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Abstract  
High performance routers require substantial amounts 
of memory to store packets awaiting transmission, 
requiring the use of dedicated memory devices with the 
density and capacity to provide the required storage 
economically. The memory bandwidth required for 
packet storage subsystems often exceeds the bandwidth 
of individual memory devices, making it necessary to 
implement packet storage using multiple memory 
channels. This raises the question of how to design 
multichannel storage systems that make effective use of 
the available memory and memory bandwidth, while 
forwarding packets at link rate in the presence of arbi-
trary packet retrieval patterns. A recent series of pa-
pers has demonstrated an architecture that uses on-
chip SRAM to buffer packets going to/from a mul-
tichannel storage system, while maintaining high per-
formance in the presence worst-case traffic patterns. 
Unfortunately, the amount of on-chip storage required 
grows as the product of the number of channels and 
the number of separate queues served by the packet 
storage system. This makes it too expensive to use in 
systems with large numbers of queues. We show how 
to design a practical randomized packet storage system 
that can sustain high performance using an amount of 
on-chip storage that is independent of the number of 
queues. 
 

1. Introduction 
Packet buffers in routers require substantial amounts of 
memory to store packets awaiting transmission. Router 
vendors typically dimension packet storage subsystems 
to have a capacity at least equal to the product of the 
link bandwidth and the typical network round-trip de-
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lay. While a recent paper [1] has questioned the neces-
sity of such large amounts of storage, current practice 
continues to rely on the bandwidth-delay product rule. 
The amount of storage used by routers is large enough 
to require the use of high density memory components. 
The continuing acceleration of link bandwidths, cou-
pled with the common occurrence of short packets in 
networks, necessitates the use of multiple memory 
modules, used in a multichannel configuration. As 
anexample, consider a packet storage subsystem serv-
ing a 40 Gb/s link on the output side of the router. If 
the switch connecting the router line cards operates 
with a 2:1 speedup relative to the external links, pack-
ets can arrive from the switch at up to 80 Gb/s. This 
leads to a total memory bandwidth requirement of 120 
Gb/s. At the same time, a 200 MHz DDR SDRAM 
with a 64 bit wide data path has a peak bandwidth of 
just over 25 Gb/s [6][7]. So a packet storage system 
serving a 40 Gb/s link would need a minimum of five 
SDRAM modules to provide the necessary bandwidth.  

The design of an effective multichannel packet 
storage system poses some interesting challenges. To 
use both the storage space and memory bandwidth 
effectively, we need to distribute packets across the 
memory modules. While it is straightforward to dis-
tribute the load evenly when writing packets to mem-
ory, the order in which packets are retrieved from 
memory is determined by a packet scheduler, imple-
menting a specific queueing policy. This can result in 
packets being retrieved from the memory in an “unbal-
anced” fashion, making it impossible to sustain high 
output rates. In references [3][4], Iyer et al. have 
shown that a hybrid approach combining multiple off-
chip memory channels with an on-chip SRAM can 
deliver high performance even in the presence of 
worst-case access patterns. The on-chip SRAM is used 
to provide a moderate amount of fast, per-queue stor-
age, while the off-chip memory channels provide bulk 
storage. Unfortunately, the amount of on-chip SRAM 
needed grows as the product of the number of memory 
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modules and the number of queues, making it practical 
only when the number of individual queues is limited.  

The poor scaling characteristics of storage systems 
designed for worst-case traffic suggests that it may be 
useful to consider designs that use randomization to 
achieve good performance. While such systems cannot 
provide worst-case guarantees, they can provide strong 
probabilistic guarantees that are independent of the 
traffic and the packet retrieval patterns. Interestingly, 
applying randomization effectively in this context is 
not as straightforward as it might seem. It’s tempting 
to think that all one needs to do is distribute arriving 
packets randomly across the multiple memory chan-
nels, and rely on the randomization of the input distri-
bution to produce a random distribution on the output 
side, resulting in an even distribution of the output 
load. Unfortunately, short-term variations in the load 
distribution at the output can lead to surprisingly poor 
performance. This is illustrated in Figure 1, which 
shows traces of simulation runs for systems with 2, 4 
and 8 channels. In this diagram, time proceeds on the 
horizontal axis and the numbered rectangles represent 
packets, as they are read from the memory channels. 
The numbers indicate the order in which the packets 
arrived and the order in which the packet scheduler 
retrieves them from memory. The random assignments 
of packets to channels at the input side can lead to 
poor performance at the output, if packets must be read 
from the memory in the order that they are to be sent 
on the link. We find that the two channel buffer 
achieves 67% utilization, while a 16 channel buffer 
achieves only 29%. 

In this paper, we introduce a packet storage archi-
tecture that uses multiple, independent memory chan-
nels and provides traffic-independent probabilistic 
performance guarantees. The architecture uses: ran-
domized writes ensuring full write utilization and out-
of-order reads to ensure near-full read utilization, with 

a resequencing buffer to ensure that packets are for-
warded in the same order as they were specified by the 
packet scheduler. Our analysis and simulation results 
show that this design can sustain high-performance 
with only a modest amount of on-chip buffering.  

The remainder of the paper is organized as follows. 
Details of the multichannel packet storage system are 
given in Section 2. Section 3 studies the central per-
formance issues. Section 4, shows how the amount of 
on-chip memory can be reduced through a simple ex-
tension of the basic architecture. Section 5 demon-
strates that the utilization of the different memory 
channels remains balanced, even without introducing 
any feedback-driven balancing mechanism. The paper 
ends with concluding remarks in Section 6. 

2. Multichannel Buffer Design 
Figure 2 is a block diagram of the multichannel packet 
store. Arriving packets are broken up into fixed-size 
blocks called chunks before reaching the packet store. 
Chunks are reassembled into packets after they are 
retrieved from the packet store. On the input side, ar-
riving chunks are randomly distributed to per-channel 
input queues, from which chunks are transferred to the 
off-chip memory channels. On the output side, re-
quests received from an external packet scheduler are 
placed in per-channel request queues, based on the 
channel where the requested chunk was stored when it 
arrived. Requests are given a timestamp when they are 
placed in their request queues. The timestamps are 
used by the resequencing buffer to reorder the chunks 
prior to forwarding them on the outgoing link. Chunks 
are held in the resequencing buffer until the difference 
between the current time and their timestamp reaches a 
specified age threshold, T. This is to ensure that the 
delay from the time a request is received until the cor-
responding chunk is sent is constant. By maintaining a 
constant delay, the system avoids distorting the trans-
mission timing specified by the packet scheduler. Such 
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Figure 1. Simulation of naive randomized packet storage system 
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resequencers can be implemented very efficiently, re-
quiring only constant time per chunk [2]. 

Arriving chunks are distributed to the n channels 
using a series of randomly selected n-permuations. The 
i-th chunk in each group of n arriving chunks is as-
signed to channel π(i) where π is the current random 
permutation. A new random permutation is selected for 
every group of n input chunks. This ensures that in any 
sequence of m consecutive chunks, at most ⎡m/n⎤ are 
assigned to any single channel. This results in ideal 
balancing of the input traffic while producing the ran-
domization needed to provide balanced loading on the 
output side. So long as the aggregate input bandwidth 
of the memory exceeds the rate at which chunks can 
arrive, this load balancing mechanism allows us to use 
very small queues at the input. In particular, we need 
only store two chunks for each channel in the input 
queues. 

Requests received from the packet scheduler are 
distributed to request queues according to the memory 
channel that the requested chunk arrived on. Since the 
chunks were distributed randomly to channels, the 
requests received from the packet scheduler will also 
be distributed randomly to the request queues, no mat-
ter what packet scheduling algorithm is used and no 
matter what the input traffic pattern is. Note that the 
distribution of requests to queues can be better than 
what would be observed if requests were distributed 
independently, but it cannot be worse. 

Since requests can be received from the packet 
scheduler at the rate at which the external link for-
wards chunks, the output side of the memory channels 
must be able to process requests at least as fast as the 
link rate. To keep the request queues from getting too 
long, it’s useful to design the memory channels to op-

erate at a slightly faster rate than the links. We define 
the speedup of the system to be the ratio of the peak 
rate that the memory channels can process requests to 
the rate at which chunks can be sent on the link. We let 
S denote the speedup.  

There is a strong connection between the size of 
the request queues and the size of the resequencing 
buffer. In particular, if the request queues have a ca-
pacity of R requests each and the time needed to send a 
chunk on the external link is tL, then a resequencing 
buffer with a capacity of nR/S chunks and an age 
threshold of (nR/S)tL will always forward chunks in the 
correct order, no matter how the requests are distrib-
uted to the request queues. To see this note that the 
maximum delay that a request can experience in a re-
quest queue is RtM where tM is the time required to read 
a chunk from a memory channel. Since tM = (n/S)tL, a 
chunk is guaranteed to reach the resequencer before 
the difference between its timestamp and the current 
time exceeds the age threshold. Also, since no two 
chunks have timestamps that differ by less than tL, the 
number of chunks that can be present in the rese-
quencer at one time is never more than nR/S. 

3. Dimensioning Request Queues 
We would like to keep the resequencing buffer as 
small as possible, both to limit the amount of on-chip 
storage it requires and to reduce the constant delay 
imposed on chunks prior to forwarding. Since the re-
sequencing buffer size is directly tied to the size of the 
request queues, the request queues size becomes one of 
our key concerns (note that the memory consumed by 
the request queues themselves is a lesser concern than 
the memory consumed by the resequencing buffer, 
since requests consume much less memory than 
chunks). 

memory channel

memory channel

n
arriving
chunks

random
n-permuations

requests from
packet scheduler

resequencing
buffer

request
queues

. . .

. . .

distribution
determined by
chunk location

memory channel

memory channel

n
arriving
chunks

random
n-permuations

requests from
packet scheduler

resequencing
buffer

request
queues

. . .

. . .

distribution
determined by
chunk location

 
Figure 2. Multichannel buffer block diagram 
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Because the request queues are finite, arriving re-
quests will occasionally find no space available in their 
request queue. We can avoid discarding such requests 
by temporarily suspending the packet scheduler until 
there is room in the request queue. When this happens, 
we effectively lose an opportunity to send a chunk, 
resulting in lower effective link bandwidth. We clearly 
want to dimension the request queues to make such 
events infrequent, so that the amount of lost link band-
width is small. Note also, that we can trade-off mem-
ory bandwidth for request queue size, since request 
queues served by faster memories are less likely to 
block arriving requests. 

We use a simple discrete time queueing model to 
evaluate the queueing behavior of a typical request 
queue. We let the time unit be the time it takes for one 
memory channel to output a chunk in response to a 
request. So a non-empty request queue will complete 
servicing a request each time step. A request queue can 
receive up to ⎡n/S⎤  new requests during a single time 
step. Since these requests are equally likely to go to 
any of the n request queues, we let  

⎡ ⎤ ⎡ ⎤ kSnk pp
k

Sn −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ /)1()(
/  

be the probability that k requests are received by a sin-
gle queue in a single time step, where p=1/(S⎡n/S⎤ ). 

We define the miss probability to be the probability 
that any of the n request buffers is full. This is calcu-
lated, assuming that the request buffers are independ-
ent of one another. This leads to a conservative esti-
mate of the required request queue size. Figure 3 
shows how the miss probability varies with the size of 
the request queues and the speedup, for systems with 4 
or 16 channels. We note that a four channel system 
with a speedup of 1.05 and a buffer size of 100 will 
experience one miss for every million requests, during 
a long backlog period, resulting in a negligible drop in 
link utilization. Such a system will require a rese-

quencing buffer with room for 380 chunks (24 KB if 
chunks are 64 bytes long). If the time it takes to send a 
chunk on the link is 50 ns (typical for 10 Gb/s links), 
the delay imposed from the time a request is received 
to the time a chunk is sent is 19 µs, which is approxi-
mately the time required for light to travel 4 kilometers 
in fiber. A 16 channel system requires a speedup of 
about 1.07 to achieve the same miss probability with a 
request buffer size of 100. However the 16 channel 
system will require a resequencing buffer with space 
for nearly 1,500 chunks in this case. While this is a 
significant increase it is still well within the range of 
what is reasonable for on-chip storage, and when used 
in the context of 40 Gb/s links, the delay is roughly 
comparable. 

Figure 4 shows how the resequencing buffer scales 
as the number of channels increases. For each curve, 
we have fixed the speedup and determined how large 
the resequencer must be to produce a miss probability 
of 10−4. Note that the values plotted are the ratio of the 
resequencer size to the number of channels. Note also, 
that the curves increase very slowly as the number of 
channels grows, indicating that the resequencer size is 
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Figure 3. Miss probability for request buffers. 
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Figure 4. Scaling of resequencing buffer size 
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just slightly superlinear in the number of channels. 

4. Reducing Resequencer Size 
In systems with many memory channels, the size of the 
resequencing buffer can become an issue. While such 
systems will typically be used in the context of very 
high speed links (40 Gb/s and greater), where the cost 
of the memory is tolerable and the impact on delay is 
limited, it is nonetheless worth considering how we 
might extend the design to reduce the amount of space 
required by the resequencer. 

One way to reduce the required resequencer size is 
to add an overflow buffer in front of the request 
queues. Requests from the packet scheduler would be 
placed in the overflow buffer and propagated to re-
quest queues only when the request queues have room. 
Requests would be timestamped when they are trans-
ferred from the overflow buffer to a request queue. 
Note that we only need to suspend the packet sched-
uler when the overflow buffer is full, making it possi-
ble to operate with smaller request queues and hence, 
with a smaller resequencing buffer. While the over-
flow buffer does consume on-chip memory space, we 
can expect to save space overall, since the requests are 
much smaller than the chunks stored in the rese-
quencer.  

Note that in systems that use an overflow buffer, 
we cannot maintain a constant delay from the time a 
request is issued until the time the chunk is sent on the 
link, since requests can spend a variable amount of 
time in the overflow buffer. On the other hand, we can 
reduce the minimum delay that chunks experience, as 
well as the average. 

Figure 5 shows the miss probability for a 16 chan-
nel system with overflow buffers of size 100 and 200. 
In each chart, we also show a curve for a system with a 
request queue size of 20 and an overflow buffer size of 
1. Note that with an overflow buffer of size 100, a 

queue size of 20 yields a miss probability of 10−4 for 
speedups of about 1.13. Referring to Figure 3, we see 
that with no overflow buffer, we would need a request 
queue size of about 40 to achieve the same loss rate at 
a speedup of 1.13. So the presence of the overflow 
buffer has allowed us to halve the size of the request 
queues and the resequencing buffer. This cuts the 
minimum delay from the time a request is made until 
the chunk is sent in half. At the same time, it also in-
creases the maximum delay by a factor of three. 

These results were obtained using simulation. The 
simulated request queues have a constant service time 
and new requests arrive continuously at the link rate 
and are randomly assigned to the request queues, on 
transfer from the overflow buffer. For each data point, 
the simulation was run for 200 million time steps, with 
data collected following a warmup interval of 100 mil-
lion time steps. We cross-checked the simulation with 
the analysis in the previous section by running simula-
tions with an overflow buffer size of 1 and comparing 
these to the analytical results. The simulation and 
analysis results match closely, except at small speed-
ups and large channel counts where the analysis tends 
to over-estimate the miss probabilities. This is ex-
pected, since the analysis treats the request queue 
lengths as independent random variables, when they 
are actually negatively correlated. 

5. Evaluating Channel Balance 
In our multichannel packet storage system, arriving 
chunks are distributed evenly across the memory chan-
nels. However, the output process is random, suggest-
ing that that the amount of space used in the different 
memory channels could drift apart over time, resulting 
in a situation where some memory channels have space 
available, while others have none. As a baseline as-
sessment of this issue, we study the evolution of the 
queue length distribution for a simple discrete time 
queue, representing a typical memory channel. The 
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Figure 5. Miss probability when using overflow queue 
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queue is initialized to the half-full state and we calcu-
late the evolving queue length distribution over time. 
The service time is geometrically distributed and the 
arrival process is Bernoulli, with the arrival rate 
matching the service rate. The results of this analysis 
are shown in Figure 6. The chart shows the values q 
for which the probability that the queue length is <q is 
10%, 20%, 30% and so forth. We note that after one 
million time steps, the difference between the 10% and 
90% curves is about 1,200, so in a system with ten 
channels, we might expect the minimum and maximum 
queue lengths to differ by this much. These results 
suggest that the amount of data stored in the different 
channels could indeed drift apart over a long period of 
time. 

However, the baseline analysis ignores a stabilizing 
influence that can limit the amount of imbalance that 
can develop across the different memory channels. In 
particular, it ignores the fact that a memory channel 
with a large backlog will be serviced at a higher rate 
than a channel with a smaller backlog. If we repeat the 
above analysis, using a modified queueing model in 
which the service rate of the queue is proportional to 
the backlog, we find that the “spread” of the queue 
length distribution is much more limited. Specifically, 
the difference between the 10% and 90% curves stabi-
lizes at 170, after the first 100,000 steps and there is no 
further spreading. Simulations confirm this effect, as 
summarized by the chart shown in Figure 7. The two 
analytical curves show the difference between the 10% 
and 90% points of the queue length distribution, while 
the simulation results show the difference in utilization 
between the channels with the largest and smallest 
utilizations. We note that the discrepancy generally 
remains below 200 chunks, and there is no indication 
of increasing separation with time. Also, note that this 
is achieved with no explicit load balancing at the input.  

6. Concluding Remarks 
In this paper, we have studied the performance of mul-
tichannel packet storage systems that use randomiza-
tion to enable high performance in the presence of 
arbitrary packet retrieval patterns. The results reported 
here apply most directly to systems where the memory 
channels are implemented using SRAM. Our perform-
ance models neglect the issue of bank arbitration that 
arises in modern DRAM modules, so are not entirely 
accurate for DRAM. To maximize effective memory 
bandwidth, DRAM modules are divided up into sepa-
rate banks, effectively scaling up the number of mem-
ory channels. We can apply our architecture (and per-
formance models) to a system that uses DRAM by 
treating each bank as a separate channel. The only 
problem with this approach is that the banks within a 
DRAM module share a common IO interface, and the 
bandwidth of this interface is smaller than the aggre-
gate bandwidth of the banks. However, because the 
architecture distributes traffic evenly across the banks, 
we can simply divide the IO bandwidth of each 
DRAM module across the banks, rather than attempt-
ing to share it dynamically. This approach can be ex-
pected to yield a system with very nearly the same 
performance as systems that implement more sophisti-
cated bank arbitration mechanisms. Space limitations 
prevent us from exploring this issue fully here, but we 
plan to investigate it further in a longer version of this 
paper. 

There are several other opportunities for extending 
this work. One direction that can be explored involves 
replacing the timestamp-based resequencer with one 
that uses sequence numbers. Such a resequencer can 
forward chunks earlier than one that holds chunks back 
until their age exceeds a fixed threshold. This does 
sacrifice the constant delay that can be obtained using 
timestamp-based resequencers, but can substantially 
reduce the minimum and average delay. 
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Another issue that is worth exploring has to do 
with the memory bandwidth inefficiency that can re-
sult from the use of fixed length chunks. Modern 
routers handle variable length packets that are typically 
divided into fixed length chunks for storage in off-chip 
memory. While fixed length chunks are much more 
convenient for the storage system designer, they can 
lead to significant inefficiencies, if packet lengths 
don’t match the chunk size. In particular, packet 
lengths that are just slightly too long to fit in a single 
chunk can lead to effective bandwidth reductions of 
close to 50%. One way to reduce this loss of effective 
bandwidth is to allow chunk sizes to vary across a lim-
ited range of sizes. This would allow one to divide 
packets into chunks that are all at least equal in length 
to the minimum chunk size, eliminating the loss of 
memory bandwidth that occurs when a chunk with 
only a small amount of data is transferred to/from 
memory. Of course, the use of variable size chunks 
does complicate the mechanisms that distribute the 
traffic randomly across memory channels, requiring 
significant extension of the architecture and careful 
evaluation of the performance implications. 
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