− h/d)s/hs rows
that have no blue squares in S. If this number is ≥ h − s + 1,
then the puzzle cannot be (h − s)-solvable.

B. Contiguous game boards

A repetitive game board is a game board whose d blocks are
the same. A contiguous game board is a repetitive game board
in which the first row of each block is divided into d contiguous
monochrome blocks of size h/d each. Remarkably, for d = 2,
contiguous game boards are h − 1 solvable. To see this, fix a
color and note that any set of i rows in the same block covers
at least (h/d) + i − 1 columns. Any set of k rows in the game
board must have at least �k/d� rows in some block, and so must

cover at least (h/d) + �k/d� − 1 columns. For k = h − 1, this
is 2(h/d)−1, which is h−1 when d = 2. That is, a contiguous
game board with d = 2 is (h− 1)-solvable, matching the upper
bound in the previous sub-section. For arbitrary values of d, we
have the following theorem.

Theorem V.3: A contiguous game board on h columns with
d colors is k-solvable if and only if k − �k/d� ≤ h − 1. The
largest value of k that satisfies this condition is

k∗ =
{

(h/(d − 1)) − 1, if d − 1 divides h/d,
(h/(d − 1)) − (h/d mod d − 1)/(d − 1), otherwise.

The first part of the theorem follows directly from the discus-
sion above. The second part can be shown by substitution.

C. Random Game Boards

Our criterion for a good game board is one in which any set
of r rows covers at least r columns, for each color. For larger
values of h and d, we can expect random game boards to do
well, in this respect. Consider an arbitrary set of r rows within
a single block of a random game board. The probability that a
particular column is not covered for some fixed color is

h − r

h

h − r − 1
h − 1

. . .
h − r − h/d + 1

h − h/d + 1
=

(h − r)h/d

hh/d

Thus, within one block, the expected number of columns not
covered by r rows is

h
(h − r)h/d

hh/d

The expected number of columns not covered by r rows se-
lected from d independent random blocks in the game board
is

= h
(h − r1)h/d

hh/d

(h − r2)h/d

hh/d
.....

(h − rd)h/d

hh/d

≤ h

(
(h − r/d)h/d

hh/d

)d

where r = r1+r2+. . .+rd, and ri is the number of rows in the
ith block of the game board. The expected number of columns
not covered is plotted as a function of the size of the row set, r
in Fig. 8. The expected number of columns not covered gives us
an upper bound on the probability that a given set of rows fails
to cover one or more columns. In the figure, the curve labeled
“tolerable number of uncovered columns” is h minus the size
of the row set.

For the values of d of most practical interest (≤ 16), the num-
ber of columns not covered by any random row set is much less
than the tolerable number. For d = 8, the probability that a set
of 140 or more rows fails to cover any column is less than one
in a million. Another way to look at this is to note that while
a nonblocking switch can implement all mappings of the input
channels to output links, the blocking switch can implement all
but a minuscule fraction of the set of possible mappings.

It is also possible to use eigenvalue methods to test if a given
game board is k-solvable. This makes it possible to search for
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good game boards by generating random boards and testing
them. We performed such a search of random regular game
boards, where a regular game board is a balanced game board
in which each block has the same pattern, with the exception
that the role of the colors is shifted from one block to the next
(so the squares colored c in one block are colored c + 1 mod d
in the next block). In a search of roughly 6, 000 random regu-
lar game boards, we found one board that is 171-solvable, one
that is 170-solvable, one that is 169-solvable, and five that are
168-solvable.

VI. ROUTING CONNECTIONS ONLINE

The puzzle introduced above corresponds to the version of
the routing problem in which we are asked to simultaneously
route a whole set of connections. More often, we are inter-
ested in routing individual connections one-at-a-time, without
disturbing connections routed previously. This problem can be
formulated as a two player game, played on the same game
board as the puzzle.

Let’s call the first player the blocker and the second player,
the setter. The blocker is given k ≤ h tokens of each of the d
different colors. The blocker takes a turn by removing zero or
more tokens from the board and placing one token beside some
unoccupied row of the board. The setter takes its turn by placing
the token put down by the blocker, in a square of the same color
as the token in the selected row. When placing the token, the
setter must not use any column that already contains a token
of the same color. The blocker wins if the setter is not able to
place the token on the board without violating the conditions.
The blocker loses if the setter is able to keep the game going
indefinitely.

The switch is strictly nonblocking if no matter how badly the
setter plays, there is no way for the blocker to force a win. The
switch is wide-sense nonblocking if there is a winning strategy
for the setter (that is a strategy that will keep the game going
forever, regardless of how well the blocker plays).

Since a winning strategy for the setter would imply that the
corresponding puzzle always has a solution, we cannot expect a
winning strategy in versions of the game where the blocker has
more tokens than allowed by the upper bounds in Section V.
It’s easy to see that the setter has a trivial winning strategy when

X=0 X=1 X=2 X=h

λ0 λ1 λ2 λh-1

µ 2µ 3µ hµ

Fig. 9. Birth-death modeling an output of the switch

the number of tokens of each color is limited to ≤ h/d. Hence,
the switch is strictly nonblocking in these cases. It’s also easy
to see that the blocker can beat a naive setter if the blocker is
allowed more than h/d tokens of each color. In other words,
the switch is strictly nonblocking if and only if the blocker is
limited to ≤ h/d tokens of each color.

We now present an approximate analytical model for evaluat-
ing the performance of wavelength converting switches in OBS
routers. The performance metric used is the fraction of arriving
bursts that must be discarded. This is called the burst rejection
probability. We phrase the model in terms of the game board.
Since the tokens of different colors are independent, we focus
on tokens of a single color. New tokens arrive at rate λ, and if
possible are placed on the game board. Tokens stay on the game
board for an average time period of 1/µ. If the token interarrival
time and the token “dwell time” are exponentially distributed,
we can model the system by the birth-death process shown in
Fig. 9, where the state index corresponds to the number of to-
kens on the game board. The transition rate from state i to state
i − 1 is iµ, where 1/µ is the expected time duration for which
a token stays on the game board. The transition rate from state
i to i + 1 varies for different states since the probability that an
arriving token is actually placed on the game board decreases
as the number of tokens on the board increases. The rate, λi, is
the rate at which tokens are placed on the board, which is equal
to λ times the probability that an arriving token is successfully
placed. So, for i < h/d, λi = λ. For i ≥ h/d and a random
game board, we can approximate λi by

λi = λ

(
1 −

(
h − h/d

i − h/d

)
/

(
h

i

))

Note that
(
h
i

)
is the number of sets of columns that can be used

by i tokens and
(
h−h/d
i−h/d

)
is the number of column sets used by

i tokens that would prevent placement of a new token.
If we let πi be the steady state probability that the system is

in state i, then it can easily shown that

πi =
λ0λ1 . . . λi−1

i! µi
π0

Using π0 + π1 + . . . + πh = 1 and solving for π0, we can
determine the individual steady state probabilities. The burst
rejection probability is then given by

Prejection(ρ) =
h∑

i=h/d

πi

(
h − h/d

i − h/d

)
/

(
h

i

)

where ρ is the offered load to the system given by λ/hµ and(
h−h/d
i−h/d

)
/
(
h
i

)
is the probability of a burst being rejected in state

i.



8

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Load

B
ur

st
 R

ej
ec

ti
on

 P
ro

ba
bi

lit
y

h=64

h=128

h=256
h=128 h=256

strictly
non-blockinganalytical

Fig. 10. Error probabilities of different system configurations (d = 8)

A. Simulation results for random game boards

We now study how the blocking characteristics of the WGR-
based switch affects the statistical multiplexing performance of
an OBS router using simulation and compare the results with
the analysis.

Here, we consider only the case of routers in which there
are no buffers available to store bursts which can’t be routed to
the proper output without a wavelength conflict. Burst arrivals
on each input channel are independent and each arriving burst
is randomly assigned to a different output fiber. Burst lengths
and the idle times between successive bursts on the same chan-
nel are exponentially distributed. The simulations used random
regular permutation patterns at the input sections of the switch.
Arriving bursts are assigned to the first wavelength that takes
them to the proper output, that is not already in use at that
output. In the game formulation, this corresponds to placing
a token in the leftmost square of the right color, for which the
column does not already contain a token of the same color.

The burst rejection probabilities for systems with different
values of d and h and varying loads are shown in Fig. 10. Also
shown are the burst rejection probabilities for systems that use
strictly nonblocking switches in place of WGR-based switches.
For a system with d = 8 and h = 256, the rejection proba-
bility is 10−6 at a load of approximately 0.62 for the WGR-
based switch and at a load of 0.75 for the strictly nonblocking
switch. For systems designed to operate with a burst rejection
ratio of 10−6, the WGR-based switch can provide a throughput
which is approximately 82% of what the nonblocking switch
can provide. We also show the burst rejection probabilities as
determined by the analysis of the burst switch.The analysis is
accurate for higher values of h/d as can be seen in Fig. 10 and
for h = 256, the analysis is very close to what is observed
through simulation.

B. Effects of game board configurations

The next set of results show how different game board con-
figurations can affect system performance. Fig. 11 shows the
result of using four different configurations for a system with
d = 8 and h = 256. The first configuration corresponds to a
“contiguous” permutation pattern, wherein, each input block’s
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Fig. 11. Error probabilities of different game boards (d = 8,h = 256)

first h/d outputs are connected to the first output, the next h/d
outputs are connected to the second output, and so on. The
second configuration corresponds to a perfect shuffle between
the wavelength router stage and the input side couplers. The
third configuration corresponds to a randomly generated game
board. The fourth configuration is a hand generated configura-
tion where colors corresponding to any output in a row are dis-
tributed such that two rows have very little overlap and hence,
the number of wavelengths available to reach a given output be-
tween a set of rows is increased. As can be seen from Fig. 11,
the first two configurations perform poorly. This is because they
do not try to maximize the number of wavelengths available to
a subset of input rows uniformly. The fourth configuration per-
forms slightly better than the random pattern and has a burst
rejection probability of 10−6 at a load of 0.65. With this de-
sign, the WGR-based switch achieves 87% of the throughput
that is achieved with the strictly non-blocking switch.
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C. Effect of reconfiguring connections in the switch

The simulations described above were done with the restric-
tion that once assigned to a wavelength channel, a burst occu-
pies that wavelength for its entire duration. We also simulated
a situation in which bursts could be dynamically switched to
different wavelengths to accommodate newly arriving bursts.
Although this is not a realistic scenario, it allows us to separate
the effects due to the intrinsic blocking character of the WGR-
switches from those due to the restriction on rearrangements.
The simulations were done using the rearrangement algorithm
described in Section IV-C. The burst rejection probabilities in
these simulations matched the strictly non-blocking results al-
most exactly for the given traffic pattern. This confirms the
implications of Fig. 8. Even though the WGR-based switch is
not rearrangeably nonblocking, it performs nearly as well as a
rearrangeably nonblocking switch, when rearrangements are al-
lowed. This suggests that a better wavelength assignment strat-
egy (the strategy used by the setter to place tokens on the game
board) may help reduce the burst rejection probabilities further,
when rearrangement is not allowed.

D. Effect of using most available wavelength assignment algo-
rithm

We now present a routing algorithm that attempts to maxi-
mize the number of wavelengths available to free inputs to any
output and study the effects of using the algorithm on the per-
formance of the switch.

Define availability, aij , of a row i for color j to be the num-
ber of columns that have a j-colored square and are available in
the row and we define these columns to be available columns.
Equivalently, aij is the number of wavelengths at an input i that
take us to output j and are not used by any other input.

Let us suppose a token of color m needs to be placed at
row n. If c1, c2, . . . , ck are the available columns in row n
that have an m-colored square (That is, anm = k), we need
to make a choice among one of the k available columns. Let
i1, i2, . . . , is be the rows that are free currently in the game
board and ai1m, ai2m, . . . , aism be their availabilities for color
m. If we place the token in column cl, the availability of rows
that have cl as an available column gets decremented by one.
Let the new availabilities be al

i1m, al
i2m, . . . , al

ism, where

al
ikm =

{
aikm − 1 if cl is an available at row ik
aikm otherwise

Now we can define the availability vector, Acl
, of a column,

cl, as the ordered vector of the resultant availabilities of the free
rows if cl is the column that is chosen for a new token in row n.
That is

Acl
= Sort(al

i1m, al
i2m, . . . , al

ism)

Among the columns cl, 1 ≤ l ≤ k, we choose the column that
has the maximum availability, where the maximum availability
is the lexicographic maximum of all the availability vectors.
Specifically, if A = {a1, a2, . . . , ax} and B = {b1, b2, . . . , bx}
are two availability vectors then

A > B if ∃i ≤ x, such that a1 = b1, . . . , ai−1 = bi−1

and ai > bi

Available columns

Availability of 
free rows

2

4

3

3

Free rows
0 1 2 3 4 5 6 7

New dark
token

Fig. 12. Switch state for routing example

By choosing the column with the maximum availability, we
maximize the number of options available to the row with the
minimum number of options for placing tokens of color m.

To illustrate the routing algorithm, let us assume that the state
of a switch is as represented by the game board with h = 8 and
d = 2 shown in Fig. 12. We consider connections to the output
that has colored squares (as opposed to white squares) and let
us assume that tokens to the output have already been placed as
indicated in the figure. Denote rows as (i, j), where i represents
the block and j represents the row within the block. Suppose we
have to place a dark token in row (2, 4), we have two columns,
column 2 and column 5, that are available. Also suppose inputs
(1, 3), (1, 5), (2, 1), and (2, 7) are currently free, then the avail-
abilities of these inputs are 2, 4, 3, and 3 respectively. The rows
that are affected when column 2 is used are (1, 5), and (2, 1)
and the row that is affected when column 5 is used is (2, 1).
Thus the availability vectors for the two columns are given by

A2 = {2, 2, 2, 3}, and A5 = {2, 2, 3, 4}

and we can see that A5 > A2. Thus, we choose column 5 to
place the token in.

The simulation results of using the most available wave-
length assignment algorithm for different permutation patterns
are shown in Fig. 13. The algorithm gives tremendous improve-
ment in throughput for the contiguous permutation pattern. It
gives reasonable improvement for the random and the hand-
tuned permutation patterns. Surprisingly, it does poorly for
the interleaved permutation pattern. For the hand-tuned per-
mutation, it improves the throughput to about 89% of the non-
blocking case at a blocking probability of 10−6 with a utiliza-
tion of 68%.

VII. CONCLUSION

We have studied the performance of wavelength convert-
ing switches using tunable wavelength converters and passive
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Fig. 13. Burst rejection probabilities of different game boards with the most available wavelength assignment (d = 8,h = 256)

wavelength grating routers. Such switches are attractive, be-
cause the only active element they require are the tunable
wavelength converters. Although the blocking nature of these
switches results in higher burst rejection probabilities, the per-
formance penalty is small enough to make them a viable alter-
native.

By formulating the routing problem as a combinatorial puz-
zle or game, we have been able to develop insights that facili-
tate the analysis and design of WGR-based switches. We have
shown that the problem of solving the puzzle can be reformu-
lated as a matching problem in a bipartite graph. Also, an av-
erage case analysis shows us that we can almost always solve
the puzzle. Further, we have shown some basic limits to the
nonblocking potential of WGR-based switches and have also
shown that by selecting the permutation patterns appropriately,
one can greatly improve their performance. Simulation results
show that in practical switch system configurations, routers us-
ing WGR-based switches can achieve more than 87% of the

throughput of routers using strictly non-blocking switches.

Also, our simulations showed that if we allow bursts to be re-
assigned to different wavelength channels during transmission,
the performance of the WGR-based switch matches the strictly
non-blocking one almost exactly.

We then presented the most available wavelength assignment
algorithm and studied its performance in the switch. We no-
ticed that this algorithm improved the throughput of the switch
using the contiguous permutation pattern. However, it did not
yield significantly better performance for the randomized per-
mutations. Using this algorithm, the throughput of WGR-based
switches can achieve 89% of the throughput of routers using
strictly non-blocking switches.

A design option that needs to be explored is the use of buffer-
ing in OBS routers. In general, buffering can be expected to
improve the performance, and we expect it to have a larger im-
pact on routers built using WGR-based switches, narrowing the
performance gap further.
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