
Local Search Algorithms for Reserved Delivery
Subnetwork Configuration Problems with Cycle and

Bicycle Reduction
Ruibiao Qiu Jonathan S. Turner

{ruibiao,jst}@arl.wustl.edu
Applied Research Laboratory, Department of Computer Science and Engineering

Washington University, St. Louis, MO 63130, USA

Abstract— A reserved delivery subnetwork (RDS) is a semi-
private network infrastructure to enable an information service
provider to deliver more consistent service to its customers. In our
previous study of the RDS configuration problem, we formulated
the problem as a minimum concave cost network flow problem
(MCCNFP), and presented an efficient approximation algorithm,
largest demand first or LDF, to provide approximate solutions
to this NP-hard problem in practice. In this paper, we apply
local search algorithms based on negative cost cycle and bicycle
reduction to further improve the quality of the results obtained
from LDF. Our simulation results show that the local search
algorithms improve the quality of LDF solutions, but with added
computational complexity. They also further indicate that LDF
produces solutions reasonably close to the local optimum without
added complexity, and is suitable for large networks in practice.

I. INTRODUCTION

We proposed the Reserved Delivery Subnetwork (RDS) as
a means to enable an information service provider to deliver
more consistent service to its customers in today’s Internet [1].
In brief, an RDS is a semi-private network infrastructure
used by an information service provider, connecting it to its
customers at different metropolitan areas. The endpoints of an
RDS include a source node and a potentially large number of
sink nodes distributed within a fixed network infrastructure.
Sink nodes are typically routers within metropolitan areas
where customers of the information service are found. A
network provider selects a set of links within the network
and provisions bandwidth reservations on those links in order
to accommodate expected traffic flows from the server to the
various sink nodes. This allows traffic from the source node to
flow through to the sinks without contention from other traffic
sources, improving quality of service.

To allow for variability in the traffic volume at sink nodes,
reserved bandwidth is provisioned based on the mean and
variance of the expected traffic. Links that carry large traffic
volumes are generally more efficient than links that carry small
traffic volumes, since the amount of bandwidth that must be
reserved to accommodate traffic variability becomes a smaller
fraction of the total as traffic volume grows. This effect makes
it beneficial to group together flows going from the source
to sinks that are close to one another. This benefit of flow
aggregation is reflected in a concave edge cost function that

grows more slowly as the average aggregated traffic on a link
increases.

In our previous study [1], we showed that the RDS configu-
ration problem can be formulated as a minimum concave cost
network flow problem [2], a well-known NP-hard problem. We
proposed an efficient approximation algorithm, largest demand
first or LDF, for solving the RDS configuration problem in
practice. In this paper, we apply local search algorithms based
on negative cycle and bicycle reduction to improve the quality
of solutions obtained from LDF. We first apply the cycle
reduction algorithm proposed by Gallo and Sodini in [3].
In addition, we observe that the existence of negative cost
bicycles can also lead to lower cost flows from an existing
one. We introduce bicycle reduction to further improve the
solution quality after applying cycle reduction to the LDF
solution. Our experimental results show that both cycle and
bicycle reduction algorithms improve the LDF solution quality
with added computational complexity, while LDF produces
results that are usually within a small constant factor of an
easily computed lower bound, and are close to local optimal
solutions with much lower computational complexity.

The rest of this paper is organized as follows: in Section II,
we recap the formulation of the RDS configuration as a
minimum cost flow problem, and briefly describe the LDF
algorithm. Section III describes the local search algorithms
based on negative cycle and bicycle reduction. Experimental
results are given in section IV and concluding remarks in
Section V.

II. LARGEST DEMAND FIRST ALGORITHM FOR RDS
CONFIGURATION PROBLEM

A. Problem Formulation

Given a directed graph G = (V, E), define two real-valued
functions: length l(·) and bandwidth b(·) defined on E, which
are the physical distance and bandwidth capacity of an edge,
respectively. We are also given a source node r ∈ V and
a set of sink nodes S ⊆ V , with each sink node s having
a mean demand µ(s). The minimum cost reserved delivery
network that satisfies the mean demands can be found by
solving a minimum cost flow problem, in which the flow into
each sink is given by its mean demand, and the total flow on
each link e is bounded by its link capacity c(e). The cost of

a flow x on an edge e is defined to be l(e)(x + γx1/2). The
second factor in this expression corresponds to the amount
of bandwidth that must be reserved to accommodate a flow
of magnitude x. The “extra” reservation of γx1/2 allows for
traffic variability. If the underlying traffic consists of many
statistically independent flows, this variability grows as the
square root of the traffic volume. Note that the cost function is
concave. Given a minimum cost flow that satisfies the demand,
the optimal RDS is the subgraph of G defined by the edges
with non-zero flows. The cost of the RDS is the sum of the
costs of the flows on its edges.

B. Largest Demand First Algorithm

In our previous study of the RDS configuration problem [1],
we proposed the largest demand first (LDF) algorithm as an
approximation algorithm for the RDS configuration problem.
It is a variant of the classical minimum cost augmenting path
method for solving minimum cost flow problems in a network
with linear edge costs. As with the original algorithm, we seek
a minimum cost augmenting path at each step. However, as we
showed in our study, the choice of such a path is complicated
by the fact that the relative cost of different paths depends
on the amount of flow sent on them. After investigating the
implications of this problem, we devised LDF to resolve the
problem.

For any edge e in the original graph, the cost of carrying
x units of flow on e is l(e)(x + γx1/2). We let δf (e, ∆),
be the change in cost caused by adding ∆ units of flow
on the edge e in the residual graph. We refer to δf (e, ∆)
as the incremental cost of the edge e, with respect to the
increment ∆. The incremental cost of a path, with respect
to an increment ∆, is the sum of the incremental costs of its
edges. For any flow f and flow increment ∆, we can define a
shortest path tree Tf (∆) in the subgraph of the residual graph,
in which all edges have residual capacity no less than ∆. The
root of Tf (∆) is the source node, and the edge lengths are
defined with respect to the incremental costs, δf (e, ∆). As
∆ is increased from zero, we get a finite sequence of trees
T0, T1, . . . , Tm. For each tree Ti in this sequence, there is a
corresponding range Ri of values of ∆. The incremental cost
per unit flow of an augmenting path p is δf (p, ∆)/∆, where
∆ is the amount of flow needed to saturate p. To apply the
minimum cost augmentation strategy to the RDS problem, we
seek an augmenting path from the source to a sink that has the
smallest incremental cost per unit flow among all augmenting
paths. An efficient way to instantiate this strategy is to choose
a small set of increments, construct the tree corresponding to
each increment, and find the best augmenting path from among
this smaller set of trees. We have found that in practice, the
best path is usually found in the tree corresponding to the
largest increment. This observation has led us to the LDF
algorithm below.

f := 0;
while there is unmet demand at some sink

Let ∆ be the smaller of the largest unmet

u

r

w

v

x

Path with no in-tree vertices
f(x,u)

π*uw

πwu

Fig. 1. Original flow.

demand and the largest residual capacity
among all augmenting paths.

Let p be the augmenting path in Tf (∆) with the
smallest incremental cost per unit flow.

Modify f by saturating p.
end

III. LOCAL SEARCH IMPROVEMENTS

Local search [4] is a well-known approximation method
applicable to almost all combinatorial optimization problems.
To study the performance of LDF, we apply local search
algorithms to further improve the quality of LDF solutions.
The key of a good local search algorithm is to find a viable
simple operation that obtains a feasible flow from an existing
one. The negative cost cycle reduction method is a natural
candidate for such an operation. It works by “pushing” flows
along a negative cost cycle to transform an existing feasible
flow to another feasible flow with lower total cost.

A. Cycle Reduction Algorithm

The cycle reduction algorithm in [3] provides an effective
way to implement local search with negative cost cycle reduc-
tion. The algorithm is based on the observation that a flow x′

is adjacent to an existing flow x if and only if all edges that
are in x′ but not in x constitute a path connecting only two
vertices in x.

Fig. 1 through Fig. 3 illustrate the basic operations of the
Gallo-Sodini algorithm for finding a neighboring flow (Fig. 2)
from an existing extreme flow (Fig. 1). For every vertex u
with an incoming flow of f(x, u) in the tree defined by the
existing flow, let π∗

uv be the undirectional path from u to any
other tree vertex v that is not in the subtree rooted at u. As
shown in Fig. 1, π∗

uv normally has two directed parts, namely,
the path from v to u and the path from v to w, where v is the
nearest common ancestor of u and w. Compute the incremental
cost cu

v of adding f(x, u) units of flow on π∗

uv . cu
v has two

component: one corresponds to the cost decrements on the
path from v to u due to the flow reduction of f(x, u), and the

u

r

w

v

x

f’=f(x,u)

f’=f-f(
x,u)

f’=f+f(x,u)

Fig. 2. The neighboring flow obtained with the cycle reduction algorithm.

t1

s’Edges to
tree vertices

t2

t3

tj

Subgraph induced
by non-tree vertices,
excluding edges incident
into tree verticesnot on path Pnb

C

Cf(∆,(u,v))

ti

u v

ti

tj

Fig. 3. Finding the best solution for “target” t i.

other one corresponds to the cost increments on the path from
v to w due to the flow increment of f(x, u).

Next, a new network is derived for a specific tree vertex
ti as shown in Fig. 3. In this transformed network, a pseudo
source vertex s′ is added to the subgraph induced by the non-
tree edges, and s′ is connected to every tree vertex tj with
a direct edge (s′, tj), except for ti. All edges incident to any
tree vertex except ti are removed too. If we define ∆ to be
the flow into ti, an edge (s′, tj) is assigned a length of cti

tj
as

defined in the last step. A non-tree edge (u, v) is assigned a
length of the same as the incremental cost of adding ∆ units
of flow on that edge, Cf (∆, (u, v)). We find the shortest path
from s′ to ti in the transformed network. The last vertex w
on the shortest path to ti is identified, and ∆ units of flow are
redirected along the undirectional path π∗

tiw and then along
the directed path πwti

. The result is a neighboring flow to the
original flow (Fig. 2). If the modified flow has a lower cost,
the above procedure is repeated; otherwise, the original flow
is restored, and the algorithm halts.

It is easy to see that the cycle reduction algorithm reduces

s n

n-1

n-2

m

1+ε

1+ε

n

n-1
n-2

m

length

1

1

1+ε

1+ε 1+ε
1+ε

Fig. 4. A simple network that will benefit from the cycle reduction algorithm.

1,1,1

2,0.8,0

1,1,1

1,0
.3,

0

1,0.3,0

capacity,length,flow

r a

b

c

Fig. 5. A simple negative cost bicycle example.

the cost by redirecting flow along negative cost cycles. This
local search algorithm can greatly improve the quality of
solutions obtained from LDF. Take the network in Fig. 4
for example. The source s connects to all n sinks with unit
demand. LDF picks only the direct links from s to all sinks,
resulting in a suboptimal solution with no bandwidth sharing.
The cycle reduction algorithm identifies the negative cycles in
the LDF solution, redirects the flow along these cycles, and
eventually finds the single path s → 1 · · · → n − 1 → n as
the solution, which is the optimal solution in this case. With
a small ε, the improved solution is O(n) times better than the
original one.

B. Bicycle Reduction Algorithm

We observe that the result from the cycle reduction algo-
rithm does not necessarily include all possible neighboring
flows with lower costs, and can be sub-optimal in a network
with concave edge costs. Consider the example network shown
in Fig. 5(a), where r is the source, b and c are the sinks with
unit demands. Currently, flows go directly from r to the sinks
as it is the shortest path, with a total cost of 8. There is clearly
no negative cost cycle in the residual graph, and the cycle
reduction can not improve this flow. However, if we push 2
units of flow on (r, a), and a unit of flow along (a, b), (a, c),
(b, r), and (c, r), we will get a flow with a lower cost, 7.36.
We observe that these edges we use constitute a subnetwork
with special structure that results in flows with lower costs.

We identify such a subgraph structure as a negative cost
bicycle. In general, a negative cost bicycle is defined as a
pair of directed cycles that share a common segment, with

y

r

z

x

w
c

f(p
f(x

),x
)

f(pf(y),y)
Paths with no
in-tree vertices

π*uz

π*yz

πzx

πzy

Fig. 6. Original flow.

the remainder of the cycles edge disjoint. When we add flow
along the two cycles, the total cost of the resulting flow is
lower than the original flow. Let P0 be the common path, P1

and P2 be the disjoint segments, and di be the incremental
cost for a unit of flow increment on Pi. The incremental cost
of adding a unit flow along the bicycle could be expressed as
(1 + ε)d0 + d1 + d2. For 0 < ε < 1, it results in a lower cost
than the sum of costs on all paths, showing the benefits of
path sharing.

Based on the observation of negative cost bicycles, we
present a local search algorithm using bicycle reduction to
improve the solutions from the cycle reduction algorithm. We
start with two vertices, x and y, in the tree defined by the
existing flow, and search for a optimal split point z, through
which there is a pair of directed non-tree paths πzx and
πzy. In addition, there is a optimal merge point w on both
undirectional tree paths π∗

xz and π∗

yz. The tree path π∗

wz is
the common segment of the bicycle, and the two cycles are
(π∗

xw, π∗

wz, πzx) and (π∗

yw , π∗

wz, πzy). For example, let fx and
fy be the flow into x and y respectively, after redirecting
fx along (π∗

xw, π∗

wz, πzx) and fy along (π∗

yw, π∗

wz , πzy), we
can obtain a neighboring flow (Fig. 7) from an existing flow
(Fig. 6) with the bicycle reduction algorithm.

First, compute the incremental cost of redirecting fx units of
flow from x and fy units of flow from y to all potential split
points along undirectional paths in the existing flow. These
vertices include all tree vertices except for those in the subtree
rooted at x or y. The total incremental cost c∗u for such a vertex
u is the sum of the incremental costs from x and y to u.

Next, make two copies Gx (Fig.8) and Gy (Fig.9) of the
subgraph induced by the zero-flow edges in G. In Gx, remove
edges originating from the subtrees rooted at x or y, and edges
incident into tree vertices except x. Compute the incremental
cost cuv for an edge (u, v) in Gx as adding fx units of
flow on (u, v). The shortest paths from all vertices in Gx are
computed using cuv as the length of edge (u, v). Similarly, Gy

y

r

z

x

w
c

f’
=f-f

(p
f(x

),x
)

f’=f-f(pf(y),y)

f’=
f+

f(p
f(x),x)+

f(p
f(y),y)

f’
=f-f

(p
f(x

),x
)-f

(p
f(y

),y
)

f’=f(pf(x),x) f’=f(pf(y),y)

Fig. 7. The neighboring flow obtained by the bicycle reduction.

t1

t2

t3

tm

cost(u,v)=costf(∆,(u,v))

x
u v

y

Fig. 8. Gx.

is generated, and the shortest paths from all vertices to y are
computed using flow increment fy. For each vertex u, record
the shortest paths πux in Gx and πuy in Gy as well as the
shortest distance cux and cuy. For any tree vertex u other than
x and y, define the total cost Cu = cux + cuy + c∗u, and find
the vertex z with the minimum total cost as the optimal split
point. Redirect fx flow along πzx and π∗

xz, and fy flow along
πzy and π∗

yz . If the updated flow has a lower cost, repeat the
above procedure until no improvements can be made.

IV. SIMULATION STUDIES

Both the local search algorithms with cycle and bicycle
reduction have greater computational complexity than LDF,
because they could have exponential number of iterations. To
study the solution quality improvements by these two local
search algorithms, we evaluated both local search algorithms
on a number of network topologies. We only present some
representative results on random networks due to the limited
space. More results of these local search algorithms can be
found in [5]. The vertices and edges of the network are uniform
randomly generated inside a unit square, with the source node
located in the corner. The sinks are randomly chosen in the
unit square with uniform random sink demands drawn from
the range of [1, 10].

t1

t2

t3

tm

cost(u,v)=costf(∆,(u,v))

x
u v

y

Fig. 9. Gy.

LDF
LDF-CR

LDF-BR

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 5 10 15 20 25 30 35 40 45 50

R
el

at
iv

e
C

os
t

Number of Sinks

Fig. 10. Relative cost comparison on random networks.

We measure the relative costs of flows generated by different
algorithms with an estimated lower bound as defined in [1]. We
first obtain an initial solution with LDF, and apply the cycle
reduction algorithm as well as the bicycle reduction algorithm
to the flow produced by LDF. The number of sinks is varied
to show how the results scale. We also measure the percentage
improvements made to the LDF solutions.

The relative cost results (Fig. 10) show that LDF produces
results up to 2.6 times the estimated lower bound, while the
cycle reduction (LDF-CR) and bicycle reduction algorithm
(LDF-BR) both improve the quality of the LDF results, and
LDF-BR provides more consistent improvement to the LDF-
CR solutions. However, the degrees of improvements are not
significant as expected. As Fig. 11 shows more clearly, the
cycle reduction algorithm (CR) improves the solution quality
by up to 1.2% over LDF, and bicycle reduction (BR) improves
the solution quality by up to 1.85% over LDF. In general, the
bicycle reduction algorithm offers up to twice the improvement
of the cycle reduction algorithm in most cases, but they are
relatively small improvements for the additional complexity in
the cycle and bicycle reduction algorithms.

Our analysis in the previous sections illustrates that the
cycle and bicycle reduction algorithms can greatly improve
the quality of LDF solutions in certain example networks.
However, our simulation results show a small improvement

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 10 15 20 25 30 35 40 45 50

%

Number of Sinks

CR

BR

Fig. 11. Percentage cost improvement on random networks.

for average cases of the random networks generated. These
results indicate that LDF offers good solutions without added
computational complexity from the cycle and bicycle reduction
algorithms. Although the improvements by cycle and bicycle
reduction algorithms can be substantial in certain networks,
and can not be ruled out entirely, they offer little improvements
in average cases. This indicates that the special negative cycle
and bicycle subnetwork structures do not occur frequently in
the LDF solutions from the network topologies we simulated.
While LDF is a polynomial approximation algorithm, both
cycle and bicycle reduction algorithms run in exponential time.
Thus, these results further prove that LDF can serve as a good
approximation algorithm for the configuration of an RDS with
large number of sink nodes in practice.

V. CONCLUSIONS

In this paper, we apply local search algorithms with cycle
and bicycle reduction to improve the solution quality of
the LDF algorithm for the RDS configuration problem. Our
experimental results show that the both local search algorithms
can improve the quality of results, but it would reach a point
of diminishing return as the quality improvement is limited
but the computational complexity grows. Meanwhile, LDF
produces solutions that are close to the local optima, without
added computational complexity.

REFERENCES

[1] R. Qiu and J. S. Turner, “Configuration of reserved delivery subnetworks,”
in Proceedings of IEEE Globecom, (Taipei, Taiwan), Novmber 2002.

[2] G. M. Guisewite and P. M. Pardalos, “Minimum concave-cost network
flow problems: Applications, complexity, and algorithms,” Annals of
Operations Research, vol. 25, pp. 75–99, 1990.

[3] G. Gallo and C. Sodini, “Adjacent extreme flows and application to min
concave cost flow problems,” Networks, vol. 9, pp. 95–121, 1979.

[4] E. Aarts and J. K. Lentra, Local Search in Combinatorial Optimization.
John Wiley & Sons, 1997.

[5] R. Qiu and J. S. Turner, “Improved local search algorithm with multi-
cycle reduction for minimum concave cost network flow problems,” tech.
rep., WUCS-04-74, Washington University at St. Louis, Department of
Computer Science and Engineering, 2004.

