
Appears in Proceedings of ACM SIGCOMM – www.acm.org/sigcomm

- 1 -

Work-Conserving Distributed Schedulers
for Terabit Routers

Prashanth Pappu
Washington University

Computer Science and Engineering
St. Louis, MO 63130-4899

+1-314-935-4306

prashant@arl.wustl.edu

Jonathan Turner
Washington University

Computer Science and Engineering
St. Louis, MO 63130-4899

+1-314-935-8552

Jon.Turner@wustl.edu

Ken Wong
Washington University

Computer Science and Engineering
St. Louis, MO 63130-4899

+1-314-935-7524

kenw@cse.wustl.edu

ABSTRACT − Buffered multistage interconnection networks
offer one of the most scalable and cost-effective approaches to
building high capacity routers. Unfortunately, the performance of
such systems has been difficult to predict in the presence of the
extreme traffic conditions that can arise in the Internet. Recent
work introduced distributed scheduling, to regulate the flow of
traffic in such systems. This work demonstrated, using simulation
and experimental measurements, that distributed scheduling can
deliver robust performance for extreme traffic. Here, we show
that distributed schedulers can be provably work-conserving for
speedups of 2 or more. Two of the three schedulers we describe
were inspired by previously published crossbar schedulers. The
third has no direct counterpart in crossbar scheduling. In our
analysis, we show that distributed schedulers based on blocking
flows in small-depth acyclic flow graphs can be work-conserving,
just as certain crossbar schedulers based on maximal bipartite
matchings have been shown to be work-conserving. We also
study the performance of practical variants of these schedulers
when the speedup is less than 2, using simulation.

Categories and Subject Descriptors. C.2.1 [Computer-
Communications Networks]: Network Architecture and Design
– network communications, packet-switching networks.

General Terms. algorithms, performance

Keywords. distributed scheduling, crossbar scheduling, high
performance routers, CIOQ switches

1. INTRODUCTION
High performance routers must be scalable to hundreds or even
thousands of ports. The most scalable router architectures include
systems using multistage interconnection networks with internal
buffers and a small speedup relative to the external links; that is,
the internal data paths operate at speeds that are greater than the

This work supported by DARPA (contract #N660001-01-1-8930) and NSF
(ANI-0325298).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA. Copyright
2004 ACM 1-58113-862-8/04/0008...$5.00.

external links by a small constant factor (typically between 1 and
2). In the presence of a sustained overload at an output port, such
systems can become congested with traffic attempting to reach the
overloaded output, interfering with the flow of traffic to other
outputs. The unregulated nature of traffic in IP networks makes
such overloads a normal fact of life, which router designers must
address, in order to make their systems robust.

Reference [11] introduced distributed scheduling to manage
the flow of traffic through a large router in order to mitigate the
worst effects of extreme traffic. Distributed scheduling borrows
ideas developed for scheduling packet transmissions through
crossbar switches [2,5,7,8]. The core idea is to use Virtual Output
Queues (VOQ) at each input. That is, each input maintains sepa-
rate queues for each output. (Queues are implemented as linked
lists, so the only per queue overhead is for the queues’ head and
tail pointers.) Packets arriving at inputs are placed in queues cor-
responding to their outgoing links. In crossbar scheduling, a cen-
tralized scheduler selects packets to send through the crossbar,
seeking to emulate as closely as possible, the queueing behavior
of an ideal output queued switch. The centralized scheduler used
in crossbar scheduling makes scheduling decisions every packet
transmission interval. For routers with 10 Gb/s links, this typically
means making scheduling decisions every 40 ns, a demanding
requirement, even for routers with small numbers of links. For
larger routers it makes centralized scheduling infeasible.

Distributed scheduling, unlike crossbar scheduling, does not
seek to schedule the transmission of individual packets. Instead, it
regulates the number of packets forwarded during a period which
we call the scheduling interval and denote by T. The scheduling
interval is typically fairly long, on the order of tens of microsec-
onds. The use of such coarse-grained scheduling means that a
distributed scheduler can only approximate the queueing behavior
of an ideal output-queued switch, but does allow systems to scale
up to larger configurations than are practical with fine-grained
scheduling. In a router that implements distributed scheduling, the
Port Processors (the components that terminate the external links,
make routing decisions and queue packets) periodically exchange
information about the status of their VOQs. This information is
then used to rate control the VOQs, with the objective of moving
packets to the output side of the router as expeditiously as possi-
ble, while avoiding congestion within the interconnection net-
work. So long as the scheduling interval is kept small relative to
end-to-end delays (which are typically tens to hundreds of milli-

- 2 -

seconds in wide area networks) the impact of coarse scheduling
on the delays experienced by packets can be acceptably small.

While [11] demonstrated, using simulation and experimental
measurement, that distributed scheduling can deliver excellent
performance under extreme traffic conditions, it provided no ana-
lytical bounds on the performance of the proposed algorithms, nor
a rigorous justification for the specific design choices. This paper
corrects that deficiency, by showing that there are distributed
schedulers that are provably work-conserving, for speedups of 2
or more. The analysis provides insight that motivates the design
of more practical variants of these algorithms, which provide
excellent performance (significantly better than reported in [11]).
Where the algorithms described in [11] can fail to be work-
conserving, with speedups of more than 2, the algorithms reported
here are demonstrably work-conserving for extreme traffic, even
when speedups are less than 2. One interesting aspect of the
analysis is the role played by network flows, which parallels the
role played by bipartite matching in crossbar scheduling. Specifi-
cally, distributed schedulers that are based on finding blocking
flows in small depth acyclic flow graphs and that favor outputs
with short queues are work-conserving, much as crossbar sched-
ulers based on finding maximal matchings in bipartite graphs that
favor outputs with short queues are work-conserving.

Before proceeding further, it’s important to define what we
mean by work-conserving. A crossbar scheduler is work-
conserving if, in a system using that scheduler, an output link can
be idle only if there is no packet in the system for that output.
Work-conserving systems match the throughput of ideal output
queueing switches, under all possible traffic conditions. In the
context of distributed scheduling, the definition of work-
conservation must be relaxed to reflect the use of coarse-grained
scheduling. In section 2, we adopt an idealized definition of work-
conservation for the purposes of analysis. We discuss the practical
implications of this in section 6.

It should be noted that while the practical distributed schedul-
ing algorithms discussed here are not work-conserving, practical
crossbar scheduling algorithms are also not work-conserving,
even though it has been known for several years that there are
work-conserving crossbar scheduling algorithms that are too
complex to use in real systems. The contribution of this work is to
show that distributed scheduling for buffered multistage networks
can provide similar performance to what was previously known
for crossbar schedulers.

While distributed scheduling shares some features of crossbar
scheduling, it differs in two important respects. First, the distrib-
uted nature of these methods rules out the use of the iterative
matching methods that have proved effective in crossbar schedul-
ing, since each iteration would require an exchange of informa-
tion, causing the overhead of the algorithm to increase in propor-
tion to the number of iterations. On the other hand, the coarse-
grained nature of distributed scheduling provides some flexibility
that is not present in crossbar scheduling, where it is necessary to
match inputs and outputs in a one-to-one fashion during each
scheduling operation. In distributed scheduling, we allocate the
interface bandwidth at each input and output and may subdivide
that bandwidth in whatever proportions produce the best result.

Recently, there has been considerable interest in a switch ar-
chitecture called the load balanced switch described in [4] and
used in [6]. This architecture consists of a single stage of buffers

sandwiched between two identical stages of switching, each of
which walks through a fixed sequence of configurations. The
fixed sequence of switch configurations makes the switching
components very simple and the system is capable of achieving
100% throughput for random traffic. Unfortunately, this architec-
ture also has a significant drawback. To avoid resequencing er-
rors, each output requires a resequencing buffer capable of hold-
ing about n2 packets. These buffers impose a delay that grows as
the square of the switch size. For the 600 port switch described in
[6], operated with a switching period of 100 ns, this translates to a
delay of about 36 milliseconds, a penalty which applies to all
packets, not just to an occasional packet. This appears to be an
intrinsic characteristic of the load balancing architecture, and one
that significantly limits its attractiveness.

Section 2 introduces two scheduling methods, proves that
schedulers based on these methods are work-conserving when the
speedup is at least 2 and shows how they can be implemented.
Section 3 shows how one can implement a practical distributed
scheduler, based on one of these methods and evaluates its per-
formance for speedups less than 2, using simulation. Section 4
introduces a more sophisticated, scheduling method, shows that it
too is work-conserving when the speedup is at least 2 and shows
how it can be implemented using minimum cost blocking flows in
networks with convex cost functions. Section 5 describes a practi-
cal variant of this method and evaluates it using simulation, show-
ing that it can out-perform the simpler schedulers studied earlier.
Section 6 discusses several important practical considerations for
distributed scheduling.

2. WORK-CONSERVING SCHEDULERS
We describe a general scheduling strategy that can be used to
obtain work-conserving schedulers for speedups of 2 or more.
While these algorithms are not practical, they provide a concep-
tual foundation for other algorithms that are.

For the purposes of analysis, we adopt an idealized view of
the system operation. Specifically, we assume that the system
operates in three discrete phases: an arrival phase, a transfer
phase and a departure phase. During the arrival phase, each input
receives up to T cells.1 During the transfer phase, cells are moved
from inputs to outputs, with each input constrained to send at
most ST cells (S being the speedup of the system) and each output
constrained to receive at most ST. During the output phase, each
output forwards up to T cells. A scheduler determines which cells
are transferred during the transfer phase. We say that a scheduler
is work-conserving if during every departure phase, all outputs for
which some input has cells at the start of the departure phase,
transmit T cells during the departure phase.

The scheduling methods that we study in this section maintain
an ordering of the non-empty VOQs at each input. The ordering of
the VOQs can be extended to all the cells at an input. Two cells in
the same VOQ are ordered according to their position in the VOQ.
Cells in different VOQs are ordered according the VOQ ordering.
We say that a cell b precedes a cell c at the same input, if b comes
before c in this ordering. For any cell c at an input, we let p(c) be

1. We assume throughout, that variable-length packets are seg-

mented into fixed-length units for transmission through the in-
terconnection network. We refer to these units as cells.

- 3 -

the number of cells at the same input as c that precede c and we
let q(c) be the number of cells at the output that c is going to.

We refer to a cell c as an ij-cell if it is at input i and is des-
tined for output j. We say that a scheduling algorithm is maximal
if during any transfer phase in which there is an ij-cell c that re-
mains at input i, either input i transfers ST cells or output j re-
ceives ST cells. Given a method for ordering the cells at each
input, we say that a scheduler is ordered, if in any transfer phase
in which an ij-cell c remains at input i, either input i transfers ST
cells that precede c or output j receives ST cells. Our scheduling
methods produce schedules that are maximal and ordered. We can
vary the method by using different VOQ orderings. We describe
two ordering methods that lead to work-conserving schedulers.

For any cell c waiting at an input, we define the quantity
slack(c) = q(c) − p(c). For each of the methods studied, we’ll
show that slack(c) ≥ T at the start of each departure phase if S ≥ 2.
This implies that for any output with fewer than T cells in its out-
going queue, there can be no cells waiting in any input-side
VOQs. This implies that the scheduler is work-conserving.

2.1 Batch Critical Cells First
Our first scheduling method is based on ideas first developed in
the Critical Cells First scheduler of [5]. Hence, we refer to it as
the Batch Critical Cells First (BCCF) method. In BCCF, the rela-
tive ordering of two VOQs remains the same so long as they re-
main non-empty, but when a new VOQ becomes non-empty, it
must be ordered relative to the others. When a cell c arrives and
the VOQ for c’s output is empty, we insert the VOQ into the exist-
ing ordering based on the magnitude of q(c). In particular, if the
ordered list of VOQs is v1, v2, . . . , we place the VOQ immediately
after the queue vj determined by the largest integer j for which the
number of cells in the combined queues v1, . . . ,vj is no larger than
q(c). This ensures that slack(c) is non-negative right after c ar-
rives. A specific scheduler is an instance of the BCCF method if it
produces schedules that are maximal and ordered with respect to
this VOQ ordering method. To show that slack(c) ≥ T at the start
of each departure phase, we need two lemmas.
Lemma 1. For any BCCF scheduler, if c is any cell that remains at
its input during a transfer phase, then slack(c) increases by at least
ST during the transfer phase.
proof. Since the VOQ ordering does not change during a transfer
phase (more precisely, VOQs that remain non-empty retain the
same relative order), any maximal, ordered scheduling algorithm
either causes q(c) to increase by ST or causes p(c) to decrease by
ST. In either case, slack(c) increases by ST.

Note that as long as a cell c remains at an input, each arrival
phase and departure phase cause slack(c) to decrease by at most
T. So, if S ≥2, slack(c) cannot decrease over the course of a com-
plete time step.

Lemma 2. For any BCCF scheduler with S ≥2, if c is any cell at an
input just before the start of a departure phase, slack(c) ≥ T.
proof. We show that for any cell c present at the end of an arrival
phase, slack(c) ≥ −T. The result then follows from Lemma 1 and
the fact that S ≥2. The proof is by induction on the time step.

For any cell c that arrives during the first time step, p(c) ≤ T at
the end of the arrival phase, so slack(c) ≥ −T at the end of the
arrival phase. Since S ≥2, there can be no net decrease in slack(c)

from one time step to the next, so slack(c) remains ≥−T at the end
of each subsequent arrival phase, while c remains at the input.

If a cell c arrives during step t and its VOQ is empty when it
arrives, then the rule used to order the VOQ relative to the others
ensures that slack(c) ≥ 0 right after it arrives. Hence, slack(c) ≥ −T
at the end of the arrival phase and this remains true at the end of
each subsequent arrival phase, so long as c remains at the input.

If a cell c arrives during step t and its VOQ is not empty, but
was empty at the start of the arrival phase, then let b be the first
arriving cell to be placed in c’s VOQ during this arrival phase.
Then, slack(b) was at least 0 at the time it arrived and at most T−1
cells could have arrived after b did in this arrival phase. If exactly
r of these precede b, then at the end of the arrival phase,

TrTr
rTbslackcslack
−≥−−−−≥

−−−≥
))1(()(

))1(()()(

If a cell c arrives during step t and its VOQ was not empty at the
start of the arrival phase, then let b be the last cell in c’s VOQ at
the start of the arrival phase. By the induction hypothesis, slack(b)
≥ −T at the end of the previous arrival phase. Since the subsequent
transfer phase increases slack(b) by at least 2T and the departure
phase decreases it by at most T, slack(b) ≥ 0 at the start of the
arrival phase in step t. During this arrival phase, at most T new
cells arrive at c’s input. Let r be the number of these arriving cells
that precede b. Then at the end of the arrival phase

TrTr
rTbslackcslack
−≥−−−−≥

−−−≥
))1(()(

))1(()()(

Hence, slack(c) ≥ −T at the end of the arrival phase in all cases
and this remains true at the end of each subsequent arrival phase,
so long as c remains at the input.
Lemma 2 leads directly to the following theorem.

Theorem 1. For S ≥2, any BCCF scheduler is work-conserving.

2.2 Batch LOOFA
Our second scheduling method is based on ideas first developed
in the Least Occupied Output First method of [7], so we refer to it
as the Batch Least Occupied Output First (BLOOFA) method. In
BLOOFA, VOQs are ordered according to the number of cells in
their output-side queues. VOQs going to outputs with fewer cells
precede VOQs going to outputs with more cells. Outputs with
equal numbers of cells are ordered by the numbering of the out-
puts. We define BLOOFA as the combination of this ordering
method with any maximal, ordered scheduler. We show that
slack(c) ≥ T at the start of each departure phase, using the same
overall strategy used for BCCF. As before, we need two lemmas.
The arguments are similar, but are complicated by the fact that the
relative ordering of VOQs can change during a transfer phase.
Lemma 3. For any BLOOFA scheduler, during a transfer phase, the
minimum slack at any input that does not transfer all of its cells
during the transfer phase, increases by at least ST.
proof. Let c be any ij-cell at input i. Let minSlack be the smallest
value of the slack among the cells at input i just before the trans-
fer phase, and let slack(c) = minSlack + σ. We will show that
slack(c) increases by at least ST − σ during the transfer phase. The
lemma then follows directly. (Note that it is not sufficient to
prove that the slack of a cell c that has minimum slack at the start

- 4 -

of the transfer phase increases by ST, since c may not be a cell of
minimum slack at the end of the transfer phase.)

 We say that a cell b at input i passes c, if before the transfer
phase, c precedes b and after the transfer phase b precedes c. If no
cells pass c during the transfer phase, then by the definition of
maximal, ordered schedulers, either q(c) increases by ST or p(c)
decreases by ST. Either way, slack(c) increases by at least ST − σ.

Assume then, that there are r >0 cells that pass c and let b be
the cell in the set of cells that pass c that comes latest in the cell
ordering (before the transfer phase). For clarity, let q0(x) denote
the value of q(x) before the transfer phase and let qF(x) denote the
value of q(x) after the transfer phase. Similarly for p and slack.

Let m be the number of cells received by output j during the
transfer and let k be the number of cells that precede b before the
transfer, but do not precede c. Then,

)()()()(00 bqbqcqmcq FF ≥≥=+

and p0(b) = p0(c) + k. Now,

σ
σ

σ

++−+≤
+−≤

+=−

))(())((
)()(

)()(

00

00

00

kcpmcq
bpbq

minSlackcpcq

So (m− k) ≥ − σ. Since b passes c, its output must receive fewer
than m cells during the transfer phase, so ST cells that precede it
at the start of the transfer phase must be forwarded. Of these at
least ST− (k−r) must also precede c at the start of the phase. So,

kSTcprkSTrcpcpF +−≤−−−+≤)())(()()(00

Combining this, with qF(c) = q0(c) + m gives,

σ−+≥
−++≥

+−−+≥
−=

STcslack
kmSTcslack

kSTcpmcq
cpcqcslack FFF

)(
)()(

))(())((
)()()(

0

0

00

That is, slack(c) increases by at least ST − σ.
Note that each arrival phase causes slack(c) to decrease by at

most T. However, it is not so easy to bound the decrease in
slack(c) during a departure phase. The complicating factor is that
cells at c’s input can pass it during a departure phase, making it
hard to bound the overall change in slack(c). However, if slack(c)
is at least T before the departure phase begins, then q(c) must also
be at least T. This means that T cells will depart from c’s output,
making it impossible for other cells at c’s input to pass c. Thus, if
slack(c) is at least T before the departure phase, then slack(c) is at
least 0 after the departure phase. It turns out that this is sufficient
to establish that BLOOFA is work-conserving when S ≥ 2.

Lemma 4. For any BLOOFA scheduler with S ≥ 2, if c is a cell at
an input before the start of a departure phase, then slack(c) ≥ T.
proof. We show that for any cell c present at the end of the arrival
phase, slack(c) ≥ −T. The result then follows from Lemma 3 and
the fact that S ≥2. The proof is by induction on the time step.

For any cell c that arrives during the first time step, p(c) ≤ T at
the end of the arrival phase, so slack(c) ≥ −T at the end of the arri-
val phase. Since S ≥2, Lemma 3 implies that slack(c) ≥ T at the
end of the transfer phase, if it is still present at the input. By the

discussion just before the statement of Lemma 4, this means that
slack(c) ≥ 0 following the departure phase, which in turn means
that slack(c) ≥ −T at the end of the next arrival phase. This re-
mains true at the end of every subsequent arrival phase until c is
transferred to the output.

Suppose then, that c arrives during step t. If, at the end of the
arrival phase, the only cells that precede c also arrived during step
t, then slack(c) ≥ −T at the end of the arrival phase. By the argu-
ment at the end of the last paragraph, this remains true at the end
of every subsequent arrival phase until c is transferred.

If at the end of the arrival phase in step t, there are cells that
precede c that were present at the start of the arrival phase, then
let b be the cell in this set of cells that does not precede any of the
others in the set. Because b arrived before step t, slack(b) ≥ −T at
the end of the previous arrival phase, by the induction hypothesis.
This implies that slack(b) ≥ 0 at the start of the arrival phase in
step t. Let k be the number of cells that arrive during the arrival
phase of step t that precede b at the end of the arrival phase. Let m
be the number of cells that arrive during the arrival phase that
precede c but not b at the end of the arrival phase. Since k + m ≤ T
and slack(b) ≥ −k,

Tkmmbslack
mbpbqcpcqcslack

−≥+−≥−=
+−≥−=

)()(
))(()()()()(

This remains true at the end of each subsequent arrival phase, so
long as c remains at the input.
Lemma 4 leads directly to the following theorem.

Theorem 2. For S ≥2, any BLOOFA scheduler is work-conserving.

2.3 Implementation issues
We have shown that the combination of two different VOQ order-
ing strategies with a maximal, ordered scheduler ensures work-
conserving operation when the speedup is at least 2. We now need
to show how to realize a maximal, ordered scheduler. We start
with a centralized algorithm and then show how it can be con-
verted into an iterative, distributed algorithm. While the overhead
of such iterative algorithms makes them impractical, they provide
the basis for non-iterative algorithms that are practical.

The key observation is that the scheduling problem can be re-
duced to finding a blocking flow in an acyclic flow network [13].
A flow network is a directed graph with a distinguished source
vertex s, a distinguished sink vertex t and a non-negative capacity
for each edge. A flow, in such a network, is a non-negative func-
tion defined on the edges. The flow on an edge must not exceed
its capacity and for every vertex but s and t, the sum of the flows
on the incoming edges must equal the sum of the flows on the
outgoing edges. An edge in the network is called saturated, if its
flow is equal to its capacity. A blocking flow is one for which
every path from s to t contains at least one saturated edge. (Note
that a blocking flow is not necessarily a maximum flow.)

To convert the scheduling problem to the problem of finding a
blocking flow, we first need to construct a flow network. Our
network has a source s, a sink t, n vertices referred to as inputs
and another n vertices referred to as outputs. There is an edge
with capacity ST from s to each input. Similarly, there is an edge
with capacity ST from each output to t. For each non-empty VOQ
at input i of the router with cells for output j, there is an edge in
the flow network from input i to output j with capacity equal to

- 5 -

the number of cells in the VOQ. (An example of a flow network
constructed to solve a particular scheduling problem together with
the corresponding solution is shown in Fig. 1.)

For any integer-valued flow, we can construct a schedule that
transfers cells from input i to output j based on the flow on the
edge from input i to output j. Such a schedule does not violate any
of the constraints on the number of cells that can be sent from any
input or to any output. Also, any blocking flow corresponds to a
maximal schedule, since any blocking flow corresponding to a
schedule that fails to transfer a cell c from input i to output j can-
not saturate the edge from input i to output j; hence it must satu-
rate the edge from s to i or the edge from j to t. Such a flow corre-
sponds to a schedule in which either input i sends ST cells or out-
put j receives ST.

Dinic’s algorithm [13] for the maximum flow problem con-
structs blocking flows in acyclic flow networks as one step in its
execution. There are several variants of Dinic’s algorithm, that
use different methods of constructing blocking flows. The most
straightforward method is to repeatedly search for st-paths with
no saturated edges and add as much flow as possible along such
paths. We can obtain a maximal, ordered scheduler by modifying
Dinic’s algorithm so that it preferentially selects edges between
input vertices and output vertices, according to the VOQ ordering
at the input. The blocking flow shown in Fig. 1 was constructed in
this way, based on the BLOOFA ordering.

If paths are found using depth-first search and edges leading
to dead-ends are removed, Dinic’s algorithm finds a blocking
flow in O(mn) time where m is the number of edges and n is the
number of vertices. Because the flow graphs used here have
bounded depth and because the number of inputs, outputs and
edges are all bounded by the number of non-empty VOQs, the
algorithm finds a blocking flow in O(v) time where v is the num-
ber of non-empty VOQs. This yields an optimal centralized sched-
uler. However, since v can be as large as n2 (where n is the num-
ber of router ports), this is not altogether practical.

We can obtain a distributed, iterative scheduling algorithm
based on similar ideas. Rather than state this in the language of
blocking flows, we describe it directly as a scheduling algorithm.
In the distributed scheduler, we first have an exchange of mes-
sages in which each output announces the number of cells in its
outgoing queue. The inputs use this information to maintain their
VOQ order. Note that this requires that each output send n mes-
sages and each input receive n messages. Next, the inputs and
outputs proceed through a series of rounds.

In each round, inputs that have uncommitted cells to send and
have not yet committed to sending ST cells, send bid messages to
those outputs that are still prepared to accept more cells. The in-
puts construct their bids in accordance with the VOQ ordering. In
particular, an input commits all the cells it has for the first output
in the ordering and makes similar maximal bids for subsequent
outputs until it has placed as many bids as it can. Inputs may not
overbid, as they are obliged to send cells to any output that ac-
cepts a bid. Note that at most one of the bid messages an input
sends during a round does not commit all the cells that it has for
the target output.

During each round, outputs receive bids from inputs and ac-
cept as many as possible. If an output does not receive bids for at
least ST cells, it does nothing during this round. That is, it sends
no message back to the inputs. Such a “response” is treated by the
inputs as an implicit accept and is taken into account in subse-
quent bids. Once an output has received bids for a total ST cells, it
sends an accept message to all the inputs (not just those that sent
it bids). An accept message contains a pair of values (i,x) and it
means that the output accepts all bids received from inputs with
index less than i, rejects all bids from inputs with index greater
than i and accepts exactly x cells from input i. Once an output
sends an accept message, its role in the scheduling is complete.

This procedure has some attractive properties. First, each out-
put sends n messages in the bidding process, so each input re-
ceives no more than n messages. Also, an input sends at most two
bids to any particular output, so an input sends at most 2n bids
and an output receives at most 2n bids. Thus, the number of cells
that must be handled at any input or output during the scheduling
is O(n). Unfortunately, this does not imply that the algorithm runs
in O(n) time, since it can require up to n rounds and in each
round, there may be some outputs that handle close to n messages.

It is possible to reduce the time for each round by having the
switch elements that make up the interconnection network par-
ticipate in the handling of bids and responses. However, in the
next section we turn our attention instead, to algorithms that are
simpler to implement and which, while not provably work-
conserving, are able to match the performance of the work-
conserving algorithms, even under extreme traffic conditions.

3. DISTRIBUTED BLOOFA
The work-conserving algorithms discussed above can be imple-
mented using iterative algorithms that require a potentially large
number of message exchanges. In this section, we formulate a
distributed algorithm that approximates the behavior of BLOOFA

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 6 0
4 5 0 3
0 6 6 0
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

Scheduling Problem Blocking Flow Problem with Solution Scheduling Solution

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12

12,11

12,12

12,7

6,6

12,6 4,4

6,3

5,5

5,0

14,6
6,6

4,4

5,2

capacity,flow

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 6 0
4 5 0 3
0 6 6 0
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

6 0 6 0
4 5 0 3
0 6 6 0
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

Scheduling Problem Blocking Flow Problem with Solution Scheduling Solution

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12

12,11

12,12

12,7

6,6

12,6 4,4

6,3

5,5

5,0

14,6
6,6

4,4

5,2

capacity,flow

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12

12,11

12,12

12,7

6,6

12,6 4,4

6,3

5,5

5,0

14,6
6,6

4,4

5,2

capacity,flow

Fig. 1. Example showing a maximal ordered schedule constructed from a blocking flow.

- 6 -

while requiring just one exchange of messages. Our Distributed
BLOOFA (DBL) scheduler avoids the need for many message ex-
changes by having the inputs structure their bids to avoid the
situation swamping some outputs with more bids than they can
accept, while leaving others with no bids. Specifically, the inputs
use a technique introduced in [11] called backlog-proportional
allocation to limit the number of bids that are made to any output.

DBL starts with each input i sending a message to each output
j, telling it how many cells B(i,j) it has in its VOQ for output j.
Each output j then sends a message to all inputs containing the
number of cells in its output queue (B(j)) and the total number of
cells that inputs have to send it (B(+, j)2). Note that each input and
output sends and receives n messages. Once this exchange of
messages has been made, each input independently decides how
many cells to send to each output. To prevent too many cells from
being sent to any output, input i is allowed to send at most ST

×B(i, j)/B(+, j) cells to output j. Each input then orders the outputs
according to the length of their output queues and goes through
this list, assigning as many cells as it is permitted for each output,
before going to the next output in the list. The scheduling is com-
plete when the input has assigned a total of ST cells or has as-
signed all the cells permitted by the bound.

We studied the performance of DBL using simulation for
speedups between 1 and 2. We start with an extreme traffic pat-
tern, we call a stress test, that is designed to probe the perform-
ance limits of the distributed scheduling algorithms. While the
stress test is not a provably worst-case traffic pattern for any par-
ticular scheduler, it does create conditions that make it difficult
for schedulers to maintain ideal throughput.

The stress test consists of a series of phases, as illustrated in
Fig. 2. In the first phase, the arriving traffic at each of several
inputs is directed to a single output. This causes each of the inputs
to build up a backlog for the target output. The arriving traffic at
all the inputs is then re-directed to a second output, causing the
accumulation of a backlog for the second output. Successive
phases proceed similarly, creating backlogs at each input for each
of several outputs. During the last phase, the arriving traffic at all
inputs is re-directed to a distinct new output for each input. Since
each of the target outputs of the last phase has only a single input
directing traffic to it, that input must send cells to it as quickly as
they come in, while simultaneously clearing the accumulated
backlogs for the other outputs, in time to prevent underflow at
those other outputs. This creates an extreme condition that can
lead to underflow. The timing of the transitions between phases is
chosen so that the total number of cells in the system directed to
each output is approximately the same at the time the transition

2. We use the addition symbol (‘+’) as a function argument to

denote the summation of the function over all values of that ar-
gument.

takes place. The stress test can be varied by changing the number
of participating inputs and the number of phases.

Fig. 3 shows results from a sample stress test. The top chart
shows the VOQ lengths at input 0 and the output queue lengths at
outputs 0 to 4 (by symmetry, the VOQ lengths at other inputs will
be approximately the same as those at input 0). The time unit is
the update interval, T. The unit of storage is the number of cells
that can be sent on an external link during the update interval.
Note that during the last phase, B(0,4) rises, indicating that input
0 is unable to transfer cells to output 4 as quickly as they come in.
This results in loss of link capacity at output 4. The second chart
shows the miss fraction at output 4 during the last phase. The term
“miss” refers to a missed opportunity to send a cell. The miss
fraction measures the fraction of the link capacity that is effec-
tively lost during the last phase due to such misses and is a meas-
ure of how far the system deviates from being work-conserving.
The curve labeled simply, “miss fraction” measures the average
miss fraction during successive measurement intervals (the meas-
urement intervals are 25 time units long). The curve labeled “av-
erage miss fraction” is the fraction of the link capacity lost from
the start of the last phase to the time plotted. We observe that
almost 30% of the link’s capacity is effectively lost between the
start of the last phase and the end of the period shown.

The first chart in Fig. 4 shows how DBL performs on a series
of stress tests with speedups varying between 1 and 1.5. (In these
tests, the length of the stress test was set to 1.2 times the length of
time that would be required to forward all the cells received dur-
ing the first phase in an ideal output-queued switch.) We see here
that the average miss fraction (for the output targeted by input 0
in the last phase) drops steadily with increasing speedup, drop-
ping to zero before the speedup reaches 1.5. We performed 90
sets of stress tests, using different numbers of inputs and phases
(up to 15 inputs and 15 phases). The results plotted in the figure
are the worst-cases for 2, 3, 4 and 5 inputs. In all cases, the aver-
age miss fraction for the last phase target output dropped to zero
for speedups greater than 1.5.

To compare DBL to BLOOFA, we performed the same series
of 90 stress tests on BLOOFA. For speedups below 2, the method
used to select which inputs send traffic to a given output can have
a significant effect on the performance of BLOOFA. For the results
given here, we went through the outputs in order (from smallest
output-side backlog to largest) and for each output j, we assigned
traffic from different inputs to output j in proportion to the frac-
tion that each could supply of the total that all inputs could send
to j in this update interval. The second chart in Fig. 4 shows the
results of these stress tests on BLOOFA. Although close examina-
tion reveals small differences between the distributed and central-
ized versions of BLOOFA, the results are virtually indistinguish-
able. We conclude that the approximation introduced by using the
backlog-proportional allocation method to enable efficient dis-
tributed scheduling, has a negligible effect on the quality of the
scheduling results, even though the distributed version is not
known to be provably work-conserving for any speedup.

We have also studied the performance of DBL for less ex-
treme (although, still very demanding) traffic. In particular, we
have studied bursty traffic situations in which there is one output
(referred to as the subject output), for which traffic is arriving
continuously at a specified fraction of the link rate. The input at
which the subject’s traffic arrives changes randomly as the simu-

phase 1 phase 2 phase 3 phase 4phase 1 phase 2 phase 3 phase 4

Fig. 2. Typical stress test

- 7 -

lation progresses (it remains with a given input for an exponen-
tially distributed time interval). Each of the inputs that is not cur-
rently providing traffic for the subject has its own target output
(not equal to the subject) to which it sends traffic, changing tar-
gets randomly and independently of all other inputs (an input
retains its current target for an exponentially distributed time in-
terval). With this traffic pattern, roughly one fourth of the outputs
that are not the subject are overloaded at any one time (they are
targets of two or more inputs). An ideal scheduler will forward
cells to the subject output as fast as they come in, preventing any
input-side queueing of cells for the subject. However, the other
outputs can build up significant input side backlogs (due to the
transient overloads they experience), leading to contention that
can affect the subject output. Fig. 5 shows an example of what
can happen in a system subjected to this type of traffic. The top
chart shows the amount of data buffered for the subject output
(which is output 0) at all inputs (B(+,0)), the amount of data buff-
ered at the input that is currently receiving traffic for the subject
(B(i,0)) and the amount of data buffered at the subject (B(0)). The
unit of storage is the amount of data received on an external link
during an update interval and the time unit is the update interval.
The discontinuities in the curve for B(i,0) occur when the input
that is currently receiving traffic for the subject changes (i.e., the
value of i changes). The bottom chart shows the instantaneous
value of the miss fraction.

Fig. 6 shows the average miss fraction from a large number of
bursty traffic simulations with varying input load and speedup.
Note that the miss fraction reaches its peak when the input load is
between 0.8 and 0.9. Larger input loads lead to a sharp drop in the
miss fraction. The explanation for this behavior is that when the
input load approaches 1, output-side backlogs tend to persist for a

long period of time and it is only when the output-side backlogs
are close to zero that misses can occur. As one would expect, the
miss fraction drops quickly as the speedup increases. Note that for
speedup 1.15 the miss fraction never exceeds 2%, meaning that
only a small fraction of the link capacity is lost.

 It should be noted that the bursty traffic model used in these
studies represents a very extreme situation. A more realistic
bursty traffic model would have a large number of bursty sources
(at least a few tens) with more limited peak rates sharing each
input link (at least a few tens of sources per link). Such a model is
far less challenging than the one used here.

4. OUTPUT QUEUE LEVELING
The intuition behind BLOOFA is that by favoring outputs with
smaller queues, we can delay the possibility of underflow and
potentially avoid it altogether. Theorem 2 tells us that for a
speedup of 2 or more, we can avoid underflow, but it does not say
anything about what happens with smaller speedups. When there
are several output queues of nearly the same length, BLOOFA
transfers as many cells as possible to the shortest queues, poten-
tially preventing any cells from reaching slightly longer queues. It
seems likely that we could get better performance by balancing
the transfers so that the resulting output queue lengths are as close
to equal as possible. This is the intuition behind the Output Level-
ing Algorithm (OLA). In this section we show that OLA, like BCCF
and BLOOFA is work-conserving for speedups of 2 or more. Sub-
sequently, we study the performance of OLA and a practical vari-
ant of OLA and show that these algorithms can out-perform
BLOOFA and DBL.

OLA orders cells at an input in the same way that BLOOFA
does. Let B(i,j) and B(j) be the lengths of the VOQs and output

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000 6000

Time

B (+,0)

B (+,3)

B (+,2)

B (+,1)

B (+,4)
B (0) B (1) B (4)

speedup =1.2, 3 inputs, 5 phasesDBL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4000 4250 4500 4750 5000 5250 5500 5750 6000 6250 6500

Time

miss fraction

average miss fraction

speedup =1.2, 3 inputs, 5 phasesDBL

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000 6000

Time

B (+,0)

B (+,3)

B (+,2)

B (+,1)

B (+,4)
B (0) B (1) B (4)

speedup =1.2, 3 inputs, 5 phasesDBL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4000 4250 4500 4750 5000 5250 5500 5750 6000 6250 6500

Time

miss fraction

average miss fraction

speedup =1.2, 3 inputs, 5 phasesDBL

Fig. 3. Results from sample stress test for distributed BLOOFA - buffer levels (top) and miss fraction (bottom).

- 8 -

queues respectively, immediately before a transfer phase and let
x(i,j) be the number of cells transferred from input i to output j
during the transfer. We say that the transfer is level if for any pair
of outputs j1 and j2,

B(j1) + x(+, j1) < B(j2) + x(+, j2) − 1
implies that x(+, j1) = min{ST, B(+, j1)}. That is, whenever the
output queue level at some output j1 is more than one less than
that of another (following a transfer phase), it’s implies there is no
way to increase the level at j1. We define OLA as any scheduling
algorithm that produces schedules that are maximal and level.

4.1 Work Conservation
We use essentially the same strategy to show that OLA is work-
conserving when the speedup is at least 2. However, to show that
the minimum slack increases by ST at each input during a transfer
phase, we first need to show how a transfer phase scheduled by
OLA can be decomposed into a sequence of sub-phases. Note that
this decomposition is needed only for the work-conservation
proof. It plays no role in the implementation of the algorithm.
Let B(i,j) and B(j) be the lengths of the VOQs and output queues
respectively, immediately before a transfer phase and let x(i,j) be
the number of cells transferred from input i to output j during the
transfer. Each of the sub-phases corresponds to the transfer of up
to one cell from each input and up to one cell to each output. We
let xk(i,j) denote the number of cells transferred from input i to
output j by the first k sub-phases. At the end of sub-phase k, the
outputs are ordered in increasing order of B(j) + xk(+, j) with ties
broken according to the output numbers. The ordering of the out-
puts is used to order the VOQs at each input and this ordering is
extended to all the cells at each input. We say that a cell b pre-
cedes a cell c following sub-phase k if b comes before c in this

cell ordering. We define qk(c)=B(j) + xk(+, j) and we define pk(c)
to be the number of cells at c’s input that precede it in the order-
ing at the end of sub-phase k. We also define slackk(c) = qk(c)

− pk(c). Let slack0(c) be the value of slack(c) before the transfer
phase begins and note that if k is the last sub-phase, then slackk(c)

is equal to the value of slack(c) following the transfer phase.
Given a schedule constructed by an OLA scheduler, we con-

struct sub-phases iteratively. To construct sub-phase k, repeat the
following step until no outputs are eligible for selection.

Select an output j that has not yet been selected in this sub-
phase for which xk−1(+, j)<x(+, j) and which, among all such
outputs, has the minimum value of qk−1(c). If there are multi-
ple outputs that satisfy this condition, select the output that
comes first in the fixed numbering of the outputs. Then, select
some input i that has not yet been selected in this sub-phase
for which xk−1(i, j)<x(i, j). If there is such an input, include the
transfer of a cell from input i to output j in sub-phase k, mak-
ing xk(i, j) = xk−1(i, j) + 1.

We will use this decomposition to show that the minimum slack
at each input increases by at least ST during each transfer phase.
Lemma 5. For any OLA scheduler, during a transfer phase, the
minimum slack at any input that does not transfer all of its cells
during the transfer phase, increases by at least ST.
proof. Because OLA constructs maximal schedules, any transfer
phase that leaves cells at input i must either transfer ST cells from
input i or must transfer ST cells to every output j for which a cell
remains at input i following the transfer phase. This means that if
we decompose the transfer phase into sub-phases, as described
above, there will be at least ST sub-phases. We show below that
every one of these sub-phases increases the minimum slack at
input i. Hence, the minimum slack increases by ST over the com-
plete transfer phase.

Let k be the index of any sub-phase and let c be any cell at in-
put i which is not transferred during sub-phase k and for which
slackk−1(c) is minimum among all cells at input i. Let j be the
output that c is going to. If output j receives no cell during sub-
phase k, then input i must transfer a cell during sub-phase k. The
selection rule used to construct sub-phases ensures that the trans-
ferred cell precedes c. Hence, pk(c) = pk−1(c)−1 and thus, slackk(c)
= slackk−1(c)+1.

If output j does receive a cell, then qk(c) = qk−1(c) + 1. If no
cell at input i passes c during the sub-phase, then slackk(c) ≥
slackk−1(c)+1. Suppose then, that there is one or more cell that
passes c during the sub-phase and let d be such a cell. Since c
precedes d before the sub-phase qk−1(c) ≤ qk−1(d) and pk−1(c) <

pk−1(d). Since d precedes c after the sub-phase, no cell is received
by d’s output during the sub-phase and so qk−1(d) ≤ qk−1(c) + 1.
Because slackk−1(c) ≤ slackk−1(d), pk−1(d) − pk−1(c) ≤ qk−1(d) − qk−1(c)

≤ 1 which means that there are no cells that fall between c and d in
the cell ordering. This implies that d is the only cell that passes c
during the sub-phase. Because d’s output receives no cell during
the sub-phase, there must be some cell that precedes d that is
transferred from input i during the sub-phase and this cell must
also precede c. Thus, pk(c) = pk−1(c) and so slackk(c) = slackk−1(c)

+ 1.
As before, we note that each arrival phase causes slack(c) to

decrease by at most T. Also, as before, if slack(c) is at least T

0

0.2

0.4

0.6

0.8

1

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

speedup

av
g.

 m
iss

 fr
ac

tio
n

2 inputs , 5 phases 3,7

4,9

5,11

distributed BLOOFA

0

0.2

0.4

0.6

0.8

1

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

speedup

av
g.

 m
iss

 fr
ac

tio
n

2 inputs , 5 phases 3,7

4,9

5,11

BLOOFA

Fig. 4. Miss fraction for DBL and BLOOFA on a variety

of stress tests

- 9 -

before the start of a departure phase, then slack(c) is at least zero,
after the departure phase. This is sufficient to establish that OLA
is work-conserving when S ≥ 2.

Lemma 6. For any OLA scheduler with S ≥ 2, if c is a cell at an
input before the start of the departure phase, then slack(c) ≥ T.

The proof of Lemma 6 is just like the proof of Lemma 4, ex-
cept that it uses Lemma 5, in place of Lemma 3. Lemma 6 leads
immediately to the work-conservation theorem for OLA.

Theorem 3. For S ≥2, any OLA scheduler is work-conserving.

4.2 Implementing OLA
An OLA scheduler can be implemented exactly either using linear
programming or by solving a minimum cost, maximum flow
problem with a convex cost function. We outline the latter ap-
proach, as it serves to motivate more practical, approximate vari-
ants.

In the classical version of the minimum cost, maximum flow
problem [1,13], each edge has an associated cost coefficient,
which is multiplied by the flow on the edge to get the edge’s con-
tribution to the overall cost of the flow. There are several well-
known efficient algorithms for solving the minimum cost, maxi-
mum flow problem. Interestingly, these algorithms can be gener-
alized to handle networks in which the cost is a convex function
of the flow on the edge, rather than a linear function (x2 is an ex-
ample of a convex function).

The OLA scheduling algorithm can be reduced to solving a
minimum cost, maximum flow problem with a convex edge cost
function. An example of such a reduction is shown in Fig. 7,
along with a solution and the corresponding schedule. The flow
graph is constructed in the same way as was discussed in Section
2. The only difference is the introduction of non-zero costs on the
edges from the output vertices to the sink vertex t. The cost of an
edge from output j to t carrying a flow of magnitude x is defined
as C(x) = (x + B(j))2. A minimum cost, maximum flow for this
network corresponds directly to an OLA schedule. The convexity
of the cost function ensures that the flows on different output to
sink edges result in costs that are as nearly equal as the various
edge capacities allow (if a flow can be shifted from a higher cost
edge to a lower cost edge, there is a net reduction in cost, because
the lower cost edge has lower incremental cost, per unit flow).
The use of the offset B(j) in the edge cost means that the costs of
the flows on two output-to-sink edges are equal whenever the
corresponding schedules yield equal levels at the output queue.
Reference [1] describes an algorithm that finds a minimum cost,
maximum flow in O((m log K)(m + n log n)) time on an arbitrary
network with n vertices, m edges and maximum edge capacity K.
While this algorithm is not useful for distributed scheduling in
real systems, it can be used in performance studies to establish a
benchmark for more practical algorithms that seek to approximate
the behavior of OLA.

0

1

2

3

4

5

6

1000 1020 1040 1060 1080 1100

Time

Q
ue

ue
 L

ev
el

B (0)

B (i ,0)

B (+,0)

DBL , speedup =1.1, bursty traffic, load=0.9, mean dwell time=10

0

0.2

0.4

0.6

0.8

1000 1020 1040 1060 1080 1100

Time

M
is

s
Fr

ac
tio

n DBL , speedup =1.1, bursty traffic, load=0.9, mean dwell time=10

0

1

2

3

4

5

6

1000 1020 1040 1060 1080 1100

Time

Q
ue

ue
 L

ev
el

B (0)

B (i ,0)

B (+,0)

DBL , speedup =1.1, bursty traffic, load=0.9, mean dwell time=10

0

0.2

0.4

0.6

0.8

1000 1020 1040 1060 1080 1100

Time

M
is

s
Fr

ac
tio

n DBL , speedup =1.1, bursty traffic, load=0.9, mean dwell time=10

Fig. 5. Time series showing performance of DBL for bursty traffic.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0.50 0.60 0.70 0.80 0.90 1.00
Link Load

M
iss

 F
ra

ct
io

n

DBL , bursty traffic, mean dwell time=0.1

speedup =1.25

1.1

1.05

1.2

1.15

Fig. 6. Performance of DBL on bursty traffic with varying speed-
ups and subject, target dwell times

- 10 -

5. DISTRIBUTED OLA
We start by describing an approximate centralized version of
OLA. We then show how this can be converted to a distributed
scheduler, using an extension of the backlog-proportional alloca-
tion method introduced earlier.

Our approximate centralized algorithm uses an array x(i,j)
which is initialized to zero and which defines the number of cells
to be transferred from input i to output j, when the scheduling
algorithm completes. It also uses a parameter ∆ ≤ ST, which de-
termines the accuracy of the approximation. During its execution,
the algorithm maintains a list of the outputs, sorted in increasing
order of x(+, j) + B(j). The algorithm repeats the following step so
long as there are at least two outputs on the list.

Let j1 and j2 be the indices of the first two outputs on the list.
Increase x(+, j1), by repeatedly increasing x(i,j1) for selected
values of i (input selection criteria are discussed below). Stop
when x(+, j1) + B(j1) = x(+, j2) + B(j2) + ∆, or when x(+, j1) =
ST or when x(+, j1) = B(+, j1), whichever occurs first. If either
of the last two conditions occurs, remove j1 from the list. Oth-
erwise, move it down the list to maintain the list order.

When the list has been reduced to a single output j, the algorithm
increases x(+, j) until x(+, j) = min {ST, B(+, j)} or until all inputs
with cells for output j have scheduled all they can (ST).

 The number of steps performed by the algorithm is at most
nST/∆. It can be implemented to run in O(m + (ST/∆)n2) time,
where m is the number of non-empty VOQs. This can be improved
to O(m + (ST/∆)n log n), if the list is replaced with a heap. If ∆=1,
the algorithm computes an OLA schedule (regardless of the input
selection criterion). For larger values of ∆, it implements a ∆-OLA
schedule, which is defined as any maximal schedule for which

B(j1) + x(+, j1) < B(j2) + x(+, j2) − ∆

implies that x(+, j1) = min{ST, B(+, j1)}. That is, a ∆-OLA sched-
uler allows the output queue differences at the end of a transfer
phase to exceed ∆, only if there is no way to transfer more cells to
the outputs with the smaller queues. ∆-OLA schedulers, like OLA
schedulers are work-conserving when the speedup is at least 2 (a
slight variant of the proof used for OLA can be used to show this).
For smaller speedups, we can trade-off scheduling performance
against running time by adjusting ∆.

The criterion used to select the next input to use to effect an
increase in x(+, j1) does not affect the work-conservation condi-

tion. However, different choices can affect performance when the
speedup is less than two. In the performance results reported be-
low, we distribute the load approximately evenly among all inputs
with traffic for output j1, using a round-robin technique. We main-
tain a list of inputs that can still send to j1 (they have both cells for
j1 and uncommitted bandwidth) and use the first input on the list
to increase the flow to j1. To obtain an even distribution, we take
at most ∆ from an input at a time and then move that input to the
end of the list. This method can be implemented without increas-
ing the time complexity of the algorithm.

To convert a ∆-OLA scheduler to a practical distributed sched-
uler, we use the backlog proportional allocation technique intro-
duced earlier to allow inputs to divide the responsibility for sup-
plying traffic to the different outputs. This allows each input to
operate independently of the others, once the initial exchange of
information takes place. As with DBL, this initial exchange sup-
plies input i with the values of B(j) and B(+,j) for every output j.
Input i also has the values B(i,j) for all j and it uses these to com-
pute values σ(i,j) = B(i,j)/B(j). Given this information, input i
makes its scheduling decisions in a way that is similar to the cen-
tralized algorithm. In particular, input i maintains a list of the
outputs for which it has cells, sorted in increasing order of B(j) +
x(i,j)/σ(i,j). It then repeats the following step so long as the list
has at least two elements.

Let j1 and j2 be the indices of the first two outputs on the list.
Increase x(i, j1) until one of the following conditions holds.

1. x(i,+) = ST

2. x(i, j1) = σ(i,j1)ST
3. x(i, j1) = B(i, j1)

4. B(j1) + x(i, j1)/σ(i,j1) = B(i, j2)+ ∆ + x(i, j2)/σ(i,j2)
If condition 1 occurs, the algorithm terminates. If either of
conditions 2 or 3 occurs, remove j1 from the list. Otherwise,
move j1 down the list so as to maintain the list order.

When the list has been reduced to a single output j, the algorithm
increases x(i, j) until x(i, j) = min {σ(i,j)ST, B(i, j)} or until x(i,+)
= ST, whichever occurs first.

The number of steps performed by the algorithm is at most
nST/∆. It can be implemented to run in O((ST/∆)n2) time, using a
naive list implementation or O((ST/∆)n log n), if the list is re-
placed with a heap. Using a hardware implementation of a sorted

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 6 0
4 5 0 3
0 6 4 2
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

Scheduling Problem Blocking Flow Problem with Min Cost Solution Scheduling Solution

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12,
196

12,11,
121

12,10,
169

12,9,
196

6,6

12,6 4,4

6,3

5,5

5,2

14,4
6,6

4,4

5,2

capacity,flow,
cost

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 12 0
4 5 0 6
0 6 14 5
5 0 0 4

3 52 0

0

1

2

3

outputs
0 1 2 3

in
pu

ts
VOQ
levels

output
queue
levels

S = 1.5
T = 8

6 0 6 0
4 5 0 3
0 6 4 2
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

6 0 6 0
4 5 0 3
0 6 4 2
2 0 0 4

0

1

2

3

outputs
0 1 2 3

in
pu

ts

Scheduling Problem Blocking Flow Problem with Min Cost Solution Scheduling Solution

s

a0

a1

a2

a3

b0

b1

b2

b3

t

12,12

12,12

12,12

12,6

12,12,
196

12,11,
121

12,10,
169

12,9,
196

6,6

12,6 4,4

6,3

5,5

5,2

14,4
6,6

4,4

5,2

capacity,flow,
cost

Fig. 7. Implementing OLA using minimum-cost blocking flow with convex cost function.

 Differences from earlier solution highlighted in bold.

- 11 -

list, this can be improved to O((ST/∆)n) at the cost of n registers
and associated comparison logic.

Fig. 8 shows how distributed OLA performs on a sample stress
test. This example uses a value of ∆=0.1. Comparing this to Fig.
3, we see that distributed OLA reduces the miss fraction during the
critical period of the last phase by about 20% relative to DBL. For
this situation, distributed OLA delivers nearly ideal performance,
distributing the misses evenly among the different outputs experi-
encing misses. Fig. 9 shows how distributed OLA performs on a
large number of different stress tests. Comparing these results to
Fig. 4, we see that distributed OLA provides the largest improve-
ment for very small speedups. The speedups needed to reduce the
misses to zero are the same for both DBL and distributed OLA.

6. PRACTICAL CONSIDERATIONS
While the main focus of this paper has been on establishing the
theoretical foundation for robust distributed scheduling, we be-
lieve that the results are of direct practical value. First, it is impor-
tant to discuss the significance of the idealized assumptions made
to facilitate the analysis; specifically, the assumption that the
system operation is structured in discrete phases (arrival, transfer
and departure). While systems could certainly be built that adhere
to this assumption, this would imply a period during which data
forwarding was suspended, while scheduling was being per-
formed. Pipelining can be used to eliminate this inefficiency.
During each update period, a pipelined implementation would
perform the scheduling needed to handle traffic received up to the
start of the current update period. This traffic would then be al-
lowed to proceed to the outputs during the next update period.

This implies that all cells would experience a delay of between
one and two update periods. While our analysis can be applied
directly to systems that operate in this way, we need to relax the
definition of work-conservation to reflect this delay. We say that
such a system with an update period of T is T-work-conserving, if
an output link is never allowed to be idle, so long as there are no
cells that arrived at least 2T time units earlier. (Note that by this
definition, crossbar schedulers that pipeline scheduling with data
transfer are 1-work-conserving.)

In practice, it may be preferable not to adhere to a strict pipe-
lining discipline, but to allow scheduling to proceed on a more or
less continuous basis, with ports periodically sending their status
information and asynchronously updating the forwarding rates of
their VOQs. This eliminates delays that are artificially imposed by
the scheduler. Delays will still occur when the rate at which traf-
fic arriving at an input for a given output increases suddenly, but
during periods of relative rate stability there would be no unnec-
essary delays. Note however, that while our results provide strong
evidence that such systems can be work-conserving, they do not
specifically apply to them. It would be interesting to see if one
could formalize such asynchronously scheduled systems so as to
enable rigorous statements about work-conservation.

Another important issue for distributed scheduling is the
overhead of the required message exchanges required. The practi-
cal variants of the distributed schedulers described here require
that each port send and receive 2n values, each update period
(where n is the number of ports). Using a compact floating point
representation, these can be encoded with sufficient accuracy in
4n bytes. If the update period is chosen so that the amount of data
a port can send to or receive from the interconnection network per
update period is much larger than 4n, the overhead required to
communicate these values can be kept acceptably small. For a
system with n=1,000 and 10 Gb/s links, an update period of 50 µs
is enough to keep the overhead below 5%.

A related issue is the computational overhead of distributed
scheduling. Since the update period is necessarily a constant mul-
tiple of the number of ports, there is time to perform even moder-
ately complex algorithms. For a system with n=1000 and a clock
frequency of 200 MHz, the DBL algorithm can be executed at
each port in 5 µs, a small fraction of the required update period.
While more complex algorithms such as distributed OLA are more
challenging to implement in the required time, even these are
feasible to implement if ∆ is at least, say ST/10.

0

0.2

0.4

0.6

0.8

1

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

speedup

av
g.

 m
iss

 fr
ac

tio
n

2 inputs , 5 phases 3,7

4,9

5,11

distributed OLA
∆=.02 (lines)
∆=.2 (mark)

Fig. 9. Miss fraction for distributed OLA on a variety of
stress tests

0

0.1

0.2

0.3

0.4

0.5

0.6

4000 4250 4500 4750 5000 5250 5500 5750 6000 6250 6500

Time

miss fraction

average miss fraction

speedup =1.2, 3 inputs, 5 phases

distributed OLA - ∆=0.1

Fig. 8. Example stress test for distributed OLA

- 12 -

In this paper, we have not addressed the interconnection net-
work itself, and how it might interact with a distributed scheduler.
The performance of multistage interconnection networks with
buffered switch elements has been studied in great detail, using
both analysis and simulation (representative examples of analyti-
cal studies of such systems can be found in references [3,12]).
The general conclusion of these studies is that these systems can
provide excellent performance when carrying traffic that does not
cause sustained overloads on any output links. The use of distrib-
uted scheduling can ensure that this condition is met, allowing
one to consider interconnection network performance, as a largely
independent issue. Most performance studies of these networks
have been done assuming switch element chips that provide buff-
ering for just a small number of cells per port (the typical range is
2-16) and these systems are capable of throughputs exceeding
90% for switch element buffer sizes of eight or more per port.
Modern ICs allow the construction of switch elements with over
four thousand cells, allowing system throughputs to approach
100%. With current technology, a three stage, multi-plane, Clos-
type network using dynamic routing requires roughly n switch
element ICs to support n 10 Gb/s links (for values of n ranging
from about 100 to several thousand). Such a network can buffer
several thousand cells per external link, allowing it to effectively
smooth out any rate variations that may occur within an update
period. Since rate-controlled VOQs feed traffic to the network in a
smooth, rather than a bursty fashion, the magnitude of such varia-
tions can be expected to be quite limited, allowing the network to
deliver cells to the outputs with only very modest queueing de-
lays.

7. CONCLUDING REMARKS
We believe that system architectures that combine distributed
scheduling and buffered, multistage interconnection networks are
among the most scalable and cost-effective architectures for im-
plementing high performance routers. These architectures make it
feasible today to build systems with aggregate capacities from 1
to 100 Tb/s. Continued improvements in Moore’s Law will allow
them to continue to scale in both line speed and total capacity.
The one drawback that such systems have suffered from is that
their performance can degenerate when they are subjected to the
extreme traffic situations that can occur in Internet routers. While
various ad-hoc flow control techniques have been used to address
this issue, it has not been possible up to this point, to make rigor-
ous statements about their performance under extreme traffic. The
theoretical results developed here show that the performance of
these systems can be directly comparable to the performance of
unbuffered crossbars, controlled by centralized schedulers. While
in both system contexts, the scheduling algorithms with the
strongest theoretical guarantees are not practical to implement,
these algorithms provide the insight needed to design practical
variants capable of similar performance.

There are some interesting ways that this work could be ex-
tended. First, it seems possible that algorithms like DBL and dis-
tributed OLA are work-conserving for small speedups. However,
proving such results seems to require either extensions to the
proof techniques used here (adapted largely from earlier work on
crossbar scheduling), or entirely new techniques. Establishing
such a result would be of great interest from both a theoretical and
a practical perspective.

Reference [11] describes distributed scheduling algorithms
that support weighted-fair queueing and algorithms that seek to
guarantee that packets that arrive at the same time for the same
output link are forwarded at approximately the same time on that
output link. The results developed here can likely be extended to
allow rigorous statements about the performance of these or simi-
lar distributed schedulers.

Finally, as noted in the introduction, whereas crossbar sched-
ulers must match inputs to outputs in a one-to-one fashion, dis-
tributed schedulers can divide the bandwidth at inputs and outputs
arbitrarily. It seems likely that this difference may allow the con-
struction of distributed schedulers with speedups smaller than 2.
Our failure to prove such a result may be just a consequence of
our reliance on proof methods adapted from crossbar scheduling.
Our simulation studies suggest that speedups close to 1.5 may be
sufficient for work-conservation in distributed schedulers and we
have some (so far inconclusive) analytical evidence that suggests
work-conservation could be achievable for speedups of slightly
less than 1.6. The establishment of such a result would be of con-
siderable practical value and would also be interesting from a
purely analytical standpoint, as it would likely require different
proof techniques than those that have been employed so far.

REFERENCES
[1] Ahuja, R., T. Magnanti and J. Orlin. Network Flows, Theory,

Applications and Algorithms. Prentice-Hall, 1993.
[2] Anderson, T., S. Owicki., J. Saxe and C. Thacker. “High

speed switch scheduling for local area networks,” ACM
Trans. on Computer Systems, 11/93.

[3] Bianchi, G. and J. Turner. “Improved Queueing Analysis of
Shared Buffer Switching Networks,” Proceedings of
Infocom, 3/93.

[4] Chang, C. S., D.S. Lee and Y.S. Jou, “Load balanced
Birkhoff-von Neumann switches, Part I: one-stage
buffering”. Computer Communications Vol. 25. pp. 611-622,
2002.

[5] Chuang, S.-T. A. Goel, N. McKeown, B. Prabhakar
“Matching output queueing with a combined input output
queued switch,” IEEE Journal on Selected Areas in
Communications, 12/99.

[6] Keslassy, I., S.-T. Chuang, K. Yu, D. Miller, M. Horowitz,
O. Solgaard, N. McKeown, “Scaling Internet routers using
optics.” ACM SIGCOMM, 9/03.

[7] Krishna, P., N. Patel, A. Charny and R. Simcoe. “On the
speedup required for work-conserving crossbar switches,”
IEEE J. Selected Areas of Communications, 6/99.

[8] McKeown, N., V. Anantharam and J. Walrand. “Achieving
100% throughput in an input-queued switch,” Proceedings of
Infocom, 1996.

[9] McKeown, N., M. Izzard., A. Mekkittikul, W. Ellersick and
M. Horowitz. “The Tiny Tera: a packet switch core,” Hot
Interconnects, 1996.

[10] McKeown , Nick. “iSLIP: a scheduling algorithm for input-
queued switches,” IEEE Transactions on Networking, 4/99.

[11] Pappu, P., J. Turner and K. Wong. “Distributed Queueing in
Scalable High Performance Routers,” Proceedings of
Infocom, 4/03.

[12] Szymanski, T. and S. Shaikh. “Markov Chain Analysis of
Packet-Switched Banyans with Arbitrary Switch Sizes,
Queue Sizes, Link multiplicities and Speedups,” Proceedings
of Infocom, 4/89.

[13] Tarjan., Robert. Data Structures and Network Algorithms.
Society for Industrial and Applied Mathematics, 1983.

