INTELLIGENT PACKET DISCARD POLICIESFOR IMPROVED TCP
QUEUE MANAGEMENT

Anshul Kantawala*
Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130
email: anshul@arl.wustl.edu

ABSTRACT

Recent studies have shown that suitably-designed packet
discard policies can dramatically improve the performance
of fair queueing mechanisms in internet routers. The Queue
State Deficit Round Robin algorithm (QSDRR) preferen-
tially discards from long queues, but introduces hysteresis
into the discard policy to minimize synchronization among
TCP flows. QSDRR provides higher throughput and much
better fairness than simpler queueing mechanisms, such as
Tail-Drop, RED and Blue. However, because QSDRR dis-
cards packets that have previously been queued, it can sig-
nificantly increase the memory bandwidth requirements of
high performance routers. In this paper, we explore alter-
natives to QSDRR that provide comparable performance,
while allowing packets to be discarded on arrival, saving
memory bandwidth. Using ns-2 simulations, we show that
the revised algorithms can come close to matching the per-
formance of QSDRR and substantially outperform RED
and Blue. Given a traffic mix of TCP flows with different
round-trip times, longer round-trip time flows achieve 80%
of their fair-share using the revised algorithms, compared
to 40% under RED and Blue. We observe a similar im-
provement in fairness for long multi-hop paths competing
against short cross-traffic paths. We also show that these al-
gorithms can provide good performance, when each queue
is shared among multiple flows.

KEY WORDS
Buffer management, TCP, IP Networks

1 Introduction

Backbone routers in the Internet are typically configured
with buffers that are several times times larger than the
product of the link bandwidth and the typical round-trip
delay on long network paths. Such buffers can delay pack-
ets for as much as half a second during congestion periods.
When such large queues carry heavy TCP traffic loads, and
are serviced using the Tail-Drop policy, the large queues re-
main close to full most of the time. Thus, even if each TCP
flow is able to obtain its share of the link bandwidth, the
end-to-end delay remains very high. This is exacerbated

*This work is supported in part by DARPA Grant N660001-01-1-8930
and NSF Grant CNS-0325298

Jonathan Turner*
Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130
email: jst@arl.wustl.edu

for flows with multiple hops, since packets may experi-
ence high queueing delays at each hop. This phenomenon
is well-known and has been discussed by Hashem [1] and
Morris [2], among others.

To address this issue, researchers have developed al-
ternative queueing algorithms which try to keep average
queue sizes low, while still providing high throughput and
link utilization. The most popular of these is Random Early
Discard or RED [3]. RED maintains an exponentially-
weighted moving average of the queue length which is used
to detect congestion. To make it operate robustly under
widely varying conditions, one must either dynamically ad-
just the parameters or operate using relatively large buffer
sizes [4, 5]. Recently another queueing algorithm called
Blue [6], was proposed to improve upon RED. Blue adjusts
its parameters automatically in response to queue overflow
and underflow events. Although Blue does improve over
RED in certain scenarios, its parameters are also sensitive
to different congestion conditions and network topologies.

In our previous study, we investigated how packet
schedulers using multiple queues can improve performance
over existing methods. Our goal is to find schedulers that
satisfy the following objectives:

e High throughput when buffers are small. This allows
queueing delays to be kept low.

e Insensitivity to operating conditions and traffic. This
reduces the need to tune parameters, or compromise
on performance.

e Fair treatment of different flows. This should hold re-
gardless of differences in round-trip delay or number
of hops traversed.

In [7, 8] we show that both RED and Blue are deficient
in these respects. Both perform fairly poorly when buffer
space is limited to a small fraction of the round-trip delay.
Another regularly observed phenomenon for queues
with Tail-Drop is big swings in the occupancy of the bot-
tleneck link queue. One of the main causes for this is the
synchronization of TCP sources going through the bottle-
neck link. Although RED and Blue try to alleviate the syn-
chronization problem by using a random drop policy, they
do not perform well with buffers which are a fraction of
the bandwidth-delay product. When buffers are very small,

even with a random drop policy, there is a high probability
that all flows suffer a packet loss. However, with per-flow
queueing, we can explicitly control the number of flows
that suffer a packet loss and thus significantly reduce syn-
chronization among flows. While per-flow queues have
been historically viewed as too expensive to implement,
continuing technology advances have cut the costs to negli-
gible levels. Indeed, by enabling the use of smaller memory
sizes for buffering packets, per-flow queues can actually re-
duce costs and at the same time cut network queueing de-
lays.

In our prior work [7, 8], we proposed and evalu-
ated two different packet dropping algorithms: Through-
put DRR (TDRR) and QSDRR. We found that these algo-
rithms significantly outperform RED, Blue and Tail-Drop
for both long-lived and short burst TCP traffic. They also
perform reasonably well when multiple flows share a sin-
gle queue. However, both of these approaches need the
queues to be ordered by throughput or length. Also, poli-
cies that drop packets that have already been queued can
require significantly more memory bandwidth than poli-
cies that drop packets on arrival. In high performance sys-
tems, memory bandwidth can become a key limiting fac-
tor. Thus, the focus of this paper is to investigate buffer
management algorithms that can intelligently drop incom-
ing packets during congestion without maintaining an or-
dered list of queues. Our new algorithms meet all of the
objectives outlined above and using ns-2 simulations, we
show that they deliver significant performance improve-
ments over the existing methods. We also show that the
results obtained are comparable to what we can achieve us-
ing QSDRR, without wasting memory bandwidth and the
need to sort queues based on their length.

The rest of the paper is organized as follows. Section
2 discusses the implementation drawbacks of QSDRR and
TDRR. Section 3 describes the new packet drop methods
investigated here. Section 4 documents the configurations
used for the simulations and the parameters used for evalu-
ating our algorithms. Section 5 compares the performance
results of the proposed dynamic threshold multi-queue al-
gorithms against QSDRR, RED, Blue and Tail-Drop for
both long-lived and short burst TCP traffic and Section 6
concludes the paper.

2 Memory Bandwidth Issues

Buffer management policies such as QSDRR and TDRR
have some drawbacks for hardware implementation. Two
significant issues that affect hardware performance are:

1. Memory bandwidth wastage
When buffers are full, QSDRR drops a packet from
the current drop queue (the method for choosing the
drop queue is elaborated in [7]). Similarly, TDRR
picks the queue with the current highest exponentially
weighted throughput. In most cases, this will lead to a
packet already in memory being chosen to be dropped.

When a stored packet needs to be dropped, the mem-
ory bandwidth requirement for the buffer could in-
crease by as much as 50%. Thus, router buffers need
to be designed to support this higher memory band-
width which increases the cost and complexity of im-
plementation.

2. Queuelength sorting

All the previously studied DRR algorithms in [7] need
to find the longest queue (the definition of the longest
queue varies according to the packet dropping policy)
for discarding a packet during congestion. This results
in a large overhead during congestion, since each in-
coming packet would potentially trigger a new search
for the current longest queue. One way to reduce this
overhead is to use more complex data structures which
reduce the time to find the longest queue. However,
this adds complexity and cost to any hardware imple-
mentation.

3 Algorithms

Given the above issues regarding implementation of packet
drop policies such as DRR, TDRR and QSDRR, we pro-
pose a new packet drop policy based on a dynamic thresh-
old. The original idea for this algorithm is presented
in [9]. In [9], the authors propose a memory bandwidth
efficient buffer sharing policy among different output ports
in a shared memory packet switch. This algorithm makes
packet drop decisions based only on the length of the in-
coming packet’s destination queue and the total amount of
free buffer space. An incoming packet, destined for queue
i is discarded if

Qi(t) > ax F(t) (1)

where @;(t) is the current length of queue 4, F'(t) is
the current free buffer space and « is a multiplicative pa-
rameter.

1. Dynamic Threshold DRR (DTDRR)

In our first policy, we adapted the above buffer man-
agement policy for use as a packet discard policy for
DRR packet scheduling. Thus, an incoming packet
destined for queue 7 is dropped if the current queue
length exceeds « times the free buffer space. In all
our simulation results, we set « to 2 for evaluating this
policy. Although this algorithm performed very well
for short burst TCP flows and reasonably sized buffers
(1000 packets or more), we found that it did not per-
form as well as QSDRR for long-lived TCP traffic and
very small buffers (200 to 400 packets).

2. Discard State DRR (DSDRR)

Taking a cue from QSDRR, we add some hysteresis
to the basic DTDRR policy which leads to DSDRR.
The idea is similar to QSDRR. In DSDRR, once we
start discarding from a particular queue, we mark it

W <- 10% of nunber of queues
Wimez <- 50% of nunber of queues

Enqueue:
Di scard packet destined for queue i

if any of the followi ng conditions is true

1. Qi(t) is marked for discard
2. Qi(t)>ax F(t) and
(nunber of queues with
discard bit set < W)
Then mark Q;(t) for discard
3. F(t)=0
Then set overflow bit

El se

Enqueue packet

Dequeue:

If Qi(t) becones enpty,
discard bit is cleared

Every tine period T

If overflow bit is set

If W < Whas
W <- W+2

El se

I f nunmber of queues in discard < W
W <- nunber of discard queues + 1

Figure 1. Algorithm for DSDRR

with a discard bit. Subsequent packets destined for a
queue marked with a discard bit are discarded regard-
less of the queue length. The discard bit is cleared
when the queue becomes empty. The intuition behind
this approach is to minimize the number of TCP flows
experiencing a packet drop during congestion. This
prevents synchronization of TCP flows. We found
that, although this policy helped in desynchronizing
the TCP flows, it marked too many queues for dis-
card and thus suffered from poor throughput. To al-
leviate this problem, we added another parameter, .
This is an adaptive parameter that limits the number
of queues marked for discard. Every time period 7', if
the buffer overflows, W is increased by 2. If there is
no overflow in the last time period and the number of
queues marked for discard is less than W, W is set to
one more than the current number of discard queues.
Thus, when a particular queue exceeds the threshold
as described in equation 1, it is marked for discard
only if the total number of discard queues is less than
W. Also, incoming packets are only dropped if the
queue is already marked for discard or if the queue
exceeds the threshold and the total number of discard
queues is less than . We found that the policy is
not sensitive to the initial value of W and we initially

set W to 10% of the number of queues (flows) for all
our simulation experiments and we limit W to a max-
imum value of 50% of the number of queues. Also, a
is set to 0.1 and T is set to 1 second for our simula-
tion runs. A detailed description of this algorithm is
presented in Figure 1.

4 Simulation Environment

In order to evaluate the performance of DRR, TDRR and
QSDRR, we ran a number of experiments using ns-2. In
this study, we investigated the performance of our algo-
rithms for both long-lived and short-lived TCP connec-
tions. Long-lived TCP flows stay active for the entire dura-
tion of the simulation. We emulate short-lived TCP flows
using on-off TCP sources. The on-phase models an ac-
tive TCP flow sending data, while the off-phase models the
inter-arrival time between connections. To effectively com-
pare the times taken to service each burst under different
algorithms, we fix the data transferred per connection (dur-
ing the on-phase) to 256 packets (384 KB). The idle time
between bursts is exponentially distributed with a mean of
2 seconds.

We compared the performance over a varied set of
network configurations and traffic mixes which are de-
scribed below. In all our experiments, we used TCP sources
with 1500 byte packets and the data collected is over a 100
second simulation interval. We ran experiments using TCP
Reno and TCP Tahoe and obtained similar results for both;
hence, we only show the results using TCP Reno sources.
For each of the configurations, we varied the bottleneck
queue size from a 100 packets to 20,000 packets. 20,000
packets represents a half-second buffer which is a common
buffer size deployed in current commercial routers. We ran
several simulations to determine the best parameter values
for RED and Blue for our simulation environment, to en-
sure a fair comparison against our multi-queue based al-
gorithms. In all our configurations below, the access links
are 10 Mb/s for long-lived TCP flows (N is 100) and 100
Mb/s for short-lived (on-off) TCP flows (N is 500). Since
the bottleneck-link bandwidth is 500 Mb/s, if all long-lived
TCP flows send at the maximum rate, the overload ratio is
2:1. For the short-lived TCP sources, a maximum rate of
100 Mb/s is needed to congest the bottleneck link. In each
of the configurations, the delay shown is the one-way link
delay. Thus, round-trip time (RTT) over a link is twice the
link delay value. Due to space limitations, in this paper, we
do not present the results obtained for a single-bottleneck
link configuration. We note that the results obtained are
similar and can be found in our techreport [10].

Although all our experiments use TCP Tahoe and
Reno sources, our results are applicable for other TCP vari-
ants such as TCP New Reno and TCP Sack. Both TCP New
Reno and TCP Sack help in improving the efficiency of re-
transmissions in the presence of packet losses, but do not
fundamentally change the TCP congestion window algo-
rithm.

4.1 Multiple Roundtrip-time Configuration

Figure 2. Multiple Roundtrip-time Network Configuration

The network configuration for this set of experiments
is shown in Figure 2. This configuration is used to eval-
uate the performance of the different queue management
policies given two sets of TCP flows with widely varying
round-trip times over the same bottleneck link. Half of the
TCP sources have their link delay set to 20 ms, and the
other half have their link delay to 100 ms.

4.2 Multi-Hop Path Configuration

Figure 3. Multi-Hop Path Network Configuration

The network configuration for this set of experiments
is shown in Figure 3. In this configuration, we have N TCP
sources traversing three bottleneck links and terminating at
R3. In addition, on each link, there are another N TCP
sources acting as cross-traffic. We use this configuration
to evaluate the performance of the different queue man-
agement policies for multi-hop TCP flows competing with
shorter one-hop cross-traffic flows.

5 Results

We now present the evaluation of our DTDRR and DSDRR
policies in comparison with QSDRR, Blue, RED and Tail-
Drop. We compare the queue management policies using
the average goodput of all TCP flows as a percentage of
its fair-share as the metric. For all our graphs, we con-
centrate on the goodputs obtained while varying the buffer
size from 100 packets to 5000 packets. Since our bottle-
neck link speed is 500 Mb/s, this translates to a variation of
buffer time from 2.4 ms to 120 ms. A buffer size of 4167

packets is equal to the bandwidth-delay product. Thus, our
region of interest is in buffer sizes between 200 and 1000
packets, which translates to 5% to 25% of the bandwidth-
delay product. In all our simulations, we noticed that all the
policies behaved in a similar fashion past the 5000 packet
buffer size. Also, for all the DRR based policies, link uti-
lization is greater than 90% and packet drop percentage
over the entire simulation run is less than 1%. This holds
true for all of our configurations.

5.1 Multiple Round-Trip Time Configura-
tion

In this configuration, we use a single bottleneck link, but
half the TCP sources have a 40 ms RTT whereas the other
half have a 200 ms RTT. For long-lived TCP flows, we use
100 TCP Reno sources and for short burst TCP flows, we
use 1000 on-off TCP Reno sources.

Figure 4 shows the performance of TCP flows using
the different algorithms over a multiple RTT configuration.
Both RED and Blue discriminate against longer RTT flows,
as we observe in Figure 4(a), the 200 ms RTT flows achieve
only about 40% of their fair-share bandwidth whereas us-
ing the DTDRR and DSDRR policies, 200 ms RTT flows
are able to achieve almost 90% of their fair-share. At a
very small buffer size of 100 packets, 200 ms RTT flows
using DTDRR and DSDRR get about 40% of their fair-
share. However, at this buffer size, when all the flows
are active, there is only one packet per flow that can be
buffered. This causes the poor performance of DTDRR and
DSDRR, since it becomes very difficult to single out flows
that are using more bandwidth. Even with this limitation,
when we move to 400 packets, both DTDRR and DSDRR
significantly improve their performance and 200 ms RTT
flows achieve about 80% of their fair-share bandwidth on
the average. Although QSDRR is better at a buffer size
of 200 packets, at all buffer sizes greater than that, both
DTDRR and DSDRR are able to match the performance
of QSDRR. As shown in Figure 4(b), both RED and Blue
allow the 40 ms RTT flows to use almost 50% more band-
width than their fair share. Tail-Drop also allows the 40 ms
RTT flows to use more than their fair share of the band-
width for buffer sizes smaller than 1000 packets. Both the
DTDRR and DSDRR policies exhibit much better perfor-
mance allowing only 10% extra bandwidth to be used by
the 40 ms RTT flows.

Figure 4(c) shows the ratios of burst completion times
of the 200 ms round-trip time flows over the 40 ms round-
trip time flows. In this case, DTDRR and DSDRR remain
close to one for buffer sizes greater than 1000 (which is the
ideal fairness), whereas Blue has the worst performance,
with the 200 ms round-trip time flows taking almost three
times the time to complete a burst compared to the 40 ms
round-trip time flows, even for 5000 packet buffers. Also,
their performance is only 10 — 20% worse than QSDRR for
small buffer sizes. At a buffer size of 5000, DTDRR and

100

80

Fair Share (%)
@
3

Fair Share (%)

40

20

80

Burst Completion Time Ratio
™

Tail Drop

DTDRR DSDRR
QSDRRy
L

2000 3000 4000 1000

Buffer Size (pkts)

0 1000

5000 0

(a) Long-lived TCP flows: RTT =200 ms

(b) Long-lived TCP flows: RTT = 40 ms

. . I
1000 2000 3000 4000
Buffer Size (pkts)

2000 3000 4000

Buffer Size (pkts)

5000 0 5000

(c) Short Burst TCP flows: Burst Com-
pletion Time Ratios (200 ms flows/40 ms
flows)

Figure 4. Performance of TCP flows over a multiple round-trip time configuration

DSDRR match the performance of QSDRR.

5.2 Multi-Hop Path Configuration

In this configuration, end-to-end TCP Reno flows go over
three hops and have an overall round-trip time of 300 ms.
The cross-traffic on each hop consists of TCP Reno flows
with a round-trip time of 100 ms (one hop). For long-lived
TCP flows, we use 50 end-to-end and 50 cross-traffic TCP
Reno sources on each link and for short burst TCP flows,
we use 500 end-to-end and 500 cross-traffic on-off TCP
Reno sources on each link.

Figure 5 illustrates the performance of TCP flows us-
ing the different algorithms over a multi-hop path config-
uration. For this configuration, DTDRR and DSDRR pro-
vide almost twice the goodput of RED and Tail Drop and
four times the goodput provided by Blue for end-to-end
flows. As shown in Figure 5(a), end-to-end flows achieve
nearly 80% of their fair-share under DSDRR and 70% un-
der DTDRR. Under RED and Tail Drop, they can achieve
only 40% of their fair share even at a buffer size of 5000
packets. Using DTDRR and DSDRR, even for the small-
est buffer size, their fair-share is better than RED, but once
the buffer size increases to 400 packets, their performance
improves significantly and they allow the end-to-end flows
to achieve close to 80% of their fair share. We notice that
in this configuration, DSDRR’s performance is very close
to QSDRR. Although DTDRR’s performance is slightly
worse than DSDRR and QSDRR (about 10%) for buffer
sizes greater than a 1000 packets, it is still 1.5 times the
performance provided by RED.

For this multi-hop configuration, the end-to-end flows
face a probability of packet loss at each hop under RED and
Blue. Due to congestion caused by the cross-traffic, RED
and Blue will randomly drop packets at each hop. Although
the cross-traffic flows will have a greater probability of be-
ing picked for a drop, the end-to-end flows also experience

random dropping and thus achieve very poor goodput. For
Blue, this is further exacerbated, since due to the high load
from the cross-traffic flows, the discard probability remains
high at each hop. This increases the probability of an end-
to-end flow facing packet drops at each hop and thus further
reducing the goodput.

Figure 5(b) shows the average goodput for the cross-
traffic flows attached to router R;. For DTDRR and DS-
DRR, the cross-traffic takes up the slack in the link and con-
sumes about 115 — 120% of its fair-share bandwidth. For
both RED and Tail Drop, the link utilization is lower and
although the end-to-end flows consume only about 40% of
their fair-share, the cross-traffic flows consume 150% of
their fair-share and thus leave about 5% unutilized. Cross-
traffic flows under Blue consume about 120 —140% of their
fair-share, leaving 20 — 30% of the link unutilized.

Figure 5(c) shows the ratios of burst completion times
of the end-to-end flows over the cross-traffic flows. DT-
DRR performs almost as well as QSDRR and beats the
non-DRR policies by at least a factor of two. DSDRR also
performs reasonably well achieving burst completion time
ratios of about a factor of 1.5 better than the non-DRR poli-
cies. Even though the end-to-end traffic flows over three
bottleneck links compared to just one bottleneck-link for
the cross-traffic flows, DTDRR and DSDRR are able to
achieve a burst completion time ratio near two for a buffer
size of 5000 packets. At the same buffer size, the non-DRR
policies achieve fairly poor ratios ranging from 3.5 to 4.0.

Overall, we notice that DTDRR matches the perfor-
mance of QSDRR for short burst TCP traffic while DS-
DRR matches the performance of QSDRR for long-lived
TCP traffic. Although, DSDRR is not as good as DTDRR
for short burst TCP flows, it still significantly outperforms
RED, Blue and Tail-Drop for all configurations and traffic
mixes.

100

160 5
RED— |
QSDRR——— 1
80 - DSDRR—— 1 /’
Tail Drop S 4 7
<
oTORR—__] 140 Blue 1 <
g 60t 4 g E RED ___ 1
E’ E’ ; Blue —
5 < =] ail Droj B
§ @ R % 3 Tail Dr]
g 40§ RED—————— K DTDRR £
W—/ Tail Drop 120 | S DSDRR
4 DTDRR
Ay Ay o, DSDI a 2r QSDRRiﬁ*
20 [Blue —————3
QsoRR——_ |
0 100 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Buffer Size (pkts) Buffer Size (pkts) Buffer Size (pkts)
(a) Long-lived TCP flows: End-to-end (b) Long-lived TCP flows: Cross Traffic (c) Short Burst TCP flows: Burst

Traffic

Completion Time Ratios (end-to-end
flows/cross-traffic flows)

Figure 5. Performance of short burst TCP flows over a multi-hop path configuration

100

Single-Bottleneck Link Configuration .

80

(200ms RTT flows)

60 I

Multi-Hop Path Configuration
(End-to-end flows)

Fair Share (%)

@—@single - DTDRR
=—a Single - DSDRR
+—#RTT - DTDRR
A—ARTT - DSDRR
*— Path - DTDRR
#—% Path - DSDRR

40 b

20
1

Multiple Round-trip Time Configuration

@—@single - DTDRR
=—a Single - DSDRR
+—#RTT-
- DSDRR

ath - DTDRR

- DSDRR

DTDRR

Standard Deviation/Fair Share

10
Number of Buckets

(a) Fair Share Percentage

Figure 6. Performance of DTDRR and DSDRR for a

5.3 Scalability Issues

One drawback with a fair-queueing policy such as DTDRR
or DSDRR is that we need to maintain a separate queue
for each active flow. Since each queue requires a certain
amount of memory for the linked list header, used to im-
plement the queue, there is a limit on the number of queues
that a router can support. In the worst-case, there might
be as many as one queue for every packet stored. Since
list headers are generally much smaller than the packets
themselves, the severity of the memory impact of multiple
queues is intrinsically limited. On the other hand, since
list headers are typically stored in more expensive SRAM,
while the packets are stored in DRAM, there is some le-
gitimate concern about the cost associated with using large
numbers of queues. One way to reduce the impact of this
issue is to allow multiple flows to share a single queue.
While this can reduce the performance benefits observed in
the previous sections, it may be appropriate to trade off per-

0.00
1

I
100 10
Number of Buckets

100

(b) Standard Deviation in goodput rela-
tive to fair-share bandwidth

buffer size of 1000 packets, with varying number of buckets

formance against cost, at least to some extent. To address
this issue, we ran several simulations evaluating the effects
of merging multiple flows into a single queue. Figure 6 il-
lustrates the effects of varying the number of queues. The
sources are long-lived TCP Reno flows and the total buffer
space is fixed at 1000 packets.

Figure 6(a) illustrates the effect on the goodput re-
ceived by each flow under different numbers of queues. For
the multiple round-trip time configuration and the multi-
hop path configuration, we show the goodput for the 200
ms RTT (longer RTT) flows and the end-to-end (multi-hop)
flows respectively. In both these configurations, the above
mentioned flows are the ones which receive a much lower
goodput compared to their fair share under existing poli-
cies such as RED, Blue and Tail Drop. We observe that the
effect of increasing the number of buckets produces dimin-
ishing returns once we go past 10 buckets. In fact, there
is only a marginal increase in the goodput received when
we go from 10 buckets to 100 buckets. Since at each bot-

tleneck link there are a 100 TCP flows, this implies that
our algorithms are scalable and can perform very well even
with one-tenth the number of queues as flows.

We also present the standard deviation in goodput re-
ceived by each flow for different numbers of queues in Fig-
ure 6(b). The results are presented as a ratio of the standard
deviation to the fair share bandwidth to better illustrate the
measure of the standard deviation. We notice that changing
the number of queues does not have a significant impact
on the standard deviation of the goodputs, and thus we do
not lose any fairness by using fewer queues, relative to the
number of flows. Also, the overall standard deviation is be-
low 15% of the fair share goodput for all our multi-queue
policies, regardless of the number of queues.

6 Conclusion

This paper has demonstrated techniques that can be used
to intelligently drop packets on arrival during congestion
periods. In previous work, we showed that QSDRR pro-
vides higher throughput and much better fairness than sim-
pler queueing mechanisms, such as Tail-Drop, RED and
Blue. Because it provides excellent performance, even
when buffers are much smaller than the bandwidth-delay
product, it also can substantially reduce delays along con-
gested paths. However, because QSDRR discards packets
that have previously been queued, it can significantly in-
crease the memory bandwidth requirements of high perfor-
mance routers. In this paper, we presented DTDRR and
DSDRR as alternatives to QSDRR that provide compara-
ble performance, while allowing packets to be discarded
on arrival, saving memory bandwidth.

Through extensive simulations, we showed that DT-
DRR and DSDRR significantly outperform RED, Blue and
Tail-Drop for various configurations and traffic mixes in
both the average goodput for each flow and the variance in
goodputs and the performance for both long-lived and short
burst TCP flows is very close to that of QSDRR. We also
show that these algorithms can provide good performance,
when each queue is shared among multiple flows.

References

[1] E. Hashem, *“Analysis of random drop for gateway
congestion control”, Tech. Rep. LCS TR-465, Labo-
ratory for Computer Science, MIT, 1989.

[2] Robert Morris, “Scalable TCP Congestion Control”,
in IEEE INFOCOM 2000, March 2000.

[3] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance”, IEEE/ACM
Transactions on Networking, vol. 1, no. 4, pp. 397-
413, Aug. 1993.

[4] S. Doran, “RED Experience and Differential Queue-
ing”, Nanog Meeting, June 1998.

[5] C. Villamizar and C. Song, “High Performance TCP
in ANSNET”, Computer Communication Review,
vol. 24, no. 5, pp. 45-60, Oct. 1994.

[6] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Blue:
A New Class of Active Queue Management Algo-
rithms”, Tech. Rep. CSE-TR-387-99, University of
Michigan, Apr. 1999.

[7] Anshul Kantawala and Jonathan Turner, “Efficient
Queue Management of TCP Flows”, in SPECTS
2002, July 2002.

[8] Anshul Kantawala and Jonathan Turner, “Queue
Management for Short-Lived TCP Flows in Back-
bone Routers”, in High-Speed Networking Sympo-
sium, IEEE Globecom *02, Nov. 2002.

[9] A. Choudhury and E. Hahne, “Dynamic Queue
Length Thresholds for Shared-Memory Packet
Switches”, IEEE/ACM Transactions on Networking,
vol. 6, no. 2, pp. 130-140, Apr. 1998.

[10] Anshul Kantawala and Jonathan Turner, “Intelligent
Packet Discard Policies for Improved TCP Queue
Management”, Tech. Rep. WUCSE-2003-41, Wash-
ington University, May 2003.

