Towards a Packet Classification Benchmark

David E. Taylor and Jonathan S. Turner
Technical Report WUCSE-2003-42

Applied Research Laboratory
Department of Computer Science and Engineering
Washington University in Saint Louis
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130-4899
{det3,jst} @arl.wustl.edu

May 19, 2003

Abstract

Packet classification is the enabling technology for next generation network services and often the
primary bottleneck in high-performance routers. Due to the importance and complexity of the problem,
a myriad of algorithms and resulting implementations exist. The performance and capacity of many
algorithms and classification devices, including TCAMs, depend upon properties of the filter set and
query patterns. Unlike microprocessors in the field of computer architecture, there are no standard
performance evaluation tools or techniques available to evaluate packet classification algorithms and
products. Network service providers are reluctant to distribute copies of real filter databases for security
and confidentiality reasons, hence realistic test vectors are a scarce commodity. The small subset of the
research community who obtain real databases either limit performance evaluation to the small sample
space or employ ad hoc methods of modifying those databases. We present a tool for creating synthetic
filter databases that retain characteristics of a seed database and provide systematic mechanisms for
varying the number and composition of the filters. We propose a benchmarking methodology based
on this tool that provides a mechanism for evaluating packet classification performance on a uniform
scale. We seek to initiate a broader discussion within the community that will result in a standard packet
classification benchmark.

1 Introduction

Deployment of next generation network services hinges on the ability of Internet infrastructure to provide
flow identification at physical link speeds. A packet classifier must compare header fields of every incoming
packet against a database of filters in order to identify a flow. The resulting flow identifier is used to ap-
ply security policies, application processing, and quality-of-service guarantees to packets belonging to the
specified flow. Typical packet classification filter databases have fewer than a thousand filters and reside in
enterprise firewalls or edge routers. As networks services and packet classifiers continue to migrate into the
network core, it is anticipated that classification filter databases could swell to tens of thousands of filters or
more.

Packet classification is a difficult multi-dimensional searching problem on the packet 5-tuple. Specifi-
cally, the search consists of longest prefix matches on the source and destination IP addresses, range matches

- Size Smoothing Scope
Seed 0

DB (%

0 128k

Synth

© 5
0

104 -104 +104

Figure 1: Conceptual view of the synthetic database generator. The size, smoothing, and scope adjustments
provide a high-level, systematic mechanism for altering the composition of synthetic databases.

on the source and destination transport port numbers, and an exact match on the protocol field. More com-
plex packet inspection is performed for some applications, but 5-tuple classification is the most prominent
case. Commonly cited performance bounds for searching databases with no restriction on the composition
of filters are taken from computational geometry which specifies that a point may be located in multi-
dimensional space in O(logn) time and O(n* space, or O(log"~! n) time and O(n) space, where n is the
number of k-dimensional regions. For packet classification, & is typically five and n depends on how the
filter database is organized for searching. It has been observed that “real” packet classification databases
exhibit a considerable amount of structure. In response, several algorithmic techniques have been developed
which exploit database structure to accelerate search time or reduce storage requirements [1][2][3][4]. Con-
sequently, the performance of these approaches are subject to the structure or statistical characteristics of the
database. Ternary Content Addressable Memories (TCAMS) provide a mechanism for searching all filters
in parallel, reducing search time to a single memory access. TCAM entries represent filter fields as a prefix;
hence, fields specifying arbitrary ranges may require as many as 2(w — 1) entries, where w is the number
of bits required to specify a point in the range. This implies that filters specifying arbitrary ranges for both
source and destination ports require up to 900 TCAM entries per filter. Clearly, the capacity of TCAMs are
also subject to the statistical characteristics of the filter database.

Despite the influence of filter database composition on the performance of packet classification search
techniques and devices, no benchmark suite of databases or formal methodology exists for standardized
performance evaluation. Due to security and confidentiality issues, access to large “real” databases for
statistical study and performance measurements of new classification techniques has been limited to a small
subset of the research community. Some researchers in academia have gained access to databases through
confidentiality agreements, but are unable to distribute those databases. Performance evaluations using
real databases are restricted by the size and structure of the sample databases. Some researchers have
proposed ad hoc methods, such as independently selecting filter fields from a one-dimensional distribution,
to modify the composition and number of filters in the databases. In order to facilitate future research and
provide a foundation for a meaningful benchmark, we present a technique for generating large synthetic
databases which model the statistical structure of a seed database. Along with scaling database size, the
tool provides mechanisms for systematically altering the number and composition of filters as depicted in
Figure 1. Two adjustments, smoothing and scope, provide high-level adjustments for database generation
and an abstraction from the low-level statistical characteristics. Based on extensive study of real databases,
we apply approximations to true joint distributions to preserve the multi-dimensional structure of the seed
database. Given a small set of seed databases, our tool for synthetic database generation can be used to
generate a set of benchmark databases for a variety of packet classification applications such as firewalls,
edge-routers, and core-routers.

Finally, we explore the major issues concerning a methodology for packet classifier benchmarking. It
is our hope that this initiates a broader discussion which will lead to the construction of a meaningful
benchmark. Its value will depend on its perceived clarity and usefulness to the interested community. In the
case of packet classification, this community is comprised of at least the following groups:

e Researchers seeking to evaluate new classification algorithms relative to alternative approaches and

commercial products.

e Classification product vendors seeking to market their products with convincing performance claims
over competing products.

e Classification product customers seeking to verify and compare classification product performance
on a uniform scale. This group can be sub-divided into two major sub-groups: router vendors seeking
to compare competing classification products during the design process and prior to selecting com-
ponents, and router customers seeking to independently verify performance claims of router vendors
based on the components used in the router.

We highlight previous performance evaluation efforts by the research community as well as related
benchmarking activity of the IETF in Section 2. Results from our study of five firewall databases and dis-
cussion of the characteristics relevant to building synthetic models are presented in Section 3. In Section ??
we provide a detailed description of our synthetic database generator and examine the effects of the high-
level control parameters. The purpose this tool is to explore the effect of various properties of filter databases
on the performance of packet classification algorithms in devices. Section 5 identifies the major issues re-
lated to benchmarking packet classifiers and outlines future refinements to the database generator. We seek
to initiate a discussion within the community that will guide the remainder of this work and promote the
development of valuable performance evaluation tool.

2 Redated Work

Extensive work has been done in developing benchmarks for many applications and data processing de-
vices. Benchmarks are used extensively in the field of computer architecture to evaluate microprocessor
performance. The effectiveness of these benchmarks to accurately distinguish the effects of architectural
improvements, fabrication advances, and compiler optimizations is debatable; yet, there exists inherent
value in providing a scale for comparison.

In the field of networking, the IETF (Internet Engineering Task Force) has several working groups
exploring network performance measurement. Specifically, the IP Performance Metrics (IPPM) working
group was formed with the purpose of developing standard metrics for Internet data delivery [5]. The
Benchmarking Methodology Working Group (BMWG) seeks to make measurement recommendations for
various internetworking technologies [6][7]. These recommendations concern metrics and performance
characteristics as well as collection methodologies.

The BMWG specifically attacked the problem of measuring the performance of Forwarding Information
Base (FIB) routers [8][9]. Realizing that router throughput, latency, and frame loss rate depend on the struc-
ture of the Forwarding Information Base (FIB) or route table, the BMWG prescribes a testing methodology
with accompanying terminology. The recommendations describe testing at the router level, compounding
the effects of system interfaces, control, and switching fabric. While the suggested tests take into consid-
eration table size and prefix distribution, they lack specificity in how prefix distributions should be varied.
The testing methodology also purposely omits dynamic table update effects, which is a realistic concern in
a dynamic routing environment where route updates arrive at millisecond intervals. The recommendations
do introduce a methodology for determining the maximum FIB size and evaluating throughput relative to
the table size.

To our knowledge, there are no current efforts to provide a benchmark for multi-dimensional filter match-
ing. In the absence of publicly available packet filter databases and backbone packet traces, researchers
have exerted much effort in order to generate realistic performance tests for new algorithms. Several re-
search groups obtained access to real filter databases through confidentiality agreements [10]. Gupta and

McKeown obtained access to 40 real filter databases and extracted a number of useful statistics which have
been widely cited [1]. In [2], Gupta and McKeown generated synthetic two-dimensional databases con-
sisting of source-destination address prefix pairs by randomly selecting destination address prefixes from
publicly available route tables. Baboescu and Varghese also generated synthetic two-dimensional databases
by randomly selecting prefixes from publicly available route tables, but added refinements for controlling
the number of zero-length prefixes (wildcard) and prefix nesting [3]. A simple technique for appending port
ranges and protocols from real databases in order to generate synthetic five-dimensional databases is also
described in [3]. In [4], Baboescu and Varghese introduce a simple scheme for using a sample database to
generate a larger synthetic five-dimensional database. This technique replicates filters by changing the IP
prefixes while keeping the other fields unchanged. While these techniques address some aspects of scaling
databases in size, they lack high-level mechanisms for adjusting the generation of new filter types and the
general specificity of filters. Our technique for generating synthetic five-dimensional databases addresses
these issues and provides a more flexible foundation for a packet classification benchmark.

As with previous approaches, our technique uses a real database to seed the synthetic generator; hence,
there still exists a need for a larger sample space to accurately characterize “real” databases as they scale.
Consolidating efforts to gather database samples this enables contributions from a larger body of researchers
and promotes the development of a meaningful benchmark. Generation of this benchmark could eliminate
the significant access barrier to realistic test vectors for researchers and designers.

3 Characteristics of Seed Databases

Previous work reported many statistical characteristics of filter databases useful for constructing fast search
algorithms. In a similar fashion, we examine seed databases and extract statistics essential for constructing
larger synthetic models with similar structure and characteristics. Selection of the relevant statistics is based
upon experience garnered from a detailed study of five firewall databases of modest size. This study paid
particular attention to the five-dimensional structure of the databases and the *“correlation” among fields. In
the context of our discussion, “correlation” is generally defined as the probability that two fields share the
same value or initial bits, and will be more precisely defined in the following subsections.

3.1 Tuple Distribution

From a geometric perspective, a filter defines a region in 5-dimensional space. The volume of that region
is the product of the one-dimensional “lengths” specified by the filter. For example, length in the source
address dimension corresponds to the number of addresses covered by the source address prefix of the filter.
Points in the 5-dimensional space correspond to packet headers; hence, the geometric volume translates to
the number of possible packet headers that match the filter. Instead of geometric lengths and volumes, we
often refer to filter properties in terms of a tuple specification. To be specific, we define the filter 5-tuple as
vector containing the following fields.

e ¢[0], source address prefix length, [0...32]
e t[1], destination address prefix length, [0...32]
e [2], source port range width, the number of port numbers covered by the range, [0...2%¢]

e [3], destination port range width, the number of port numbers covered by the range, [0...2%¢]

t[4], protocol specification, Boolean value denoting whether or not a protocol is specified, [0, 1]

Table 1: 5-tuple scope measurements for firewall databases.

Database || # filters | ftscope | Tscope
rulesl 279 50.7 15.7
rules2 183 54.1 145
rules3 68 56.6 23.1
rules4 158 55.6 16.7
rules5 264 48.1 27.9
Average 190 53.0 19.6

180

160

140

5 120

T 100

o

T 80

Eeo

40

20

ofmﬂwwm

1
8
5
2
29
6
3
0
7
4
1
8

5-tuple Scope

Figure 2: 5-tuple scope distribution for filters in firewall database rulesl consisting of 279 filters. y = 46.4,
oc=15.3

The tuple defines the structure of the filter without specifying the actual values for address prefixes, port
ranges, and protocol fields. To facilitate database measurements and synthetic database generation, we
define a new metric, scope, to be lg(# of possible packet headers covered by the filter). Specifically,
scope = 1g{(232710) 5 (2327t x ¢[2] x t[3]
(28 (1—t[4]))}
= (32 —¢[0]) + (32 — t[1]) + (g ¢[2]) + (g ¢[2])
+8(1 —t[4]) (1)

Scope translates the filter tuple into a measure of filter specificity and is essentially just the logarithm of the
geometric volume. Results from scope measurements for five firewall databases is given in Table 1. While
the average scope of the databases does not vary drastically, the distributions of filter scope can exhibit
drastically different characteristics. Figure 2 shows the 5-tuple scope distribution of database rulesl. Note
that most filters share a scope of 48. Figure 3 shows the 5-tuple scope distribution of database rules5. Note
that there are several spikes in the distribution including a spike of 56 filters, or 21% of the total, that are
fully specified and have a scope of zero.

Scope provides a high-level measure for the specificity of filters in the database and is one of the tun-
able parameters for the synthetic database generator which will be discussed later. While it is a meaningful
measure, scope by itself does not characterize the five-dimensional distribution of tuples. In order to help
visualize the tuple distribution, we plot the joint source/destination address prefix distributions for databases

60

50

40

30

Number of Filters

20

10

(1) NS, MN—— -

« 00 I N O © ™M O K & <
— N N M < IO IO ©O© N~ N~

n N O
o o O

5-tuple Scope

Figure 3: 5-tuple scope distribution for filters in firewall database rules5 consisting of 279 filters. p = 48.1,
o=27.9

rulesl and rules5 in Figure 4 and Figure 5, respectively. Note that the most common source/destination
prefix combination for rulesl is a fully specified destination address and a wildcard source address. Unlike
prefix distributions in backbone route tables, rulesl has very few length 24 prefixes. The distribution for
rules5 exhibits significantly different characteristics. The most common source/destination prefix combina-
tions are fully specified for both prefixes, length 24 destination address and wildcard source address. These
figures provide strong motivation for accurately modeling the five-dimensional distribution of tuples, as the
structure of these distributions can vary significantly.

A database generated via weighted, independent selection of source and destination address prefix
lengths and random selection of port range widths does not produce the joint distributions observed in
real databases. In order to accurately capture the relationships among prefix lengths, port range widths, and
protocol specification, we extract the tuple distribution from the seed database. The distribution consists of
unique tuple specifications and relative weights corresponding to the frequency of their occurrence in the
seed database. Relative tuple weights are used during the synthetic database generation process to select tu-
ples specifications for filters. Creation of new tuple specifications is enabled and controlled by a smoothing
parameter which will be discussed in Section 4.1.

3.2 Address Prefix Skew

While the tuple specifies prefix lengths, it does not specify the composition of the prefixes themselves.
Ideally, we would like to completely characterize the structure of address prefixes for the purpose of retaining
this structure during the synthetic database generation process. Consider a binary tree constructed from the
IP source address prefixes of all filters in the seed database. From this tree, we could completely characterize
the data structure by determining a branching probability for each node. For example, assume that an address
prefix is generated by traversing the tree starting at the root node. At each node, the decision to take to the
0 path or the 1 path exiting the node depends upon the branching probability at the node. For a complete
characterization of the tree, the branching probability at each node is unique. As shown in Figure 6, p10x is
the probability that the 1 path is chosen at level 2 given that the 1 path was chosen at level 0 and the 0 path
was chosen at level 1.

Such a characterization is infeasible, hence we employ a suitable approximation to capture the important
characteristics such as prefix containment. Using the source and destination address prefixes for the filters

160

140

120
100

Number of Filters

DA Prefix Length) SA Prefix Length

Figure 4: Joint source/destination prefix distribution for firewall database rules1.

in the seed database, we build two binary trees. For each level in the tree, we compute the probability that
a node has zero children, one child, and two children. For nodes with two children, we compute skew,
which is the ratio of the weights of the left and right subtrees of the node. Subtree weight is defined to
be the number of filters specifying prefixes in the subtree, not the number of prefixes in the subtree. Since
our goal is to eventually generate branching probabilities for the filter generation process, this definition
of weight accounts for “popular” prefixes that occur in many filters. For example, assume that 10 filters
specify prefixes in the left subtree of node k and 25 filters specify prefixes in the right subtree of node k,
then the skew at node & is 2.5. For each level (depth) of the binary tree, we compute the average skew for
nodes containing two children. The result of this analysis is two sets of distributions, one for source address
and one for destination address, that characterize the expected number of children and average skew for
nodes at each level of the address trees. Table 2 provides a child probability and skew distribution from the
destination addresses in database rulesl. Note that the probability that a node has no children is not reported
in Table 2; hence, the child probabilities provided in columns two and three may not sum to one.

3.3 Address Prefix “Correlation”

Address prefix skew characterizes the structure of the individual source and destination address prefix trees;
however, it does not capture their interdependence. It is possible that some filters in a databases match flows
contained within a single subnet, while others match flows between different subnets. In order to capture
this characteristic of a seed database, we measure the “correlation” of source and destination prefixes. In this
context, we define correlation to be the probability that the source and destination address prefixes are equal
up to a given number of bits. For example, if a database contained filters that all specified flows contained
within class B networks, then the correlation for levels 0 through 15 would be 1, then fall off for levels
16 through 32 as the source and destination address prefixes diverge. From the seed database, we simply
generate a probability distribution over the range of possible levels in the tree, [0...32]. For the five firewall
databases we studied, the address prefix “correlation” varies widely. One database exhibits no correlation
past level five while all address prefixes of another database are correlated up to level 17.

Table 2: Child probability and skew statistics for the destination addresses in rulesl

Level | P{1 child} | P{2 children} skew O skew
0 0.0000 1.0000 | 193.0000 | 0.0000
1 0.5000 0.5000 | 31.1667 | 0.0035
2 1.0000 0.0000 0.0000 | 0.0000
3 1.0000 0.0000 0.0000 | 0.0000
4 0.6667 0.3333 | 92.5000 | 0.0000
5 1.0000 0.0000 0.0000 | 0.0000
6 0.7500 0.2500 | 45.2500 | 0.0000
7 0.8000 0.2000 1.0000 | 0.0000
8 0.8333 0.1667 | 180.0000 | 0.0000
9 1.0000 0.0000 0.0000 | 0.0000

10 1.0000 0.0000 0.0000 | 0.0000
11 1.0000 0.0000 0.0000 | 0.0000
12 1.0000 0.0000 0.0000 | 0.0000
13 1.0000 0.0000 0.0000 | 0.0000
14 1.0000 0.0000 0.0000 | 0.0000
15 1.0000 0.0000 0.0000 | 0.0000
16 1.0000 0.0000 0.0000 | 0.0000
17 1.0000 0.0000 0.0000 | 0.0000
18 0.8571 0.1429 2.0000 | 0.0000
19 1.0000 0.0000 0.0000 | 0.0000
20 1.0000 0.0000 0.0000 | 0.0000
21 0.8750 0.1250 1.7903 | 0.0000
22 0.8889 0.1111 | 21.2000 | 0.0008
23 0.8000 0.2000 4.0357 | 2.5357
24 0.8333 0.1667 2.5282 | 1.3139
25 0.7857 0.2143 5.9935 | 3.4276
26 0.6471 0.3529 8.5836 | 11.0334
27 0.8696 0.1304 44722 | 21477
28 0.7308 0.2308 4.0833 | 2.3169
29 0.6774 0.3226 1.9503 | 1.0682
30 0.7073 0.2683 2.3955 | 2.0204
31 0.8431 0.1569 1.4167 | 0.8079
32 0.0000 0.0000 0.0000 | 0.0000

70

60

50

40

Number of Filters

DA Prefix Length SA Prefix Length
32

32

Figure 5: Joint source/destination prefix distribution for firewall database ruless.

Figure 6: Example of complete statistical characterization of address prefixes.

3.4 Port Range Distributions

While the tuple distribution captures the inter-dependence of port range widths and other tuple fields, it does
not characterize the choice of range bounds given a range width. Analysis of the specified port ranges in the
firewall databases yielded an interesting result. All port range widths other than one (fully specified) corre-
spond to a single port range. For example, all port range widths of 64512 specify port range [1024:65535].
The port numbers for fully specified port ranges approximate a uniform random distribution. Based on these
results, it seems plausible to associate a specific port range for port range widths greater than one. Should a
seed database specify several ranges for a given port range width, then a probability distribution for the set
of possible ranges could be associated with the given range width. For fully specified port ranges, selection
of a random port number in the range [0:65535] suffices.

3.5 Port Range “Correlation”

In the context of port ranges, we define “correlation” to be the probability that the source and destination
port ranges are the same. Given the direct relationship between port range widths greater than one and
the specified bounds of the range, the correlation for port ranges greater than one is maintained explicitly.
For filters that fully specify both source and destination ports, we must determine the probability that the

specified port numbers are the same. This is easily measured given a seed database and later used during the
synthetic database generation process.

Table 3: Protocol selection distributions based on port range specifications for rulesl. Note that GRE is
General Routing Encapsulation.

Protocol | puww | Pws | Pss
ICMP 0.20 | 0.00 | 0.00
TCP 0.52 | 0.65 | 0.31
UDP 0.00 | 0.35 | 0.69
GRE 0.28 | 0.01 | 0.00

3.6 Protocol Specification

Finally, we must characterize protocol specification for filters that specify a protocol. Note that the tuple
distribution dictates whether or not a filter specifies a protocol. We note that some protocols such as ICMP
do not employ ports, while others such as UDP are free to specify any port number. After some preliminary
analysis, we choose to characterize the relationship between protocol specification and port ranges using
three distributions. The first distribution is the probability p,,., that a given protocol is specified when both
port ranges are wildcarded. The second distribution is the probability p.,s that a given protocol is specified
when one port range is specified and one port range is wildcarded. The third distribution is the probability
pss that a given protocol is specified when both port ranges are specified.

Table 3 contains the three distributions for protocol selection based on port range specifications for
rulesl. Note that the set of specified protocols is dominated by ICMP, TCP, and UDP. Also note that, as
expected, ICMP only occurs when both port ranges are unspecified. We performed additional analyses to
confirm that specification of UDP or TCP is not strongly correlated to any particular port range specification
or combination of specifications. The only other protocol specified in rulesl was GRE (General Routing
Encapsulation).

4 Synthetic Database Generation

A technique for generating synthetic databases is fundamental to building a packet classification benchmark.
As previously discussed, our method of synthetic database generation uses a seed database which provides
a realistic starting point for the process. While providing the ability to scale the total number of filters, we
also would like to provide control over the variability or deviation from “real” database structure without
manually editing probability distributions and other input parameters. In essence, we want to impose high-
level controls over the composition of filters in the synthetic database. In the following subsections, we
define two parameters which allow randomness to be injected into the filter generation process in a controlled
fashion, as well as adjustment of the average 5-tuple scope of the synthetic database.

Prior to generating a synthetic database, the seed database is fed to an analysis tool which extracts the
statistics and distributions described in the previous section and generates a seed file of parameters in a stan-
dard format. Specifically, the file contains a list of unique tuples with associated weights, child probability
and skew distributions for both source and destination addresses, the address prefix correlation distribution,
port range specifications for given port range widths, port range correlation for fully specified port combi-
nations, and protocol distributions. We anticipate that a future benchmark will consist of a standard set of
seed files of parameters from which a variety of metrics may be taken by varying the high-level controls for
scale, smoothing, and scope.

The following list of steps provides an overview of the synthetic database generation process. Details
of the important and non-obvious steps are discussed in the subsequent sub-sections. For each filter in the
synthetic database:

10

1. Select a tuple specification from tuple distribution

2. Adjust the tuple specification based on the smoothing parameter

Adjust the tuple specification based on the scope parameter

Select source address prefix based on length from tuple and source address tree distributions

5. Select destination address prefix based on length from tuple, address “correlation”, and destination
address tree distributions

6. Select source port based on width from tuple; if exact, choose random port number; if not exact, select
range based on distribution associated with width

7. Select destination port based on width from tuple; if destination is exact and source is exact, check for
correlation; if destination is exact and (not correlated or source port is not exact), choose random port
number; if not exact, select range based on distribution associated with width

8. If specified by tuple, select protocol using the distribution associated with the port range specifications

9. Verify that the generated filter is unique; if so, add it to the synthetic database; if not, generate a new
filter

4.1 Smoothing Adjustment

As databases scale in size, we anticipate that new tuple specifications will emerge in the set of unique
tuples. In order to provide for this possibility, we provide for the creation of new tuples in a structured
manner. Injecting purely random tuples during the generation process neglects the structure of the seed
database. Using scope as a measure of distance, we would like new tuples to emerge “near” an existing
tuple. Referring back to the plot of the joint source/destination address prefix length in Figure 4, we would
like new tuples to be clustered around the existing spikes in the distribution. This structured approach
translates spikes in the distribution into smoother “hills”; hence, we refer to the process as smoothing.

In order to control smoothing, we define a smoothing parameter r which limits the maximum radius of
deviation from a target tuple. Radius is measured in units of scope, or the 1g(5—d distance). For example,
if the target tuple is [30,24,1,65536,0], then [32,26,1,32768,0] is a tuple at radius five from the target. A
database generated with r set to zero would have a tuple distribution whose set of unique tuples and relative
weights would be identical to the seed database. A database generated with r set to 104, the maximum value
of scope, would have a tuple distribution whose set of unique tuples and relative weights would resemble a
uniform random distribution with slight “bumps” at the sites of peaks in the seed tuple distribution.

The first step of generating a filter, regardless of the value of r, is selecting a target tuple from the tuple
distribution of the seed database. If r is set to zero, then the target tuple is the tuple specification used for
the filter. If r is greater than zero, then a smoothing adjustment is made to the target tuple; the scope of the
tuple is shifted by some distance less than . We would like the probability that we specify a tuple equal
or near to the target to be greater than the probability that we choose a tuple farther away from the target.
Hence, we define a geometric probability distribution for selecting the radius of the smoothing adjustment.
Specifically, the probability that we select a radius i is:

pi = (1— %)pi—l 2)

11

45000
40000 ’
35000 ,
30000 ,
25000 ,
20000 [
15000 ,
10000]
5000 [
ol
1 .

Number of Filters

o)
DA Prefix Length | 0 SA Prefix Length
32
32

Figure 7: Joint source/destination prefix distribution for a synthetic database of 64000 filters seeded with
firewall database rulesl and generated with smoothing parameter » = 0.

Given that we are limiting the maximum radius, the distribution must be constructed subject to the con-
straint:

,
> pi=1 3
i=0

Applying the definition of p; to the constraint results in the following expression.

1 1 1
po+ (1= Jpo+ (1= po+..+(1—-=)p = 1
T r T
r+1 1 .
poy (1--)y"" =1
=1 r

The values of p; for ie[1...r] are readily available once p, is known. Solving for py and using the closed
form solution for the sum of the first (- + 1) terms of a geometric series yields the following expression.

B 1
P i1t

4
T)T—‘rl] ()
From this closed form, we can generate a discrete distribution with r terms that sums to one.

After generating the distribution based on the smoothing parameter r, a radius 7 is selected for the
smoothing adjustment. We now specify a process which provides for uniform random selection among
the tuples at radius i from the target tuple. For each dimension, we randomly select a direction of scope
adjustment. For example, increase scope of source address prefix, decrease scope of destination address,
etc. This direction of adjustment remains static during the smoothing adjustment to the tuple of the current
filter, but a new selection of directions is made for each filter. Dimensions are then selected at random for
scope adjustment.

In order to demonstrate the effect of smoothing, Figure 7 shows the joint source/destination prefix distri-
bution for a 64000 filter databases generated using rulesl as a seed database with the smoothing parameter
r set to zero. Figure 8 and Figure 9 show the same distribution for smoothing parameters of 16 and 64,
respectively. As expected, increasing the value of r injects more unique tuple distributions into the synthetic
database while maintaining the structure present in the seed database.

12

18000
16000
14000
12000
10000
8000
6000
4000
2000\

Number of Filters

Figure 8: Joint source/destination prefix distribution for a synthetic database of 64000 filters seeded with
firewall database rulesl and generated with smoothing parameter » = 16.

Given that the domain of possible tuple specifications is finite, smoothing adjustments may have an
effect on the average scope of the database. Note that many of the common tuples reside at the edge of
the tuple domain, such as fully specified in one dimension and unspecified in another. Even though we are
randomly selecting the direction of smoothness adjustments, target tuples at the edge of the tuple domain
limit the possible directions of adjustment. In order to evaluate the significance of this effect, we plot the
average scope of synthetic databases generated with rulesl and rules5 as seed databases and various values
of r in Figure 10. Note that as r is increased, the average scope of the databases approaches the median
value of 52 and the standard deviation slightly decreases. This is logical behavior considering that a uniform
random distribution of tuples should have an average scope equal to the median value.

4.2 Scope Adjustment

As filter databases scale, it is logical to assume that the average scope of the database will change. As
the number of flow-specific filters in a databases increases, the specificity of the database increases and the
average scope decreases. If the number of explicitly blocked ports for all packets in a firewall database
increases, then the specificity of the database may decrease and the average scope may increase.

In order to explore the effect of average database scope on the performance of algorithms and packet
classification devices, we provide for adjustment of the average scope of the synthetic database. An input
scope parameter s specifies the relative adjustment of average database scope and may assume values in the
range [—104...104]. For example, if the synthetic database would naturally have an average scope of 50,
then specifying a scope parameter s equal to -16 would attempt to shift average scope of the database to
34. The reason why the average scope cannot be shifted by exactly the amount specified by s will become
apparent in a moment.

Following the selection of a target tuple from the seed tuple distribution and smoothing adjustment,
scope adjustment is performed when s is non-zero. The process of applying the scope adjustment to a tuple
is very similar to the smoothing adjustment with a few important exceptions. Instead of randomly selecting
a direction of adjustment for each field, the direction of adjustment is static and specified for all fields by the
sign of the scope parameter. Instead of randomly selecting fields for adjustment, a random starting field is
selected. The fields are then adjusted in a regular cycle until s adjustments have been made or a tuple domain
boundary has been reached. For example, if s is set to -4 and the source port is selected as the starting field,

13

12000

10000

8000

6000

4000

Number of Filters

2000

Figure 9: Joint source/destination prefix distribution for a synthetic database of 64000 filters seeded with
firewall database rulesl and generated with smoothing parameter » = 64.

80

047 T 1
60 rulesl
o 50 4 t '
Qo
<} rules5
& 40 -
Y
v 30 |
20 L =
10
0 T T T T .
0 20 40 60 80 100

Smoothing Parameter (r)

Figure 10: Five-dimensional scope of synthetic databases consisting of 64000 filters seeded with firewall
databases rulesl and rules5, generated with scope parameter s = 0 and various values of smoothing param-
eter r. Lines indicate average 5-d filter scope and error bars indicate standard deviation.

the scope adjustments would be the following: divide source port width by 2, divide destination port by 2,
set the protocol field to specified, and decrement the source address prefix by 1. This process uniformly
distributes the scope adjustment across tuple fields. In cases where a tuple domain boundary has been
reached, no further scope adjustment can be made. It is these cases that prevent an explicit shift of the
average scope of the database by the given scope parameter s. A plot of the five-dimensional scope of
synthetic databases of size 64000 filters generated with rulesl and rules5 as a seed databases, smoothing
parameter » = 16 and various values of s is shown in Figure 11.

Recall that the average five-dimensional scope of seed databases rulesl and rules5 is 50.7 and 48.1,
respectively. For values of s in the range [—16...16], the average scope of the generated databases scales
linearly according to s. Generating large databases with values of s greater than 16 presents a challenge,
as the number of unique filters from which to choose decreases with increasing scope. In this situation, the
synthetic database can become saturated with filters of large scope making it extremely unlikely that the
tool will be able to generate a unique filter. While this property limits the range of our study of the effects

14

100
90 A

80 - 1
70 T
50
40

2 4
20 / =

10 / -
om ‘ 7 ; ; ;

-104 -84 -64 -44 24 -4 16

Scope Parameter (s)

5-d Scope

Figure 11: Five-dimensional scope of synthetic databases consisting of 64000 filters seeded with firewall
databases rulesl and rules5, generated with smoothing parameter » = 16 and various values of the scope
parameter s. Lines indicate average 5-d filter scope and error bars indicate standard deviation.

of tuning the s parameter, we argue that it has negligible implications on the practical use of the tool. We
anticipate that s will be tuned to values within the “linear region” or set the increasingly larger negative
values as database size is scaled up.

4.3 Source & Destination Address Prefix Generation

As described in the previous section, a child probability and average skew distribution is extracted from the
seed database for both source and destination address prefixes. We use these distributions to dynamically
build source and destination address trees during the filter generation process. For each filter, we begin by
constructing a source address prefix by traversing the source address tree according to the length specified
by the tuple. Each tree node contains a flag indicating whether or not it has been assigned a branching
probability. If the tuple specifies a prefix length greater than the level (tree depth) of the current node, then a
branching decision must be made. If the node’s flag is set, then the right (one) or left (zero) child is selected
as the next node using the assigned branching probability. If the node’s flag is not set, then a branching
probability must be assigned prior to making a branching decision.

The branching probability for a node is affected by three parameters associated with the node’s level: the
probability that the node has one child, the probability that the node has two children, and the skew. Note
that the probability that a node has no children is dictated by the prefix length in the tuple. When assigning
a branching probability to a node, we know that the node must have one or two children; therefore, the
child distribution must be adjusted accordingly. Once the number of children is selected according to the
adjusted child distribution, we choose a random “heavy path” specifying right or left (one or zero). If the
node has one child, then the child is assigned to the “heavy path”. If the node has two children, then a
branching probability is assigned according to the skew, where the more probable path is the “heavy path”.
The source address prefix is constructed by recording the branching decisions made at each level during the
tree traversal.

Generation of the destination address prefix is similar to the process for the source address prefix. The
difference lies in accounting for address prefix “correlation”. As previously described, correlation is defined
to be the probability that the address prefixes are identical up to the given level. We begin by determining
the maximum possible depth of correlation, max_depth = min{(source address length),(destination address
length)}, for the address prefixes in the filter. When the level of the current node is greater than max_depth or

15

after the address prefixes have diverged, the destination address tree is traversed and branching probabilities
are assigned exactly as described for the source address tree. If the level of the current node is less than
or equal to max_depth and the address prefixes have not yet diverged, then the correlation probability for
that level is used to determine the branching direction. If a branching probability has not been assigned for
the node, then the value of the next source address prefix bit is used as the “heavy path”. After computing
the branching probability, the more probable direction is associated with the “heavy path” and the process
continues at the child along that path. If a branching probability has been assigned for the node, then it is
simply ignored in the case of correlated address prefixes. Note that this creates a conflict in the case when a
node has a single child on the path opposite the path specified by the correlation. In this case we adjust the
branching probability of the node to provide for two children. We observe that these conflicts do not cause
significant deviation from the original destination address tree structure of the seed database.

4.4 Port & Protocol Generation

The port range distributions extracted from seed databases specify the range bounds for given port range
widths of size greater than one. Should a port range width greater than one specify more than one set of
range bounds, then a probability distribution for the set of range bounds is associated with the range widths.
When the tuple specifies a port range width represented in the distribution, the associated range bounds are
used for the port range in the filter. When the tuple dictates a fully specified port number, values are selected
from a uniform random distribution over the possible range of port numbers. When the tuple dictates that
both port numbers are fully specified, a source port value is selected from a uniform random distribution over
the possible range of port numbers. Based on the correlation present in the seed database, the destination
port value is either set to the same value as the source port or randomly selected.

When a synthetic database is generated with non-zero smoothing and/or scope parameters, port range
widths not present in the seed database are likely to emerge in the synthetic filter tuples. In these cases,
port range bounds are randomly selected from the set of admissible bounds for the given port range width.
This logical and seemingly innocuous process can significantly affect the performance of some algorithms.
Many researchers have observed that in the small sample space of available filter databases, there are no
overlapping port range specifications. Port ranges [x;, ;] and [y;, y;] are defined to be overlapping if

(i <wi) - (x5 <y;)- (7 < yi)

or
(i > i) - (x5 > ;) - (5 = yj)

Note that this definition allows for nested ports. While we also do not observe overlapping port ranges in the
five firewall databases, there is no evidence to suggest that this property should be maintained as databases
scale and change in composition. Adjustment of smoothing and scope parameters can help asses the effect
of overlapping port ranges on protocol performance.

As previously described, protocol specifications depend upon the port range width specifications in the
tuple. The seed database specifies the set of possible protocols and three distributions for protocol selection.
Given that the set of unique protocols is relatively static, we do not provide a mechanism for injecting new
protocol specifications. If the tuple requires a protocol to be specified, the port range widths of the tuple
determine the distribution used for the selection process. If both port ranges in the tuple are unspecified
(wildcarded), then the associated probability distribution for p.,,, is used. If one port ranges is unspecified
and one port range is specified, then the associated probability distribution for p,,, is used. If both port
ranges are specified, then the associated probability distribution for p is used.

16

4.5 Filter Priority

Traditionally, filter priority is inferred by placement in an ordered list. In the case of a linear search, the first
matching filter is the best matching filter. This arrangement could obviate a filter f; if a less specific filter
fj D fi occupies a higher position in the list. To prevent this, filters in the synthetic database can be ordered
according to scope, where filters with minimum scope occur first.

5 TowardsaBenchmark

Packet classification enables a wide variety of network applications such as security firewalls, per-flow queu-
ing for guaranteed bandwidth allocation, per-flow packet processing, network monitoring and measurement,
and usage-based accounting. In order to provide value to the interested community, a packet classification
benchmark must provide meaningful measurements that cover the broad spectrum of application environ-
ments. It is with this in mind that we designed the synthetic database generation tool to be flexible while
hiding the low-level details of database structure. While it is unclear if real databases will vary as specified
by the smoothing and scope parameters, we assert that the tool provides a useful mechanism for measuring
the effects of database composition on classifier performance. We now propose a framework for a packet
classification benchmark utilizing this tool. It is our intention to initiate and frame a broader discussion
within the community that results in a larger sample space of seed databases as well as the formulation of a
standard benchmark. While we have focused on accurate modeling of five dimensional databases, general
packet classification may range from one-dimensional longest prefix matches (LPM) on the destination IP
address to more complex filter matches on header fields in layer four and above.

Packet classification algorithms and devices range from purely conceptual, to software implementations
targeted to a variety of platforms, to state-of-the-art ASICs (Application Specific Integrated Circuits). For
the purpose of a robust benchmark, we present a generic packet classifier model as shown in Figure 12. In
this model, the classifier consists of a search engine connected to memory which stores the database and any
other data structures required for the search. For each packet header passed to the classifier, the search engine
queries the database and returns an associated flow identifier. Note that the set of possible flow identifiers is
application dependent. Firewalls may only specify two types of flows, admissible and inadmissible, whereas
routers implementing per-flow queuing may specify thousands of unique flow labels. The type of search (or
dimensionality of the search) to be performed is specified by the configuration control. In order to model
application environments where per-flow filters are dynamically created and deleted, the generic classifier
model provides a mechanism for dynamic database updates.

There are three primary metrics of interest for packet classification algorithms and devices: throughput,
memory requirement, and power consumption. For packet classification devices or fixed implementations
of algorithms, throughput can be directly measured throughout the course of an experiment. Throughput
measurement for algorithms is not as straight-forward. In this case, the metric most directly influencing
throughput is the required number of sequential memory accesses. Using parallel and pipelined design
techniques, non-sequential memory accesses can be masked. The benchmark should also provide the total
required memory accesses in terms of average, worst observed, and best observed. The second metric of
vital interest is the amount of memory required to store the database and supplemental data structures. For
classification techniques employing random access memory, garnering memory usage metrics is straight-
forward. For TCAM-based devices, memory usage can be measured in terms of storage efficiency, which
is defined to be the ratio of the number of required TCAM slots and the number of filters in the database.
Utilizing the synthetic database generator the effect of database size, average scope, and smoothness on
throughput and memory usage can be measured.

In the past, power consumption has not been a primary concern for those developing new packet clas-
sification techniques. Recently, TCAM-based classifiers have become the most popular solution for high

17

Database Updates

|

Packet Classifier
Database
A
| t S ! Output Result
nput Sream . utput Results
Packet Headers Search Engl ne Flow Identifiers

i

Configuration Control

Figure 12: Generic model of a packet classifier.

performance routers, but they suffer from high power consumption. A typical TCAM consumes more than
100 times the power of state-of-the-art SRAMSs operating 3 times faster and can account for a large frac-
tion of the power budget on a router interface card. Recent developments in TCAM technology provide for
partitioning the device such that only a subset of the available slots are activated at one time. IP lookup
and packet classification techniques can take advantage of this capability to lower power consumption [11].
The effect of database size, scope, and smoothness on partitioning the route tables and databases in order to
lower power consumption can be measured using the synthetic database generator.

Generating query patterns for the databases used for testing remains a large challenge. Worst-case
performance is often the primary concern of designers, but for most packet classification techniques is de-
terministic. Creating a general technique to identify the pathological query pattern for a classifier under test
is infeasible. Instead, the benchmark should provide throughput measurements for a variety of arrival pat-
terns that fully exercise the database. We anticipate that these metrics will be useful for evaluating competing
techniques or products under realistic operating conditions. Due to the use of pipelined implementations and
caching, we propose phased query patterns with varying locality and frequency of reference. By frequency
of reference, we mean the average period between packet headers matching the same filter. By locality of
reference, we mean the size of the geometric space probed by the packet headers during a give phase. Fil-
ter nesting and overlap complicates the process of generating phased query patterns that fully exercise the
database. Generating a packet header via random completion of the unspecified bits for a given filter does
not guarantee that the filter is the best matching filter in the database for the packet header. Generation of
update patterns and checking for correctness is also complicated by filter nesting and overlap.

Given that the synthetic database generator utilizes a seed database, there remains a need to assemble
a standard set of seed databases representative of the wide variety of applications for packet classification.
We believe that a consolidated effort with the purpose of developing a benchmark will be far more effective
at gaining access to real databases than individual efforts. Mechanisms exist to preserve confidentiality by
scrambling the addresses in filters without distorting the statistical characteristics of interest. We also believe
that a larger sample space of databases is essential for refining the synthetic databases generator.

6 Conclusions

With the desire to refine synthetic database generation methods and formalize a benchmarking methodology,
we seek to initiate a broader discussion and solicit input from the community to help guide the remainder

18

of this work. To facilitate this discussion, we have created an online forum. A link to this forum can
be found at: http://www.arl.wustl_edu/~det3/. Input garnered from the community will be
used to refine the synthetic database generator, assemble a standard set of seed databases, and formally
specify a benchmarking methodology. While we have already found the synthetic database generator to
be very useful, it is our hope to promote its broader use as a standard tool for evaluating packet classifier
performance.

Acknowledgments

We would like to thank Venkatachary Srinivasan for making five firewall databases available for study.

References

[1] P. Gupta and N. McKeown, “Packet classification on multiple fields,” in ACM Sigcomm, August 1999.

[2] P. Gupta and N. McKeown, “Packet classification using hierarchical intelligent cuttings,” in Hot Inter-
connects VII, August 1999.

[3] F. Baboescu and G. Varghese, “Scalable packet classification,” in ACM Sigcomm, August 2001.

[4] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for Core Routers: Is there an alternative
to CAMs?,” in IEEE Infocom, 2003.

[5] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis, “Framework for ip performance metrics.” RFC 2330,
May 1998.

[6] S. Bradner, “Benchmarking Terminology for Network Interconnect Devices.” RFC 1242, July 1991.

[7] S. Bradner and J. McQuaid, “Benchmarking Methodology for Network Interconnect Devices.” RFC
2544, March 1999.

[8] G. Trotter, “Terminology for Forwarding Information Base (FIB) based Router Performance.” RFC
3222, December 2001.

[9] G. Trotter, “Methodology for Forwarding Information Base (FIB) based Router Performance.” Internet
Draft, January 2002.

[10] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple space search,” in SIGCOMM
99, pp. 135-146, 1999.

[11] G. Narlikar, A. Basu, and F. Zane, “CoolCAMs: Power-Efficient TCAMSs for Forwarding Engines,” in
Proc. of Infocom, 2003.

19

