Scalable Packet Classification using
Distributed Crossproducting of Field Labels

David E. Taylor, Jonathan S. Turner
WUCSE-2004-38
June 23, 2004

Applied Research Laboratory

Department of Computer Science and Engineering
Washington University in Saint Louis

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130

davidtaylor@wustl.edu

Abstract

A wide variety of packet classification algorithms and devices exist in the research literature and commer-
cial market. The existing solutions exploit various design tradeoffs to provide high search rates, power and
space efficiency, fast incremental updates, and the ability to scale to large numbers of filters. There remains
a need for techniques that achieve a favorable balance among these tradeoffs and scale to support classifi-
cation on additional fields beyond the standard 5-tuple. We introduce Distributed Crossproducting of Field
Labels (DCFL), a novel combination of new and existing packet classification techniques that leverages key
observations of the structure of real filter sets and takes advantage of the capabilities of modern hardware
technology. Using a collection of real and synthetic filter sets, we provide analyses of DCFL performance
and resource requirements on filter sets of various sizes and compositions. An optimized implementation
of DCFL can provide over 100 million searches per second and storage for over 200 thousand filters with

current generation hardware technology.

Table 1: Example filter set.

Filter Action
SA DA Prot DP FlowID | PT
11010010 | * TCP | [3:15] || O 3
10011100 | * * [1:1] 1 5
101101* | 001110* | * [0:15] || 2 8t
10011100 | 01101010 | UDP | [5:5] 3 2
* * ICMP | [0:15] || 4 9t
100111* | 011010* | * [3:15] || 5 6t
10010011 | * TCP | [3:15] || 6 3
* * UDP | [3:15] || 7 9t
11101100 | 01111010 | * [0:15] || 8 2
111010* | 01011000 | UDP | [6:6] 9 2
100110* | 11011000 | UDP | [0:15] || 10 2
010110* | 11011000 | UDP | [0:15] || 11 2
01110010 | * TCP | [3:15] || 12 47
10011100 | 01101010 | TCP [0:1] 13 3
01110010 | * * [3:3] 14 3
100111* | 011010* | UDP | [1:1] 15 4

1 Introduction

Packet classification is an enabling function for a variety of applications including Quality of Service, se-
curity, and monitoring. Such applications typically operate on packet flows; therefore, network nodes must
classify individual packets traversing the node in order to assign a flow identifier, FlowID. Packet classifi-
cation entails searching a set of filters for the highest priority filter or set of filters which match the packet
1. At minimum, filters contain multiple field values that specify an exact packet header or set of headers
and the associated FlowID for packets matching all the field values. The type of field values are typically
prefixes for IP address fields, an exact value or wildcard for the transport protocol number and flags, and
ranges for port numbers. An example filter table is shown in Table 1. In this simple example, filters contain
field values for four packet headers fields: 8-bit source and destination addresses, transport protocol, and a
4-bit destination port number.

Note that the filters in Table 1 also contain an explicit priority tag PT and a non-exclusive flag denoted
by f. These additional values allow for ease of maintenance and provide a supportive platform for a wider
variety of applications. Priority tags allow filter priority to be independent of filter ordering, providing for
simple and efficient dynamic updates. Non-exclusive flags allow filters to be designated as either exclusive
or non-exclusive. Packets may match only one exclusive filter, allowing Quality of Service and security
applications to specify a single action for the packet. Packets may also match several non-exclusive filters,
providing support for transparent monitoring and usage-based accounting applications. Note that a parame-
ter may control the number of non-exclusive filters, r, returned by the packet classifier. Like exclusive filters,
the priority tag is used to select the r highest priority non-exclusive filters. We argue that packet classifiers
should support these additional filter values and point out that many existing algorithms preclude their use.

Distributed Crossproducting of Field Labels (DCFL) is a novel combination of new and existing packet

INote that filters are also referred to as rules in some of the packet classification literature.

classification techniques that leverages key observations of filter set structure and takes advantage of the
capabilities of modern hardware technology. We discuss the observed structure of real filter sets in detail and
provide motivation for packet classification on larger numbers of fields in Section 2. Two key observations
motivate our approach: the number of unique field values for a given field in the filter set is small relative to
the number of filters in the filter set, and the number of unique field values matched by any packet is very
small relative to the number of filters in the filter set. We also draw from the encoding ideas highlighted in [1]
in order to efficiently store the filter set and intermediate search results. Using a high degree of parallelism,
DCFL employs optimized search engines for each filter field and an efficient technique for aggregating the
results of each field search. By performing this aggregation in a distributed fashion, we avoid the exponential
increase in the time or space incurred when performing this operation in a single step. Given that search
techniques for single packet fields are well-studied, the primary focus of this paper is the development and
analysis of an aggregation technique that can make use of the embedded multi-port memory blocks in the
current generation of ASICs and FPGAs. We introduce several new concepts including field labeling, Meta-
Labeling unique field combinations, Field Splitting, and optimized data structures such as Bloom Filter
Arrays that minimize the number of memory accesses to perform set membership queries. As a result, our
technique provides fast lookup performance, efficient use of memory, support for dynamic updates at high
rates, and scalability to filters with additional fields.

Using a collection of 12 real filter sets and and synthetic filter sets generated with the ClassBench tools,
we provide an evaluation of DCFL performance and resource requirements for filter sets of various sizes
and compositions in Section 9. We show that an optimized implementation of DCFL can provide over 100
million searches per second and storage for over 200 thousand filters in a current generation FPGA or ASIC
without the need for external memory devices. Due to the complexity of the search, packet classification
is often a performance bottleneck in network infrastructure; therefore, it has received much attention in the
research community. We provide a brief overview of related work in Section 10, focusing on algorithms
most closely related to our approach.

2 Key Observations

Recent efforts to identify better packet classification techniques have focused on leveraging the character-
istics of real filter sets for faster searches. While the lower bounds for the general multi-field searching
problem have been established, observations made in recent packet classification work offer enticing new
possibilities to provide significantly better performance. We begin by reviewing the results of previous ef-
forts to extract statistical characteristics of filter sets, followed by our own observations which led us to
develop the DCFL technique.

2.1 Previous Observations

Gupta and McKeown published a number of observations regarding the characteristics of real filter sets
which have been widely cited [2]. Others have performed analyses on real filter sets and published their
observations [3, 4, 5, 6]. The following is a distillation of previous observations relevant to our work:

e Current filter set sizes are small, ranging from tens of filters to less than 5000 filters. It is unclear if the
size limitation is “natural” or a result of the limited performance and high expense of existing packet
classification solutions.

e The protocol field is restricted to a small set of values. In most filter sets, TCP, UDP, and the wildcard

are the most common specifications; other specifications include ICMP, IGMP, (E)IGRP, GRE and
IPINIP.

e Transport-layer specifications vary widely. Common range specifications for port numbers such as
‘gt 1023 (greater than 1023) suggest that the use of range to prefix conversion techniques may be
inefficient.

e The number of unique address prefixes matching a given address is typically five or less.
e The number of filters matching a given packet is typically five or less.

o Different filters often share a number of the same field values.

The final observation is pivotal. This characteristic arises due to the administrative policies that drive filter
construction. Consider a model of filter construction in which the administrator first specifies the commu-
nicating hosts or subnetworks (source and destination address prefix pair), then specifies the application
(transport-layer specifications). Administrators often must apply a policy regarding an application to a
number of distinct subnetwork pairs; hence, multiple filters will share the same transport-layer specifica-
tion. Likewise, administrators often apply multiple policies to a subnetwork pair; hence, multiple filters
will share the same source and destination prefix pair. In general, the observation suggests that the number
of intermediate results generated by independent searches on fields or collections of fields may be inher-
ently limited. This observation led to the general framework for packet classification in network processors
proposed by Kounavis, et. al. [7].

2.2 Our Observations

We performed a battery of analyses on 12 real filter sets provided by Internet Service Providers (ISPs), a
network equipment vendor, and other researchers working in the field. The filter sets range in size from 68 to
4557 entries. In general, our analyses agree with previously published observations. We also performed an
exhaustive analysis of the maximum number of unique field values and unique combinations of field values
which match any packet. A summary of the single field statistics are given in Table 2. Note that the number
of unique field values is significantly less than the number of filters and the maximum number of unique
field values matching any packet remains relatively constant for various filter set sizes. We also performed
the same analysis for every possible combination of fields (every possible combination of two fields, three

fields, etc.). There are
d [q
S (;) @

=1
unique combinations of d fields. We observed that the maximum number of unique combinations of field
values which match any packet is typically bounded by twice the maximum number of matching single field
values, and also remains relatively constant for various filter set sizes.

Finally, an examination of real filter sets reveals that additional fields beyond the standard 5-tuple are
relevant. In nearly all filter sets that we studied, filters contain matches on TCP flags or ICMP type numbers.
In most filter sets, a small percentage of the filters specify a non-wildcard value for the flags, typically
less then two percent. There are notable exceptions, as approximately half the filters in database ipcl
contain non-wildcard flags. We argue that new services and administrative policies will demand that packet
classification technigques scale to support additional fields (i.e. more “dimensions”) beyond the standard
5-tuple. It is not difficult to identify applications that could benefit from packet classification on fields in
higher level protocol headers. Consider the following example: an ISP wants to deploy Voice over IP (VoIP)

Table 2: Maximum number of unique field values matching any packet; data from 12 real filter sets; number
of unique field values in each filter set is given in parentheses.

Filter Set Fields

Src Dest Src Dest
Name | Size | Addr Addr Port Port Prot | Flag
fw2 68 3(B1) |32 (29 |1(D 2(5)
fwb 160 | 5(38) |[4(35) [3(11) |3(33) |2(4) | 2(11)
fw3 184 | 4((31) [3(28) (309 339 |2® |21
ipc2 192 [3(29) |2(32) |[2(3) |2(3) 2(4) [2(8)
fwa 264 | 3(30) |[4(43) [4(28)|3(49) |2(9
fwl 283 | 4(57) |4(66) |3(13)|3(43) |2(5 |2(11)
acl2 [623 | 5(182) | 5(207) [1(1) |4(@27) |2(5) | 2(6)
acll | 733 | 4(97) |4(205) | 1(1) |5(108) |24 |2(3
ipcl | 1702 | 4(152) | 5(128) | 4(34) | 5(54) | 2(7) | 2(11)
acl3 | 2400 | 6 (431) | 4(516) | 2(3) | 6(190) | 2(5) | 2(3)
acl4 | 3061 | 7(574) | 5(557) [2(3) | 7(235) | 2(7) | 2(3)
acl5 | 4557 | 3(169) | 2(80) | 1(1) |4(40) |14 |2(2

service running over an IPv6/UDP/RTP stack for new IP-enabled handsets and mobile appliances. The ISP
also wants to make efficient use of expensive wireless links connecting Base Station Controllers (BSCs) to
multiple Base Station Transceivers (BSTs); hence, the ISP would like to use a header compression protocol
like Robust Header Compression (ROHC). ROHC is a robust protocol that compresses packet headers for
efficient use of wireless links with high loss rates [8]. In order to support this, the BSC must maintain
a dynamic filter set which binds packets to ROHC contexts based on fields in the IPv6, UDP, and RTP
headers. A total of seven header fields (352 bits) must be examined in order to classify such packets.

Matches on ICMP type number, RTP Synchronization Source ldentifier (SSRC), and other higher-level
header fields are likely to be exact matches; therefore, the number of unique field values matching any
packet are at most two, an exact value and the wildcard if present. There may be other types of matches
that more naturally suit the application, such as arbitrary bit masks on TCP flags; however, we do not
foresee any reasons why the structure of filters with these additional fields will significantly deviate from
the observed structure in current filter tables. We believe that packet classification techniques must scale to
support additional fields while maintaining flexibility in the types of additional matches that may arise with
new applications.

3 Description of DCFL

Distributed Crossproducting of Field Labels (DCFL) may be described at a high-level using the following
notation:

e Partition the filters in the filter set into fields
e Partition each packet header into corresponding fields

e Let F; be the set of unique field values for filter field i that appear in one or more filters in the filter set

e Let F;(x) C F; be the subset of filter field values in F; matched by a packet with the value x in header
field ¢

Let F; ; be the set of unique filter field value pairs for fields ¢ and j in the filter set; i.e. if (u,v) € F; ;
there is some filter or filters in the set with « in field 4 and v in field j

Let F; ;(z,y) C F; ; be the subset of filter field value pairs in F; ; matched by a packet with the value
2 in header field 7 and y in header field j

This can be extended to higher-order combinations, such as set F; ; ;. and subset F; ; »(x, y, 2), etc.

The DCFL method can be structured in many different ways. In order to illustrate the lookup process,
assume that we are performing packet classification on four fields and a header arrives with field values
{w, z,y, z}. One possible configuration of a DCFL search is shown in Figure 1 and proceeds as follows:

e In parallel, find subsets Fy(w), Fa(x), F5(y), and Fy(z)
e In parallel, find subsets F'; o(w, z) and F3 4(y, z) as follows:

— Let Fyyery(w, z) be the set of possible field value pairs formed from the crossproduct of F'; (w)
and Fy(x)

— For each field value pair in Fcq, (w,), query for set membership in F7 o, if the field value pair
is in set F o add it to set F o(w, x)

— Perform the symmetric operations to find subset £ 4(y, z)

e Find subset F; 5 3 4(w, z,y, z) by querying set F7 » 3 4 with the field value combinations formed from
the crossproduct of F o(w, x) and F3 4(y,)

e Select the highest priority exclusive filter and r highest priority non-exclusive filters in F'; 2 3 4(w, =, y, 2)

Note that there are several variants which are not covered by this example. For instance, we could alter the
aggregation process to find the subset F 5 3(w, x, y) by querying F 5 3 using the crossproduct of £ »(w,)
and F3(y). We can then find the subset F} 23 4(w, x,y, z) by querying Fj 2 3 4 using the crossproduct of
Fy23(w,z,y) and Fy(z). A primary focus of this paper is determining subsets (F'; 2(w, =), F3 4(y, 2), etc.)
via optimized set membership data structures.

As shown in Figure 1, DCFL employs three major components: a set of parallel search engines, an
aggregation network, and a priority resolution stage. Each search engine F; independently searches for
all filter fields matching the given header field using an algorithm or architecture optimized for the type
of search. For example, the search engines for the IP address fields may employ compressed multi-bit
tries while the search engine for the protocol and flag fields use simple hash tables. We provide a brief
overview of options for performing the independent searches on packet fields in Section 7. As previously
discussed in Section 2 and shown in Table 2, each set of matching labels for each header field is typically
less than five for real filter tables. The sets of matching labels generated by each search engine are fed to
the aggregation network which computes the set of all matching filters for the given packet in a multi-stage,
distributed fashion. Finally, the priority resolution stage selects the highest priority exclusive filter and the r
highest priority non-exclusive filters. The priority resolution stage may be realized by a number of efficient
algorithms and logic circuits; hence, we do not discuss it further.

The first key concept in DCFL is labeling unique field values with locally unique labels; thus, sets
of matching field values can be represented as sets of labels. Table 3 shows the sets of unique source

w| X Z ayload
Packet Fields ¢ y pay!
Independent F E = E
Field Searches L 2 3 4
F,(W) [F() |F(y) _ |F.(2
Fquery(W,X) Fquery(y’z)
Fis Fsa
A ati
%];tevgnr:(o% Fpo(W.X) F34(Y,2)

F auery(WiX,Y,2)

F1234(WXY,2)

Priority
Resolution

v

Best Matching Filter(s)

Figure 1. Example configuration of Distributed Crossproducting of Field Labels (DCFL); field search en-
gines operate in parallel and may be locally optimized; aggregation nodes also operate in parallel; aggrega-
tion network may be constructed in a variety of ways.

and destination addresses specified by the filters in Table 1. Note that each unique field value also has an
associated “count” value which records the number of filters which specify the field value. The “count” value
is used to support dynamic updates; a data structure in a field search engine or aggregation node only needs
to be updated when the “count” value changes from 0 to 1 or 1 to 0. We identify unique combinations of
field values by assigning either (1) a composite label formed by concatenating the labels for each field value
in the combination, or (2) a new meta-label which uniquely identifies the combination in the set of unique
combinations?. Meta-Labeling essentially compresses the size of the label used to uniquely identify the field
combination. In addition to reducing the memory requirements for explicitly storing composite labels, this
optimization has another subtle benefit. Meta-Labeling compresses the space addressed by the label, thus
the meta-label may be used as an index into a set membership data structure. The use of labels allows us
to use set membership data structures that only store labels corresponding to field values and combinations
of field values present in the filter table. While storage requirements depend on the structure of the filter
set, they scale linearly with the number of filters in the database. Furthermore, at each aggregation node we
need not perform set membership queries in any particular order. This property allows us to take advantage

2Meta-labeling can be thought of as simply numbering the set of unique field combinations

Table 3: Sets of unique specifications for each field in the sample filter set.

SA Label | Count
11010010 || O 1
10011100 || 1 1
101101) 1 LDA I6abel (730unt
10011100 2 g 001110* 1 1 $Ep I6abel LCl:ount
01101010 || 2 2
100111* || 5 2 011010* |l 3 5 * 1 5
10010011 || 6 1 01111010 || 4 1 UDP 2 6
11101100 || 7 1 ICMP || 3 1
01011000 || 5 1
111010%) 8 L 11011000 || 6 2
100110* | 9 1
010110* 10 1
01110010 || 11 2
DP Label | Count
[3:15] || 0 5
[1:1] |1 2
[0:15] || 2 5
[5:55] | 3 1
[6:6] 4 1
[0:1] |5 1
[3:3] 6 1

of hardware parallelism and multi-port embedded memory technology.

The second key concept in DCFL is employing a network of aggregation nodes to compute the set of
matching filters for a given packet. The aggregation network consists of a set of interconnected aggregation
nodes which perform set membership queries to the sets of unique field value combinations, Fy o, F3 45,
etc. By performing the aggregation in a multi-stage, distributed fashion, the number of intermediate results
operated on by each aggregation node remains small. Consider the case of finding all matching address
prefix pairs in the example filter set in Table 1 for a packet with address pair (z, y) = (10011100,01101010).
As shown in Figure 2, an aggregation node takes as input the sets of matching field labels generated by the
source and destination address search engines, Fsp(z) and Fpa (v), respectively. Searching the tables of
unique field values shown in Table 3, Fgp () contains labels {1,4,5} and Fp (y) contains labels {0,2,3}.
The first step is to form a query set Fi,.., of aggregate labels corresponding to potential address prefix
pairs. The query set is formed from the crossproduct of the source and destination address label sets. Next,
each label in F,., is checked for membership in the set of labels stored at the aggregation node, F'sp pa-
Note that the set of composite labels corresponds to unique address prefix pairs specified by filters in the
example filter set shown in Table 1. Composite labels contained in the set are added to the matching label
set FSA,DA(% y) and passed to the next aggregation node. Since the number of unique field values and field
value combinations is limited in real filter sets, the size of the crossproduct at each aggregation node remains
manageable. By performing crossproducting in a distributed fashion across a network of aggregation nodes,
we avoid an exponential increase in search time that occurs when aggregating the results from all field search

X y
10011100 01101010

v v

FSA I:DA

Fsa(X) Foa(y)
{1,4,5} {0,2,3}

Aggregation Node

Fquery%.Y) Fsapa
(1,0) (1,2) (1,3) DI (0,0(10) (21) (32
(4,0) (4,2) (4,3) (4,0) (53) (6,0) (7.4
(5,0) (5.2 (5.3) (8,5) (9,6) (10,6) (11,0)

l { Fsapa(Xy)

(1,0), (4,0), (53)}

Figure 2: Example aggregation node for source and destination address fields.

engines in a single step. Note that the aggregation nodes only store unique combinations of fields present
in the filter table; therefore, we also avoid the exponential blowup in memory requirements suffered by the
original Crossproducting technique [9] and Recursive Flow Classification [2]. In Section 5, we introduce
Field Splitting which limits the size of F,.,, at aggregation nodes, even when the number matching labels
generated by field search engines increases.

DCFL is amenable to various implementation platforms, and where possible, we will highlight the
various configurations of the technique that are most suitable for the most popular platforms. In order to
illustrate the value of our approach, we focus on the highest performance option for the remainder of this
paper. It is important to briefly describe this intended implementation platform here, as it will guide the
selection of data structures for aggregation nodes and optimizations in the following sections. Thanks to
the endurance of Moore’s Law, integrated circuits continue to provide better performance at lower cost.
Application Specific Integrated Circuits (ASICs) and Field-Programmable Gate Arrays (FPGAS) provide
millions of logic gates and millions of bits of memory distributed across many multi-port embedded memory
blocks. For example, a current generation Xilinx FPGA operates at over 400 MHz and contains 556 dual-
port embedded memory blocks, 18Kb each with 36-bit wide data paths for a total of over 10Mb of embedded
memory [10]. Current ASIC standard cell libraries offer dual- and quad-port embedded SRAMSs operating
at 625 MHz [11]. We also point out that it is standard practice to utilize several embedded memories in
parallel in order to achieve the desired data path width. It is our goal to make full use of the parallelism
and high-performance embedded memory provided by the current generation of ASICs and FPGAs. This
requires that we maximize parallel computations and storage efficiency. If necessary, high-performance off-
chip memory technologies such as Dual Data Rate (DDR) and Quad Data Rate (QDR) SRAM technologies
could be employed; however, the number of available off-chip memories is limited by the number of 1/0
pins on the implementation device.

4 Aggregation Network

Since all aggregation nodes operate in parallel, the performance bottleneck in the system is the aggregation
node with the largest worst-case query set size, | Fyyery|. Query set size determines the number of sequen-
tial memory accesses performed at the node. The size of query sets vary for different constructions of the
aggregation network. We refer to the worst-case query set size, |Fy.cry|, among all aggregation nodes,
Fy,...,Fy 4, as the cost for network construction, G';. Selecting the most efficient arrangement of aggre-
gation nodes into an aggregation network is a key issue. We want to select the minimum cost aggregation
network G,,;», as follows:

Gmin = G : cost(G) = min {cost (G;) Vi} (2)

where

cost (G) = maz {|Fyuery|VEF1, ..., F1,.. 0 € Gi} (3)

Consider an example for packet classification on three fields. Shown in Figure 3 are the maximum sizes for
the sets of matching field labels for the three fields and the maximum size for the sets of matching labels
for all possible field combinations. For example, label set F; > (x, y) will contain at most four labels for any
values of and y. Also shown in Figure 3 are three possible aggregation networks for a DCFL search; the
cost varies between 3 and 6 depending on the construction.

In general, an aggregation node may operate on two or more input label sets. Given that we seek to
minimize | Fyuery|, We limit the number of input label sets to two. The query set size for aggregation nodes
fed by field search engines is partly determined by the size of the matching field label sets, which we have
found to be small for real filter sets. Also, the Field Splitting optimization provides a control point for the
size of the query set at the aggregation nodes fed by the field search engines; thus, we restrict the network
structure by requiring that at least one of the inputs to each aggregation node be a matching field label set
from a field search engine. Figure 4 shows a generic aggregation network for packet classification on d
fields. Aggregation node £ ; operates on matching field label set £;(z) and matching composite label set
Fy ..i-1(a,...,w) generated by upstream aggregation node £ ;—;. Note that the first aggregation node
operates on label sets from two field search engines, F(a) and F5(b). We point out that this seemingly
“serial” arrangement of aggregation nodes does not prevent DCFL from starting a new search on every
pipeline cycle. As shown in Figure 4, delay buffers allow field search engines to perform a new lookup
on every pipeline cycle. The matching field label sets are delayed by the appropriate number of pipeline
cycles such that they arrive at the aggregation node synchronous to the matching label set from the upstream
aggregation node. Search engine results experience a maximum delay of (d — 2) pipeline cycles which is
tolerable given that the pipeline cycle time is on the order of 10ns. With such an implementation, DCFL
throughput is inversely proportional to the pipeline cycle time.

In this case, the problem is to choose the ordering of aggregation nodes which results in the minimum
network cost. For example, do we first aggregate the source and destination field labels, then aggregate the
address pair labels with the protocol field labels? We can empirically determine the optimal arrangement
of aggregation nodes for a given filter set by computing the maximum query set size for each combination
of field values in the filter set. While this computation is manageable for real filter sets of moderate size,
the computational complexity increases exponentially with filter set size. For our set of 12 real filter sets,
the optimal network aggregated field labels in the order of decreasing maximum matching filter label set
size with few exceptions. This observation can be used as a heuristic for constructing efficient aggregation
networks for large filter sets and filter sets with large numbers of filter fields. As previously discussed, we do
not expect the filter set properties leveraged by DCFL to change. We do point out that a static arrangement of
aggregation nodes might be subject to degraded performance if the filter set characteristics were dramatically
altered by a sequence of updates. Through the use of reconfigurable interconnect in the aggregation network

10

FiI<3 [F x4 [Fpa(xydl<1
Fyl<2 [Fax2)|<2
Fa@ls1 [Fygls1

G X y z
I:1 I:2 F3
FiI=3]IF0)|=2 bufermm|Fy(z)| = 1

IF(xy)| =4 IF1o5(X%Yy,2)[=1

IFquery:Y)| = 6 IFquery (XY, = 4
cost(G,) =6
G, X z
I:l F3 I:2
Fi)I=3 |[Fs@|=1 buffermm|F,(y)| =2
IF,3(x,2)| =2 IF1o5(X%Yy,2)[=1
IFquery(X1Z)| =3 IFquery(X1y1Z)| =4
cost(G,) =4
G; y z X
I:2 I:l

F3
IF(Y)| = 2l|F3(Z)| =1 buffertllzl(x)l -3

:IFZ,3(y,z)| = 1-a IF1o5(X%Yy,2)|[=1

IFquery(y1Z)| =2 IFquery(X1y1Z)| =3
cost(G;) =3

Figure 3: Example of variable aggregation network cost for different aggregation network constructions for
packet classification on three fields.

and extra memory for storing off-line aggregation tables, a DCFL implementation can minimize the time
for restructuring the network for optimal performance. We defer this discussion to future study.

11

Packet Fields ¢
Paralle =
Field Searches d
Fq(z
delay buffers
..... d-2
Aggregation <
Network ‘ 1. d@...2)

Priority

Best Matching Filter(s) €—| . ion

Figure 4: Generalized DCFL aggregation network for a search on d fields.
5 Field Splitting

As discussed in Section 3, the size of the matching field label set, | F;(x)|, affects the size of the crossproduct,
| Fquery|, at the following aggregation node. While we observe that | F;(«)| remains small for real filter sets,
we would like to exert control over this value to both increase search speed for existing filter sets and
maintain search speed for filter sets with increased address prefix nesting and port range overlaps. Recall
that |F;(x)| < 2 for all exact match fields such as the transport protocol and protocol flags.

The number of address prefixes matching a given address can be reduced by splitting the address prefixes
into a set of (¢ 4 1) shorter address prefixes, where c is the number of splits. An example of splitting a 6-bit
address field is shown in Figure 5. For the original 6-bit address field, A(5:0), the maximum number of field
labels matching any address is five. In order to reduce this number, we split the 6-bit address field into a
2-bit address field, A(5:4), and a 4-bit address field, A(3:0). Each original 6-bit prefix creates one entry in
each of the new prefix fields as shown. If an original prefix is less than three bits in length, then the entry
in field A(3:0) is the wildcard. We assign a label to each of the unique prefixes in the new fields and create
data structures to search the new fields in parallel in separate search engines. In this example we use binary
trees; regardless of the data structure, the search engine must return all matching prefixes. The prefixes
originally in A(5:0) are now identified by the unique combination of labels corresponding to their entries in
A(5:4) and A(3:0). For example, the prefix 000= in A(5:0) is now identified by the label combination (3, 1).
A search proceeds by searching A(5:4) and A(3:0) with the first two bits and remaining 4 bits of the packet
address, respectively. Note that the maximum number of field labels returned by the new search engines is
three. We point out that the sets of matching labels from A(5:4) and A(3:0) may be aggregated in any order,
with label sets from any other filter field; we need not aggregate the labels from A(5:4) and A(3:0) in the
same aggregation node to ensure correctness. For address prefixes, Field Splitting is similar to constructing
a variable-stride multi-bit trie; however, with Field Splitting we only store one multi-bit node per stride. A
matching prefix is denoted by the combination of matching prefixes from the multi-bit nodes in each stride.

Given that the size of the matching field label sets is the property that most directly affects DCFL
performance, we would like to specify a maximum set size and split those fields that exceed the threshold.
Given a field overlap threshold, there is a simple algorithm for determining the number of splits required
for an address prefix field. For a given address prefix field, we begin by forming a list of all unique address

12

A(5:0) Labd || A(5:4) Label | A(3:0) Label
* 0 * 0 * 0
o 1 o1 * 0
o 2 0 2 * 0
000+ 3 0 3 o 1
0110+ 4 0 2 10+ 2
1010+ 5 10 4 10+ 2
10100* 6 10 4 100 3
011010 7 0 2 1010 4

P

4 f
Figure 5: An example of splitting a 6-bit address field; maximum number of matching labels per field is
reduced from five to three.

prefixes in the filter set, sorted in non-decreasing order of prefix length. We simply add each prefix in the list
to a binary trie, keeping track of the number of prefixes encountered along the path using a nesting counter.
If there is a split at the current prefix length, we reset the nesting counter. The splits for the trie may be
stored in a list or an array indexed by the prefix length. If the number of prefixes along the path reaches the
threshold, we create a split at that prefix length and reset the nesting counter. It is important to note that
the number of splits depends upon the structure of the address trie. In the worst case, a threshold of two
overlaps could create a split at every prefix length. We argue that given the structure of real filter sets and
reasonable threshold values (four or five), that Field Splitting provides a highly useful control point for the
size of query sets in aggregation nodes.

Field Splitting for port ranges is much simpler. We simply compute the maximum field overlap, m, for
the given port field by adding the set of unique port ranges to a segment tree. Given an overlap threshold,
t, the number splits is simply ¢ = %‘12 We then create (¢ + 1) bins in which to sort the set of unique port
ranges. For each port range [i : j], we identify the bin, b;, containing the minimum number of overlapping
ranges using a segment tree constructed from the ranges in the bin. We insert [z : j] into bin b; and insert
wildcards into the remaining bins. Once the sorting is complete, we assign locally unique labels to the port
ranges in each bin. Like address field splitting, a range in the original filter field is now identified by a
combination of labels corresponding to its matching entry in each bin. Again, label aggregation may occur
in any order with labels from any other field.

Finally, we point out that Field Splitting is a precomputed optimization. It is possible that the addition of
new filters to the filter set could cause one the overlap threshold to be exceeded in a particular field, and thus
degrade the performance of DCFL. While this is possible, our analysis of real filter sets suggests that it is
not probable. Currently most filter sets are manually configured, thus updates are exceedingly rare relative
to searches. Furthermore, the common structure of filters in a filter set suggests that new filters will most
likely be a new combination of fields already in the filter set. For example, a network administrator may add
a filter matching all packets for application A flowing between subnets B and C, where specifications A, B,
C already exist in the filter set.

13

6 Aggregation Nodes

Well-studied data structures such as hash tables and B-Trees are capable of efficiently representing a set [12].
We focus on three options that minimize the number of sequential memory accesses, SMA, required to
identify the composite labels in Fy,.,, Which are members of the set F ;. The first is a variant on the
popular Bloom filter which has received renewed attention in the research literature [13]. The second and
third options leverage the compression provided by field labels and meta-labels to index into an array of lists
containing the composite labels for the field value combinations in £ ;. These indexing schemes perform
parallel comparisons in order to minimize the required SMA,; thus, the performance of these schemes depends
on the word size m of the memory storing the data-structures. For all three options, we derive equations for
SMA and number of memory words T required to store the data-structure.

6.1 Bloom Filter Arrays

A Bloom filter is an efficient data structure for set membership queries with tunable false positive errors. In
our context, a Bloom filter computes k& hash functions on a label L to produce % bit positions in a bit vector
of m bits. If all k& bit positions are set to 1, then the label is declared to be a member of the set. Broder and
Mitzenmacher provide a nice introduction to Bloom filters and their use in recent work [13]. We provide a
brief introduction to Bloom filters and a derivation of the equations governing false positive probability in
Appendix A. False positive answers to membership queries causes the matching label set, ', ;(a, ..., z),
to contain labels that do not correspond to field combinations in the filter set. These false positive errors can
be “caught” at downstream aggregation nodes using explicit representations of label sets. We discuss two
options for such data-structures in the next section. This property does preclude use of Bloom filters in the
last aggregation node in the network. As we discuss in Section 9, this does not incur a performance penalty
in real filter sets.

Given that we want to minimize the number of sequential memory accesses at each aggregation node,
we want to avoid performing multiply memory accesses per set membership query. It would be highly
inefficient to perform & separate memory accesses to check if a single bit is set in the vector. In order to
limit the number of memory accesses per membership query to one, we propose the use of an array of Bloom
filters as shown in Figure 6. A Bloom Filter Array is a set of Bloom filters indexed by the result of a pre-filter
hash function H(L). In order to perform a set membership query for a label L, we read the Bloom filter
addressed by H (L) from memory and store it in a register. We then check the bit positions specified by the
results of hash functions hy (L), ..., hi(L). The Match Logic checks if all bit positions are set to 1. If so, it
adds label L to the set of matching labels £ ;(a,...,z).

Set membership queries for the labels in F,.-, need not be performed in any order and may be per-
formed in parallel. Using an embedded memory block with P ports requires P copies of the logic for the
hash functions and Match Logic. Given the ease of implementing these functions in hardware and the fact
that P is rarely more than four, the additional hardware cost is tolerable. The number of sequential memory
accesses, SMA, required to perform set membership queries for all labels in Fie;, is simply

|Fquery|
SMA = aueryl 4
“ Q)

= (5 ©

The false positive probability is

14

Fi(x)
{0,2,3}
Fy @) Bloom Filter Array
{145 | Aggregation Node J“l
Fgery(L1 %) a A
(1,0) (1.2) (1,3) 1| 1101001011 ... 010
(4,0) (4,2) (4,3
(5,0) (52)[5:3) 2| 0101101001 ... 110

0011001010... 011

W| 1111001010 ... 001

0011001010 ... 011 |«

v

—»{ Match Logic >
F, i(a...%)

{(1,0), (4,0), (53)}

Figure 6: Example of an aggregation node using a Bloom Filter Array to aggregate field label set F;(z) with
label set Fl,m,i,l(a, ey w)

when the following relationship holds

k=""1n2 (6)
n

where n is the number of labels |F' . ;| stored in the Bloom filter. Setting % to four produces a tolerable false
positive probability of 0.06. Assuming that we store one Bloom filter per memory word, we can calculate
the required memory resources given the memory word size m. Let W be the number of memory words.
The hash function H (L) uniformly distributes the labels in £ _; across the 1V Bloom filters in the Bloom
Filter Array. Thus, the number of labels stored in each Bloom filter is

Using Equation 6 we can compute the number of memory words, W, required to maintain the false positive
probability given by Equation 5:

]{JX|F1 i
W: 9ty
[m X In2

] ®)

The total memory requirement is m x W bits. Recent work has provided efficient mechanisms for dynami-
cally updating Bloom filters [14, 15].

15

F
F(X)
{0,2,3}
Meta-Label Indexing
Fioia@...w) Aggregation Node
{1,4,5} 4 v
_|nig 031
2 [4» Match 1|0
3 Logic [
hig 27 114
<4
N < max|F;(x)|
[Fy jalFl] 1 P 3
N\ J
Y
listsize<M >
Fi@...%)
{(1,0), (4,0), (53)}

Figure 7: Example of an aggregation node using Meta-Label Indexing to aggregate field label set F;(x) with
meta-label set 7 ;_1(a,...,w).

6.2 Meta-Label Indexing

We can leverage the compression provided by meta-labels to construct aggregation nodes that explicitly
represent the set of field value combinations, F; ;. The field value combinations in F __; can be identified
by a composite label which is the concatenation of the meta-label for the combination of the first (i — 1)
fields, Ly, ;—1, and the label for field 4, L;. We sort these composite labels into bins based on meta-label
L. ;—1. Foreach bin, we construct a list of the labels L;, where each entry stores L; and the new meta-label
for the combination of ¢ fields, L, ;. We store these lists in an array A; indexed by meta-label L ;1 as
shown in Figure 7.

Using L1, ;-1 as an index allows the total number of set membership queries to be limited by the
number of meta-labels received from the upstream aggregation node, |F; _;—i(a,...,w)|. Note that the
size of a list entry, s, is

s =lg|Fi| +1g|F,.)

and s is typically much smaller than the memory word size, m. In order to limit the number of memory
accesses per set membership query, we store N list entries in each memory word, where N = |2 |. This
requires N x |F;(z)| way match logic to compare all of the field labels in the memory word with the set of
matching field labels from the field search engine, F;(x). Since set membership queries may be performed
independently, the total number of sequential memory accesses, SMA, depends on the size of the index
meta-label set, |y ;—1(a,...,w)|, the size of the lists indexed by the labelsin F;__;—i(a,...,w), and the
number of memory ports P. In the worst case, the labels index the |F; . ;_i(a,...,w)| longest lists in A;.

16

Let Length be an array storing the lengths of the lists in A; in decreasing order. The worst-case sequential
memory accesses is

|F1,...i—1(@...;w)| [Length(j)
S Zengtilg)
SMA =]

- (10

As with the Bloom Filter Array, the use of multi-port memory blocks does require replication of the multi-
way match logic. Due to the limited number of memory ports, we argue that this represents a negligible
increase in the resources required to implement DCFL. The number of memory words, W, needed to store

the data structure is
| Fy

,,,,, T Length(y)

The total memory requirement is m x W bits. Adding or removing a label from F __; requires an update to
a single list entry. Packing multiple list entries on to a single memory word slightly complicates the memory
management; however, given that we seek to minimize the number of memory words occupied by a list, the
number of individual memory reads and writes per update is small.

Finally, we point out that the data structure may be re-organized to use L; as the index. This variant,
Field Label Indexing, is effective when |F,| approaches |F} . ,|. When this is the case, the number of
composite labels L, .. ; containing label L; is small and the length of the lists indexed by F;(z) are short.

7 Field Search Engines

A primary advantage of DCFL is that it allows each filter field to be searched by a search engine optimized
for the particular type of search. While the focus of this paper is the novel aggregation technique, we briefly
discuss single field search techniques suitable for use with DCFL in order to to highlight the potential
performance.

7.1 Prefix Matching

Due to its use of decomposition, DCFL requires that the search engines for the IP source and destination
addresses return all matching prefixes for the given addresses. Any longest prefix matching technique can
support All Prefix Matching (APM), but some more efficiently than others. The most computationally effi-
cient technique for longest prefix matching is Binary Search on Prefix Lengths [16]. When precomputation
and marker optimizations are used, the technique requires at most five hash probes per lookup for 32-bit
IPv4 addresses. Real filter sets contain a relatively small number of unique prefix lengths, thus the realized
performance should be better for real filter sets. Recall that markers direct the search to longer prefixes that
potentially match, thus skipping shorter prefixes that may match. In order to support APM, Binary Search
on Prefix Lengths must precompute all matching prefixes for each “leaf” in the trie defined by the set of ad-
dress prefixes. While computationally efficient for searches, this technique does present several challenges
for hardware implementation. Likewise, the significant use of precomputation and markers degrades the
dynamic update performance, as an update may require many memory transactions.

As demonstrated in [17], compressed multi-bit trie algorithms readily map to hardware and provide
excellent lookup and update performance with efficient memory and hardware utilization. Specifically,
our implementation of the Tree Bitmap technique requires at most 11 memory accesses per lookup and
approximately six bytes of memory per prefix. Each search engine consumes less than 1% of the logic
resources on a commodity FPGA. As discussed in [17], there are a number of optimizations to improve the

17

Port(x) = 4501

* Exact Port
69] 1
e @ flse Arbitrary [I323I] 3
Ranges [4501] 4
[70375] 5 [127] 6
Flag(WC): 1 Flag(LO): 0 Flag(HI): 1 [1123:1132] 7
Label (WC): 2 Label (LO): O Label(HI): 1 [454:457] 8
I I I
v
Matching Port Labels
{1,2,4}

Figure 8: Block diagram of range matching using parallel search engines for each port class.

performance of this particular implementation. Use of an initial lookup array for the first 16 bits reduces
the number of memory accesses to at most seven. Coupled with a simple two-stage pipeline, the number of
sequential memory accesses per lookup can be reduced to at most four. Trie-based LPM techniques such
as Tree Bitmap easily support all prefix matching with trivial modifications to the search algorithm. For the
purpose of our discussion, we will assume an optimized Tree Bitmap implementation requiring at most four
memory accesses per lookup and six bytes per prefix of memory.

7.2 Range Matching

Searching for all arbitrary ranges that overlap a given point presents a greater challenge than prefix matching.
Based on the observations reported in Appendix B, range matching can be made sufficiently fast for real
filter sets using a set of parallel search engines, one for each port class, as shown in Figure 8. Recall that three
port classes, WC, HI, and LO, consist of a single range specification. The first port class, wildcard (WC),
the search engine simply consists of flag specifying whether or not the wildcard is specified by any filters
in the filter set and a register for the label assigned to this range specification. Similarly, the search engines
for the HI and LO port classes also consist of flags specifying whether or not the ranges are specified by any
filters in the filter set and registers for the labels assigned to those range specifications. We also add logic to
check if the port is less than 1024; this checks for a match on the HI and LO port ranges, [1024 : 65535] and
[0 : 1023], respectively.

For the 12 real filter sets we studied, the number of exact port numbers specified by filters was at most
183. The port ranges in the EM port class may be efficiently searched using any sufficiently fast exact match
data-structure. Entries in this data-structure are simply the port number and the assigned label. A simple
hash table could bound searches to at most two memory accesses. Finally, the set of arbitrary ranges in the
AR port class may be searched with any range matching technique. Fortunately, the set of arbitrary ranges
tends to be small; the 12 real filter sets specified at most 27 arbitrary ranges. A simple balanced interval
tree data-structure requires at most O(k lgn) accesses, where & is the number of matching ranges and n is
the number of ranges in the tree. Other options for the AR search engine include the Fat Inverted Segment
Tree [18] and converting the arbitrary ranges to prefixes and employing an all prefix matching search engine.
Given the limited number of arbitrary ranges, adding multiple prefixes per range to the data-structure does
not cause significant memory inefficiency. With sufficient optimization, we assume that range matching can
be performed with at most four sequential memory accesses and the data-structures for the AR and EM port

18

classes easily fit within a standard embedded memory block of 18kb.

7.3 Exact Matching

The protocol and flag fields may be easily searched with a simple exact match data-structure such as a hash
table. Given the small number of unique protocol and flag specifications in the real filter sets (less than 9
unique protocols and 11 unique flags), the time per search and memory space required is trivial. As we
discuss in Section 2, we expect that additional filter fields will also require exact match search engines.
Given the ease of implementing hash functions in custom and reconfigurable logic, we do not foresee any
performance bottlenecks for the search engines for these fields.

8 Dynamic Updates

Another of strength of DCFL is its support of incremental updates. Adding or deleting a filter from the filter
set requires approximately the same amount of time as a search operation and does not require that we flush
the pipeline and update all data-structures in an atomic operation. An update operation is treated as a search
operation in that it propagates through the DCFL architecture in the same manner. The query preceding the
update in the pipeline operates on data-structures prior to the update; the query following the update in the
pipeline operates on data-structures following the update.

Consider inserting a filter to the filter set. We partition the filter into fields (performing field splits, if
necessary) and insert each field into the appropriate input buffer of the field search engines. In parallel,
each field search engine performs the update operation just as it would perform searches in parallel. As
shown in Figure 9, an add operation entails a search of the data-structure for the given filter field. If the
data-structure does not contain the field, then we add the field to the data-structure and assign the next free
label®. Finally, we increment the count value for the field entry. Each field search engine returns the label for
the filter field. At the next pipeline cycle, the field search engines feed the update operation and field labels
to the aggregation network. Logically, the same | nsert operation is used by both field search engines and
aggregation nodes, only the type of item and label is different for the two. Each aggregation node receives
the “insert” command and the labels from the upstream nodes. The item is the composite label formed from
the labels from the upstream nodes. Note that for an update operation, field search engines and aggregation
nodes only pass on one label, thus each aggregation node only operates on one composite label or item.
If the composite label is not in the set, then the aggregation node adds it to the set. Note that the label
returned by the Sear ch or Add operations may be a composite label or meta-label, depending on the type
of aggregation nodes in use. Finally, the aggregation increments the count for the label and passes it on to
the next aggregation node. The final aggregation node passes the label on to the priority resolution stage
which adds the field label to its data-structure according to its priority tag.

Removing a filter from the filter set proceeds in the same way. Both field search engines and aggregation
nodes perform the same logical Renove operation shown in Figure 10. We first find the label for the item,
then decrement the count value for the item. A Del et e operation is performed if the count value for the
item is zero. The label is passed on to the next node in the DCFL structure. The final aggregation node
passes the filter label to the priority resolution stage which removes the field label from its data-structure.

Note that Add and Del et e operations on field search engine and aggregation node data-structures are
only performed when count values change from zero to one and one to zero, respectively. The limited

3We assume that each data-structure keeps a simple list of free labels that is initialized with all available labels. When labels are
“freed” due to a delete operation, they are added to the end of the list.

19

I nsert (item)

label<Sear ch(item)
| f (label = NULL)

label<—Add(item)
Count [label]++
ret urn label

g~ wWwN -

Figure 9: Pseudocode for DCFL update (add).

Renmove(item)

1 label<Sear ch(item)
2 Count [label]——

3 | f (Count [label] = 0)
4 Del et e(item)

5 return label

Figure 10: Pseudocode for DCFL update (delete).

number of unique field values in real filter sets suggests significant sharing of unique field values among
filters. We expect typical updates to only change a couple field search engine data-structures and aggregation
node data-structures. In the worst case, inserting or removing a filter produces an update to d field search
engine data-structures and (d — 1) updates to aggregation node data-structures, where d is the number of
filter fields.

9 Performance Evaluation

In order to evaluate the performance and scalability of DCFL, we used a combination of real and synthetic
filter sets of various sizes and compositions. The 12 real filter sets were graciously provided from ISPs, a
network equipment vendor, and other researchers in the field. ClassBench is a publicly available tools suite
for benchmarking packet classification algorithms and devices [19]. It includes a Filter Set Analyzer that
extracts the relevant statistics and probability distributions from a seed filter set and generates a parameter
file. The ClassBench Filter Set Generator takes as input a parameter file and a few high-level parameters
that provide high-level control over the composition of the filters in the resulting filter set. We constructed a
ClassBench parameter file for each of the 12 real filter sets and used these files to generate large synthetic
filter sets that retain the structural properties of the real filter sets. The ClassBench Trace Generator was
used to generate input traffic for both the real filter sets and the synthetic filter sets used in the performance
evaluation. For all simulations, header trace size is at least an order of magnitude larger than filter set size.
The metrics of interest for DCFL are the maximum number of sequential memory accesses per lookup at
any aggregation node, SMA, and the memory requirements. We choose to report the memory requirements
in bytes per filter, BpF, in order to better assess the scalability of our technique.

The type of embedded memory technology directly influences the achievable performance and efficiency
of DCFL; thus, for each simulation run we compute the SMA and total memory words required for various

20

memory word sizes. Standard embedded memory blocks provide 36-bit memory word widths [20, 11];
therefore, we computed results for memory word sizes of 36, 72, 144, 288, and 576 bits corresponding to
using 1, 2, 4, 8, and 16 memory blocks per aggregation node. All results are reported relative to memory
word size. The choice of memory word size allows us to explore the tradeoff between memory efficiency
and lookup speed. We assert that the use of 16 embedded memory blocks to achieve a memory word size
of 576 bits is reasonable given current technology, but certainly near the practical limit. For simplicity, we
assume all memory blocks are single-port, (P = 1). Given that all set membership queries are independent,
the SMA for a given implementation of DCFL may be reduced by a factor of P.

In order to demonstrate the achievable performance of DCFL, each simulation performs lookups on
all possible aggregation network constructions. At the end of the simulation, we compute the optimal
aggregation network by choosing the optimal network structure and optimal node type for each aggregation
node in the graph. The three node types are discussed in Section 6 along with the derivation of the equations
for SMA and memory requirements for each type: Bloom Filter Array, Meta-Label Indexing, and Field
Label Indexing. In the case that two node types produce the same SMA value, we choose the node type
with the smaller memory requirements. Our simulation also allows us to select the aggregation network
structure and node types in order to optimize worst-case or average-case performance. Worst-case optimal
aggregation networks select the structure and node types such that the value of the maximum SMA for any
aggregation node in the network is minimized. Likewise, average-case optimal selects the structure and
node types such that the maximum value of the average SMA for any aggregation node in the network is
minimized. Computing the optimal aggregation network at the end of the simulation allows us to observe
trends in the optimal network structure and node type for filter sets of various type, structure, and size.
We observe that optimal network structure and node type largely depends on filter set structure. With few
exceptions, variables such as filter set size and memory word size do not affect the composition of the
optimal aggregation network. We observe that the Bloom Filter Array technique is commonly selected as
the optimal choice for the first one or two nodes in the aggregation network. With rare exceptions, Meta-
Label Indexing is chosen for aggregation nodes at the end of the aggregation network. This is a convenient
result, as the final aggregation node in the network cannot use the Bloom Filter Array technique in order
to ensure correctness. We find this result to be somewhat intuitive since the size of a meta-label increases
with the number of unique combinations in the set which typically increases with the number of fields in the
combination. When using meta-labels to index into an array of lists, a larger meta-label addresses a larger
space which in turn “spreads” the labels across a larger array and limits the length of the lists at each array
index.

In the first set of tests we used the 12 real filter sets and generated header traces using the ClassBench
Trace Generator. The number of headers in the trace was 50 times the number of filters in the filter set. As
shown in Figure 11(a), the worst-case SMA for all 12 real filter sets is ten or less for a worst-case optimal
aggregation network using memory blocks with a word size of 288 bits. Also note that the largest filter
set, acl5, of 4557 filters achieves the best performance with a worst-case SMA of two for worst-case optimal
aggregation network using memory blocks with a word size of 144 bits. In order to translate these results into
achievable lookup rates, assume a current generation logic device with dual-port memory blocks, (P = 2),
operating at 500 MHz. The worst-case SMA for all 12 filter sets is then five or less using a word size of 288
bits. Under these assumptions, the pipeline cycle time can be 10ns allowing the DCFL implementation to
achieve 100 million searches per second which is comparable to current TCAMSs. Search performance can
be doubled by doubling the clock frequency or using quad-port memory blocks, both of which are possible
in current generation ASICs.

As shown in Figure 11(c), the average SMA for all filter sets falls to four or less using a memory word
size of 288 bits. Filter set acl5 also achieves the best average performance with an average SMA of 1.2 for

21

N
o
p

30

[
[&)]

ipcl (1702)

fwl (283) ||acl5 (4557) |

>

)]

Worst-case Optimal, Worst-case SMA
=)
‘
~ \

fwl (28&% (4557) |

Avgerage Optimal, Worst-case SMA

0 T T T T T T O
36 108 180 252 324 396 468 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
10
< i
zY S ¢
o » 8
[o)) o \
© 8 o N _
g @ . ipcl (1702) | [fwi (283) ||%:|5 (4557) |
< g 6 /
- <
® 6 .
= T
a =
(@) s 4 -
o 4 5 % ~~
g NS
B 2 s 2t -
S > L R A
< -------------
=
0 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
36 108 180 252 324 396 468 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
120 120
acl5 (4557) acl5 (4557) /i
o 100 100
= T
= @
T 80 = 8
£ ;
S 60 1 2 60 -
3 o
3]
© o
I 40 S 40 -
3 g
o <
= 201 20 1—

180
Memory Word Size (bits)

Figure 11: Performance results for 12 real filter sets; left-column shows worst-case sequential memory
accesses (SMA), average SMA, and memory requirements in bytes per filter (BpF) for aggregation network
optimized for worst-case SMA,; right-column shows same results for aggregation network optimized for
average-case SMA,; call-outs highlight three specific filter sets of various sizes and types (filter set size

given in parentheses).

252 324 396 468 540

22

180
Memory Word Size (bits)

252 324 396 468 540

a word size of 288. As in many other packet classification techniques, average performance is significantly
better than worst-case performance.

Worst-case optimal memory consumption is shown in Figure 11(e). Most filter sets required at most 40
bytes per filter (BpF) for all word sizes; thus, LMB of embedded memory would be sufficient to store 200k
filters. There are two notable exceptions. The results for filter set acl1 show a significant increase in memory
requirements for larger word sizes. For memory word sizes of 36, 72, and 144 bits, acll requires less than
11 bytes per filter; however, memory requirements increase to 61 and 119 bytes per filter for word sizes
288 and 576, respectively. We also note that increasing the memory word size for acll yields no appreciable
reduction in SMA, all memory word sizes yielded an SMA of five or six. These two pieces of data suggest that
in the aggregation node data-structures, the size of the lists at each index entry are short; thus, increasing the
memory word-size linearly increases the memory inefficiency without yielding any fewer memory accesses.
We believe that this is also the case with the optimal aggregation network for acl2 with memory word size
288.

Figure 11(b) shows the worst-case SMA for all 12 real filter sets for an average-case optimal aggregation
network. Figure 11(d) shows the average SMA for all 12 real filter sets for an average-case optimal aggre-
gation network. When optimizing for average SMA, average performance is improved by approximately
25%, but worst-case performance suffers by approximately 50%. With the exception of rare application en-
vironments, sacrificing worst-case performance for average performance is unfavorable. For the remaining
simulations, we only report worst-case optimal results.

The second set of simulations investigates the scalability of DCFL to larger filter sets. Results are shown
in Figure 12. This set of simulations utilized the ClassBench tools suite to generate synthetic filter sets
containing 10k, 20k, and 50k filters using parameter files extracted from filter sets acl5, fwl, and fw5. As
shown in Figure 12(a), the worst-case SMA is eight or less for all filter sets using memory word sizes of 72
bits or more. The most striking feature of these results is the indistinguishable difference between filter set
sizes of 20k and 50k. The ClassBench Synthetic Filter Set Generator maintains the field overlap properties
specified in the parameter file. Coupled with the results in Figure 12, this confirms that the property of
filter set structure most influential on DCFL performance is the maximum number of unique field values
matching any packet header field. As discussed in Section 2, we expect this property to hold as filter sets
scale in size. If field overlap does increase, the Field Splitting optimization provides a way to reduce this to
a desired threshold. As shown in Figure 12(c), the memory requirements increase with memory word size.
Given the favorable SMA performance there is no need to increase the word size beyond 72, as it only results
in a linear increase in memory inefficiency. Clearly, finding the optimum balance of lookup performance
and memory efficiency requires careful selection of memory word size.

The third set of simulations investigates the effect of filter scope on the performance of DCFL. Recall
that scope is measure of the specificity of the filters in the filter set. ClassBench provides high-level control
over the average scope of the filters in the filter set via an input parameter s. We generated synthetic filter
sets containing 16000 filters using parameter files from a variety of filter sets.For each parameter file, we
generated filter sets using scope parameters —1, 0, and 1. The scope parameter had the most pronounced
effects on worst-case SMA for the filter sets generated with the parameter file from ipcl. As shown in
Figure 13(a), decreasing the average scope of the filters in the filter set (s = —1) results in significantly
better performance; thus, as filters become more specific the performance of DCFL improves. This is a
favorable result given the generally accepted conjecture the primary source of future filter set growth will
be flow specific filters for applying network services. If we increase the scope of the filters in the filter set,
DCFL performance suffers. This trend also holds for the average SMA. As shown in Figure 13(c), filter set
specificity has little effect on memory requirements for memory word sizes of 144 bits or less. When using
larger memory word sizes, the results diverge but no clear trend is evident.

23

< 14 1 10
= <
2 | > 9
o 12 ﬁ
i fw (20K) ||fw5 (L0K) | & 8 fw5 (20k) Hfws (10k) |—
? 10 § 7
= <
2 84 = = 67
g T E % :
g O . t 84
o [
o 4 @ 3 |
2] 3]
] PSS
LI) 2]
w 2] S 1
S =
; 0 T T T T T T T 0 T T T T T T T
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
200
LL
o
m
® 150
E
o
o
©100
I
?
E /
© 50 A
= acl5 (10k)!

™

0 |

36 108 180 252 324 396 468 540
Memory Word Size (bits)

Figure 12: Performance results for synthetic filter sets containing 10k, 20k, and 50k filters, generated with
parameter files from filter sets acl5, fwl, and fw5; call-outs highlight most pronounced effects (number of
filters given in parentheses).

The fourth set of simulations investigate the efficacy and consequences of the Field Splitting optimiza-
tion. We selected two of the worst-performing real filter sets and performed simulations with various field
overlap thresholds. The performance results are summarized in Figure 14. For acl2, Field Splitting reduces
the worst-case SMA from 16 to 12 for 36-bit memory words and 11 to 8 for 74-bit memory words. This
amounts to a 33% performance increase; however, the impact of Field Splitting is reduced as we increase
memory word size. Clearly, the primary benefit of Field Splitting is that it allows us to achieve better perfor-
mance using smaller memory word sizes which improves the memory efficiency. As shown in Figure 14(c),
the memory utilization for all filter sets using memory word sizes of 74-bits or less remains well-below 40
bytes per filter. Consider the specific case of acl2. In order to achieve a worst-case SMA of eight or less
without Field Splitting, we must use a memory word-size of 144 bits resulting in memory requirements
of 44 bytes per filter. Using Field Splitting with a field overlap threshold of four, we achieve the desired
worst-case SMA performance using a memory word-size of 72 bits resulting in memory requirements of 32
bytes per filter. Recall that Field Splitting does increase the number of aggregation nodes in the aggregation
network, thus increasing the number of memory blocks and logic required for implementation. However,
these results show that the total memory requirements are actually reduced for a particular performance

24

[o2]
o

a
o

w
o

N
(6]
!

N
o

< =
= n
0 o
5T g
3] : o
T N >
3 40 : <L
o N <
=30 u - E15 7
© N S~ o
3820 > $10
S . 8
9 N -
""" (2]
S 10 £ 5
17 =
§ O T T T T T T T O T T T T T T T
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
250
A
L 200 - A
m icpl (s=-1) //
] ’
£150 | fipci (5= 0) 7
=S /
o /
Q 2
@100 | lipcl (s=1) Z
?
2
g 50 . /
L \//
0 T T T T T T T T

36 108 180 252 324 396 468 540
Memory Word Size (bits)

Figure 13: Performance results for synthetic filter sets containing 16k filters, generated with the ipcl pa-
rameter file with scope parameters s {-1,0,1}; call-outs highlight most pronounced effects (scope parameter
given in parentheses).

target. It is important to note that we do reach a point of diminishing returns with Field Splitting. The aggre-
gation network can grow too large if too many splits are required to achieve a particularly low field overlap
threshold. In this case, the impact on worst-case SMA is minimal while the memory resource requirements
increase drastically due to the additional overhead. This situation is reflected in Figure 14(c) for filter set
fwb with a field overlap threshold of three and memory word size of 288 bits.

The fifth and final set of simulations investigate the scalability of DCFL to additional filter fields. Using
the ClassBench tools suite, we generated three filter sets containing 16000 filters using the acl5 parameter
file. No smoothing or scope adjustments were applied. The first filter set was generated such that half of
the filters specifying the TCP or UDP protocols specified one non-wildcard field in addition to the standard
six filter fields (the 5-tuple plus protocol flags). The non-wildcard field value was selected from a set of
100 random values using a uniform random variable. The second and third filter sets were generated in the
same manner with two and four extra field values, respectively. Results from simulation runs are shown in
Figure 15. The slight improvement in worst-case SMA is attributable to two impetuses: (1) the additional

25

A
[EnY
[ee]

(e}

N
|

<
%10 S
8 (99} |
T 14 o acl2 (t=4
314 acl2 ?677 ()
212 S
2 < (a2 =2 <5
> 10 | =
E4
T 53
o | |
@
Q
@
(@]
2

— b
2 1
fws fws (t=3)]
O T T T T T T T O T T T T T T T
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
100
'S 80 | [aclz (t=4)
m
T
= 60
= R R
O I' /I
P K
@ 40 - = fwb Y
Q . }/_' |
E (& /
2 20 °

36 108 180 252 324 396 468 540
Memory Word Size (bits)

Figure 14: Performance results for four real filter sets (acl2, fwl, fw4, and fw5) using the Field-Splitting
optimization; call-outs highlight most pronounced effects (field overlap threshold given in parentheses).

filter fields allow filters to be more specific, and (2) the additional filter fields are exact match fields and the
maximum fields overlap is at most two. As reflected in Figure 15(c), the increase in memory requirements
for an additional filter field is small for memory word sizes of 144 bits or less. Specifically, when using
144-bit memory words the memory requirements increase by 18 bytes per filter when adding a seventh
field, 17 bytes per filter when adding an eighth filter field, and 3 bytes per filter when adding the ninth filter
field. This is constitutes an average of 12.5 bytes per filter for each additional field. Given our reasonable
assumptions regarding the nature of additional filter fields in future filter sets, we assert that the performance
and scalability of DCFL will make it an even more compelling solution for packet classification as filter sets
scale in size and the number of filter fields.

26

N

<12 g
; =
% \ 2 3.5 -
(] N " -m
9 10 1 6 fields : 2 3 —
Q . 9 fields 5 Lo
‘g 8t E/:I 2_2'5§< e
;_ . l/ TEB 2 [Ny - o
g , &
= oo T T T el fields
o 4)
O S 9
o °
s o
o 2 505
% =
§ O T T T T T T T 0 T T T T T T T
36 108 180 252 324 396 468 540 36 108 180 252 324 396 468 540
Memory Word Size (bits) Memory Word Size (bits)
180
160
5140
o0
<120
E
2100

9 fields
S g0 [
@ \\ /Sfields
2 60
7
(o]
= . B

20 4w —
X
S
36 108 180 252 324 396 468 540
Memory Word Size (bits)
Figure 15: Performance results for synthetic filter sets containing 16k filters, generated with parameter file

from filter set acl5 with extra filter fields; call-outs highlight most pronounced effects (number of filter fields
given in parentheses).

10 Related Work

In general, there have been two major threads of research efforts addressing the packet classification prob-
lem: algorithmic and architectural. A few pioneering groups of researchers posed the problem, provided
complexity bounds, and offered a collection of algorithmic solutions [2, 21, 22, 9]. Subsequently, the de-
sign space has been thoroughly explored by many offering new algorithms and improvements upon existing
algorithms [4, 18, 6]. Given the inability of early algorithms to meet performance constraints imposed by
high speed links, researchers in industry and academia devised architectural solutions to the problem. This
thread of research produced the most widely-used packet classification device technology, Ternary Content
Addressable Memory (TCAM) [23, 24, 25, 26]. While they provide sufficient speed, current TCAM-based
solutions consume exorbitant amounts of power and hardware resources relative to implementations of ef-
ficient algorithms. Recent work has addressed many of the unfavorable aspects of current TCAM-based
solutions [27, 28]; however, there remain fundamental limits to their scalability and efficiency.

27

The most promising algorithmic research embraces the practice of leveraging the statistical structure of
filter sets to improve average performance [2, 4, 3, 21, 29]. Several algorithms in this class are amenable
to high-performance hardware implementation. New architectural research combines intelligent algorithms
and novel architectures to eliminate many of the unfavorable characteristics of current TCAMs [28]. We ob-
serve that the community appears to be converging on a combined algorithmic and architectural approach to
the problem [5]. Our solution, Distributed Crossproducting of Field Labels (DCFL), employs this combined
approach to provide a scalable, high-performance packet classifier. [1] provides a thorough survey of packet
classification techniques using a taxonomy that frames each technique according to its high-level approach.
In this section, we highlight the sources of the key ideas and data structures which we distill and utilize
in DCFL. In order to demonstrate the value of our solution relative to the state of the art, we also contrast
it with two leading solutions which are arguably the top solutions from the algorithmic and architectural
threads.

As clearly indicated by the name, DCFL draws upon the seminal Crossproducting technique introduced
by Srinivasan, Varghese, Suri, and Waldvogel [9]. DCFL avoids the exponential blowup in memory re-
quirements experienced by Crossproducting by only storing the labels for field values and combinations of
field values present in the filter table. It retains high-performance by aggregating intermediate results in a
distributed fashion. Gupta and McKeown introduced Recursive Flow Classification (RFC) which provides
high lookup rates at the cost of memory inefficiency [2]. Similar to the Crossproducting technique, RFC
performs independent, parallel searches on “chunks” of the packet header, where “chunks” may or may not
correspond to packet header fields. The results of the “chunk” searches are combined in multiple phases,
rather than a single step as in Crossproducting. The result of each “chunk” lookup and aggregation step in
(RFC) is an equivalence class identifier, eqlD, that represents the set of potentially matching filters for the
packet. There is a subtle, yet powerful difference between the use of equivalence classes in RFC and field
labels in DCFL. In essence, the number of labels in DCFL grows linearly with the number of unique field
values in the filter table. The number of eqlDs in RFC depends upon the number of distinct sets of filters
that can be matched by a packet. The number of eqIDs in an aggregation step scales with the number of
unique overlapping regions formed by filter projections. Another major difference between DCFL and RFC
is the means of aggregating intermediate results. RFC lookups in “chunk” and aggregation tables utilize
indexing, causing RFC to make very inefficient use of memory. The index tables used for aggregation also
require significant precomputation in order to assign the proper eqlD for the combination of the eqlDs of
the previous phases. Such extensive precomputation precludes dynamic updates at high rates. As we have
shown, DCFL uses efficient set membership data structures which can be engineered to provide fast lookup
and update performance. Each data structure only stores labels for unique field combinations present in the
filter table; hence, they make efficient use of memory and do not require significant precomputation. In
order to illustrate the differences between RFC and DCFL, we provide an example of an RFC search for two
“chunks” of a search on n “chunks” in Figure 16. The squares [a .. .[] represent the unique projections of
the two “chunks” x and y for all filters in a filter table. The number of eqlDs for the “chunk” lookups is 11
for each dimension = and y, as 11 unique sets of filters are formed by the projections onto the x and y axes.
Since RFC utilizes indexing for lookups, each “chunk” table requires 2° entries, where b is the size in bits of
the “chunk”. Note that if the number of unique projections were labeled as in DCFL, only six labels for each
dimension would be required, and the set membership data structure would only need to store six entries.
In order for RFC to aggregate the eqlDs from “chunks” x and y, it must compute all of the unique sets of
filters for the two-dimensional overlaps. As shown in Figure 16, this results in 25 eqlDs. The aggregation
table requires 244 = 256 entries, as eqID(x) and eqlD(y) are four bits in size and RFC utilizes indexing to
find eqID(x,y). Note that in DCFL, a label would simply be assigned to each unique 2-d projection [a . . .!]
and stored in a set membership data structure. In general, DCFL can provide line-speed lookups, like RFC,
but with much more efficient use of memory and support for dynamic updates at high rates.

28

DCFL | RFC . DCFLF,,
F, eqlo D(y) (list of unique 2-D projections)
O R .o W a(0,2 05
1 iB = - 02 9(09)
............................. b(1L1) h(14)
2 D DG) T — - e c(20) (23
Ca.abedet " I . d32 j(35)
ST 2 L1 - e(4l) k(44
BB L N O 0 S] (50 1(53)
0
2 O WU O N SV OO SO S A RFC egl D(x,y)
7/ I = T I I N § -k R (list of unique 2-D overlaps)
501 ... 4. K ' A W ' '
3 i] O g 13
...... 3 Sty o a1 ah 14
...... .].-..................... nuusl g E gé............ g E g E a’b 2 h 15
O- ._ b 3 g,h,l 16
i bbbl abed hi 17
P T be 5 i 18
: : HECHEGHE G HE e !
S FAREE= AU c 6 i 19
BEEE d 7T ik 2
S de 8 k 21
RFC : @ ¢ ¢ ¢ b f i i i e 9 ikl 22
eqiD(x); 0 :1:2131 450 161718910 def 10 ki 23
H H H H H H H : : : : : : f 11 I 24
DCFL I &
< S —— S foo1
F
X D e B —

Figure 16: Contrast between unique field value labels in Distributed Crossproducting of Field Labels
(DCFL) and equivalence class identifiers (eqlDs) in Recursive Flow Classification; example shows two
fields of a d field search. Squares [a . . . [] represent the unique projections of two fields = and y for all filters
in a filter table.

Our approach also shares similarities with the Parallel Packet Classification (P2C) scheme introduced
by van Lunteren and Engbersen [5]. Specifically, both DCFL and P2C fall into the class of techniques
using independent field searches coupled with novel encoding and aggregation of intermediate results. The
primary advantage of DCFL over P2(is its use of SRAM and amenability to implementation in commodity
hardware technology; P2C requires the use of a separate TCAM or a custom ASIC with embedded TCAM.
DCFL also provides more efficient support of dynamic updates.

Given the volume of work in packet classification, we must show how our technique adds value to the
state of the art. In our opinion, HyperCuts is one of the most promising new algorithmic solutions [29].
Introduced by Singh, Baboescu, Varghese, and Wang, the algorithm improves upon the HiCuts algorithm
developed by Gupta and McKeown [21] and also shares similarities with the Modular Packet Classification
algorithms introduced by Woo [6]. In essence, HyperCuts is a decision tree algorithm that attempts to min-
imize the depth of the tree by selecting “cuts” in multi-dimensional space that optimally segregate packet
filters into lists of bounded size. According to performance results given in [29], traversing the HyperCuts
decision tree required between 8 and 35 memory accesses, and memory requirements for the decision tree
ranged from 5.4 to 145.9 bytes per filter. We assert that DCFL exhibits advantages in all metrics of interest:

29

worst-case SMA, memory requirements, and dynamic update performance. DCFL also provides the opportu-
nity to strike a favorable tradeoff between performance and memory requirements, as the various parameters
may be tuned to achieve the desired results. All new algorithmic approaches must make a strong case for
their advantage relative to Ternary Content Addressable Memory (TCAM). Due to its performance, effi-
ciency, scalability, and use of commodity hardware technology, DCFL has the ability to provide equivalent
lookup performance at much lower cost and power consumption.

11 Conclusions

By transforming the problem of aggregating results from independent field search engines into a distributed
set membership query, Distributed Crossproducting of Field Labels (DCFL) avoids the exponential increases
in time and memory required by previous approaches. We introduced several new concepts including field
labeling, Meta-labeling unique field combinations, and Field Splitting, as well as optimized set membership
data structures such as Bloom Filter Arrays that minimize the number of memory accesses required to
perform a set membership query. Using a combination of real and synthetic filter sets, we demonstrated that
DCFL can achieve over 100 million searches per second using existing hardware technology. Furthermore,
we have also shown that DCFL retains its lookup performance and memory efficiency when the number of
filters and number of fields in the filters increases. Scalability to classify on additional fields is a distinct
advantage DCFL exhibits over existing decision tree algorithms and TCAM-based solutions. We continue
to explore optimizations to improve the search rate and memory efficiency of DCFL. We also believe that
DCFL has potential value for other searching tasks beyond traditional packet classification.

References

[1] D. E. Taylor, “Survey & Taxonomy of Packet Classification Techniques,” Tech. Rep. WUCSE-2004-
24, Department of Computer Science & Engineering, Washington University in Saint Louis, May
2004.

[2] P.Guptaand N. McKeown, “Packet Classification on Multiple Fields,” in ACM Sigcomm, August 1999.

[3] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for Core Routers: Is there an alternative
to CAMSs?,” in IEEE Infocom, 2003.

[4] F. Baboescu and G. Varghese, “Scalable Packet Classification,” in ACM Sigcomm, August 2001.

[5] J. van Lunteren and T. Engbersen, “Fast and scalable packet classification,” IEEE Journal on Selected
Areas in Communications, vol. 21, pp. 560-571, May 2003.

[6] T. Y. C. Woo, “A Modular Approach to Packet Classification: Algorithms and Results,” in IEEE
Infocom, March 2000.

[7] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbell, “Directions in Packet Classifica-
tion for Network Processors,” in Second Workshop on Network Processors (NP2), February 2003.

[8] C.Bormann, et. al., “RObust Header Compression (ROHC): Framework and four profiles: RTP, UDP,
ESP, and uncompressed.” RFC 3095, July 2001. IETF Network Working Group.

[9] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel, “Fast and Scalable Layer Four Switching,” in
ACM Sigcomm, June 1998.

30

[10] Xilinx, “Virtex-11 Pro Platform FPGAs: Introduction and Overview.” DS083-1 (v3.0), December 2003.
[11] IBM Blue Logic, “Embedded SRAM Selection Guide,” November 2002.

[12] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. McGraw-Hill Book Company,
1990.

[13] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,” in Proceedings
of 40th Annual Allerton Conference, October 2002.

[14] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable wide-area web cache
sharing protocol,” IEEE/ACM Transactions on Networking, vol. 8, pp. 281-293, June 2000.

[15] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix Matching using Bloom Filters,”
in ACM SIGCOMM’03, August 2003.

[16] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable high speed IP routing table lookups,”
in Proceedings of ACM SIGCOMM 97, pp. 25-36, September 1997.

[17] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, and D. B. Parlour, “Scalable IP Lookup for
Internet Routers,” IEEE Journal on Selected Areas in Communications, vol. 21, pp. 522-534, May
20083.

[18] A. Feldmann and S. Muthukrishnan, “Tradeoffs for Packet Classification,” in IEEE Infocom, March
2000.

[19] D.E. Taylor and J. S. Turner, “ClassBench: A Packet Classification Benchmark,” Tech. Rep. WUCSE-
2004-28, Department of Computer Science & Engineering, Washington University in Saint Louis, May
2004.

[20] Xilinx, “Virtex-11 Platform FPGAs: Introduction and Overview.” DS031-1 (v2.0), August 2003.

[21] P. Gupta and N. McKeown, “Packet Classification using Hierarchical Intelligent Cuttings,” in Hot
Interconnects VII, August 1999.

[22] T. V. Lakshman and D. Stiliadis, “High-Speed Policy-based Packet Forwarding Using Efficient Multi-
dimensional Range Matching,” in ACM SIGCOMM*98, September 1998.

[23] R. A. Kempke and A. J. McAuley, “Ternary CAM Memory Architecture and Methodology.” United
States Patent 5,841,874, November 1998. Motorola, Inc.

[24] G. Gibson, F. Shafai, and J. Podaima, “Content Addressable Memory Storage Device.” United States
Patent 6,044,005, March 2000. SiberCore Technologies, Inc.

[25] A.J. McAulay and P. Francis, “Fast Routing Table Lookup Using CAMSs,” in IEEE Infocom, 1993.

[26] R. K. Montoye, “Apparatus for Storing “Don’t Care” in a Content Addressable Memory Cell.” United
States Patent 5,319,590, June 1994. HaL Computer Systems, Inc.

[27] D. Shah and P. Gupta, “Fast incremental updates on ternary-cams for routing lookups and packet
classification,” in Hot Interconnects (Hotl-8), p. 6.1, Aug. 2000.

[28] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification Using Extended TCAMs,” in Proceed-
ings of IEEE International Conference on Network Protocols (ICNP), 2003.

[29] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classification Using Multidimensional
Cutting,” in Proceedings of ACM SIGCOMM’03, August 2003. Karlsruhe, Germany.

31

A Introduction to Bloom Filters

A Bloom filter is essentially a bit-vector of length m used to efficiently represent a set of messages. Given
a set of messages X with n members, the Bloom filter is “programmed” as follows. For each message x;
in X, k hash functions are computed on x; producing & values each ranging from 1 to m. Each of these
values address a single bit in the m-bit vector, hence each message x; causes & bits in the m-bit vector to be
set to 1. Note that if one of the k£ hash values addresses a bit that is already set to 1, that bit is not changed.
Querying the filter for set membership of a given message « is similar to the programming process. Given
message x, k hash values are generated using the same hash functions used to program the filter. The bits
in the m-bit long vector at the locations corresponding to the & hash values are checked. If at least one of
the & bits is 0, then the message is declared to be a non-member of the set. If all the bits are found to be 1,
then the message is said to belong to the set with a certain probability. If all the & bits are found to be 1 and
x is not a member of X, then it is said to be a false positive. This ambiguity in membership comes from the
fact that the & bits in the m-bit vector can be set by any of the n members of X. Thus, finding a bit set to 1
does not necessarily imply that it was set by the particular message being queried. However, finding a 0 bit
certainly implies that the the message does not belong to the set, since if it were a member then all k-bits
would have been set to 1 when the Bloom filter was programmed.

The following is a derivation of the false positive probability. The probability that a random bit of the m-
bit vector is set to 1 by a hash function is simply % The probability that it is not setis 1 — % The probability
that it is not set by any of the n members of X is (1 — %)”. Since each of the messages sets & bits in the
vector, it becomes (1 — L)% Hence, the probability that this bit is found to be 1is 1 — (1 — L)"*. For a
message to be detected as a possible member of the set, all & bit locations generated by the hash functions
need to be 1. The probability that this happens, f, is given by

1 nk k
(1 (-2 w2
m
for large values of m the above equation reduces to
—nk k
fa (1 - 67) (13)
Since this probability is independent of the input message, it is termed the false positive probability. The
false positive probability can be reduced by choosing appropriate values for m and k for a given size of
the member set, n. For a given ratio of ™, the false positive probability can be reduced by increasing the
number of hash functions, k. In the optimal case, when false positive probability is minimized with respect
to k, we get the following relationship

k="1n2 (14)
n
The false positive probability at this optimal point is given by
1 k
r=(3) (15)

It should be noted that if the false positive probability is to be fixed, then the size of the filter, m, needs to
scale linearly with the size of the message set, n.

B Port Range Analysis

We examined the port ranges specified by filters in the 12 real filter sets and the distribution of filters over
the unique values. In order to observe trends among the various filter sets, we define five classes of port

32

Table 4: Distribution of filters over the five port classes for source and destination port range specifications;
values given as percentage (%) of filters in the filter set.

Set Source Port Destination Port

WC HI LO AR | EM WC HI LO | AR EM
acll | 100.0 | 0.00 | 0.00 | 0.00 | 0.00 | 30.42 | 0.00 | 0.00 | 11.60 | 57.98
acl2 || 100.0 | 0.00 | 0.00 | 0.00 | 0.00 | 69.34 | 0.64 | 0.00 | 7.06 | 22.95
acl3 || 99.92 | 0.00 | 0.00 | 0.00 | 0.08 |9.25 | 13.96 | 0.00 | 11.04 | 65.75
acl4 || 99.93 | 0.00 | 0.00 | 0.00 | 0.07 |856 | 12.15 | 0.00 | 11.21 | 68.08
acl5 || 100.0 | 0.00 | 0.00 | 0.00 | 0.00 | 30.00 | 4.08 | 0.00 | 5.20 | 60.72
fwl 77.74 1813 | 0.00 |0.35|13.78 | 31.10 | 8.13 | 0.00 | 0.35 | 60.42
fw2 38.24 | 17.65 | 0.00 | 0.00 | 44.12 | 100.0 | 0.00 | 0.00 | 0.00 | 0.00
fw3 77.72 1598 | 0.00 |0.54 | 1576 | 27.72 | 598 | 0.00 | 0.54 | 65.76
fw4 10.98 | 42.05 | 10.98 | 1.52 | 34.47 | 13.26 | 18.94 | 0.76 | 1.14 | 65.91
fwb 75.62 | 5.00 | 0.00 | 0.62 | 18.75 | 35.62 | 3.75 | 0.00 | 1.25 | 59.38
ipcl | 82.84 | 035 | 0.00 |2.00 | 1481 | 5546 | 6.52 | 0.00 | 253 | 35.49
ipc2 || 73.96 | 0.00 | 0.00 | 0.00 | 26.04 | 73.96 | 0.00 | 0.00 | 0.00 | 26.04
AVG || 78.08 | 6.60 | 092 | 0.42 | 13.99 | 40.39 | 6.18 | 0.06 | 4.33 | 49.04

ranges:

e WC, wildcard

e HI, ephemeral user port range [1023 : 65535]
e LO, well-known system port range [0 : 1023]
e AR, arbitrary range

e EM, exact match

Motivated by the allocation of port numbers, the first three classes represent common specifications for a
port range. The last two classes may be viewed as partitioning the remaining specifications based on whether
or not an exact port number is specified. Table 4 shows the distribution of filters over the five port classes
for both source and destination ports. We observe some interesting trends in the data. With rare exception,
the filters in the ACL filter sets specify the wildcard for the source port. A majority of filters in the ACL
filters specify an exact port number for the destination port. Source port specifications in the other filter sets
are also dominated by the wildcard, but a considerable portion of the filters specify an exact port number.
Destination port specifications in the other filter sets share the same trend, however the distribution between
the wildcard and exact match is a bit more even. After the wildcard and exact match, the HI port class is
the most common specification. A small portion of the filters specify an arbitrary range, 4% on average
and at most 12%. Only one filter set contained filters specifying the LO port class for either the source or
destination port range.

In the interest of designing efficient data structures, we now examine the number of unique specifications
in the AR and EM classes. Checking for matches in the first three classes is trivial. As shown in Table 5, the
number of unique specifications in the AR class is small relative to the size of the filter set. Consisting of 50
ranges, the largest set of arbitrary ranges may be efficiently searched using a simple interval tree. Likewise

33

Table 5: Number of unique specifications in the Arbitrary Range (AR) and Exact Match (EM) port classes
for source and destination port ranges.

Set | Size || Source Port | Destination Port
AR | EM AR | EM
acll1 | 733 ||0 |0 34 | 73
acl2 | 623 0 0 1 24
acl3 | 2400 || O 2 36 | 152
acl4 | 3061 || O 2 50 | 183
acl5 | 4557 |0 | O 3 35
fwl | 283 1 10 1 40
fw2 | 68 0 7 0 |0
fw3 | 184 || 1 6 1 36
fwd | 264 | 3 22 3 44
fws | 160 1 8 2 29
ipcl | 1702 || 5 27 7 45
ipc2 | 192 || 0 2 0 2

the number of specifications in the EM class is also small, thus a simple hash table would be sufficient to
search this set of ranges.

The combination of source and destination port range specifications has a significant effect on several
packet classification techniques. This is especially true of TCAM due to the need to convert arbitrary range
pairs into pairs of prefixes. In order to assess the effect of this conversion, we computed the number of
TCAM entries required to store each filter set. We refer to the Expansion Factor as the ratio of TCAM
entries to filter set size, which can be thought of as the average number of TCAM entries required by each
filter in the filter set. As shown in Table 6, a filter set may require that a TCAM provide more than six entries
for every filter. On average, the filter sets required 2.25 entries per filter. While this is considerably less than
the worst case of 900 entries per filter, yet it remains a large source of inefficiency. The magnitude of the
Expansion Factor is not the only challenge. Note the high variance in the Expansion Factor among the filter
sets; this presents a challenge in designing systems, as the filter storage capacity varies widely with filter set
composition.

34

Table 6: Number of entries required to store filter set in a standard TCAM.

Set | Size || TCAM | Expansion
Entries | Factor
acll | 733 || 997 1.3602
acl2 | 623 || 1259 2.0209
acl3 | 2400 || 4421 1.8421
acl4 | 3061 || 5368 1.7537
acl5 | 4557 || 5726 1.2565
fwl | 283 | 998 3.5265
fw2 | 68 128 1.8824
fw3 | 184 | 554 3.0109
fw4 | 264 | 1638 6.2045
fws | 160 || 420 2.6250
ipcl | 1702 || 2332 1.3702
ipc2 | 192 | 192 1.0000
Average 2.3211

35

