
IEEE INFOCOM 2005 1

Scalable Packet Classification using
Distributed Crossproducting of Field Labels

David E. Taylor, Jonathan S. Turner
Applied Research Laboratory

Washington University in Saint Louis
{det3,jst}@arl.wustl.edu

Abstract—A wide variety of packet classification algorithms and
devices exist in the research literature and commercial market.
The existing solutions exploit various design tradeoffs to provide
high search rates, power and space efficiency, fast incremental up-
dates, and the ability to scale to large numbers of filters. There
remains a need for techniques that achieve a favorable balance
among these tradeoffs and scale to support classification on addi-
tional fields beyond the standard 5-tuple. We introduce Distributed
Crossproducting of Field Labels (DCFL), a novel combination of
new and existing packet classification techniques that leverages
key observations of the structure of real filter sets and takes ad-
vantage of the capabilities of modern hardware technology. Using
a collection of real and synthetic filter sets, we provide analyses
of DCFL performance and resource requirements on filter sets of
various sizes and compositions. An optimized implementation of
DCFL can provide over 100 million searches per second and stor-
age for over 200 thousand filters in a current generation FPGA or
ASIC without the need for external memory devices.

I. INTRODUCTION

PACKET classification is an enabling function for a vari-
ety of applications including Quality of Service, secu-

rity, and monitoring. These applications typically operate on
packet flows; therefore, network nodes must classify individ-
ual packets traversing the node in order to assign a flow iden-
tifier, FlowID. Packet classification entails searching a set of
filters for the highest priority filter or set of filters that match
the packet 1. At minimum, filters contain multiple field values
that specify an exact packet header or set of headers and the as-
sociated FlowID for packets matching all the field values. The
type of field values are typically prefixes for IP address fields,
an exact value or wildcard for the transport protocol number
and flags, and ranges for port numbers. An example filter table
is shown in Table I. In this simple example, filters contain field
values for four packet headers fields: 8-bit source and destina-
tion addresses, transport protocol, and a 4-bit destination port
number.

Note that the filters in Table I also contain an explicit priority
tag PT and a non-exclusive flag denoted by †. These additional
values allow for ease of maintenance and provide a supportive
platform for a wider variety of applications. Priority tags allow
filter priority to be independent of filter ordering. Packets may
match only one exclusive filter, allowing Quality of Service and

This work supported by the National Science Foundation, ANI-9813723.
1Note that filters are also referred to as rules in some of the packet classifica-

tion literature.

TABLE I
EXAMPLE FILTER SET.

Filter Action
SA DA Prot DP FlowID PT
11010010 * TCP [3:15] 0 3
10011100 * * [1:1] 1 5
101101* 001110* * [0:15] 2 8†
10011100 01101010 UDP [5:5] 3 2
* * ICMP [0:15] 4 9†
100111* 011010* * [3:15] 5 6†
10010011 * TCP [3:15] 6 3
* * UDP [3:15] 7 9†
11101100 01111010 * [0:15] 8 2
111010* 01011000 UDP [6:6] 9 2
100110* 11011000 UDP [0:15] 10 2
010110* 11011000 UDP [0:15] 11 2
01110010 * TCP [3:15] 12 4†
10011100 01101010 TCP [0:1] 13 3
01110010 * * [3:3] 14 3
100111* 011010* UDP [1:1] 15 4

security applications to specify a single action for the packet.
Packets may also match several non-exclusive filters, providing
support for transparent monitoring and usage-based accounting
applications. Note that a parameter may control the number of
non-exclusive filters, r, returned by the packet classifier. Like
exclusive filters, the priority tag is used to select the r highest
priority non-exclusive filters.

Distributed Crossproducting of Field Labels (DCFL) is a
novel combination of new and existing packet classification
techniques that leverages key observations of filter set struc-
ture and takes advantage of the capabilities of modern hard-
ware technology. We discuss the observed structure of real fil-
ter sets in detail and provide motivation for packet classification
on larger numbers of fields in Section II. Two key observa-
tions motivate our approach: the number of unique field values
for a given field in the filter set is small relative to the number
of filters in the filter set, and the number of unique field val-
ues matched by any packet is very small relative to the number
of filters in the filter set. Using a high degree of parallelism,
DCFL employs optimized search engines for each filter field
and an efficient technique for aggregating the results of each

2 IEEE INFOCOM 2005

field search. By performing this aggregation in a distributed
fashion, we avoid the exponential increase in the time or space
incurred when performing this operation in a single step. Given
that search techniques for single packet fields are well-studied,
the primary focus of this paper is the development and analysis
of an aggregation technique that can make use of the embedded
multi-port memory blocks in the current generation of ASICs
and FPGAs. We introduce several new concepts including field
labeling, Meta-Labeling unique field combinations, Field Split-
ting, and optimized data structures such as Bloom Filter Arrays
that minimize the number of memory accesses to perform set
membership queries. As a result, our technique provides fast
lookup performance, efficient use of memory, support for dy-
namic updates at high rates, and scalability to filters with addi-
tional fields.

Using a collection of 12 real filter sets and synthetic filter sets
generated with the ClassBench tools, we provide an evaluation
of DCFL performance and resource requirements for filter sets
of various sizes and compositions in Section VIII. We show that
an optimized implementation of DCFL can provide over 100
million searches per second and storage for over 200 thousand
filters in a current generation FPGA or ASIC without the need
for external memory devices. We provide a brief overview of
related work in Section IX, focusing on algorithms most closely
related to our approach.

II. KEY OBSERVATIONS

Recent efforts to identify better packet classification tech-
niques have focused on leveraging the characteristics of real
filter sets for faster searches. While the lower bounds for the
general multi-field searching problem have been established,
observations made in recent packet classification work offer en-
ticing new possibilities to provide significantly better perfor-
mance. We begin by reviewing the results of previous efforts to
extract statistical characteristics of filter sets, followed by our
own observations which led us to develop the DCFL technique.

A. Previous Observations

Gupta and McKeown published a number of observations re-
garding the characteristics of real filter sets which have been
widely cited [1]. Others have performed analyses on real filter
sets and published their observations [2], [3]. The following is
a distillation of previous observations relevant to our work:

• Current filter set sizes are small, ranging from tens of fil-
ters to less than 5000 filters. It is unclear if the size limita-
tion is “natural” or a result of the limited performance and
high expense of existing packet classification solutions.

• The protocol field is restricted to a small set of values.
TCP, UDP, and the wildcard are the most common speci-
fications.

• Filters specify a limited number of unique transport port
ranges. Specifications vary widely. Common range speci-
fications for port numbers such as ‘gt 1023’ (greater than
1023) suggest that the use of range to prefix conversion
techniques may be inefficient.

• The number of unique address prefixes matching a given
address is typically five or less.

TABLE II
MAXIMUM NUMBER OF UNIQUE FIELD VALUES MATCHING ANY PACKET;

DATA FROM 12 REAL FILTER SETS; NUMBER OF UNIQUE FIELD VALUES IN

EACH FILTER SET IS GIVEN IN PARENTHESES.

Filter Set Fields
Src Dest Src Dest

Size Addr Addr Port Port Prot Flag
fw2 68 3 (31) 3 (21) 2 (9) 1 (1) 2 (5)
fw5 160 5 (38) 4 (35) 3 (11) 3 (33) 2 (4) 2 (11)
fw3 184 4 (31) 3 (28) 3 (9) 3 (39) 2 (4) 2 (11)
ipc2 192 3 (29) 2 (32) 2 (3) 2 (3) 2 (4) 2 (8)
fw4 264 3 (30) 4 (43) 4 (28) 3 (49) 2 (9)
fw1 283 4 (57) 4 (66) 3 (13) 3 (43) 2 (5) 2 (11)
acl2 623 5 (182) 5 (207) 1 (1) 4 (27) 2 (5) 2 (6)
acl1 733 4 (97) 4 (205) 1 (1) 5 (108) 2 (4) 2 (3)
ipc1 1702 4 (152) 5 (128) 4 (34) 5 (54) 2 (7) 2 (11)
acl3 2400 6 (431) 4 (516) 2 (3) 6 (190) 2 (5) 2 (3)
acl4 3061 7 (574) 5 (557) 2 (3) 7 (235) 2 (7) 2 (3)
acl5 4557 3 (169) 2 (80) 1 (1) 4 (40) 1 (4) 2 (2)

• The number of filters matching a given packet is typically
five or less.

• Different filters often share a number of the same field val-
ues.

The final observation is pivotal. This characteristic arises due
to the administrative policies that drive filter construction. Con-
sider a model of filter construction in which the administrator
first specifies the communicating hosts or subnetworks (source
and destination address prefix pair), then specifies the applica-
tion (transport-layer specifications). Administrators often must
apply a policy regarding an application to a number of distinct
subnetwork pairs; hence, multiple filters will share the same
transport-layer specification. Likewise, administrators often ap-
ply multiple policies to a subnetwork pair; hence, multiple fil-
ters will share the same source and destination prefix pair. In
general, the observation suggests that the number of intermedi-
ate results generated by independent searches on fields or col-
lections of fields may be inherently limited. This observation
led to the general framework for packet classification in net-
work processors proposed by Kounavis, et. al. [4].

B. Our Observations

We performed a battery of analyses on 12 real filter sets pro-
vided by Internet Service Providers (ISPs), a network equip-
ment vendor, and other researchers working in the field. In
general, our analyses agree with previously published obser-
vations. We also performed an exhaustive analysis of the max-
imum number of unique field values and unique combinations
of field values which match any packet. A summary of the sin-
gle field statistics are given in Table II. Note that the number
of unique field values is significantly less than the number of
filters and the maximum number of unique field values match-
ing any packet remains relatively constant for various filter set
sizes. We also performed the same analysis for every possible
combination of fields (every possible combination of two fields,
three fields, etc.). We observed that the maximum number of
unique combinations of field values which match any packet is
typically bounded by twice the maximum number of matching

IEEE INFOCOM 2005 3

single field values, and also remains relatively constant for var-
ious filter set sizes.

Finally, an examination of real filter sets reveals that addi-
tional fields beyond the standard 5-tuple are relevant. In nearly
all filter sets that we studied, filters contain matches on TCP
flags or ICMP type numbers. We argue that new services and
administrative policies will demand that packet classification
techniques scale to support additional fields beyond the stan-
dard 5-tuple. A simple example is matching on the 32-bit
Synchronization Source Identifier (SSRC) in the RTP header
in order to identify contexts for Robust Header Compression
(ROHC). Matches on higher-level header fields are likely to
be exact matches; therefore, the number of unique field values
matching any packet are at most two, an exact value and the
wildcard if it is present. There may be other types of matches
that more naturally suit the application, such as arbitrary bit
masks on TCP flags; however, we do not foresee any reasons
why the structure of filters with these additional fields will sig-
nificantly deviate from the observed structure in current filter
tables. We believe that packet classification techniques must
scale to support additional fields while maintaining flexibility
in the types of additional matches that may arise with new ap-
plications.

III. DESCRIPTION OF DCFL

Distributed Crossproducting of Field Labels (DCFL) may be
described at a high-level using the following notation:

• Partition the filters in the filter set into fields
• Partition each packet header into corresponding fields
• Let Fi be the set of unique field values for filter field i that

appear in one or more filters in the filter set
• Let Fi(x) ⊆ Fi be the subset of filter field values in Fi

matched by a packet with the value x in header field i

• Let Fi,j be the set of unique filter field value pairs for fields
i and j in the filter set; i.e. if (u, v) ∈ Fi,j there is some
filter or filters in the set with u in field i and v in field j

• Let Fi,j(x, y) ⊆ Fi,j be the subset of filter field value pairs
in Fi,j matched by a packet with the value x in header field
i and y in header field j

• This can be extended to higher-order combinations, such
as set Fi,j,k and subset Fi,j,k(x, y, z), etc.

The DCFL method can be structured in many different ways. In
order to illustrate the lookup process, assume that we are per-
forming packet classification on four fields and a header arrives
with field values {w, x, y, z}. One possible configuration of a
DCFL search is shown in Figure 1 and proceeds as follows:

• In parallel, find subsets F1(w), F2(x), F3(y), and F4(z)
• In parallel, find subsets F1,2(w, x) and F3,4(y, z) as fol-

lows:
– Let Fquery(w, x) be the set of possible field value

pairs formed from the crossproduct of F1(w) and
F2(x)

– For each field value pair in Fquery(w, x), query for
set membership in F1,2, if the field value pair is in set
F1,2 add it to set F1,2(w, x)

– Perform the symmetric operations to find subset
F3,4(y, z)

Fquery(w,x,y,z)

F3,4(y,z)

Fquery(y,z)Fquery(w,x)

F1 F2 F3 F4

F1,2(w,x)

w x y z

Priority
Resolution

Best Matching Filter(s)

Packet Fields

Independent
Field Searches

Aggregation
Network

F1,2

F1(w) F2(x) F3(y) F4(z)

F3,4

F1,2,3,4

F1,2,3,4(w,x,y,z)

payload

Fig. 1. Example configuration of Distributed Crossproducting of Field Labels
(DCFL); field search engines operate in parallel and may be locally optimized;
aggregation nodes also operate in parallel; aggregation network may be con-
structed in a variety of ways.

• Find subset F1,2,3,4(w, x, y, z) by querying set F1,2,3,4

with the field value combinations formed from the
crossproduct of F1,2(w, x) and F3,4(y, z)

• Select the highest priority exclusive filter and r highest pri-
ority non-exclusive filters in F1,2,3,4(w, x, y, z)

Note that there are several variants which are not covered by
this example. For instance, we could alter the aggregation pro-
cess to find the subset F1,2,3(w, x, y) by querying F1,2,3 us-
ing the crossproduct of F1,2(w, x) and F3(y). We can then
find the subset F1,2,3,4(w, x, y, z) by querying F1,2,3,4 using
the crossproduct of F1,2,3(w, x, y) and F4(z). A primary fo-
cus of this paper is determining subsets (F1,2(w, x), F3,4(y, z),
etc.) via optimized set membership data structures.

As shown in Figure 1, DCFL employs three major compo-
nents: a set of parallel search engines, an aggregation network,
and a priority resolution stage. Each search engine Fi indepen-
dently searches for all filter fields matching the given header
field using an algorithm or architecture optimized for the type of
search. For example, the search engines for the IP address fields
may employ compressed multi-bit tries while the search engine
for the protocol and flag fields may use simple hash tables. As
shown in Table II, each set of matching labels for each header

4 IEEE INFOCOM 2005

TABLE III
SETS OF UNIQUE VALUES FOR EACH FIELD IN THE SAMPLE FILTER SET.

SA Label Count
11010010 0 1
10011100 1 1
101101* 2 1
10011100 3 2
* 4 2
100111* 5 2
10010011 6 1
11101100 7 1
111010* 8 1
100110* 9 1
010110* 10 1
01110010 11 2

DA Label Count
* 0 7
001110* 1 1
01101010 2 2
011010* 3 2
01111010 4 1
01011000 5 1
11011000 6 2

field is typically less than five for real filter tables. The sets of
matching labels generated by each search engine are fed to the
aggregation network which computes the set of all matching
filters for the given packet in a multi-stage, distributed fashion.
Finally, the priority resolution stage selects the highest priority
exclusive filter and the r highest priority non-exclusive filters.
The priority resolution stage may be realized by a number of
efficient algorithms and logic circuits; hence, we do not discuss
it further.

The first key concept in DCFL is labeling unique field val-
ues with locally unique labels. By doing so, sets of match-
ing field values can be represented as sets of labels. Table III
shows the sets of unique source and destination addresses spec-
ified by the filters in Table I. Note that each unique field value
also has an associated “count” value which records the num-
ber of filters which specify the field value. The “count” value
is used to support dynamic updates; a data structure in a field
search engine or aggregation node only needs to be updated
when the “count” value changes from 0 to 1 or 1 to 0. We iden-
tify unique combinations of field values by assigning either (1)
a composite label formed by concatenating the labels for each
field value in the combination, or (2) a new meta-label which
uniquely identifies the combination in the set of unique combi-
nations. As shown in Table III, meta-labeling assigns a single
label to each unique field combination, compressing the label
used to uniquely identify it within the set. In addition to re-
ducing the memory requirements for explicitly storing compos-
ite labels, this optimization has another subtle benefit. Meta-
Labeling compresses the space addressed by the label, thus the
meta-label may be used as an index into a set membership data
structure. The use of labels allows us to use set membership
data structures that only store labels corresponding to field val-
ues and combinations of field values present in the filter table.
While storage requirements depend on the structure of the filter
set, they scale linearly with the number of filters in the database.
Furthermore, at each aggregation node we need not perform set
membership queries in any particular order. This property al-
lows us to take advantage of hardware parallelism and multi-
port embedded memory technology.

The second key concept in DCFL is using a network of ag-
gregation nodes to compute the set of matching filters for a
given packet. The aggregation network consists of a set of

TABLE IV
EXAMPLE OF META-LABELING UNIQUE FIELD VALUE COMBINATIONS.

Prot DP Comp. Label Meta-Label Count
TCP [3 : 15] (0, 0) 0 3
∗ [1 : 1] (1, 1) 1 1
∗ [0 : 15] (1, 2) 2 2
...

...
...

...
...

∗ [3 : 3] (1, 6) 10 1
UDP [1 : 1] (2, 1) 11 1

interconnected aggregation nodes which perform set member-
ship queries to the sets of unique field value combinations,
F1,2, F3,4,5, etc. By performing the aggregation in a multi-
stage, distributed fashion, the number of intermediate results
operated on by each aggregation node remains small. Con-
sider the case of finding all matching address prefix pairs in
the example filter set in Table I for a packet with address pair
(x, y) = (10011100, 01101010). As shown in Figure 2, an
aggregation node takes as input the sets of matching field la-
bels generated by the source and destination address search en-
gines, FSA(x) and FDA(y), respectively. Searching the tables
of unique field values shown in Table III, FSA(x) contains la-
bels {1,4,5} and FDA(y) contains labels {0,2,3}. The first step
is to form a query set Fquery of aggregate labels correspond-
ing to potential address prefix pairs. The query set is formed
from the crossproduct of the source and destination address la-
bel sets. Next, each label in Fquery is checked for member-
ship in the set of labels stored at the aggregation node, FSA,DA.
Note that the set of composite labels corresponds to unique ad-
dress prefix pairs specified by filters in the example filter set
shown in Table I. Composite labels contained in the set are
added to the matching label set FSA,DA(x, y) and passed to the
next aggregation node. Since the number of unique field values
and field value combinations is limited in real filter sets, the size
of the crossproduct at each aggregation node remains manage-
able. By performing crossproducting in a distributed fashion
across a network of aggregation nodes, we avoid an exponen-
tial increase in search time that occurs when aggregating the
results from all field search engines in a single step. Note that
the aggregation nodes only store unique combinations of fields
present in the filter table; therefore, we also avoid the exponen-
tial blowup in memory requirements suffered by the original
Crossproducting technique [5] and Recursive Flow Classifica-
tion [1]. In Section V, we introduce Field Splitting which limits
the size of Fquery at aggregation nodes, even when the number
matching labels generated by field search engines increases.

Finally, it is important to briefly describe the intended imple-
mentation platform, as it will guide the selection of data struc-
tures for aggregation nodes and optimizations in the following
sections. Thanks to the endurance of Moore’s Law, Application
Specific Integrated Circuits (ASICs) and Field-Programmable
Gate Arrays (FPGAs) provide millions of logic gates and mil-
lions of bits of memory distributed across many multi-port em-
bedded memory blocks. A current generation Xilinx FPGA op-
erates at over 400 MHz and contains 556 dual-port embedded
memory blocks, 18Kb each with 36-bit wide data paths for a to-

IEEE INFOCOM 2005 5

FSA

x
10011100

FDA

y
01101010

FSA(x)
{1,4,5}

FDA(y)
{0,2,3}

Fquery(x,y)
(1,0) (1,2) (1,3)
(4,0) (4,2) (4,3)
(5,0) (5,2) (5,3)

Aggregation Node

FSA,DA(x,y)
{(1,0), (4,0), (5,3)}

FSA,DA
(0,0) (1,0) (2,1) (3,2)
(4,0) (5,3) (6,0) (7,4)

(8,5) (9,6) (10,6) (11,0)

Fig. 2. Example aggregation node for source and destination address fields.

tal of over 10Mb of embedded memory [6]. Current ASIC stan-
dard cell libraries offer dual- and quad-port embedded SRAMs
operating at 625 MHz [7]. We also point out that it is stan-
dard practice to utilize several embedded memories in parallel
in order to achieve the desired data path width.

IV. AGGREGATION NETWORK

Since all aggregation nodes operate in parallel, the perfor-
mance bottleneck in the system is the aggregation node with the
largest worst-case query set size, |Fquery|. Query set size deter-
mines the number of sequential memory accesses performed at
the node. The size of query sets vary for different constructions
of the aggregation network. We refer to the worst-case query set
size, |Fquery|, among all aggregation nodes, F1, . . . , F1,...,d, as
the cost for network construction, Gi. Selecting the most ef-
ficient arrangement of aggregation nodes into an aggregation
network is a key issue. We want to select the minimum cost
aggregation network Gmin as follows:

Gmin = G : cost(G) = min {cost (Gi) ∀i} (1)

where

cost (G) = max {|Fquery|∀F1, . . . , F1,...,d ∈ Gi} (2)

Consider an example for packet classification on three fields.
Shown in Figure 3 are the maximum sizes for the sets of match-
ing field labels for the three fields and the maximum size for the
sets of matching labels for all possible field combinations. For
example, label set F1,2(x, y) will contain at most four labels for
any values of x and y. Also shown in Figure 3 are three pos-
sible aggregation networks for a DCFL search; the cost varies
between 3 and 6 depending on the construction.

In general, an aggregation node may operate on two or more
input label sets. Given that we seek to minimize |Fquery|, we
limit the number of input label sets to two. The query set size

|F1(x)| ≤ 3 |F1,2(x,y)| ≤ 4 |F1,2,3(x,y,z)| ≤ 1
|F2(y)| ≤ 2 |F1,3(x,z)| ≤ 2
|F3(z)| ≤ 1 |F2,3(y,z)| ≤ 1

|F1,2,3(x,y,z)| = 1

F1

x

F1,2

F2

y

F3

z

F1,2,3

|F1,2(x,y)| = 4
|F3(z)| = 1|F1(x)| = 3

|Fquery(x,y)| = 6 |Fquery (x,y,z)| = 4

|F2(y)| = 2

G1

cost(G1) = 6

|F1,2,3(x,y,z)| = 1

F1

x

F1,2

F3

z

F2

y

F1,2,3

|F1,3(x,z)| = 2
|F2(y)| = 2|F1(x)| = 3

|Fquery(x,z)| = 3 |Fquery(x,y,z)| = 4

|F3(z)| = 1

G2

cost(G2) = 4

|F1,2,3(x,y,z)| = 1

F2

y

F1,2

F3

z

F1

x

F1,2,3

|F2,3(y,z)| = 1
|F1(x)| = 3|F2(y)| = 2

|Fquery(y,z)| = 2 |Fquery(x,y,z)| = 3

|F3(z)| = 1

G3

cost(G3) = 3

buffer

buffer

buffer

Fig. 3. Example of variable aggregation network cost for different aggregation
network constructions for packet classification on three fields.

for aggregation nodes fed by field search engines is partly de-
termined by the size of the matching field label sets, which we
have found to be small for real filter sets. Also, the Field Split-
ting optimization provides a control point for the size of the
query set at the aggregation nodes fed by the field search en-
gines; thus, we restrict the network structure by requiring that
at least one of the inputs to each aggregation node be a match-
ing field label set from a field search engine. We point out that
this seemingly “serial” arrangement of aggregation nodes does
not prevent DCFL from starting a new search on every pipeline
cycle. As shown in Figure 3, delay buffers allow field search
engines to perform a new lookup on every pipeline cycle. The
matching field label sets are delayed by the appropriate number
of pipeline cycles such that they arrive at the aggregation node
synchronous to the matching label set from the upstream ag-
gregation node. Search engine results experience a maximum
delay of (d − 2) pipeline cycles which is tolerable given that
the pipeline cycle time is on the order of 10ns. With such an
implementation, DCFL throughput is inversely proportional to
the pipeline cycle time.

6 IEEE INFOCOM 2005

We can empirically determine the optimal arrangement of ag-
gregation nodes for a given filter set by computing the maxi-
mum query set size for each combination of field values in the
filter set. While this computation is manageable for real filter
sets of moderate size, the computational complexity increases
exponentially with filter set size. For our set of 12 real filter
sets, the optimal network aggregated field labels in the order
of decreasing maximum matching filter label set size with few
exceptions. This observation can be used as a heuristic for con-
structing efficient aggregation networks for large filter sets and
filter sets with large numbers of filter fields. As previously dis-
cussed, we do not expect the filter set properties leveraged by
DCFL to change. We do point out that a static arrangement of
aggregation nodes might be subject to degraded performance if
the filter set characteristics were dramatically altered by a se-
quence of updates. Through the use of reconfigurable intercon-
nect in the aggregation network and extra memory for storing
offline aggregation tables, a DCFL implementation can mini-
mize the time for restructuring the network for optimal perfor-
mance. We defer this discussion to future study.

V. FIELD SPLITTING

As discussed in Section III, the size of the matching field la-
bel set, |Fi(x)|, affects the size of the crossproduct, |Fquery|, at
the following aggregation node. While we observe that |Fi(x)|
remains small for real filter sets, we would like to exert con-
trol over this value to both increase search speed for exist-
ing filter sets and maintain search speed for filter sets with in-
creased address prefix nesting and port range overlaps. Recall
that |Fi(x)| ≤ 2 for all exact match fields such as the transport
protocol and protocol flags.

The number of address prefixes matching a given address can
be reduced by splitting the address prefixes into a set of (c + 1)
shorter address prefixes, where c is the number of splits. An ex-
ample of splitting a 6-bit address field is shown in Figure 4. For
the original 6-bit address field the maximum number of field la-
bels matching any address is five. In order to reduce this num-
ber to three, we split the 6-bit address field into 2-bit and 4-bit
address fields. For address prefixes, Field Splitting is similar to
constructing a variable-stride multi-bit trie; however, with Field
Splitting we only store one multi-bit node per stride. A match-
ing prefix is denoted by the combination of matching prefixes
from the multi-bit nodes in each stride. We point out that the
sets of matching labels from the searches on each split field may
be aggregated in any order with label sets from any other filter
field; i.e. we need not aggregate the labels from A(5:4) and
A(3:0) in the same aggregation node to ensure correctness.

Given that the size of the matching field label sets is the prop-
erty that most directly affects DCFL performance, we would
like to specify a maximum set size and split those fields that
exceed the threshold. Given a field overlap threshold, there is a
simple algorithm for determining the number of splits required
for an address prefix field. For a given address prefix field, we
begin by forming a list of all unique address prefixes in the filter
set, sorted in non-decreasing order of prefix length. We simply
add each prefix in the list to a binary trie, keeping track of the
number of prefixes encountered along the path using a nesting
counter. If there is a split at the current prefix length, we reset

A(5:0)
*
0*
01*
000*
0110*
1010*
10100*
011010

Label
0
1
2
3
4
5
6
7

Label
0
0
0
1
2
2
3
4

A(5:4)
*
0*
01
00
01
10
10
01

Label
0
1
2
3
2
4
4
2

A(3:0)
*
*
*
0*
10*
10*
100*
1010

Fig. 4. An example of splitting a 6-bit address field; maximum number of
matching labels per field is reduced from five to three.

the nesting counter. The splits for the trie may be stored in a list
or an array indexed by the prefix length. If the number of pre-
fixes along the path reaches the threshold, we create a split at
that prefix length and reset the nesting counter. It is important
to note that the number of splits depends upon the structure of
the address trie. In the worst case, a threshold of two overlaps
could create a split at every prefix length. We argue that given
the structure of real filter sets and reasonable threshold values
(four or five), that Field Splitting provides a highly useful con-
trol point for the size of query sets in aggregation nodes.

Field Splitting for port ranges is much simpler. We simply
compute the maximum field overlap, m, for the given port field
by adding the set of unique port ranges to a segment tree. Given
an overlap threshold, t, the number splits is simply c = m−2

t−1 .
We then create (c + 1) bins in which to sort the set of unique
port ranges. For each port range [i : j], we identify the bin, bi,
containing the minimum number of overlapping ranges using a
segment tree constructed from the ranges in the bin. We insert
[i : j] into bin bi and insert wildcards into the remaining bins.
Once the sorting is complete, we assign locally unique labels to
the port ranges in each bin. Like address field splitting, a range
in the original filter field is now identified by a combination of
labels corresponding to its matching entry in each bin. Again,
label aggregation may occur in any order with labels from any
other field.

Finally, we point out that Field Splitting is a precomputed
optimization. It is possible that the addition of new filters to
the filter set could cause one the overlap threshold to be ex-
ceeded in a particular field, and thus degrade the performance
of DCFL. While this is possible, our analysis of real filter sets
suggests that it is not probable. Currently most filter sets are
manually configured, thus updates are exceedingly rare relative
to searches. Furthermore, the common structure of filters in
a filter set suggests that new filters will most likely be a new
combination of fields already in the filter set. For example, a
network administrator may add a filter matching all packets for
application A flowing between subnets B and C, where speci-

IEEE INFOCOM 2005 7

fications A, B, C already exist in the filter set.

VI. AGGREGATION NODES

Well-studied data structures such as hash tables and B-Trees
are capable of efficiently representing a set. We focus on three
options that minimize the number of sequential memory ac-
cesses, SMA, required to identify members of the set. The first
is a variant on the popular Bloom filter which has received re-
newed attention in the research literature [8]. The second and
third options leverage the compression provided by field la-
bels and meta-labels to index into an array of lists containing
the composite labels for the field value combinations in F1,...,i.
These indexing schemes perform parallel comparisons in order
to minimize the required SMA; thus, the performance of these
schemes depends on the word size m of the memory storing
the data-structures. For all three options, we derive equations
for SMA and number of memory words W required to store the
data-structure.

A. Bloom Filter Arrays

A Bloom filter is an efficient data structure for set member-
ship queries with tunable false positive errors. In our context,
a Bloom filter computes k hash functions on a label L to pro-
duce k bit positions in a bit vector of m bits. If all k bit posi-
tions are set to 1, then the label is declared to be a member of
the set. Broder and Mitzenmacher provide a nice introduction
to Bloom filters and their use in recent work [8]. False posi-
tive answers to membership queries causes the matching label
set, F1,...,i(a, . . . , x), to contain labels that do not correspond
to field combinations in the filter set. These false positive er-
rors can be “caught” at downstream aggregation nodes using
explicit representations of label sets. We discuss two options
for such data-structures in the next section. This property does
preclude use of Bloom filters in the last aggregation node in the
network. As we discuss in Section VIII, this does not incur a
performance penalty in real filter sets.

In order to limit the number of memory accesses per mem-
bership query to one, we propose the use of an array of Bloom
filters as shown in Figure 5. A Bloom Filter Array is a set of
Bloom filters indexed by the result of a pre-filter hash function
H(L). In order to perform a set membership query for a label
L, we read the Bloom filter addressed by H(L) from memory
and store it in a register. We then check the bit positions spec-
ified by the results of hash functions h1(L), . . . , hk(L). The
Match Logic checks if all bit positions are set to 1. If so, it adds
label L to the set of matching labels F1,...,i(a, . . . , x).

Set membership queries for the labels in Fquery need not be
performed in any order and may be performed in parallel. Using
an embedded memory block with P ports requires P copies
of the logic for the hash functions and Match Logic. Given
the ease of implementing these functions in hardware and the
fact that P is rarely more than four, the additional hardware
cost is tolerable. The number of sequential memory accesses,
SMA, required to perform set membership queries for all labels
in Fquery is simply

SMA =
|Fquery|

P
(3)

F1,…,i(a,…,x)
{ (1,0), (4,0), (5,3)}

1101001011 … 010

0101101001 … 110

0011001010 … 011

1111001010 … 001

m

1

W

2

H(L)

h1(L) hk(L)

Fquery(1,…,x)
(1,0) (1,2) (1,3)
(4,0) (4,2) (4,3)
(5,0) (5,2) (5,3)

Fi

F1,…,i-1(a,…,w)
{ 1,4,5}

Fi(x)
{ 0,2,3}

Bloom Filter Array
Aggregation Node

0011001010 … 011

Match Logic

x

Fig. 5. Example of an aggregation node using a Bloom Filter Array.

The false positive probability is f =
(

1
2

)k
when k = m

n
ln 2,

where n is the number of labels |F1,...,i| stored in the Bloom
filter. Setting k to four produces a tolerable false positive prob-
ability of 0.06. Assuming that we store one Bloom filter per
memory word, we can calculate the required memory resources
given the memory word size m. Let W be the number of mem-
ory words. The hash function H(L) uniformly distributes the
labels in F1,...,i across the W Bloom filters in the Bloom Filter
Array. Thus, the number of labels stored in each Bloom filter is

n =
|F1,...,i|

W
(4)

The number of memory words, W , required to maintain the
false positive probability is

W =

⌈

k × |F1,...,i|

m × ln 2

⌉

(5)

The total memory requirement is m × W bits. Recent work
has provided efficient mechanisms for dynamically updating
Bloom filters [9].

B. Meta-Label Indexing

We can leverage the compression provided by meta-labels to
construct aggregation nodes that explicitly represent the set of
field value combinations, F1,...,i. The field value combinations
in F1,...,i can be identified by a composite label which is the
concatenation of the meta-label for the combination of the first
(i − 1) fields, L1,...,i−1, and the label for field i, Li. We sort
these composite labels into bins based on meta-label L1,...,i−1.
For each bin, we construct a list of the labels Li, where each
entry stores Li and the new meta-label for the combination of
i fields, L1,...,i. We store these lists in an array Ai indexed by
meta-label L1,...,i−1 as shown in Figure 6.

Using L1,...,i−1 as an index allows the total number of
set membership queries to be limited by the number of

8 IEEE INFOCOM 2005

F1,…,i(a,…,x)
{(1,0), (4,0), (5,3)}

Fi

F1,…,i-1(a,…,w)
{1,4,5}

Fi(x)
{0,2,3}

Meta-Label Indexing
Aggregation Node

Match
Logic

x

0

| F1,…,i-1|-1

1

3

0

7

1

1 4

1 3

2

0

2

3

list size ≤ M

N ≤ max|Fi(x)|

Fig. 6. Example of an aggregation node using Meta-Label Indexing.

meta-labels received from the upstream aggregation node,
|F1,...,i−1(a, . . . , w)|. Note that the size of a list entry, s, is

s = lg |Fi| + lg |F1,...,i| (6)

and s is typically much smaller than the memory word size, m.
In order to limit the number of memory accesses per set mem-
bership query, we store N list entries in each memory word,
where N =

⌊

m
s

⌋

. This requires N × |Fi(x)| way match logic
to compare all of the field labels in the memory word with the
set of matching field labels from the field search engine, Fi(x).
Since set membership queries may be performed independently,
the total SMA depends on the size of the index meta-label set,
|F1,...,i−1(a, . . . , w)|, the size of the lists indexed by the la-
bels in F1,...,i−1(a, . . . , w), and the number of memory ports
P . In the worst case, the labels index the |F1,...,i−1(a, . . . , w)|
longest lists in Ai. Let Length be an array storing the lengths
of the lists in Ai in decreasing order. The worst-case sequential
memory accesses is

SMA =

∑|F1,...,i−1(a,...,w)|
j=1

⌈

Length(j)
N

⌉

P
(7)

As with the Bloom Filter Array, the use of multi-port memory
blocks does require replication of the multi-way match logic.
Due to the limited number of memory ports, we argue that this
represents a negligible increase in the resources required to im-
plement DCFL. The number of memory words, W , needed to
store the data structure is

W =

|F1,...,i−1|
∑

j=1

⌈

Length(j)

N

⌉

(8)

The total memory requirement is m × W bits. Adding or re-
moving a label from F1,...,i requires an update to a single list

entry. Packing multiple list entries on to a single memory word
slightly complicates the memory management; however, given
that we seek to minimize the number of memory words oc-
cupied by a list, the number of individual memory reads and
writes per update is small.

Finally, we point out that the data structure may be re-
organized to use Li as the index. This variant, Field Label In-
dexing, is effective when |Fx| approaches |F1,...,x|. When this
is the case, the number of composite labels L1,...,i containing
label Li is small and the length of the lists indexed by Fi(x) are
short.

VII. DYNAMIC UPDATES

Another strength of DCFL is its support of incremental up-
dates. Adding or deleting a filter from the filter set requires
approximately the same amount of time as a search operation
and does not require that we flush the pipeline and update all
data-structures in an atomic operation. An update operation is
treated as a search operation in that it propagates through the
DCFL architecture in the same manner. The query preceding
the update in the pipeline operates on data-structures prior to
the update; the query following the update in the pipeline oper-
ates on data-structures following the update. Update operations
on field search engine and aggregation node data-structures are
only performed when count values change from zero to one
and one to zero, respectively. The limited number of unique
field values in real filter sets suggests significant sharing of
unique field values among filters. We expect typical updates
to only change a couple field search engine data-structures and
aggregation node data-structures. In the worst case, inserting
or removing a filter produces an update to d field search en-
gine data-structures and (d − 1) updates to aggregation node
data-structures, where d is the number of filter fields. A more
detailed discussion of dynamic updates is provided in the full
technical report [10].

VIII. PERFORMANCE EVALUATION

In order to evaluate the performance and scalability of DCFL,
we used a combination of real and synthetic filter sets of various
sizes and compositions. The 12 real filter sets were graciously
provided from ISPs, a network equipment vendor, and other re-
searchers in the field. ClassBench is a publicly available suite
of tools for benchmarking packet classification algorithms and
devices [11]. It includes a Filter Set Analyzer that extracts the
relevant statistics and probability distributions from a seed fil-
ter set and generates a parameter file. The ClassBench Filter
Set Generator takes as input a parameter file and a few parame-
ters that provide high-level control over the composition of the
filters in the resulting filter set. We constructed a ClassBench
parameter file for each of the 12 real filter sets and used these
files to generate large synthetic filter sets that retain the struc-
tural properties of the real filter sets. The ClassBench Trace
Generator was used to generate input traffic for both the real
filter sets and the synthetic filter sets used in the performance
evaluation. For all simulations, header trace size is at least an
order of magnitude larger than filter set size. The metrics of in-
terest for DCFL are the maximum number of sequential mem-
ory accesses per lookup at any aggregation node, SMA, and the

IEEE INFOCOM 2005 9

memory requirements. We choose to report the memory re-
quirements in bytes per filter, BpF, in order to better assess the
scalability of our technique.

The type of embedded memory technology directly influ-
ences the achievable performance and efficiency of DCFL; thus,
for each simulation run we compute the SMA and total memory
words required for various memory word sizes. Standard em-
bedded memory blocks provide 36-bit memory word widths;
therefore, we computed results for memory word sizes corre-
sponding to using 1, 2, 4, 8, and 16 memory blocks per aggre-
gation node. All results are reported relative to memory word
size. The choice of memory word size allows us to explore the
tradeoff between memory efficiency and lookup speed. We as-
sert that the use of 16 embedded memory blocks to achieve a
memory word size of 576 bits is reasonable given current tech-
nology, but certainly near the practical limit. For simplicity, we
assume all memory blocks are single-port, (P = 1). Given
that all set membership queries are independent, the SMA for a
given implementation of DCFL may be reduced by a factor of
P .

In order to demonstrate the achievable performance of
DCFL, each simulation performs lookups on all possible aggre-
gation network constructions. At the end of the simulation, we
compute the optimal aggregation network by choosing the opti-
mal network structure and optimal node type for each aggrega-
tion node in the graph: Bloom Filter Array, Meta-Label Index-
ing, and Field Label Indexing. In the case that two node types
produce the same SMA value, we choose the node type with
the smaller memory requirements. Our simulation also allows
us to select the aggregation network structure and node types
in order to optimize worst-case or average-case performance.
Worst-case optimal aggregation networks select the structure
and node types such that the value of the maximum SMA for
any aggregation node in the network is minimized. Computing
the optimal aggregation network at the end of the simulation al-
lows us to observe trends in the optimal network structure and
node type for filter sets of various type, structure, and size. We
observe that optimal network structure and node type largely
depends on filter set structure. With few exceptions, variables
such as filter set size and memory word size do not affect the
composition of the optimal aggregation network. We observe
that the Bloom Filter Array technique is commonly selected as
the optimal choice for the first one or two nodes in the aggre-
gation network. With rare exceptions, Meta-Label Indexing is
chosen for aggregation nodes at the end of the aggregation net-
work. This is a convenient result, as the final aggregation node
in the network cannot use the Bloom Filter Array technique in
order to ensure correctness. We find this result to be some-
what intuitive since the size of a meta-label increases with the
number of unique combinations in the set which typically in-
creases with the number of fields in the combination. When
using meta-labels to index into an array of lists, a larger meta-
label addresses a larger space which in turn “spreads” the labels
across a larger array and limits the length of the lists at each ar-
ray index.

In the first set of tests we used the 12 real filter sets and gener-
ated header traces using the ClassBench Trace Generator. The
number of headers in the trace was 50 times the number of fil-

0

5

10

15

20

36 108 180 252 324 396 468 540
Memory Word Size (bits)

W
o

rs
t-

ca
se

 O
p

ti
m

al
, W

o
rs

t-
ca

se
 S

M
A

ipc1 (1702) acl5 (4557)fw1 (283)

0

20

40

60

80

100

120

36 108 180 252 324 396 468 540
Memory Word Size (bits)

W
o

rs
t-

ca
se

 O
p

ti
m

al
, B

p
F

acl5 (4557)

fw1 (283)

ipc1 (1702)

Fig. 7. Performance results for 12 real filter sets; left-column shows worst-
case sequential memory accesses (SMA), average SMA, and memory require-
ments in bytes per filter (BpF) for aggregation network optimized for worst-case
SMA; call-outs highlight three specific filter sets of various sizes and types (fil-
ter set size given in parentheses).

ters in the filter set. As shown in Figure 7(a), the worst-case
SMA for all 12 real filter sets is ten or less for a worst-case opti-
mal aggregation network using memory blocks with a word size
of 288 bits. Also note that the largest filter set, acl5, of 4557
filters achieves the best performance with a worst-case SMA of
two for worst-case optimal aggregation network using memory
blocks with a word size of 144 bits. In order to translate these
results into achievable lookup rates, assume a current genera-
tion ASIC with dual-port memory blocks, (P = 2), operating at
500 MHz. The worst-case SMA for all 12 filter sets is then five
or less using a word size of 288 bits. Under these assumptions,
the pipeline cycle time can be 10ns allowing the DCFL imple-
mentation to achieve 100 million searches per second which
is comparable to current TCAMs. Search performance can be
doubled by doubling the clock frequency or using quad-port
memory blocks, both of which are possible in current genera-
tion ASICs. We also measured average-case performance and
found that the average SMA for all filter sets falls to four or less
using a memory word size of 288 bits.

Worst-case optimal memory consumption is shown in Fig-
ure 7(b). Most filter sets required at most 40 bytes per fil-

10 IEEE INFOCOM 2005

0

2

4

6

8

10

12

14

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

 O
p

ti
m

al
, W

o
rs

t-
ca

se
 S

M
A

fw5 (50k) fw5 (20k) fw5 (10k)

0

50

100

150

200

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

 O
p

ti
m

al
, B

p
F

acl5 (50k)

acl5 (20k)

acl5 (10k)

Fig. 8. Performance results for synthetic filter sets containing 10k, 20k, and
50k filters, generated with parameter files from filter sets acl5, fw1, and fw5;
call-outs highlight most pronounced effects (number of filters given in paren-
theses).

ter (BpF) for all word sizes; thus, 1MB of embedded memory
would be sufficient to store 200k filters. There are two notable
exceptions. The results for filter set acl1 show a significant in-
crease in memory requirements for larger word sizes. For mem-
ory word sizes of 36, 72, and 144 bits, acl1 requires less than
11 bytes per filter; however, memory requirements increase to
61 and 119 bytes per filter for word sizes 288 and 576, respec-
tively. We also note that increasing the memory word size for
acl1 yields no appreciable reduction in SMA; all memory word
sizes yielded an SMA of five or six. These two pieces of data
suggest that in the aggregation node data-structures, the size
of the lists at each index entry are short; thus, increasing the
memory word-size linearly increases the memory inefficiency
without yielding any fewer memory accesses. We believe that
this is also the case with the optimal aggregation network for
acl2 with memory word size 288.

The second set of simulations investigates the scalability of
DCFL to larger filter sets. Results are shown in Figure 8. This
set of simulations utilized the ClassBench tools suite to gen-
erate synthetic filter sets containing 10k, 20k, and 50k filters
using parameter files extracted from filter sets acl5, fw1, and
fw5. As shown in Figure 8(a), the worst-case SMA is eight or

0

2

4

6

8

10

12

14

16

18

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

 O
p

ti
m

al
, W

o
rs

t-
ca

se
 S

M
A

acl2

fw5 fw5 (t = 3)

acl2 (t = 4)

0

20

40

60

80

100

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

 O
p

ti
m

al
, B

p
F

fw5 (t = 3)

fw5

acl2

acl2 (t = 4)

Fig. 9. Performance results for four real filter sets (acl2, fw1, fw4, and fw5)
using the Field-Splitting optimization; call-outs highlight most pronounced ef-
fects (field overlap threshold given in parentheses).

less for all filter sets using memory word sizes of 72 bits or
more. The most striking feature of these results is the indis-
tinguishable difference between filter set sizes of 20k and 50k.
The ClassBench Synthetic Filter Set Generator maintains the
field overlap properties specified in the parameter file. Coupled
with the results in Figure 8, this confirms that the property of
filter set structure most influential on DCFL performance is the
maximum number of unique field values matching any packet
header field. As discussed in Section II, we expect this property
to hold as filter sets scale in size. If field overlap does increase,
the Field Splitting optimization provides a way to reduce this
to a desired threshold. As shown in Figure 8(b), the memory
requirements increase with memory word size. Given the fa-
vorable SMA performance there is no need to increase the word
size beyond 72, as it only results in a linear increase in memory
inefficiency. Clearly, finding the optimum balance of lookup
performance and memory efficiency requires careful selection
of memory word size.

The next set of simulations investigate the efficacy and con-

IEEE INFOCOM 2005 11

sequences of the Field Splitting optimization. We selected two
of the worst-performing real filter sets and performed simula-
tions with various field overlap thresholds. The performance
results are summarized in Figure 9. For acl2, Field Splitting
reduces the worst-case SMA from 16 to 12 for 36-bit memory
words and 11 to 8 for 74-bit memory words. This amounts to a
33% performance increase; however, the impact of Field Split-
ting is reduced as we increase memory word size. Clearly, the
primary benefit of Field Splitting is that it allows us to achieve
better performance using smaller memory word sizes which im-
proves the memory efficiency. As shown in Figure 9(b), the
memory utilization for all filter sets using memory word sizes of
74-bits or less remains well-below 40 bytes per filter. Consider
the specific case of acl2. In order to achieve a worst-case SMA
of eight or less without Field Splitting, we must use a mem-
ory word-size of 144 bits resulting in memory requirements
of 44 bytes per filter. Using Field Splitting with a field over-
lap threshold of four, we achieve the desired worst-case SMA
performance using a memory word-size of 72 bits resulting in
memory requirements of 32 bytes per filter. Recall that Field
Splitting does increase the number of aggregation nodes in the
aggregation network, thus increasing the number of memory
blocks and logic required for implementation. However, these
results show that the total memory requirements are actually re-
duced for a particular performance target. It is important to note
that we do reach a point of diminishing returns with Field Split-
ting. The aggregation network can grow too large if too many
splits are required to achieve a particularly low field overlap
threshold. In this case, the impact on worst-case SMA is min-
imal while the memory resource requirements increase drasti-
cally due to the additional overhead. This situation is reflected
in Figure 9(b) for filter set fw5 with a field overlap threshold of
three and memory word size of 288 bits.

The final set of simulations investigate the scalability of
DCFL to additional filter fields. Using the ClassBench tools
suite, we generated three filter sets containing 16000 filters us-
ing the acl5 parameter file. No smoothing or scope adjust-
ments were applied. The first filter set was generated such that
half of the filters specifying the TCP or UDP protocols speci-
fied one non-wildcard field in addition to the standard six filter
fields (the 5-tuple plus protocol flags). The non-wildcard field
value was selected from a set of 100 random values using a uni-
form random variable. The second, third, and fourth filter sets
were generated in the same manner with two, three, and four
extra field values, respectively. Results from simulation runs
are shown in Figure 10. The slight improvement in worst-case
SMA is attributable to two impetuses: (1) the additional filter
fields allow filters to be more specific, and (2) the additional
filter fields are exact match fields and the maximum field over-
lap is at most two. As reflected in Figure 10(b), the increase in
memory requirements for an additional filter field is small for
memory word sizes of 144 bits or less. Specifically, when us-
ing 144-bit memory words the memory requirements increase
by 18 bytes per filter when adding a seventh field, 17 bytes per
filter when adding an eighth filter field, and 3 bytes per filter
when adding the ninth filter field. This is constitutes an aver-
age of 12.5 bytes per filter for each additional field. Given our
reasonable assumptions regarding the nature of additional filter

0

2

4

6

8

10

12

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

 O
p

ti
m

al
, W

o
rs

t-
ca

se
 S

M
A

7 fields

8 fields

9 fields
6 fields

0

20

40

60

80

100

120

140

160

180

36 108 180 252 324 396 468 540

Memory Word Size (bits)

W
o

rs
t-

ca
se

 O
p

ti
m

al
, B

p
F

7 fields

8 fields

9 fields

6 fields

Fig. 10. Performance results for synthetic filter sets containing 16k filters,
generated with parameter file from filter set acl5 with extra filter fields; call-outs
highlight most pronounced effects (number of filter fields given in parentheses).

fields in future filter sets, we assert that the performance and
scalability of DCFL will make it an even more compelling so-
lution for packet classification as filter sets scale in size and the
number of filter fields. We also performed simulations investi-
gating the performance effects of filter specificity. Results are
available in the full technical report [10].

IX. RELATED WORK

Due to the complexity of the search, packet classification is
often a performance bottleneck in network infrastructure; there-
fore, it has received much attention in the research commu-
nity. In this section, we highlight the sources of the key ideas
and data structures which we distill and utilize in DCFL. As
clearly indicated by the name, DCFL draws upon the seminal
Crossproducting technique introduced by Srinivasan, Varghese,
Suri, and Waldvogel [5]. DCFL avoids the exponential blowup
in memory requirements experienced by Crossproducting by
only storing the labels for field values and combinations of field
values present in the filter table. It retains high-performance by
aggregating intermediate results in a distributed fashion. Gupta

12 IEEE INFOCOM 2005

and McKeown introduced Recursive Flow Classification (RFC)
which provides high lookup rates at the cost of memory in-
efficiency [1]. There is a subtle, yet powerful difference be-
tween the use of equivalence classes in RFC and field labels in
DCFL. In essence, the number of labels in DCFL grows lin-
early with the number of unique field values in the filter ta-
ble. The number of equivalence classes in RFC depends upon
the number of distinct sets of filters that can be matched by
a packet. Another major difference between DCFL and RFC
is the means of aggregating intermediate results. RFC utilizes
an indexing scheme that consumes a large amount of memory
and requires significant precomputation. Such extensive pre-
computation precludes dynamic updates at high rates. As we
have shown, DCFL uses efficient set membership data struc-
tures which can be engineered to provide fast lookup and update
performance. Each data structure only stores labels for unique
field combinations present in the filter table; hence, they make
efficient use of memory and do not require significant precom-
putation.

Our approach also shares similarities with the Parallel Packet
Classification (P 2C) scheme introduced by van Lunteren and
Engbersen [12]. Specifically, both DCFL and P 2C fall into
the class of techniques using independent field searches cou-
pled with novel encoding and aggregation of intermediate re-
sults. The primary advantage of DCFL over P 2C is its use of
SRAM and amenability to implementation in commodity hard-
ware technology; P 2C requires the use of a separate TCAM
or a custom ASIC with embedded TCAM. DCFL also provides
more efficient support of dynamic updates.

Given the volume of work in packet classification, we must
show how our technique adds value to the state of the art. In
our opinion, HyperCuts is one of the most promising new algo-
rithmic solutions [13]. Introduced by Singh, Baboescu, Vargh-
ese, and Wang, the algorithm improves upon the HiCuts algo-
rithm developed by Gupta and McKeown [14] and also shares
similarities with the Modular Packet Classification algorithms
introduced by Woo [3]. In essence, HyperCuts is a decision
tree algorithm that attempts to minimize the depth of the tree
by selecting “cuts” in multi-dimensional space that optimally
segregate packet filters into lists of bounded size. According
to performance results given in [13], traversing the HyperCuts
decision tree required between 8 and 35 memory accesses, and
memory requirements for the decision tree ranged from 5.4 to
145.9 bytes per filter. We assert that DCFL exhibits advan-
tages in all metrics of interest: worst-case SMA, memory re-
quirements, and dynamic update performance. DCFL also pro-
vides the opportunity to strike a favorable tradeoff between per-
formance and memory requirements, as the various parameters
may be tuned to achieve the desired results. All new algorithmic
approaches must make a strong case for their advantage rela-
tive to Ternary Content Addressable Memory (TCAM). Due to
its performance, efficiency, scalability, and use of commodity
hardware technology, DCFL has the ability to provide equiv-
alent lookup performance at much lower cost and power con-
sumption. The full technical report provides a more thorough
overview of related work and a detailed comparison of DCFL
to other approaches [10].

X. CONCLUSIONS

By transforming the problem of aggregating results from
independent field search engines into a distributed set mem-
bership query, Distributed Crossproducting of Field Labels
(DCFL) avoids the exponential increases in time and mem-
ory required by previous approaches. We introduced several
new concepts including field labeling, Meta-labeling unique
field combinations, and Field Splitting, as well as optimized set
membership data structures such as Bloom Filter Arrays that
minimize the number of memory accesses required to perform
a set membership query. Using a combination of real and syn-
thetic filter sets, we demonstrated that DCFL can achieve over
100 million searches per second using existing hardware tech-
nology. Furthermore, we have also shown that DCFL retains its
lookup performance and memory efficiency when the number
of filters and number of fields in the filters increases. Scalability
to classify on additional fields is a distinct advantage DCFL ex-
hibits over existing decision tree algorithms and TCAM-based
solutions. We continue to explore optimizations to improve the
search rate and memory efficiency of DCFL. We also believe
that DCFL has potential value for other searching tasks beyond
traditional packet classification.

ACKNOWLEDGMENTS

We would like to thank Ed Spitznagel for contributing his
insight to countless discussions on packet classification and as-
sisting in the debugging of the ClassBench tools. We also would
like to thank Venkatachary Srinivasan and Will Eatherton for
making real filter sets available for study.

REFERENCES

[1] P. Gupta and N. McKeown, “Packet Classification on Multiple Fields,” in
ACM Sigcomm, August 1999.

[2] F. Baboescu, S. Singh, and G. Varghese, “Packet Classification for Core
Routers: Is there an alternative to CAMs?,” in IEEE Infocom, 2003.

[3] T. Y. C. Woo, “A Modular Approach to Packet Classification: Algorithms
and Results,” in IEEE Infocom, March 2000.

[4] M. E. Kounavis, A. Kumar, H. Vin, R. Yavatkar, and A. T. Campbell,
“Directions in Packet Classification for Network Processors,” in Second
Workshop on Network Processors (NP2), February 2003.

[5] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel, “Fast and Scalable
Layer Four Switching,” in ACM Sigcomm, June 1998.

[6] Xilinx, “Virtex-II Pro Platform FPGAs: Introduction and Overview.”
DS083-1 (v3.0), December 2003.

[7] IBM Blue Logic, “Embedded SRAM Selection Guide,” November 2002.
[8] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:

A survey,” in Proceedings of 40th Annual Allerton Conference, October
2002.

[9] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest Prefix
Matching using Bloom Filters,” in ACM SIGCOMM’03, August 2003.

[10] D. E. Taylor and J. S. Turner, “Scalable Packet Classification using Dis-
tributed Crossproducting of Field Labels,” Tech. Rep. WUCSE-2004-38,
Department of Computer Science and Engineering, Washington Univer-
sity in Saint Louis, June 2004.

[11] D. E. Taylor and J. S. Turner, “ClassBench: A Packet Classification
Benchmark,” Tech. Rep. WUCSE-2004-28, Department of Computer Sci-
ence & Engineering, Washington University in Saint Louis, May 2004.

[12] J. van Lunteren and T. Engbersen, “Fast and scalable packet classifi-
cation,” IEEE Journal on Selected Areas in Communications, vol. 21,
pp. 560–571, May 2003.

[13] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet Classifi-
cation Using Multidimensional Cutting,” in Proceedings of ACM SIG-
COMM’03, August 2003. Karlsruhe, Germany.

[14] P. Gupta and N. McKeown, “Packet Classification using Hierarchical In-
telligent Cuttings,” in Hot Interconnects VII, August 1999.

