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ABSTRACT − Buffered multistage interconnection networks 
offer one of the most scalable and cost-effective approaches to 
building high capacity routers. Unfortunately, the performance of 
such systems has been difficult to predict in the presence of the 
extreme traffic conditions that can arise in the Internet. Recent 
work introduced distributed scheduling, to regulate the flow of 
traffic in such systems. This work demonstrated, using simulation 
and experimental measurements, that distributed scheduling can 
deliver robust performance for extreme traffic. Here, we show 
that distributed schedulers can be provably work-conserving for 
speedups of 2 or more. Two of the three schedulers we describe 
were inspired by previously published crossbar schedulers. The 
third has no direct counterpart in crossbar scheduling. In our 
analysis, we show that distributed schedulers based on blocking 
flows in small-depth acyclic flow graphs can be work-conserving, 
just as certain crossbar schedulers based on maximal bipartite 
matchings have been shown to be work-conserving. We also 
study the performance of practical variants of these schedulers 
when the speedup is less than 2, using simulation.   

Categories and Subject Descriptors. C.2.1 [Computer-
Communications Networks]: Network Architecture and Design 
– network communications, packet-switching networks. 

General Terms. algorithms, performance 

Keywords. distributed scheduling, crossbar scheduling,  high 
performance  routers, CIOQ switches 

1. INTRODUCTION 
High performance routers must be scalable to hundreds or even 
thousands of ports. The most scalable router architectures include 
systems using multistage interconnection networks with internal 
buffers and a small speedup relative to the external links; that is, 
the internal data paths operate at speeds that are greater than the 
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external links by a small constant factor (typically between 1 and 
2). In the presence of a sustained overload at an output port, such 
systems can become congested with traffic attempting to reach the 
overloaded output, interfering with the flow of traffic to other 
outputs. The unregulated nature of traffic in IP networks makes 
such overloads a normal fact of life, which router designers must 
address, in order to make their systems robust. 

Reference [11] introduced distributed scheduling to manage 
the flow of traffic through a large router in order to mitigate the 
worst effects of extreme traffic. Distributed scheduling borrows 
ideas developed for scheduling packet transmissions through 
crossbar switches [2,5,7,8]. The core idea is to use Virtual Output 
Queues (VOQ) at each input. That is, each input maintains sepa-
rate queues for each output. (Queues are implemented as linked 
lists, so the only per queue overhead is for the queues’ head and 
tail pointers.) Packets arriving at inputs are placed in queues cor-
responding to their outgoing links. In crossbar scheduling, a cen-
tralized scheduler selects packets to send through the crossbar, 
seeking to emulate as closely as possible, the queueing behavior 
of an ideal output queued switch. The centralized scheduler used 
in crossbar scheduling makes scheduling decisions every packet 
transmission interval. For routers with 10 Gb/s links, this typically 
means making scheduling decisions every 40 ns, a demanding 
requirement, even for routers with small numbers of links. For 
larger routers it makes centralized scheduling infeasible. 

Distributed scheduling, unlike crossbar scheduling, does not 
seek to schedule the transmission of individual packets. Instead, it 
regulates the number of packets forwarded during a period which 
we call the scheduling interval and denote by T. The scheduling 
interval is typically fairly long, on the order of tens of microsec-
onds. The use of such coarse-grained scheduling means that a 
distributed scheduler can only approximate the queueing behavior 
of an ideal output-queued switch, but does allow systems to scale 
up to larger configurations than are practical with fine-grained 
scheduling. In a router that implements distributed scheduling, the 
Port Processors (the components that terminate the external links, 
make routing decisions and queue packets) periodically exchange 
information about the status of their VOQs. This information is 
then used to rate control the VOQs, with the objective of moving 
packets to the output side of the router as expeditiously as possi-
ble, while avoiding congestion within the interconnection net-
work. So long as the scheduling interval is kept small relative to 
end-to-end delays (which are typically tens to hundreds of milli-
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seconds in wide area networks) the impact of coarse scheduling 
on the delays experienced by packets can be acceptably small. 

While [11] demonstrated, using simulation and experimental 
measurement, that distributed scheduling can deliver excellent 
performance under extreme traffic conditions, it provided no ana-
lytical bounds on the performance of the proposed algorithms, nor 
a rigorous justification for the specific design choices. This paper 
corrects that deficiency, by showing that there are distributed 
schedulers that are provably work-conserving, for speedups of 2 
or more. The analysis provides insight that motivates the design 
of more practical variants of these algorithms, which provide 
excellent performance (significantly better than reported in [11]). 
Where the algorithms described in [11] can fail to be work-
conserving, with speedups of more than 2, the algorithms reported 
here are demonstrably work-conserving for extreme traffic, even 
when speedups are less than 2. One interesting aspect of the 
analysis is the role played by network flows, which parallels the 
role played by bipartite matching in crossbar scheduling. Specifi-
cally, distributed schedulers that are based on finding blocking 
flows in small depth acyclic flow graphs and that favor outputs 
with short queues are work-conserving, much as crossbar sched-
ulers based on finding maximal matchings in bipartite graphs that 
favor outputs with short queues are work-conserving. 

Before proceeding further, it’s important to define what we 
mean by work-conserving. A crossbar scheduler is work-
conserving if, in a system using that scheduler, an output link can 
be idle only if there is no packet in the system for that output. 
Work-conserving systems match the throughput of ideal output 
queueing switches, under all possible traffic conditions. In the 
context of distributed scheduling, the definition of work-
conservation must be relaxed to reflect the use of coarse-grained 
scheduling. In section 2, we adopt an idealized definition of work-
conservation for the purposes of analysis. We discuss the practical 
implications of this in section 6. 

It should be noted that while the practical distributed schedul-
ing algorithms discussed here are not work-conserving, practical 
crossbar scheduling algorithms are also not work-conserving, 
even though it has been known for several years that there are 
work-conserving crossbar scheduling algorithms that are too 
complex to use in real systems. The contribution of this work is to 
show that distributed scheduling for buffered multistage networks 
can provide similar performance to what was previously known 
for crossbar schedulers.  

While distributed scheduling shares some features of crossbar 
scheduling, it differs in two important respects. First, the distrib-
uted nature of these methods rules out the use of the iterative 
matching methods that have proved effective in crossbar schedul-
ing, since each iteration would require an exchange of informa-
tion, causing the overhead of the algorithm to increase in propor-
tion to the number of iterations. On the other hand, the coarse-
grained nature of distributed scheduling provides some flexibility 
that is not present in crossbar scheduling, where it is necessary to 
match inputs and outputs in a one-to-one fashion during each 
scheduling operation. In distributed scheduling, we allocate the 
interface bandwidth at each input and output and may subdivide 
that bandwidth in whatever proportions produce the best result. 

Recently, there has been considerable interest in a switch ar-
chitecture called the load balanced switch described in [4] and 
used in [6]. This architecture consists of a single stage of buffers 

sandwiched between two identical stages of switching, each of 
which walks through a fixed sequence of configurations. The 
fixed sequence of switch configurations makes the switching 
components very simple and the system is capable of achieving 
100% throughput for random traffic. Unfortunately, this architec-
ture also has a significant drawback. To avoid resequencing er-
rors, each output requires a resequencing buffer capable of hold-
ing about n2 packets. These buffers impose a delay that grows as 
the square of the switch size. For the 600 port switch described in 
[6], operated with a switching period of 100 ns, this translates to a 
delay of about 36 milliseconds, a penalty which applies to all 
packets, not just to an occasional packet. This appears to be an 
intrinsic characteristic of the load balancing architecture, and one 
that significantly limits its attractiveness. 

Section 2 introduces two scheduling methods, proves that 
schedulers based on these methods are work-conserving when the 
speedup is at least 2 and shows how they can be implemented. 
Section 3 shows how one can implement a practical distributed 
scheduler, based on one of these methods and evaluates its per-
formance for speedups less than 2, using simulation. Section 4 
introduces a more sophisticated, scheduling method, shows that it 
too is work-conserving when the speedup is at least 2 and shows 
how it can be implemented using minimum cost blocking flows in 
networks with convex cost functions. Section 5 describes a practi-
cal variant of this method and evaluates it using simulation, show-
ing that it can out-perform the simpler schedulers studied earlier. 
Section 6 discusses several important practical considerations for 
distributed scheduling. 

2. WORK-CONSERVING SCHEDULERS 
We describe a general scheduling strategy that can be used to 
obtain work-conserving schedulers for speedups of 2 or more. 
While these algorithms are not practical, they provide a concep-
tual foundation for other algorithms that are.  

For the purposes of analysis, we adopt an idealized view of 
the system operation. Specifically, we assume that the system 
operates in three discrete phases: an arrival phase, a transfer 
phase and a departure phase. During the arrival phase, each input 
receives up to T cells.1 During the transfer phase, cells are moved 
from inputs to outputs, with each input constrained to send at 
most ST cells (S being the speedup of the system) and each output 
constrained to receive at most ST. During the output phase, each 
output forwards up to T cells. A scheduler determines which cells 
are transferred during the transfer phase. We say that a scheduler 
is work-conserving if during every departure phase, all outputs for 
which some input has cells at the start of the departure phase, 
transmit T cells during the departure phase. 

The scheduling methods that we study in this section maintain 
an ordering of the non-empty VOQs at each input. The ordering of 
the VOQs can be extended to all the cells at an input. Two cells in 
the same VOQ are ordered according to their position in the VOQ. 
Cells in different VOQs are ordered according the VOQ ordering. 
We say that a cell b precedes a cell c at the same input, if b comes 
before c in this ordering. For any cell c at an input, we let p(c) be 

                                                                 
1. We assume throughout, that variable-length packets are seg-

mented into fixed-length units for transmission through the in-
terconnection network. We refer to these units as cells. 
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the number of cells at the same input as c that precede c and we 
let q(c) be the number of cells at the output that c is going to. 

We refer to a cell c as an ij-cell if it is at input i and is des-
tined for output j. We say that a scheduling algorithm is maximal 
if during any transfer phase in which there is an ij-cell c that re-
mains at input i, either input i transfers ST cells or output j re-
ceives ST cells. Given a method for ordering the cells at each 
input, we say that a scheduler is ordered, if in any transfer phase 
in which an ij-cell c remains at input i, either input i transfers ST 
cells that precede c or output j receives ST cells. Our scheduling 
methods produce schedules that are maximal and ordered. We can 
vary the method by using different VOQ orderings. We describe 
two ordering methods that lead to work-conserving schedulers. 

For any cell c waiting at an input, we define the quantity 
slack(c) = q(c) − p(c). For each of the methods studied, we’ll 
show that slack(c) ≥ T at the start of each departure phase if S ≥ 2. 
This implies that for any output with fewer than T cells in its out-
going queue, there can be no cells waiting in any input-side 
VOQs. This implies that the scheduler is work-conserving. 

2.1 Batch Critical Cells First 
Our first scheduling method is based on ideas first developed in 
the Critical Cells First scheduler of [5]. Hence, we refer to it as 
the Batch Critical Cells First (BCCF) method. In BCCF, the rela-
tive ordering of two VOQs remains the same so long as they re-
main non-empty, but when a new VOQ becomes non-empty, it 
must be ordered relative to the others.  When a cell c arrives and 
the VOQ for c’s output is empty, we insert the VOQ into the exist-
ing ordering based on the magnitude of q(c). In particular, if the 
ordered list of VOQs is v1, v2, . . . , we place the VOQ immediately 
after the queue vj determined by the largest integer j for which the 
number of cells in the combined queues v1, . . . ,vj is no larger than 
q(c). This ensures that slack(c) is non-negative right after c ar-
rives. A specific scheduler is an instance of the BCCF method if it 
produces schedules that are maximal and ordered with respect to 
this VOQ ordering method. To show that slack(c) ≥ T at the start 
of each departure phase, we need two lemmas. 
Lemma 1. For any BCCF scheduler, if c is any cell that remains at 
its input during a transfer phase, then slack(c) increases by at least 
ST during the transfer phase. 
proof. Since the VOQ ordering does not change during a transfer 
phase (more precisely, VOQs that remain non-empty retain the 
same relative order), any maximal, ordered scheduling algorithm 
either causes q(c) to increase by ST or causes p(c) to decrease by 
ST. In either case, slack(c) increases by ST.  

Note that as long as a cell c remains at an input, each arrival 
phase and departure phase cause slack(c) to decrease by at most 
T. So, if S  ≥2, slack(c) cannot decrease over the course of a com-
plete time step. 

Lemma 2. For any BCCF scheduler with S ≥2, if c is any cell at an 
input just before the start of a departure phase, slack(c) ≥ T. 
proof. We show that for any cell c present at the end of an arrival 
phase, slack(c) ≥ −T. The result then follows from Lemma 1 and 
the fact that S ≥2. The proof is by induction on the time step.  

For any cell c that arrives during the first time step, p(c) ≤ T at 
the end of the arrival phase, so slack(c) ≥ −T at the end of the 
arrival phase. Since S ≥2, there can be no net decrease in slack(c) 

from one time step to the next, so slack(c) remains ≥−T at the end 
of each subsequent arrival phase, while c remains at the input.  

If a cell c arrives during step t and its VOQ is empty when it 
arrives, then the rule used to order the VOQ relative to the others 
ensures that slack(c) ≥ 0 right after it arrives. Hence, slack(c) ≥ −T 
at the end of the arrival phase and this remains true at the end of 
each subsequent arrival phase, so long as c remains at the input. 

If a cell c arrives during step t and its VOQ is not empty, but 
was empty at the start of the arrival phase, then let b be the first 
arriving cell to be placed in c’s VOQ during this arrival phase. 
Then, slack(b) was at least 0 at the time it arrived and at most T−1 
cells could have arrived after b did in this arrival phase. If exactly 
r of these precede b, then at the end of the arrival phase, 
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If a cell c arrives during step t and its VOQ was not empty at the 
start of the arrival phase, then let b be the last cell in c’s VOQ at 
the start of the arrival phase. By the induction hypothesis, slack(b) 
≥ −T at the end of the previous arrival phase. Since the subsequent 
transfer phase increases slack(b) by at least 2T and the departure 
phase decreases it by at most T, slack(b) ≥ 0 at the start of the 
arrival phase in step t. During this arrival phase, at most T new 
cells arrive at c’s input. Let r be the number of these arriving cells 
that precede b. Then at the end of the arrival phase 
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Hence, slack(c) ≥ −T at the end of the arrival phase in all cases 
and this remains true at the end of each subsequent arrival phase, 
so long as c remains at the input.  
Lemma 2 leads directly to the following theorem. 

Theorem 1. For S ≥2, any BCCF scheduler is work-conserving. 

2.2 Batch LOOFA 
Our second scheduling method is based on ideas first developed 
in the Least Occupied Output First method of [7], so we refer to it 
as the Batch Least Occupied Output First (BLOOFA) method. In 
BLOOFA, VOQs are ordered according to the number of cells in 
their output-side queues. VOQs going to outputs with fewer cells 
precede VOQs going to outputs with more cells. Outputs with 
equal numbers of cells are ordered by the numbering of the out-
puts. We define BLOOFA as the combination of this ordering 
method with any maximal, ordered scheduler. We show that 
slack(c) ≥ T at the start of each departure phase, using the same 
overall strategy used for BCCF. As before, we need two lemmas. 
The arguments are similar, but are complicated by the fact that the 
relative ordering of VOQs can change during a transfer phase. 
Lemma 3. For any BLOOFA scheduler, during a transfer phase, the 
minimum slack at any input that does not transfer all of its cells 
during the transfer phase, increases by at least ST. 
proof. Let c be any ij-cell at input i. Let minSlack be the smallest 
value of the slack among the cells at input i just before the trans-
fer phase, and let slack(c) = minSlack + σ. We will show that 
slack(c) increases by at least ST − σ during the transfer phase. The 
lemma then follows directly. (Note that it is not sufficient to 
prove that the slack of a cell c that has minimum slack at the start 
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of the transfer phase increases by ST, since c may not be a cell of 
minimum slack at the end of the transfer phase.) 

 We say that a cell b at input i passes c, if before the transfer 
phase, c precedes b and after the transfer phase b precedes c. If no 
cells pass c during the transfer phase, then by the definition of 
maximal, ordered schedulers, either q(c) increases by ST or p(c) 
decreases by ST. Either way, slack(c) increases by at least ST − σ. 

Assume then, that there are r >0 cells that pass c and let b be 
the cell in the set of cells that pass c that comes latest in the cell 
ordering (before the transfer phase). For clarity, let q0(x) denote 
the value of q(x) before the transfer phase and let qF(x) denote the 
value of q(x) after the transfer phase. Similarly for p and slack.   

Let m be the number of cells received by output j during the 
transfer and let k be the number of cells that precede b before the 
transfer, but do not precede c. Then, 

)()()()( 00 bqbqcqmcq FF ≥≥=+  

and p0(b) = p0(c) + k. Now, 
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So (m− k) ≥ − σ. Since b passes c, its output must receive fewer 
than m cells during the transfer phase, so ST cells that precede it 
at the start of the transfer phase must be forwarded. Of these at 
least ST− (k−r) must also precede c at the start of the phase. So, 
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Combining this, with qF(c) = q0(c) + m gives, 
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That is, slack(c) increases by at least ST − σ.  
Note that each arrival phase causes slack(c) to decrease by at 

most T. However, it is not so easy to bound the decrease in 
slack(c) during a departure phase. The complicating factor is that 
cells at c’s input can pass it during a departure phase, making it 
hard to bound the overall change in slack(c). However, if slack(c) 
is at least T before the departure phase begins, then q(c) must also 
be at least T. This means that T cells will depart from c’s output, 
making it impossible for other cells at c’s input to pass c. Thus, if 
slack(c) is at least T before the departure phase, then slack(c) is at 
least 0 after the departure phase. It turns out that this is sufficient 
to establish that BLOOFA is work-conserving when S  ≥ 2. 

Lemma 4. For any BLOOFA scheduler with S  ≥ 2, if c is a cell at 
an input before the start of a departure phase, then slack(c) ≥ T. 
proof. We show that for any cell c present at the end of the arrival 
phase, slack(c) ≥ −T. The result then follows from Lemma 3 and 
the fact that S ≥2. The proof is by induction on the time step.  

For any cell c that arrives during the first time step, p(c) ≤ T at 
the end of the arrival phase, so slack(c) ≥ −T at the end of the arri-
val phase. Since S ≥2, Lemma 3 implies that slack(c) ≥ T at the 
end of the transfer phase, if it is still present at the input. By the 

discussion just before the statement of Lemma 4, this means that 
slack(c) ≥ 0 following the departure phase, which in turn means 
that slack(c) ≥ −T at the end of the next arrival phase. This re-
mains true at the end of every subsequent arrival phase until c is 
transferred to the output. 

Suppose then, that c arrives during step t. If, at the end of the 
arrival phase, the only cells that precede c also arrived during step 
t, then slack(c) ≥ −T at the end of the arrival phase. By the argu-
ment at the end of the last paragraph, this remains true at the end 
of every subsequent arrival phase until c is transferred. 

If at the end of the arrival phase in step t, there are cells that 
precede c that were present at the start of the arrival phase, then 
let b be the cell in this set of cells that does not precede any of the 
others in the set. Because b arrived before step t, slack(b) ≥ −T at 
the end of the previous arrival phase, by the induction hypothesis. 
This implies that slack(b) ≥ 0 at the start of the arrival phase in 
step t. Let k be the number of cells that arrive during the arrival 
phase of step t that precede b at the end of the arrival phase. Let m 
be the number of cells that arrive during the arrival phase that 
precede c but not b at the end of the arrival phase. Since k + m ≤ T 
and slack(b) ≥ −k, 

Tkmmbslack
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This remains true at the end of each subsequent arrival phase, so 
long as c remains at the input.  
Lemma 4 leads directly to the following theorem. 

Theorem 2. For S ≥2, any BLOOFA scheduler is work-conserving. 

2.3 Implementation issues 
We have shown that the combination of two different VOQ order-
ing strategies with a maximal, ordered scheduler ensures work-
conserving operation when the speedup is at least 2. We now need 
to show how to realize a maximal, ordered scheduler. We start 
with a centralized algorithm and then show how it can be con-
verted into an iterative, distributed algorithm. While the overhead 
of such iterative algorithms makes them impractical, they provide 
the basis for non-iterative algorithms that are practical. 

The key observation is that the scheduling problem can be re-
duced to finding a blocking flow in an acyclic flow network [13]. 
A flow network is a directed graph with a distinguished source 
vertex s, a distinguished sink vertex t and a non-negative capacity 
for each edge. A flow, in such a network, is a non-negative func-
tion defined on the edges. The flow on an edge must not exceed 
its capacity and for every vertex but s and t, the sum of the flows 
on the incoming edges must equal the sum of the flows on the 
outgoing edges. An edge in the network is called saturated, if its 
flow is equal to its capacity. A blocking flow is one for which 
every path from s to t contains at least one saturated edge. (Note 
that a blocking flow is not necessarily a maximum flow.) 

To convert the scheduling problem to the problem of finding a 
blocking flow, we first need to construct a flow network. Our 
network has a source s, a sink t, n vertices referred to as inputs 
and another n vertices referred to as outputs. There is an edge 
with capacity ST from s to each input. Similarly, there is an edge 
with capacity ST from each output to t. For each non-empty VOQ 
at input i of the router with cells for output j, there is an edge in 
the flow network from input i to output j with capacity equal to 
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the number of cells in the VOQ. (An example of a flow network 
constructed to solve a particular scheduling problem together with 
the corresponding solution is shown in Fig. 1.)  

For any integer-valued flow, we can construct a schedule that 
transfers cells from input i to output j based on the flow on the 
edge from input i to output j. Such a schedule does not violate any 
of the constraints on the number of cells that can be sent from any 
input or to any output. Also, any blocking flow corresponds to a 
maximal schedule, since any blocking flow corresponding to a 
schedule that fails to transfer a cell c from input i to output j can-
not saturate the edge from input i to output j; hence it must satu-
rate the edge from s to i or the edge from j to t. Such a flow corre-
sponds to a schedule in which either input i sends ST cells or out-
put j receives ST. 

Dinic’s algorithm [13] for the maximum flow problem con-
structs blocking flows in acyclic flow networks as one step in its 
execution. There are several variants of Dinic’s algorithm, that 
use different methods of constructing blocking flows. The most 
straightforward method is to repeatedly search for st-paths with 
no saturated edges and add as much flow as possible along such 
paths. We can obtain a maximal, ordered scheduler by modifying 
Dinic’s algorithm so that it preferentially selects edges between 
input vertices and output vertices, according to the VOQ ordering 
at the input. The blocking flow shown in Fig. 1 was constructed in 
this way, based on the BLOOFA ordering. 

If paths are found using depth-first search and edges leading 
to dead-ends are removed, Dinic’s algorithm finds a blocking 
flow in O(mn) time where m is the number of edges and n is the 
number of vertices. Because the flow graphs used here have 
bounded depth and because the number of inputs, outputs and 
edges are all bounded by the number of non-empty VOQs, the 
algorithm finds a blocking flow in O(v) time where v is the num-
ber of non-empty VOQs. This yields an optimal centralized sched-
uler. However, since v can be as large as n2 (where n is the num-
ber of router ports), this is not altogether practical. 

We can obtain a distributed, iterative scheduling algorithm 
based on similar ideas. Rather than state this in the language of 
blocking flows, we describe it directly as a scheduling algorithm. 
In the distributed scheduler, we first have an exchange of mes-
sages in which each output announces the number of cells in its 
outgoing queue. The inputs use this information to maintain their 
VOQ order. Note that this requires that each output send n mes-
sages and each input receive n messages. Next, the inputs and 
outputs proceed through a series of rounds.  

In each round, inputs that have uncommitted cells to send and 
have not yet committed to sending ST cells, send bid messages to 
those outputs that are still prepared to accept more cells. The in-
puts construct their bids in accordance with the VOQ ordering. In 
particular, an input commits all the cells it has for the first output 
in the ordering and makes similar maximal bids for subsequent 
outputs until it has placed as many bids as it can. Inputs may not 
overbid, as they are obliged to send cells to any output that ac-
cepts a bid. Note that at most one of the bid messages an input 
sends during a round does not commit all the cells that it has for 
the target output. 

During each round, outputs receive bids from inputs and ac-
cept as many as possible. If an output does not receive bids for at 
least ST cells, it does nothing during this round. That is, it sends 
no message back to the inputs. Such a “response” is treated by the 
inputs as an implicit accept and is taken into account in subse-
quent bids. Once an output has received bids for a total ST cells, it 
sends an accept message to all the inputs (not just those that sent 
it bids). An accept message contains a pair of values (i,x) and it 
means that the output accepts all bids received from inputs with 
index less than i, rejects all bids from inputs with index greater 
than i and accepts exactly x cells from input i. Once an output 
sends an accept message, its role in the scheduling is complete. 

This procedure has some attractive properties. First, each out-
put sends n messages in the bidding process, so each input re-
ceives no more than n messages. Also, an input sends at most two 
bids to any particular output, so an input sends at most 2n bids 
and an output receives at most 2n bids. Thus, the number of cells 
that must be handled at any input or output during the scheduling 
is O(n). Unfortunately, this does not imply that the algorithm runs 
in O(n) time, since it can require up to n rounds and in each 
round, there may be some outputs that handle close to n messages.  

It is possible to reduce the time for each round by having the 
switch elements that make up the interconnection network par-
ticipate in the handling of bids and responses. However, in the 
next section we turn our attention instead, to algorithms that are 
simpler to implement and which, while not provably work-
conserving, are able to match the performance of the work-
conserving algorithms, even under extreme traffic conditions.  

3. DISTRIBUTED BLOOFA 
The work-conserving algorithms discussed above can be imple-
mented using iterative algorithms that require a potentially large 
number of message exchanges. In this section, we formulate a 
distributed algorithm that approximates the behavior of BLOOFA 
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Fig. 1. Example showing a maximal ordered schedule constructed from a blocking flow. 
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while requiring just one exchange of messages. Our Distributed 
BLOOFA (DBL) scheduler avoids the need for many message ex-
changes by having the inputs structure their bids to avoid the 
situation swamping some outputs with more bids than they can 
accept, while leaving others with no bids. Specifically, the inputs 
use a technique introduced in [11] called backlog-proportional 
allocation to limit the number of bids that are made to any output. 

DBL starts with each input i sending a message to each output 
j, telling it how many cells B(i,j) it has in its VOQ for output j. 
Each output j then sends a message to all inputs containing the 
number of cells in its output queue (B(j)) and the total number of 
cells that inputs have to send it (B(+, j)2). Note that each input and 
output sends and receives n messages. Once this exchange of 
messages has been made, each input independently decides how 
many cells to send to each output. To prevent too many cells from 
being sent to any output, input i is allowed to send at most ST 

×B(i, j)/B(+, j) cells to output j. Each input then orders the outputs 
according to the length of their output queues and goes through 
this list, assigning as many cells as it is permitted for each output, 
before going to the next output in the list. The scheduling is com-
plete when the input has assigned a total of ST cells or has as-
signed all the cells permitted by the bound. 

We studied the performance of DBL using simulation for 
speedups between 1 and 2. We start with an extreme traffic pat-
tern, we call a stress test, that is designed to probe the perform-
ance limits of the distributed scheduling algorithms. While the 
stress test is not a provably worst-case traffic pattern for any par-
ticular scheduler, it does create conditions that make it difficult 
for schedulers to maintain ideal throughput.  

The stress test consists of a series of phases, as illustrated in 
Fig. 2. In the first phase, the arriving traffic at each of several 
inputs is directed to a single output. This causes each of the inputs 
to build up a backlog for the target output. The arriving traffic at 
all the inputs is then re-directed to a second output, causing the 
accumulation of a backlog for the second output. Successive 
phases proceed similarly, creating backlogs at each input for each 
of several outputs. During the last phase, the arriving traffic at all 
inputs is re-directed to a distinct new output for each input. Since 
each of the target outputs of the last phase has only a single input 
directing traffic to it, that input must send cells to it as quickly as 
they come in, while simultaneously clearing the accumulated 
backlogs for the other outputs, in time to prevent underflow at 
those other outputs. This creates an extreme condition that can 
lead to underflow. The timing of the transitions between phases is 
chosen so that the total number of cells in the system directed to 
each output is approximately the same at the time the transition 

                                                                 
2. We use the addition symbol (‘+’) as a function argument to 

denote the summation of the function over all values of that ar-
gument. 

takes place. The stress test can be varied by changing the number 
of participating inputs and the number of phases. 

Fig. 3 shows results from a sample stress test. The top chart 
shows the VOQ lengths at input 0 and the output queue lengths at 
outputs 0 to 4 (by symmetry, the VOQ lengths at other inputs will 
be approximately the same as those at input 0). The time unit is 
the update interval, T. The unit of storage is the number of cells 
that can be sent on an external link during the update interval. 
Note that during the last phase, B(0,4) rises, indicating that input 
0 is unable to transfer cells to output 4 as quickly as they come in. 
This results in loss of link capacity at output 4. The second chart 
shows the miss fraction at output 4 during the last phase. The term 
“miss” refers to a missed opportunity to send a cell. The miss 
fraction measures the fraction of the link capacity that is effec-
tively lost during the last phase due to such misses and is a meas-
ure of how far the system deviates from being work-conserving. 
The curve labeled simply, “miss fraction” measures the average 
miss fraction during successive measurement intervals (the meas-
urement intervals are 25 time units long). The curve labeled “av-
erage miss fraction” is the fraction of the link capacity lost from 
the start of the last phase to the time plotted. We observe that 
almost 30% of the link’s capacity is effectively lost between the 
start of the last phase and the end of the period shown. 

The first chart in Fig. 4 shows how DBL performs on a series 
of stress tests with speedups varying between 1 and 1.5. (In these 
tests, the length of the stress test was set to 1.2 times the length of 
time that would be required to forward all the cells received dur-
ing the first phase in an ideal output-queued switch.) We see here 
that the average miss fraction (for the output targeted by input 0 
in the last phase) drops steadily with increasing speedup, drop-
ping to zero before the speedup reaches 1.5. We performed 90 
sets of stress tests, using different numbers of inputs and phases 
(up to 15 inputs and 15 phases). The results plotted in the figure 
are the worst-cases for 2, 3, 4 and 5 inputs. In all cases, the aver-
age miss fraction for the last phase target output dropped to zero 
for speedups greater than 1.5.  

To compare DBL to BLOOFA, we performed the same series 
of 90 stress tests on BLOOFA. For speedups below 2, the method 
used to select which inputs send traffic to a given output can have 
a significant effect on the performance of BLOOFA. For the results 
given here, we went through the outputs in order (from smallest 
output-side backlog to largest) and for each output j, we assigned 
traffic from different inputs to output j in proportion to the frac-
tion that each could supply of the total that all inputs could send 
to j in this update interval. The second chart in Fig. 4 shows the 
results of these stress tests on BLOOFA. Although close examina-
tion reveals small differences between the distributed and central-
ized versions of BLOOFA, the results are virtually indistinguish-
able. We conclude that the approximation introduced by using the 
backlog-proportional allocation method to enable efficient dis-
tributed scheduling, has a negligible effect on the quality of the 
scheduling results, even though the distributed version is not 
known to be provably work-conserving for any speedup.  

We have also studied the performance of DBL for less ex-
treme (although, still very demanding) traffic. In particular, we 
have studied bursty traffic situations in which there is one output 
(referred to as the subject output), for which traffic is arriving 
continuously at a specified fraction of the link rate. The input at 
which the subject’s traffic arrives changes randomly as the simu-

phase 1 phase 2 phase 3 phase 4phase 1 phase 2 phase 3 phase 4

Fig. 2. Typical stress test 
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lation progresses (it remains with a given input for an exponen-
tially distributed time interval). Each of the inputs that is not cur-
rently providing traffic for the subject has its own target output 
(not equal to the subject) to which it sends traffic, changing tar-
gets randomly and independently of all other inputs (an input 
retains its current target for an exponentially distributed time in-
terval). With this traffic pattern, roughly one fourth of the outputs 
that are not the subject are overloaded at any one time (they are 
targets of two or more inputs). An ideal scheduler will forward 
cells to the subject output as fast as they come in, preventing any 
input-side queueing of cells for the subject. However, the other 
outputs can build up significant input side backlogs (due to the 
transient overloads they experience), leading to contention that 
can affect the subject output. Fig. 5 shows an example of what 
can happen in a system subjected to this type of traffic. The top 
chart shows the amount of data buffered for the subject output 
(which is output 0) at all inputs (B(+,0)), the amount of data buff-
ered at the input that is currently receiving traffic for the subject 
(B(i,0)) and the amount of data buffered at the subject (B(0)). The 
unit of storage is the amount of data received on an external link 
during an update interval and the time unit is the update interval. 
The discontinuities in the curve for B(i,0) occur when the input 
that is currently receiving traffic for the subject changes (i.e., the 
value of i changes). The bottom chart shows the instantaneous 
value of the miss fraction. 

Fig. 6 shows the average miss fraction from a large number of 
bursty traffic simulations with varying input load and speedup. 
Note that the miss fraction reaches its peak when the input load is 
between 0.8 and 0.9. Larger input loads lead to a sharp drop in the 
miss fraction. The explanation for this behavior is that when the 
input load approaches 1, output-side backlogs tend to persist for a 

long period of time and it is only when the output-side backlogs 
are close to zero that misses can occur. As one would expect, the 
miss fraction drops quickly as the speedup increases. Note that for 
speedup 1.15 the miss fraction never exceeds 2%, meaning that 
only a small fraction of the link capacity is lost. 

 It should be noted that the bursty traffic model used in these 
studies represents a very extreme situation. A more realistic 
bursty traffic model would have a large number of bursty sources 
(at least a few tens) with more limited peak rates sharing each 
input link (at least a few tens of sources per link). Such a model is 
far less challenging than the one used here. 

4. OUTPUT QUEUE LEVELING 
The intuition behind BLOOFA is that by favoring outputs with 
smaller queues, we can delay the possibility of underflow and 
potentially avoid it altogether. Theorem 2 tells us that for a 
speedup of 2 or more, we can avoid underflow, but it does not say 
anything about what happens with smaller speedups. When there 
are several output queues of nearly the same length, BLOOFA 
transfers as many cells as possible to the shortest queues, poten-
tially preventing any cells from reaching slightly longer queues. It 
seems likely that we could get better performance by balancing 
the transfers so that the resulting output queue lengths are as close 
to equal as possible. This is the intuition behind the Output Level-
ing Algorithm (OLA). In this section we show that OLA, like BCCF 
and BLOOFA is work-conserving for speedups of 2 or more. Sub-
sequently, we study the performance of OLA and a practical vari-
ant of OLA and show that these algorithms can out-perform 
BLOOFA and DBL.  

OLA orders cells at an input in the same way that BLOOFA 
does. Let B(i,j) and B(j) be the lengths of the VOQs and output 
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Fig. 3. Results from sample stress test for distributed BLOOFA - buffer levels (top) and miss fraction (bottom). 
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queues respectively, immediately before a transfer phase and let 
x(i,j) be the number of cells transferred from input i to output j 
during the transfer. We say that the transfer is level if for any pair 
of outputs  j1 and  j2,  

B( j1) + x(+, j1) < B( j2) + x(+, j2) − 1 
implies that x(+,  j1) = min{ST, B(+, j1)}. That is, whenever the 
output queue level at some output j1 is more than one less than 
that of another (following a transfer phase), it’s implies there is no 
way to increase the level at j1. We define OLA as any scheduling 
algorithm that produces schedules that are maximal and level.  

4.1 Work Conservation 
We use essentially the same strategy to show that OLA is work-
conserving when the speedup is at least 2. However, to show that 
the minimum slack increases by ST at each input during a transfer 
phase, we first need to show how a transfer phase scheduled by 
OLA can be decomposed into a sequence of sub-phases. Note that 
this decomposition is needed only for the work-conservation 
proof. It plays no role in the implementation of the algorithm. 
Let B(i,j) and B( j) be the lengths of the VOQs and output queues 
respectively, immediately before a transfer phase and let x(i,j) be 
the number of cells transferred from input i to output j during the 
transfer. Each of the sub-phases corresponds to the transfer of up 
to one cell from each input and up to one cell to each output. We 
let xk(i,j) denote the number of cells transferred from input i to 
output j by the first k sub-phases. At the end of sub-phase k, the 
outputs are ordered in increasing order of B( j) + xk(+, j) with ties 
broken according to the output numbers. The ordering of the out-
puts is used to order the VOQs at each input and this ordering is 
extended to all the cells at each input. We say that a cell b pre-
cedes a cell c following sub-phase k if b comes before c in this 

cell ordering. We define qk(c)=B( j) + xk(+, j) and we define pk(c) 
to be the number of cells at c’s input that precede it in the order-
ing at the end of sub-phase k. We also define slackk(c) = qk(c) 

− pk(c). Let slack0(c) be the value of slack(c) before the transfer 
phase begins and note that if k is the last sub-phase, then slackk(c) 

is equal to the value of slack(c) following the transfer phase. 
Given a schedule constructed by an OLA scheduler, we con-

struct sub-phases iteratively. To construct sub-phase k, repeat the 
following step until no outputs are eligible for selection. 

Select an output j that has not yet been selected in this sub-
phase for which xk−1(+, j)<x(+, j) and which, among all such 
outputs, has the minimum value of qk−1(c). If there are multi-
ple outputs that satisfy this condition, select the output that 
comes first in the fixed numbering of the outputs. Then, select 
some input i that has not yet been selected in this sub-phase 
for which xk−1(i, j)<x(i, j). If there is such an input, include the 
transfer of a cell from input i to output j in sub-phase k, mak-
ing xk(i, j) = xk−1(i, j) + 1.  

We will use this decomposition to show that the minimum slack 
at each input increases by at least ST during each transfer phase. 
Lemma 5. For any OLA scheduler, during a transfer phase, the 
minimum slack at any input that does not transfer all of its cells 
during the transfer phase, increases by at least ST. 
proof. Because OLA constructs maximal schedules, any transfer 
phase that leaves cells at input i must either transfer ST cells from 
input i or must transfer ST cells to every output j for which a cell 
remains at input i following the transfer phase. This means that if 
we decompose the transfer phase into sub-phases, as described 
above, there will be at least ST sub-phases. We show below that 
every one of these sub-phases increases the minimum slack at 
input i. Hence, the minimum slack increases by ST over the com-
plete transfer phase.  

Let k be the index of any sub-phase and let c be any cell at in-
put i which is not transferred during sub-phase k and for which 
slackk−1(c) is minimum among all cells at input i. Let j be the 
output that c is going to. If output j receives no cell during sub-
phase k, then input i must transfer a cell during sub-phase k. The 
selection rule used to construct sub-phases ensures that the trans-
ferred cell precedes c. Hence, pk(c) = pk−1(c)−1 and thus, slackk(c) 
= slackk−1(c)+1. 

If output j does receive a cell, then qk(c) = qk−1(c) + 1. If no 
cell at input i passes c during the sub-phase, then slackk(c) ≥ 
slackk−1(c)+1. Suppose then, that there is one or more cell that 
passes c during the sub-phase and let d be such a cell. Since c 
precedes d before the sub-phase qk−1(c) ≤ qk−1(d) and pk−1(c) < 

pk−1(d). Since d precedes c after the sub-phase, no cell is received 
by d’s output during the sub-phase and so qk−1(d) ≤ qk−1(c) + 1. 
Because slackk−1(c) ≤ slackk−1(d), pk−1(d) − pk−1(c) ≤ qk−1(d) − qk−1(c) 

≤ 1 which means that there are no cells that fall between c and d in 
the cell ordering. This implies that d is the only cell that passes c 
during the sub-phase. Because d’s output receives no cell during 
the sub-phase, there must be some cell that precedes d that is 
transferred from input i during the sub-phase and this cell must 
also precede c. Thus, pk(c) = pk−1(c) and so slackk(c) = slackk−1(c) 

+ 1.  
As before, we note that each arrival phase causes slack(c) to 

decrease by at most T. Also, as before, if slack(c) is at least T 
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before the start of a departure phase, then slack(c) is at least zero, 
after the departure phase. This is sufficient to establish that OLA 
is work-conserving when S  ≥ 2. 

Lemma 6. For any OLA scheduler with S  ≥ 2, if c is a cell at an 
input before the start of the departure phase, then slack(c) ≥ T. 

The proof of Lemma 6 is just like the proof of Lemma 4, ex-
cept that it uses Lemma 5, in place of Lemma 3. Lemma 6 leads 
immediately to the work-conservation theorem for OLA. 

Theorem 3. For S ≥2, any OLA scheduler is work-conserving. 

4.2 Implementing OLA 
An OLA scheduler can be implemented exactly either using linear 
programming or by solving a minimum cost, maximum flow 
problem with a convex cost function. We outline the latter ap-
proach, as it serves to motivate more practical, approximate vari-
ants. 

In the classical version of the minimum cost, maximum flow 
problem [1,13], each edge has an associated cost coefficient, 
which is multiplied by the flow on the edge to get the edge’s con-
tribution to the overall cost of the flow. There are several well-
known efficient algorithms for solving the minimum cost, maxi-
mum flow problem. Interestingly, these algorithms can be gener-
alized to handle networks in which the cost is a convex function 
of the flow on the edge, rather than a linear function (x2 is an ex-
ample of a convex function). 

The OLA scheduling algorithm can be reduced to solving a 
minimum cost, maximum flow problem with a convex edge cost 
function. An example of such a reduction is shown in Fig. 7, 
along with a solution and the corresponding schedule. The flow 
graph is constructed in the same way as was discussed in Section 
2. The only difference is the introduction of non-zero costs on the 
edges from the output vertices to the sink vertex t. The cost of an 
edge from output j to t carrying a flow of magnitude x is defined 
as C(x) = (x + B(j))2. A minimum cost, maximum flow for this 
network corresponds directly to an OLA schedule. The convexity 
of the cost function ensures that the flows on different output to 
sink edges result in costs that are as nearly equal as the various 
edge capacities allow (if a flow can be shifted from a higher cost 
edge to a lower cost edge, there is a net reduction in cost, because 
the lower cost edge has lower incremental cost, per unit flow). 
The use of the offset B(j) in the edge cost means that the costs of 
the flows on two output-to-sink edges are equal whenever the 
corresponding schedules yield equal levels at the output queue. 
Reference [1] describes an algorithm that finds a minimum cost, 
maximum flow in O((m log K )(m + n log n)) time on an arbitrary 
network with n vertices, m edges and maximum edge capacity K. 
While this algorithm is not useful for distributed scheduling in 
real systems, it can be used in performance studies to establish a 
benchmark for more practical algorithms that seek to approximate 
the behavior of OLA.  
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Fig. 5. Time series showing performance of DBL for bursty traffic. 
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5. DISTRIBUTED OLA 
We start by describing an approximate centralized version of 
OLA. We then show how this can be converted to a distributed 
scheduler, using an extension of the backlog-proportional alloca-
tion method introduced earlier. 

Our approximate centralized algorithm uses an array x(i,j) 
which is initialized to zero and which defines the number of cells 
to be transferred from input i to output j, when the scheduling 
algorithm completes. It also uses a parameter ∆ ≤ ST, which de-
termines the accuracy of the approximation. During its execution, 
the algorithm maintains a list of the outputs, sorted in increasing 
order of x(+, j) + B( j). The algorithm repeats the following step so 
long as there are at least two outputs on the list. 

Let j1 and j2 be the indices of the first two outputs on the list. 
Increase x(+, j1), by repeatedly increasing x(i,j1) for selected 
values of i (input selection criteria are discussed below). Stop 
when x(+, j1) + B( j1) = x(+, j2) + B( j2) + ∆, or when x(+, j1) = 
ST or when x(+,  j1) = B(+,  j1), whichever occurs first. If either 
of the last two conditions occurs, remove j1 from the list. Oth-
erwise, move it down the list to maintain the list order. 

When the list has been reduced to a single output j, the algorithm 
increases x(+, j) until x(+, j) = min {ST, B(+,  j)} or until all inputs 
with cells for output j have scheduled all they can (ST ). 

 The number of steps performed by the algorithm is at most 
nST/∆. It can be implemented to run in O(m + (ST/∆)n2) time, 
where m is the number of non-empty VOQs. This can be improved 
to O(m + (ST/∆)n log n), if the list is replaced with a heap. If ∆=1, 
the algorithm computes an OLA schedule (regardless of the input 
selection criterion). For larger values of ∆, it implements a ∆-OLA 
schedule, which is defined as any maximal schedule for which 

B( j1) + x(+, j1) < B( j2) + x(+, j2) − ∆ 

implies that x(+,  j1) = min{ST, B(+, j1)}. That is, a ∆-OLA sched-
uler allows the output queue differences at the end of a transfer 
phase to exceed ∆, only if there is no way to transfer more cells to 
the outputs with the smaller queues. ∆-OLA schedulers, like OLA 
schedulers are work-conserving when the speedup is at least 2 (a 
slight variant of the proof used for OLA can be used to show this). 
For smaller speedups, we can trade-off scheduling performance 
against running time by adjusting ∆. 

The criterion used to select the next input to use to effect an 
increase in x(+, j1) does not affect the work-conservation condi-

tion. However, different choices can affect performance when the 
speedup is less than two. In the performance results reported be-
low, we distribute the load approximately evenly among all inputs 
with traffic for output j1, using a round-robin technique. We main-
tain a list of inputs that can still send to j1 (they have both cells for 
j1 and uncommitted bandwidth) and use the first input on the list 
to increase the flow to j1. To obtain an even distribution, we take 
at most ∆ from an input at a time and then move that input to the 
end of the list. This method can be implemented without increas-
ing the time complexity of the algorithm. 

To convert a ∆-OLA scheduler to a practical distributed sched-
uler, we use the backlog proportional allocation technique intro-
duced earlier to allow inputs to divide the responsibility for sup-
plying traffic to the different outputs. This allows each input to 
operate independently of the others, once the initial exchange of 
information takes place. As with DBL, this initial exchange sup-
plies input i with the values of B(j) and B(+,j) for every output j. 
Input i also has the values B(i,j) for all j and it uses these to com-
pute values σ(i,j) = B(i,j)/B(j). Given this information, input i 
makes its scheduling decisions in a way that is similar to the cen-
tralized algorithm. In particular, input i maintains a list of the 
outputs for which it has cells, sorted in increasing order of B(j) + 
x(i,j)/σ(i,j). It then repeats the following step so long as the list 
has at least two elements. 

Let j1 and j2 be the indices of the first two outputs on the list. 
Increase x(i, j1) until one of the following conditions holds. 

1. x(i,+) = ST 

2. x(i, j1) = σ(i,j1)ST 
3. x(i, j1) = B(i, j1) 

4. B(j1) + x(i,  j1)/σ(i,j1) = B(i, j2)+ ∆  + x(i, j2)/σ(i,j2) 
If condition 1 occurs, the algorithm terminates. If either of 
conditions 2 or 3 occurs, remove j1 from the list. Otherwise, 
move j1 down the list so as to maintain the list order. 

When the list has been reduced to a single output j, the algorithm 
increases x(i, j) until x(i, j) = min {σ(i,j)ST, B(i,  j)} or until x(i,+) 
= ST, whichever occurs first. 

The number of steps performed by the algorithm is at most 
nST/∆. It can be implemented to run in O((ST/∆)n2) time, using a 
naive list implementation or O((ST/∆)n log n), if the list is re-
placed with a heap. Using a hardware implementation of a sorted 
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Fig. 7.  Implementing OLA using minimum-cost blocking flow with convex cost function.  

 Differences from earlier solution highlighted in bold. 
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list, this can be improved to O((ST/∆)n) at the cost of n registers 
and associated comparison logic. 

Fig. 8 shows how distributed OLA performs on a sample stress 
test. This example uses a value of ∆=0.1. Comparing this to Fig. 
3, we see that distributed OLA reduces the miss fraction during the 
critical period of the last phase by about 20% relative to DBL. For 
this situation, distributed OLA delivers nearly ideal performance, 
distributing the misses evenly among the different outputs experi-
encing misses. Fig. 9 shows how distributed OLA performs on a 
large number of different stress tests. Comparing these results to 
Fig. 4, we see that distributed OLA provides the largest improve-
ment for very small speedups. The speedups needed to reduce the 
misses to zero are the same for both DBL and distributed OLA.  

6. PRACTICAL CONSIDERATIONS 
While the main focus of this paper has been on establishing the 
theoretical foundation for robust distributed scheduling, we be-
lieve that the results are of direct practical value. First, it is impor-
tant to discuss the significance of the idealized assumptions made 
to facilitate the analysis; specifically, the assumption that the 
system operation is structured in discrete phases (arrival, transfer 
and departure). While systems could certainly be built that adhere 
to this assumption, this would imply a period during which data 
forwarding was suspended, while scheduling was being per-
formed. Pipelining can be used to eliminate this inefficiency. 
During each update period, a pipelined implementation would 
perform the scheduling needed to handle traffic received up to the 
start of the current update period. This traffic would then be al-
lowed to proceed to the outputs during the next update period. 

This implies that all cells would experience a delay of between 
one and two update periods. While our analysis can be applied 
directly to systems that operate in this way, we need to relax the 
definition of work-conservation to reflect this delay. We say that 
such a system with an update period of T is T-work-conserving, if 
an output link is never allowed to be idle, so long as there are no 
cells that arrived at least 2T time units earlier. (Note that by this 
definition, crossbar schedulers that pipeline scheduling with data 
transfer are 1-work-conserving.) 

In practice, it may be preferable not to adhere to a strict pipe-
lining discipline, but to allow scheduling to proceed on a more or 
less continuous basis, with ports periodically sending their status 
information and asynchronously updating the forwarding rates of 
their VOQs. This eliminates delays that are artificially imposed by 
the scheduler. Delays will still occur when the rate at which traf-
fic arriving at an input for a given output increases suddenly, but 
during periods of relative rate stability there would be no unnec-
essary delays. Note however, that while our results provide strong 
evidence that such systems can be work-conserving, they do not 
specifically apply to them. It would be interesting to see if one 
could formalize such asynchronously scheduled systems so as to 
enable rigorous statements about work-conservation. 

Another important issue for distributed scheduling is the 
overhead of the required message exchanges required. The practi-
cal variants of the distributed schedulers described here require 
that each port send and receive 2n values, each update period 
(where n is the number of ports). Using a compact floating point 
representation, these can be encoded with sufficient accuracy in 
4n bytes. If the update period is chosen so that the amount of data 
a port can send to or receive from the interconnection network per 
update period is much larger than 4n, the overhead required to 
communicate these values can be kept acceptably small. For a 
system with n=1,000 and 10 Gb/s links, an update period of 50 µs 
is enough to keep the overhead below 5%. 

A related issue is the computational overhead of distributed 
scheduling. Since the update period is necessarily a constant mul-
tiple of the number of ports, there is time to perform even moder-
ately complex algorithms. For a system with n=1000 and a clock 
frequency of 200 MHz, the DBL algorithm can be executed at 
each port in 5 µs, a small fraction of the required update period. 
While more complex algorithms such as distributed OLA are more 
challenging to implement in the required time, even these are 
feasible to implement if ∆ is at least, say ST/10. 
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In this paper, we have not addressed the interconnection net-
work itself, and how it might interact with a distributed scheduler. 
The performance of multistage interconnection networks with 
buffered switch elements has been studied in great detail, using 
both analysis and simulation (representative examples of analyti-
cal studies of such systems can be found in references [3,12]). 
The general conclusion of these studies is that these systems can 
provide excellent performance when carrying traffic that does not 
cause sustained overloads on any output links. The use of distrib-
uted scheduling can ensure that this condition is met, allowing 
one to consider interconnection network performance, as a largely 
independent issue. Most performance studies of these networks 
have been done assuming switch element chips that provide buff-
ering for just a small number of cells per port (the typical range is 
2-16) and these systems are capable of throughputs exceeding 
90% for switch element buffer sizes of eight or more per port. 
Modern ICs allow the construction of switch elements with over 
four thousand cells, allowing system throughputs to approach 
100%. With current technology, a three stage, multi-plane, Clos-
type network using dynamic routing requires roughly n switch 
element ICs to support n 10 Gb/s links (for values of n ranging 
from about 100 to several thousand). Such a network can buffer 
several thousand cells per external link, allowing it to effectively 
smooth out any rate variations that may occur within an update 
period. Since rate-controlled VOQs feed traffic to the network in a 
smooth, rather than a bursty fashion, the magnitude of such varia-
tions can be expected to be quite limited, allowing the network to 
deliver cells to the outputs with only very modest queueing de-
lays.  

7. CONCLUDING REMARKS 
We believe that system architectures that combine distributed 
scheduling and buffered, multistage interconnection networks are 
among the most scalable and cost-effective architectures for im-
plementing high performance routers. These architectures make it 
feasible today to build systems with aggregate capacities from 1 
to 100 Tb/s. Continued improvements in Moore’s Law will allow 
them to continue to scale in both line speed and total capacity. 
The one drawback that such systems have suffered from is that 
their performance can degenerate when they are subjected to the 
extreme traffic situations that can occur in Internet routers. While 
various ad-hoc flow control techniques have been used to address 
this issue, it has not been possible up to this point, to make rigor-
ous statements about their performance under extreme traffic. The 
theoretical results developed here show that the performance of 
these systems can be directly comparable to the performance of 
unbuffered crossbars, controlled by centralized schedulers. While 
in both system contexts, the scheduling algorithms with the 
strongest theoretical guarantees are not practical to implement, 
these algorithms provide the insight needed to design practical 
variants capable of similar performance. 

There are some interesting ways that this work could be ex-
tended. First, it seems possible that algorithms like DBL and dis-
tributed OLA are work-conserving for small speedups. However, 
proving such results seems to require either extensions to the 
proof techniques used here (adapted largely from earlier work on 
crossbar scheduling), or entirely new techniques. Establishing 
such a result would be of great interest from both a theoretical and 
a practical perspective.  

Reference [11] describes distributed scheduling algorithms 
that support weighted-fair queueing and algorithms that seek to 
guarantee that packets that arrive at the same time for the same 
output link are forwarded at approximately the same time on that 
output link. The results developed here can likely be extended to 
allow rigorous statements about the performance of these or simi-
lar distributed schedulers.  

Finally, as noted in the introduction, whereas crossbar sched-
ulers must match inputs to outputs in a one-to-one fashion, dis-
tributed schedulers can divide the bandwidth at inputs and outputs 
arbitrarily. It seems likely that this difference may allow the con-
struction of distributed schedulers with speedups smaller than 2. 
Our failure to prove such a result may be just a consequence of 
our reliance on proof methods adapted from crossbar scheduling. 
Our simulation studies suggest that speedups close to 1.5 may be 
sufficient for work-conservation in distributed schedulers and we 
have some (so far inconclusive) analytical evidence that suggests 
work-conservation could be achievable for speedups of slightly 
less than 1.6. The establishment of such a result would be of con-
siderable practical value and would also be interesting from a 
purely analytical standpoint, as it would likely require different 
proof techniques than those that have been employed so far. 
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