

Resilient Cell Resequencing
in Terabit Routers

Jonathan S. Turner
jst@cs.wustl.edu
WUCS-03-48

June 30, 2003
Department of Computer Science
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

Abstract

Multistage interconnection networks with internal cell buffering and dy-
namic routing are among the most cost-effective architectures for multi-
terabit internet routers. One of the key design issues for such systems is
maintaining cell ordering, since cells are subject to varying delays as they
pass through the interconnection network. The most flexible and scalable ap-
proach to cell resequencing uses timestamps and a time-ordered
resequencing buffer at each router output port. Conventional, fixed-threshold
resequencers can perform poorly in the presence of extreme traffic condi-
tions. This paper explores alternative resequencer designs that are more
tolerant of such traffic. These alternatives include a novel adaptive resequencer
that adjusts the time cells spend waiting in the resequencing buffer, based on
the recent history of the interconnection network delay. The design is
straightforward to implement and requires only constant time per cell, mak-
ing it suitable for systems with link speeds of up to 40 Gb/s. We show that
the combination of adaptive resequencing and appropriately designed inter-
connection networks can limit resequencing errors to negligible levels
without requiring large resequencing latencies.

This work is supported by the Defense Advanced Research Projects Agency (contract
N660001-01-1-8930).

 2

Resilient Cell Resequencing in
Terabit Routers

Jonathan Turner
Department of Computer Science and Engineering

Washington University in St. Louis
jst@cse.wustl.edu

1. Introduction
The rapid growth of the internet in recent years has stimulated the development of high per-
formance routers with aggregate capacities of more than 1 Tb/s. One of the most scalable
architectures for high performance routers uses a multistage interconnection network made up
of individual switch elements capable of buffering data to resolve short-term contention for in-
ternal links. Although these systems forward variable length packets on their external links, the
interconnection networks typically switch data in the form of fixed length cells. Routing in these
systems typically takes one of two forms. In systems that use static routing, all cells that belong to
a single application level flow are routed along a single path. Systems that use dynamic routing,
route each cell independently of every other cell. Static routing has been used in ATM switches,
which associate switch paths with virtual circuits and which select paths based on knowledge of
virtual circuit resource requirements. Dynamic routing is more appropriate for IP routers, which
are designed primarily, to support a best-effort datagram service.

Dynamic routing has the drawback that cells following different paths through the intercon-
nection network can experience different delays, causing cells to get out of order. While IP
networks do not require that packets be delivered in order, the impact of misordered packets on
end-to-end performance has led to a defacto requirement that packet order be preserved under
normal operating conditions. This requires the introduction of mechanisms for resequencing
cells after they pass through the interconnection network, to put them back in their original or-
der. There are two primary options for implementing resequencing, the first uses sequence
numbers and the second uses timestamps.

The use of sequence numbers for resequencing is conceptually straightforward. Each of the n
router inputs maintains a separate sequence number for each of the n router outputs. When in-
put i has a cell to send to output j, it adds a field to the cell header containing the current value of
the sequence number for j. It then increments the sequence number. Each output uses the se-
quence numbers in the cell headers to reorder the cells from each input. When a cell is received
out of order, it is buffered temporarily until the cells with the “missing” sequence numbers are
received. The most efficient way for the output to handle this is for it to maintain an array, in-
dexed by sequence number for each input. Arriving cells are inserted into the array according to
their sequence number and whenever a cell is present in the slot corresponding to the next ex-
pected sequence number, it is forwarded and the next sequence number is incremented. The use
of sequence numbers has several drawbacks. The first is that it scales poorly, requiring separate
resequencing arrays at each output for each input. Second, sequence numbers must be initialized
when the line cards for individual ports are brought on-line, after being temporarily out-of-
service. The enabling of one line card requires the initialization of sequence numbers at n other

 3

line cards. Third, auxiliary mechanisms are needed to handle cells that are lost in the intercon-
nection network. While such losses are very rare in systems that use inter-stage flow control, the
resequencing mechanism must be robust enough to handle them gracefully when they do occur.
Finally, sequence numbers cannot be easily extended to handle multicast cells, copies of which
are sent to multiple outputs. The only general way to handle this case is to associate separate se-
quence numbers with each multicast flow, making it necessary for outputs to maintain a very
large number of separate resequencing arrays.

Timestamps provide a simpler alternative for resequencing cells. In this approach, input ports
add a timestamp field to each cell, when it is sent into the interconnection network. Outputs
maintain a single resequencing buffer, from which they forward cells in the order of their time-
stamps. To allow “slow cells” time to catch up with “fast cells”, time-based resequencers
typically hold cells in the resequencing buffer until the difference between the current time and
their timestamp exceeds a fixed age threshold. The standard time-based resequencer works well,
so long as no output port experiences an extended overload period. Under these conditions, the
delays experienced by cells are generally modest, which means that the age threshold can be
kept fairly small (say 10 µs), without significant risk that cells will be forwarded in the wrong
order. However, in systems where outputs can experience long overload periods, the delays of
arriving cells can also become long. One can attempt to address this by increasing the age
threshold, but this has the negative side-effect of increasing the system’s minimum latency. In
any case, unless one can bound the duration and severity of overload periods, it’s difficult to se-
lect an age threshold which one can be confident is large enough.

The research literature contains surprisingly few papers that address the problem of rese-
quencing in routers and switches. The technical report [TU91] describes one implementation of a
resequencer and an assessment of its performance under simulated traffic. The patent by Hen-
rion [HE92] describes a simpler implementation using radix-sorting based on timestamps, which
requires constant time to process each cell, using a simple state machine plus memory. This im-
plementation was apparently re-discovered (and re-patented!) in [PA02]. Reference [DE97]
develops an analytical model for evaluating resequencing performance. Reference [YA99] de-
scribes a multistage interconnection network, which forwards cells in timestamp order
throughout the interconnection network, eliminating the need for a separate resequencer.

In this paper, we study how to make time-based resequencers robust even under extreme op-
eration conditions. We first show how to extend a conventional time-based resequencer to
improve its performance. Then, we introduce the concept of adaptive resequencing and describe a
particular type of adaptive resequencer, which adjusts the age threshold at each output to reflect
the recent history of the delay experienced by cells reaching that output. During periods of in-
creasing delay, the age threshold is increased and during periods of low delay, the age threshold
is decreased. We derive conditions under which the resequencer correctly resequences all cells
and use simulation to study its performance and show that it can perform well under even the
most extreme operating conditions.

2. Fixed Threshold Resequencing
Time-based resequencers use timestamps inserted in cells when they enter an interconnection
network to resequence them after the leave the network. The usual form of time-based rese-
quencing uses a fixed age threshold T. Conceptually, arriving cells are placed in a queue that is
ordered by their timestamps. If the age of the first cell in the queue (the difference between the
current time and its timestamp) is greater than T, it is removed from the queue and forwarded.
We note that a fixed threshold resequencer never stores more than T cells. Since at most one cell

 4

can arrive at the resequencer during each cell time, a resequencer with T cells must have at least
one cell that arrived T cell times earlier, making it eligible for forwarding. Thus, a resequencer
with T cells cannot grow any further. So long as the resequencer has space to hold T cells, no
cells need be discarded due to lack of storage space.

Henrion [HE92] described an efficient resequencer implementation that requires constant time
to process each cell. This implementation is illustrated in Figure 1. Its primary component is an
array of T pointers. Each pointer in the array points to a (possibly empty) list of cells. When a cell
with timestamp t is received, it is added to the list at position t modulo Τ. When the current time
modulo T is equal to τ, the list at position τ is appended to a separate list of outgoing cells. Cells
are forwarded to the resequencer output directly from this list. If no cell experiences a delay of
greater than T in the interconnection network, the resequencer is guaranteed to forward cells in
the order in which they entered the network. Cells that are delayed by more than T in the inter-
connection network can either be discarded upon reception at the resequencer (this approach is
used in ATM switches, which do not allow the propagation of out-of-order cells) or can be in-
serted directly into the output list. Of course, cells that go directly to the output list are
potentially misordered relative to cells that left the resequencer earlier. Because the number of
bits used to represent the timestamp field in the cell header is finite, cells that are delayed for
more time than can be represented by the timestamp field may not be detected as late, when they
arrive at the resequencer. It is fairly straightforward to avoid this issue, either by allocating
enough bits to the timestamp to allow for the worst-case delay, or by checking for excessively
delayed cells within the network and discarding them before they reach the output.

One additional requirement for any time-based resequencer is a mechanism for synchronizing
the time reference at the various line cards. This can be accomplished using a simple time syn-
chronization protocol that operates between adjacent components to measure the round-trip
delay on each interconnecting link. Knowing the round-trip delay, it becomes straightforward to
synchronize the time reference in the components at the ends of the link. By extending such a
protocol across all the components, we can achieve system-wide synchronization. The synchro-
nization need only be approximate. While small differences in time references at different ports
do alter the resequencing delays experienced by different cells, they do not affect the correctness
of the resequencing operation. It is important to exercise care when adjusting the time references
during on-going operation, in order to avoid misordering. When making incremental adjust-
ments, it is sometimes necessary to momentarily suspend transmission of cells from individual
input ports. Such adjustments are required very infrequently, making the performance impact
negligible.

0
1
2
3
4
5
6
7

ts=15

current time modulo 8

arriving packet

outgoing packets

0
1
2
3
4
5
6
7

ts=15

current time modulo 8

arriving packet

outgoing packets

Figure 1. Time-Based Resequencer

 5

The basic resequencer works very well for simple uniform random traffic in which cells arrive
independently at the inputs and are assigned independent random destinations. Figure 1 con-
tains two charts which demonstrate this. Both of these charts (and subsequent ones as well) are
for a three stage interconnection network with a Clos topology constructed from 8×8 switch ele-
ments, each with a fully shared buffer with a capacity of 512 cells. The entire interconnection
network has 64 inputs and outputs. The first stage switch elements distribute cells evenly across
their outputs. Specifically, each input to a first stage switch element routes each cell that it re-
ceives, to outputs in a round-robin fashion. The internal links of the interconnection network can
forward cells at a higher rate than the external links. The ratio of the internal link rate to the ex-
ternal link rate is called the speedup. Note that the resequencer operates at the internal cell rate.
The conversion to the link rate occurs in the link queueing subsystem that follows the rese-
quencer. Cells are discarded if the link queue fills up. This prevents congestion at an output from
causing congestion within the interconnection network. The first chart in Figure 2 shows results
for a fixed threshold of 128 cells and several different speedups. The second chart is for a fixed
load of 100% with varying speedup and threshold. With a threshold of 128, a speedup is 1.05 is
sufficient to limit the late probability to 10−5.

Unfortunately, real traffic is not nearly as benign as uniform random traffic. Fixed threshold
resequencers can perform poorly during sustained overload periods. Figure 3 shows the results
of a “stress test” in which a 2:1 overload is directed toward a specific target output. The overload
period lasts from time 400 to time 1000. Note that before the overload period begins, the rese-
quencer contains about 100 cells and the oldest cell has an age close to 128, the resequencer’s age
threshold. The overload causes the resequencer to fill up and causes the delay in the network to
grow. Once the network delay becomes larger than the age threshold, arriving cells are dis-
carded, since they are older than the age threshold when they arrive. This causes the resequencer
occupancy to drop to zero. After the overload period ends, it takes some additional time for the
backlog in the network to clear. Once this happens, the network delay drops below the age
threshold again and the resequencer starts to fill, allowing correct operation to be restored.

Fixed threshold resequencers can also perform poorly under traffic conditions that are less
contrived than the stress test. Figure 4 shows how a fixed threshold resequencer performs in the
presence of bursty random traffic. In this case, each input is assigned a random target output to
which it sends cells. The target outputs are randomly switched each cell time, leading to a geo-
metrically distributed holding time for each target. The chart shows that as the mean dwell time
increases from 1 to 10, the resequencer performance deteriorates rapidly, due to increasing delay
in the interconnection network. While larger speedups help, performance continues to deterio-

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.01 1.03 1.05 1.07 1.09
Speedup

La
te

 P
ro

ba
bi

lit
y

simple random traffic
fixed threshold

input load = 1.0

T =64

128

256
1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.95 0.96 0.97 0.98 0.99 1.00
Input Load

La
te

 P
ro

ba
bi

lit
y

simple random traffic
fixed threshold, T =128

speedup=1.01

1.03

1.05
1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.01 1.03 1.05 1.07 1.09
Speedup

La
te

 P
ro

ba
bi

lit
y

simple random traffic
fixed threshold

input load = 1.0

T =64

128

256
1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.95 0.96 0.97 0.98 0.99 1.00
Input Load

La
te

 P
ro

ba
bi

lit
y

simple random traffic
fixed threshold, T =128

speedup=1.01

1.03

1.05

Figure 2. Performance of fixed threshold resequencer for simple random traffic

 6

rate with longer dwell times. Of course, one can reduce the probability of cells arriving late by
increasing the age threshold, but this increases the minimum delay experienced by all cells.

One way to improve the performance of a fixed threshold resequencer is to continue to accept
cells that arrive late. Not all such arriving cells will produce sequencing errors, so one can rea-
sonably expect some improvement in performance if such cells are accepted and forwarded.
Conceptually, such a resequencer inserts all arriving cells into a time-ordered list, forwarding
them in order of their timestamps, so long as their age is at least equal to the age threshold. We
call this variant a loose, fixed threshold resequencer to distinguish it from the original strict, fixed
threshold resequencer. Note that if we attempt to implement a loose resequencer using Hen-
rion’s implementation and simply inserting late-arriving cells into the output list, we will not get
the desired behavior, since the output list is not time-ordered. Consequently, such a design
would lead to large numbers of out-of-order cells during periods when the output is overloaded.

Fortunately, it is possible to extend Henrion’s implementation to approximate the desired be-
havior, while retaining constant time processing per cell. First, we increase the size of the array
of pointers to S, where S is substantially larger than T. For example, for T=128, we might choose
S=1024. An arriving cell with a timestamp of τ is inserted into the list at position (τ + T) modulo
S. Next, we eliminate the output list. Instead, we maintain a pointer p into the array. The next cell
to go out is selected from the list that p points to. When the list that p points to becomes empty, p

0
50

100
150
200
250
300
350
400
450

250 500 750 1000 1250 1500 1750 2000

Time

resequencer
occupancy

age of
oldest cell

network delay

poor
performance

overload

age
threshold

fixed, strict

Figure 3. Performance of strict, fixed threshold resequencer under stress test

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 2 3 4 5 6 7 8 9 10
Mean Dwell Time

La
te

 P
ro

ba
bi

lit
y speedup =1.1

1.3
1.5

bursty traffic
strict, fixed

Figure 4. Performance of strict, fixed threshold resequencer for bursty traffic

 7

is advanced either to the array entry whose index is the current time modulo S, or to the next
non-empty list in the array, whichever comes “first”. When an arriving cell is inserted “behind”
p’s position in the array, p is reset to point to the position where the arriving cell was inserted.
This generally occurs during overload periods. When the overload period ends, p will advance
forward through the array, until it “catches up” to the position corresponding to the current
time. Note that if p points to a list with several entries, it may temporarily lag behind the position
corresponding to the current time. However, since the expected size of each list is at most one, so
long as the output is not overloaded, p will generally stay within a few positions of the current
time, in the absence of overload.

To maintain constant time operation, we need a mechanism to quickly advance p past empty
positions in the array. In a hardware implementation, this can be done easily using a vector of
fast forward bits. For example, if S=1024, we can organize these as 32 words of 32 bits each, in an
on-chip SRAM, together with a summary word in which bit i =1 if and only if some bit in word i
of the main vector is equal to 1. With this arrangement, two memory accesses are sufficient to
skip past any empty lists. The approach can comfortably handle values of S as large 214, which is
more than adequate in practice. Arriving cells with an age larger than S can either be discarded
or inserted into the list that p currently points to. This does cause some deviation from the de-
sired behavior under extreme conditions, but for large enough S, this deviation may be small
enough to be acceptable. Note that in the implementation, some care must be taken to handle
the “wraparound” cases correctly. We neglect these details here.

Figure 5 shows how a loose, fixed threshold resequencer performs for the same stress test that
we applied earlier to the strict resequencer. Note that during the overload period, the rese-
quencer fills and the age of the oldest cell continues to grow along with the network delay,
generally staying well ahead of the network delay, meaning that arriving cells never arrive too
late to be correctly resequenced. The performance for bursty traffic is also much better than the
strict resequencer, as shown in Figure 6. Note that the scale of the horizontal axis is three times
larger than in Figure 4. For these results, an arriving cell is counted as “late” if some other cell
with a smaller timestamp than the arriving cell has already been forwarded from the rese-
quencer. While the loose resequencer performs significantly better than the strict resequencer, it
can still perform poorly when the average dwell time becomes large, especially when the
speedup is small.

0
50

100
150
200
250
300
350
400
450

250 500 750 1000 1250 1500 1750 2000

Time

age
threshold

overload

age of
oldest cell

network
delay

resequencer
occupancy

fixed, loose

Figure 5. Performance of loose, fixed threshold resequencer for stress test

 8

3. Adaptive Resequencing
We can improve on the performance of fixed threshold resequencers, by making the age thresh-
old variable, rather than constant. An adaptive resequencer adjusts the age threshold in response
to the recent delay history, increasing the threshold during periods of large delay and decreas-
ing it when the delay shrinks. One form of adaptive resequencer uses two constant parameters,
W and ∆. W is referred to as the window size and ∆ as the short term delay difference bound.
Time is divided up into measurement intervals of length W. The algorithm maintains two vari-
ables, δ0 and δ−1. At any time, δ0 is the maximum interconnection network delay that has been
observed at the input to the resequencer during the current measurement interval. Similarly, δ−1
is the maximum delay observed during the previous measurement interval. The age threshold
is adjusted each cell time by making it equal to ∆ + max{δ0, δ−1}. Thus, during periods of rising
delay, the age threshold grows. When the delay drops, the age threshold drops also. The follow-
ing theorem defines conditions under which the adaptive resequencer correctly resequences
received cells.
Theorem. Let c1 and c2 be two cells, which enter an interconnection network at times τ1 and τ2, go-
ing to a common output, and experiencing delays of d1 and d2 respectively. If τ1<τ2 and (d1−d2) −
(τ2−τ1) ≤ ∆, then an adaptive resequencer with ∆≤W will forward c1 before c2.

Proof. Clearly if c1 reaches the output first, then the adaptive resequencer will forward the cells in
the correct order. Assume then that c2 reaches the output first. The condition on ∆ can be rewrit-
ten as (τ1+d1) ≤ (τ2+d2) + ∆, which means that cell c1 reaches the output no more than ∆ time units
after c2. Since ∆≤W, c1 arrives either in the same measurement interval as c2, or in the immediately
following measurement interval. Consequently, between the time c2 arrives and the time c1 ar-
rives, the age threshold is never less than ∆+d2. This implies that c2 must still be waiting in the
resequencer when c1 arrives. Since the resequencer forwards cells in timestamp order, c1 will be
forwarded before c2.

The theorem says that so long as no later arriving cell beats an earlier arriving cell to the out-
put by more than ∆, the adaptive resequencer forwards them in the correct order. For cells that
arrive at nearly the same time, the magnitude of (τ2−τ1) is close to zero, so we can view ∆ as a
bound on the short term delay variation.

The adaptive resequencer can be implemented by extending the implementation of the loose,
fixed threshold resequencer. The implementation maintains the two variables δ0 and δ−1 and the
current age threshold T = ∆ + max{δ0, δ−1}. Arriving cells with a timestamp of τ are inserted into

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 5 10 15 20 25 30
Mean Dwell Time

La
te

 P
ro

ba
bi

lit
y

speedup =1.1

1.3

1.5

bursty traffic
strict, fixed

Figure 6. Performance of loose, fixed threshold resequencer for bursty traffic

 9

the list at position τ +T modulo S. The age threshold is updated using the timestamp in the cell,
before the cell is inserted. This ensures that the cell is always inserted at least ∆ positions ahead
of the pointer p.

Figure 7 shows how the adaptive resequencer performs on the stress test with W = ∆ = 32. Note
how the age threshold increases with the network delay and then falls when the network delay
starts to drop. It also remains just slightly below the age of the oldest cell. Observe that the num-
ber of cells stored in the resequencer stays below 65.

Figure 8 shows how the adaptive resequencer performs under bursty traffic conditions with
W = ∆ = 64. We see a significant improvement over the fixed threshold resequencers (note that the
range of the horizontal axis is twice as large as in Figure 6). For large dwell times, the intercon-
nection network’s buffers fill up, limiting its ability to forward the traffic. This effect leads to the
flattening of the curves for the late probability at large dwell times. In this chart, we also show
the loss probability for the input buffer that precedes the interconnection network (the results are
plotted cumulatively, so the dotted curves are the sum of the input loss probability plus the
probability that a cell reaching the resequencer is late). Increasing the size of the switch element

0
50

100
150
200
250
300
350
400
450

250 500 750 1000 1250 1500 1750 2000

Time

age
threshold

network
delay

age of
oldest cell

resequencer
occupancy

overload adaptive, W =∆=32

Figure 7. Performance of adaptive resequencer on stress test

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30 40 50 60
Mean Dwell Time

La
te

 P
ro

ba
bi

lit
y

bursty traffic, adaptive, ∆=64

speedup =1.1

1.3

1.5

late+input loss

Figure 8. Performance of adaptive resequencer for bursty traffic

 10

buffers would enable the system to handle larger mean dwell times, with the limit growing
roughly in proportion to the amount of buffering available.

There are two important points to take away from Figure 8. First, so long as the dwell times
are within the range that the interconnection network can handle, the resequencing delay is neg-
ligible. Second, when the dwell times exceed the buffering capacity of the interconnection
network, the delay variability increases, causing the resequencer performance to deteriorate.
While we do not expect systems to normally operate under the extreme conditions that the larger
dwell times represent, it is still worthwhile to find ways to improve performance under these
conditions.

One way to improve the performance in this situation is to increase ∆, but it turns out that in-
creasing ∆ does not, by itself, yield a substantial improvement. A closer examination of the
interconnection network delay shows that a large fraction of the variation in the delay comes
from the first stage of the interconnection network. Recall that the first stage switch elements dis-
tribute cells from each of their inputs in round-robin fashion across their outputs. This cell
distribution strategy works well to minimize the differences in the lengths of second stage
queues going to the same third stage switch element. However, small differences in the rates at
which different center stage switches accept cells, can over time, lead to large differences in the
lengths of queues in a given first stage switch element. A simple way to correct this problem is to
reduce the amount of buffering in the first stage switch elements. While this causes a small re-
duction in the throughput of the interconnection network, it leads to a very substantial
improvement in the resequencing performance as shown in Figure 9. We see here that for the
smallest first stage buffer capacities and ∆ ≥ 120, the probability of resequencing errors drops to
under 10−7 making them a negligible consideration from a practical perspective (especially, con-
sidering the extreme operating conditions being considered). The throughput reduction that
results from reducing the buffer capacity of the first stage switch elements from 512 to 32 is about
2%. Note also that in a system supporting 10 Gb/s links, the delay added by the resequencer is
less than 5 µs. To put this in perspective, the link queueing delays on heavily loaded links in a
wide area network can be well over 100 ms, so the delay added for resequencing is insignificant.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

20 40 60 80 100 120 140 160 180 200

∆

La
te

 P
ro

ba
bi

lit
y

first stage
buffer capacity

256
128

32

64

bursty traffic, dwell=100, speedup=1.2

adaptive
resequencer

512

Figure 9. Effect of ∆ and first stage buffer capacity on adaptive resequencer performance

 11

4. Concluding Remarks
In this paper, we have studied the performance of time-based resequencers under extreme traffic
conditions. We have shown that while the conventional, fixed threshold resequencer performs
poorly, we can get substantially better performance by resequencing cells that exceed the age
threshold on arrival. We introduced a simple type of adaptive resequencer that performs better
yet and can be implemented in hardware so that it requires just constant time to process each
cell. Finally, we showed that with a minor modification to the operation of the interconnection
network, the frequency of resequencing can be made negligible, even under the most extreme
conditions.

Finally, we note that it’s important to consider resequencing performance in the design of an
interconnection network. The method used to distribute traffic over the available alternate paths
can have a significant impact. More sophisticated switch element designs limit the use of the
shared buffer capacity [CH96], so that no single output can consume all the available space. In
systems with inter-stage flow control, this means that separate flow control bits are needed for
each output of a switch element. This leads to the need for more complex queueing mechanisms.
While such mechanisms are feasible and practical, it is important to understand how they affect
delay variability in the interconnection network and the impact of that variability on resequenc-
ing performance.

REFERENCES
[CH96] Choudhury, Abhijit K. and Ellen L. Hahne, “Dynamic Queue Length Thresholds in a Shared Memory ATM

Switch,” Proceedings of Infocom, 3/96.

[DE97] De Schepper, Bart, Bart Steyaert and Herwig Bruneel. “Cell Resequencing in an ATM Switch,” SMACS Re-
search Group, Laboratory for Communications Engineering, University of Ghent, Belgium. unpublished
technical report, 5/97.

[HE92] Henrion, Michel. “Resequencing system for a switching node.” U.S. Patent #5,127,000, 6/92.
[TU91] Turner, Jonathan. “Resequencing Cells in an ATM Switch,” Washington University, Computer Science De-

partment, WUCS-91-21, 2/91.

[TU93] Turner, Jonathan. “Data Packet Resequencer for a High Speed Data Switch,” U.S. Patent #5,260,935, 11/93
and U.S. Patent #5,339,311, 8/94

[YA99] Yasukawa, Seisho, Naoaki Yamanaka, Eiji Oki and Ryusuke Kawano. “High-Speed Multi-Stage ATM Switch
Based on Hierarchical Cell Resequencing Architecture and WDM Interconnection. IEICE Transactions on
Electronics, 2/99.

[PA02] Park, Jae-Hyun. “Data packet resequencer,” U.S. Patent # 6,434,148, August, 2002.

