

- 1 -

Design of Randomized Multichannel Packet Storage

for High Performance Routers

Sailesh Kumar
Washington University
sailesh@arl.wustl.edu

Patrick Crowley
Washington University
pcrowley@wustl.edu

Jonathan Turner
Washington University
jon.turner@wustl.edu

Abstract
High performance routers require substantial amounts
of memory to store packets awaiting transmission,
requiring the use of dedicated memory devices with the
density and capacity to provide the required storage
economically. The memory bandwidth required for
packet storage subsystems often exceeds the bandwidth
of individual memory devices, making it necessary to
implement packet storage using multiple memory
channels. This raises the question of how to design
multichannel storage systems that make effective use of
the available memory and memory bandwidth, while
forwarding packets at link rate in the presence of arbi-
trary packet retrieval patterns. A recent series of pa-
pers has demonstrated an architecture that uses on-
chip SRAM to buffer packets going to/from a mul-
tichannel storage system, while maintaining high per-
formance in the presence worst-case traffic patterns.
Unfortunately, the amount of on-chip storage required
grows as the product of the number of channels and
the number of separate queues served by the packet
storage system. This makes it too expensive to use in
systems with large numbers of queues. We show how
to design a practical randomized packet storage system
that can sustain high performance using an amount of
on-chip storage that is independent of the number of
queues.

1. Introduction
Packet buffers in routers require substantial amounts of
memory to store packets awaiting transmission. Router
vendors typically dimension packet storage subsystems
to have a capacity at least equal to the product of the
link bandwidth and the typical network round-trip de-

 This work has been supported by the National Science Foundation
(grants CNS-0325298 and CCF-0430012). All opinions expressed
are those of the authors, not the NSF.

lay. While a recent paper [1] has questioned the neces-
sity of such large amounts of storage, current practice
continues to rely on the bandwidth-delay product rule.
The amount of storage used by routers is large enough
to require the use of high density memory components.
The continuing acceleration of link bandwidths, cou-
pled with the common occurrence of short packets in
networks, necessitates the use of multiple memory
modules, used in a multichannel configuration. As
anexample, consider a packet storage subsystem serv-
ing a 40 Gb/s link on the output side of the router. If
the switch connecting the router line cards operates
with a 2:1 speedup relative to the external links, pack-
ets can arrive from the switch at up to 80 Gb/s. This
leads to a total memory bandwidth requirement of 120
Gb/s. At the same time, a 200 MHz DDR SDRAM
with a 64 bit wide data path has a peak bandwidth of
just over 25 Gb/s [6][7]. So a packet storage system
serving a 40 Gb/s link would need a minimum of five
SDRAM modules to provide the necessary bandwidth.

The design of an effective multichannel packet
storage system poses some interesting challenges. To
use both the storage space and memory bandwidth
effectively, we need to distribute packets across the
memory modules. While it is straightforward to dis-
tribute the load evenly when writing packets to mem-
ory, the order in which packets are retrieved from
memory is determined by a packet scheduler, imple-
menting a specific queueing policy. This can result in
packets being retrieved from the memory in an “unbal-
anced” fashion, making it impossible to sustain high
output rates. In references [3][4], Iyer et al. have
shown that a hybrid approach combining multiple off-
chip memory channels with an on-chip SRAM can
deliver high performance even in the presence of
worst-case access patterns. The on-chip SRAM is used
to provide a moderate amount of fast, per-queue stor-
age, while the off-chip memory channels provide bulk
storage. Unfortunately, the amount of on-chip SRAM
needed grows as the product of the number of memory

- 2 -

modules and the number of queues, making it practical
only when the number of individual queues is limited.

The poor scaling characteristics of storage systems
designed for worst-case traffic suggests that it may be
useful to consider designs that use randomization to
achieve good performance. While such systems cannot
provide worst-case guarantees, they can provide strong
probabilistic guarantees that are independent of the
traffic and the packet retrieval patterns. Interestingly,
applying randomization effectively in this context is
not as straightforward as it might seem. It’s tempting
to think that all one needs to do is distribute arriving
packets randomly across the multiple memory chan-
nels, and rely on the randomization of the input distri-
bution to produce a random distribution on the output
side, resulting in an even distribution of the output
load. Unfortunately, short-term variations in the load
distribution at the output can lead to surprisingly poor
performance. This is illustrated in Figure 1, which
shows traces of simulation runs for systems with 2, 4
and 8 channels. In this diagram, time proceeds on the
horizontal axis and the numbered rectangles represent
packets, as they are read from the memory channels.
The numbers indicate the order in which the packets
arrived and the order in which the packet scheduler
retrieves them from memory. The random assignments
of packets to channels at the input side can lead to
poor performance at the output, if packets must be read
from the memory in the order that they are to be sent
on the link. We find that the two channel buffer
achieves 67% utilization, while a 16 channel buffer
achieves only 29%.

In this paper, we introduce a packet storage archi-
tecture that uses multiple, independent memory chan-
nels and provides traffic-independent probabilistic
performance guarantees. The architecture uses: ran-
domized writes ensuring full write utilization and out-
of-order reads to ensure near-full read utilization, with

a resequencing buffer to ensure that packets are for-
warded in the same order as they were specified by the
packet scheduler. Our analysis and simulation results
show that this design can sustain high-performance
with only a modest amount of on-chip buffering.

The remainder of the paper is organized as follows.
Details of the multichannel packet storage system are
given in Section 2. Section 3 studies the central per-
formance issues. Section 4, shows how the amount of
on-chip memory can be reduced through a simple ex-
tension of the basic architecture. Section 5 demon-
strates that the utilization of the different memory
channels remains balanced, even without introducing
any feedback-driven balancing mechanism. The paper
ends with concluding remarks in Section 6.

2. Multichannel Buffer Design
Figure 2 is a block diagram of the multichannel packet
store. Arriving packets are broken up into fixed-size
blocks called chunks before reaching the packet store.
Chunks are reassembled into packets after they are
retrieved from the packet store. On the input side, ar-
riving chunks are randomly distributed to per-channel
input queues, from which chunks are transferred to the
off-chip memory channels. On the output side, re-
quests received from an external packet scheduler are
placed in per-channel request queues, based on the
channel where the requested chunk was stored when it
arrived. Requests are given a timestamp when they are
placed in their request queues. The timestamps are
used by the resequencing buffer to reorder the chunks
prior to forwarding them on the outgoing link. Chunks
are held in the resequencing buffer until the difference
between the current time and their timestamp reaches a
specified age threshold, T. This is to ensure that the
delay from the time a request is received until the cor-
responding chunk is sent is constant. By maintaining a
constant delay, the system avoids distorting the trans-
mission timing specified by the packet scheduler. Such

67086702 6703 6704
6701 6705 6706 6707

3564 3574
3570 3575

3580

3565 3571 3572 3579

3577

3563
3566 3567 3568

3576

3578
3569 3573

4790
4785

4779
4776 4782 4784

4789

4788

4777 4781 4786
4778 4780 4783 4787

2 channels

4 channels

8 channels

Figure 1. Simulation of naive randomized packet storage system

- 3 -

resequencers can be implemented very efficiently, re-
quiring only constant time per chunk [2].

Arriving chunks are distributed to the n channels
using a series of randomly selected n-permuations. The
i-th chunk in each group of n arriving chunks is as-
signed to channel π(i) where π is the current random
permutation. A new random permutation is selected for
every group of n input chunks. This ensures that in any
sequence of m consecutive chunks, at most ⎡m/n⎤ are
assigned to any single channel. This results in ideal
balancing of the input traffic while producing the ran-
domization needed to provide balanced loading on the
output side. So long as the aggregate input bandwidth
of the memory exceeds the rate at which chunks can
arrive, this load balancing mechanism allows us to use
very small queues at the input. In particular, we need
only store two chunks for each channel in the input
queues.

Requests received from the packet scheduler are
distributed to request queues according to the memory
channel that the requested chunk arrived on. Since the
chunks were distributed randomly to channels, the
requests received from the packet scheduler will also
be distributed randomly to the request queues, no mat-
ter what packet scheduling algorithm is used and no
matter what the input traffic pattern is. Note that the
distribution of requests to queues can be better than
what would be observed if requests were distributed
independently, but it cannot be worse.

Since requests can be received from the packet
scheduler at the rate at which the external link for-
wards chunks, the output side of the memory channels
must be able to process requests at least as fast as the
link rate. To keep the request queues from getting too
long, it’s useful to design the memory channels to op-

erate at a slightly faster rate than the links. We define
the speedup of the system to be the ratio of the peak
rate that the memory channels can process requests to
the rate at which chunks can be sent on the link. We let
S denote the speedup.

There is a strong connection between the size of
the request queues and the size of the resequencing
buffer. In particular, if the request queues have a ca-
pacity of R requests each and the time needed to send a
chunk on the external link is tL, then a resequencing
buffer with a capacity of nR/S chunks and an age
threshold of (nR/S)tL will always forward chunks in the
correct order, no matter how the requests are distrib-
uted to the request queues. To see this note that the
maximum delay that a request can experience in a re-
quest queue is RtM where tM is the time required to read
a chunk from a memory channel. Since tM = (n/S)tL, a
chunk is guaranteed to reach the resequencer before
the difference between its timestamp and the current
time exceeds the age threshold. Also, since no two
chunks have timestamps that differ by less than tL, the
number of chunks that can be present in the rese-
quencer at one time is never more than nR/S.

3. Dimensioning Request Queues
We would like to keep the resequencing buffer as
small as possible, both to limit the amount of on-chip
storage it requires and to reduce the constant delay
imposed on chunks prior to forwarding. Since the re-
sequencing buffer size is directly tied to the size of the
request queues, the request queues size becomes one of
our key concerns (note that the memory consumed by
the request queues themselves is a lesser concern than
the memory consumed by the resequencing buffer,
since requests consume much less memory than
chunks).

memory channel

memory channel

n
arriving
chunks

random
n-permuations

requests from
packet scheduler

resequencing
buffer

request
queues

. . .

. . .

distribution
determined by
chunk location

memory channel

memory channel

n
arriving
chunks

random
n-permuations

requests from
packet scheduler

resequencing
buffer

request
queues

. . .

. . .

distribution
determined by
chunk location

Figure 2. Multichannel buffer block diagram

- 4 -

Because the request queues are finite, arriving re-
quests will occasionally find no space available in their
request queue. We can avoid discarding such requests
by temporarily suspending the packet scheduler until
there is room in the request queue. When this happens,
we effectively lose an opportunity to send a chunk,
resulting in lower effective link bandwidth. We clearly
want to dimension the request queues to make such
events infrequent, so that the amount of lost link band-
width is small. Note also, that we can trade-off mem-
ory bandwidth for request queue size, since request
queues served by faster memories are less likely to
block arriving requests.

We use a simple discrete time queueing model to
evaluate the queueing behavior of a typical request
queue. We let the time unit be the time it takes for one
memory channel to output a chunk in response to a
request. So a non-empty request queue will complete
servicing a request each time step. A request queue can
receive up to ⎡n/S⎤ new requests during a single time
step. Since these requests are equally likely to go to
any of the n request queues, we let

⎡ ⎤ ⎡ ⎤ kSnk pp
k

Sn −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ /)1()(
/

be the probability that k requests are received by a sin-
gle queue in a single time step, where p=1/(S⎡n/S⎤).

We define the miss probability to be the probability
that any of the n request buffers is full. This is calcu-
lated, assuming that the request buffers are independ-
ent of one another. This leads to a conservative esti-
mate of the required request queue size. Figure 3
shows how the miss probability varies with the size of
the request queues and the speedup, for systems with 4
or 16 channels. We note that a four channel system
with a speedup of 1.05 and a buffer size of 100 will
experience one miss for every million requests, during
a long backlog period, resulting in a negligible drop in
link utilization. Such a system will require a rese-

quencing buffer with room for 380 chunks (24 KB if
chunks are 64 bytes long). If the time it takes to send a
chunk on the link is 50 ns (typical for 10 Gb/s links),
the delay imposed from the time a request is received
to the time a chunk is sent is 19 µs, which is approxi-
mately the time required for light to travel 4 kilometers
in fiber. A 16 channel system requires a speedup of
about 1.07 to achieve the same miss probability with a
request buffer size of 100. However the 16 channel
system will require a resequencing buffer with space
for nearly 1,500 chunks in this case. While this is a
significant increase it is still well within the range of
what is reasonable for on-chip storage, and when used
in the context of 40 Gb/s links, the delay is roughly
comparable.

Figure 4 shows how the resequencing buffer scales
as the number of channels increases. For each curve,
we have fixed the speedup and determined how large
the resequencer must be to produce a miss probability
of 10−4. Note that the values plotted are the ratio of the
resequencer size to the number of channels. Note also,
that the curves increase very slowly as the number of
channels grows, indicating that the resequencer size is

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.05 1.1 1.15 1.2 1.25

Speedup

M
is

s
P
ro

b
a
b
ili

ty

n =4

queue size =20

40

150

100

60

250
1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.05 1.1 1.15 1.2 1.25

Speedup

M
is

s
P
ro

b
a
b
ili

ty

n =16

queue size =20

40

150

100

60

250
1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.05 1.1 1.15 1.2 1.25

Speedup

M
is

s
P
ro

b
a
b
ili

ty

n =4

queue size =20

40

150

100

60

250
1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 1.05 1.1 1.15 1.2 1.25

Speedup

M
is

s
P
ro

b
a
b
ili

ty

n =16

queue size =20

40

150

100

60

250

Figure 3. Miss probability for request buffers.

0

20

40

60

80

100

120

140

0 100 200 300 400 500

Number of Channels

R
e
se

q
u
e
n
ce

r
S

iz
e
/#

 o
f

C
h
a
n
n
e
ls

.

speedup=1.05

1.10

1.15
1.20
1.25

target miss rate=10-4

0

20

40

60

80

100

120

140

0 100 200 300 400 500

Number of Channels

R
e
se

q
u
e
n
ce

r
S

iz
e
/#

 o
f

C
h
a
n
n
e
ls

.

speedup=1.05

1.10

1.15
1.20
1.25

target miss rate=10-4

Figure 4. Scaling of resequencing buffer size

- 5 -

just slightly superlinear in the number of channels.

4. Reducing Resequencer Size
In systems with many memory channels, the size of the
resequencing buffer can become an issue. While such
systems will typically be used in the context of very
high speed links (40 Gb/s and greater), where the cost
of the memory is tolerable and the impact on delay is
limited, it is nonetheless worth considering how we
might extend the design to reduce the amount of space
required by the resequencer.

One way to reduce the required resequencer size is
to add an overflow buffer in front of the request
queues. Requests from the packet scheduler would be
placed in the overflow buffer and propagated to re-
quest queues only when the request queues have room.
Requests would be timestamped when they are trans-
ferred from the overflow buffer to a request queue.
Note that we only need to suspend the packet sched-
uler when the overflow buffer is full, making it possi-
ble to operate with smaller request queues and hence,
with a smaller resequencing buffer. While the over-
flow buffer does consume on-chip memory space, we
can expect to save space overall, since the requests are
much smaller than the chunks stored in the rese-
quencer.

Note that in systems that use an overflow buffer,
we cannot maintain a constant delay from the time a
request is issued until the time the chunk is sent on the
link, since requests can spend a variable amount of
time in the overflow buffer. On the other hand, we can
reduce the minimum delay that chunks experience, as
well as the average.

Figure 5 shows the miss probability for a 16 chan-
nel system with overflow buffers of size 100 and 200.
In each chart, we also show a curve for a system with a
request queue size of 20 and an overflow buffer size of
1. Note that with an overflow buffer of size 100, a

queue size of 20 yields a miss probability of 10−4 for
speedups of about 1.13. Referring to Figure 3, we see
that with no overflow buffer, we would need a request
queue size of about 40 to achieve the same loss rate at
a speedup of 1.13. So the presence of the overflow
buffer has allowed us to halve the size of the request
queues and the resequencing buffer. This cuts the
minimum delay from the time a request is made until
the chunk is sent in half. At the same time, it also in-
creases the maximum delay by a factor of three.

These results were obtained using simulation. The
simulated request queues have a constant service time
and new requests arrive continuously at the link rate
and are randomly assigned to the request queues, on
transfer from the overflow buffer. For each data point,
the simulation was run for 200 million time steps, with
data collected following a warmup interval of 100 mil-
lion time steps. We cross-checked the simulation with
the analysis in the previous section by running simula-
tions with an overflow buffer size of 1 and comparing
these to the analytical results. The simulation and
analysis results match closely, except at small speed-
ups and large channel counts where the analysis tends
to over-estimate the miss probabilities. This is ex-
pected, since the analysis treats the request queue
lengths as independent random variables, when they
are actually negatively correlated.

5. Evaluating Channel Balance
In our multichannel packet storage system, arriving
chunks are distributed evenly across the memory chan-
nels. However, the output process is random, suggest-
ing that that the amount of space used in the different
memory channels could drift apart over time, resulting
in a situation where some memory channels have space
available, while others have none. As a baseline as-
sessment of this issue, we study the evolution of the
queue length distribution for a simple discrete time
queue, representing a typical memory channel. The

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 1.05 1.1 1.15 1.2 1.25

Speedup

M
is

s
P
ro

b
a
b
ili

ty

n =16

queue size=20

40

150

100

60

queue size=20
overflow size=1

overflow
size=100

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 1.05 1.1 1.15 1.2 1.25

Speedup

M
is

s
P
ro

b
a
b
ili

ty

n =16

queue size=20

40

150

100

60

queue size=20
overflow size=1

overflow
size=200

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 1.05 1.1 1.15 1.2 1.25

Speedup

M
is

s
P
ro

b
a
b
ili

ty

n =16

queue size=20

40

150

100

60

queue size=20
overflow size=1

overflow
size=100

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 1.05 1.1 1.15 1.2 1.25

Speedup

M
is

s
P
ro

b
a
b
ili

ty

n =16

queue size=20

40

150

100

60

queue size=20
overflow size=1

overflow
size=200

Figure 5. Miss probability when using overflow queue

- 6 -

queue is initialized to the half-full state and we calcu-
late the evolving queue length distribution over time.
The service time is geometrically distributed and the
arrival process is Bernoulli, with the arrival rate
matching the service rate. The results of this analysis
are shown in Figure 6. The chart shows the values q
for which the probability that the queue length is <q is
10%, 20%, 30% and so forth. We note that after one
million time steps, the difference between the 10% and
90% curves is about 1,200, so in a system with ten
channels, we might expect the minimum and maximum
queue lengths to differ by this much. These results
suggest that the amount of data stored in the different
channels could indeed drift apart over a long period of
time.

However, the baseline analysis ignores a stabilizing
influence that can limit the amount of imbalance that
can develop across the different memory channels. In
particular, it ignores the fact that a memory channel
with a large backlog will be serviced at a higher rate
than a channel with a smaller backlog. If we repeat the
above analysis, using a modified queueing model in
which the service rate of the queue is proportional to
the backlog, we find that the “spread” of the queue
length distribution is much more limited. Specifically,
the difference between the 10% and 90% curves stabi-
lizes at 170, after the first 100,000 steps and there is no
further spreading. Simulations confirm this effect, as
summarized by the chart shown in Figure 7. The two
analytical curves show the difference between the 10%
and 90% points of the queue length distribution, while
the simulation results show the difference in utilization
between the channels with the largest and smallest
utilizations. We note that the discrepancy generally
remains below 200 chunks, and there is no indication
of increasing separation with time. Also, note that this
is achieved with no explicit load balancing at the input.

6. Concluding Remarks
In this paper, we have studied the performance of mul-
tichannel packet storage systems that use randomiza-
tion to enable high performance in the presence of
arbitrary packet retrieval patterns. The results reported
here apply most directly to systems where the memory
channels are implemented using SRAM. Our perform-
ance models neglect the issue of bank arbitration that
arises in modern DRAM modules, so are not entirely
accurate for DRAM. To maximize effective memory
bandwidth, DRAM modules are divided up into sepa-
rate banks, effectively scaling up the number of mem-
ory channels. We can apply our architecture (and per-
formance models) to a system that uses DRAM by
treating each bank as a separate channel. The only
problem with this approach is that the banks within a
DRAM module share a common IO interface, and the
bandwidth of this interface is smaller than the aggre-
gate bandwidth of the banks. However, because the
architecture distributes traffic evenly across the banks,
we can simply divide the IO bandwidth of each
DRAM module across the banks, rather than attempt-
ing to share it dynamically. This approach can be ex-
pected to yield a system with very nearly the same
performance as systems that implement more sophisti-
cated bank arbitration mechanisms. Space limitations
prevent us from exploring this issue fully here, but we
plan to investigate it further in a longer version of this
paper.

There are several other opportunities for extending
this work. One direction that can be explored involves
replacing the timestamp-based resequencer with one
that uses sequence numbers. Such a resequencer can
forward chunks earlier than one that holds chunks back
until their age exceeds a fixed threshold. This does
sacrifice the constant delay that can be obtained using
timestamp-based resequencers, but can substantially
reduce the minimum and average delay.

4,000

4,250

4,500

4,750

5,000

5,250

5,500

5,750

6,000

0 200 400 600 800 1,000

time/1000

Q
u
e
u
e
 L

e
n
g
th

10%-point of distribution

30%

90%

70%

50%

Figure 6. Baseline assessment of channel balance

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1,000

time/1000

C
h
a
n
n
e
l
S
p
re

a
d

n =8

baseline
analysis

(90%-10%)

proportional
service rates
(90%-10%)

simulation
(max-min)

Figure 7. Channel spread

- 7 -

Another issue that is worth exploring has to do
with the memory bandwidth inefficiency that can re-
sult from the use of fixed length chunks. Modern
routers handle variable length packets that are typically
divided into fixed length chunks for storage in off-chip
memory. While fixed length chunks are much more
convenient for the storage system designer, they can
lead to significant inefficiencies, if packet lengths
don’t match the chunk size. In particular, packet
lengths that are just slightly too long to fit in a single
chunk can lead to effective bandwidth reductions of
close to 50%. One way to reduce this loss of effective
bandwidth is to allow chunk sizes to vary across a lim-
ited range of sizes. This would allow one to divide
packets into chunks that are all at least equal in length
to the minimum chunk size, eliminating the loss of
memory bandwidth that occurs when a chunk with
only a small amount of data is transferred to/from
memory. Of course, the use of variable size chunks
does complicate the mechanisms that distribute the
traffic randomly across memory channels, requiring
significant extension of the architecture and careful
evaluation of the performance implications.

References
[1] Appenzeller, G., I. Keslassy and N. McKeown. “Sizing

Router Buffers,” ACM SIGCOMM 2004, 8/04.
[2] Henrion, M. “Resequencing system for a switching

node.” U.S. Patent #5,127,000, 6/92.
[3] Iyer, S., R. R. Compella, and N. McKeown, “Designing

Buffers for Router Line Cards,” Stanford University
HPNG Technical Report - TR02-HPNG-031001, 2002.

[4] Iyer, S., R. R. Kompella, and N. McKeown, “Analysis
of a Memory Architecture for Fast Packet Buffers,”
IEEE HPSR, 5/02.

[5] G. Shrimali, I. Keslassy, and N. McKeown, “Designing
Packet Buffers with Statistical Guarantees,” Hot-
Interconnects, Stanford, 8/04.

[6] DDR-DRAM, RLDRAM, Micron Technology, Inc.
[7] FCRAM, Toshiba America Electronic Components, Inc.

