
Link Buffer Sizing: A New Look at the Old Problem

Sergey Gorinsky Anshul Kantawala Jonathan Turner

Applied Research Laboratory, Department of Computer Science and Engineering
Washington University, St. Louis, MO 63130-4899, USA

�gorinsky, anshul, jst�@arl.wustl.edu

Abstract

We revisit the question of how much buffer an IP router
should allocate for its Droptail FIFO link. For a long time,
setting the buffer size to the bitrate-delay product has been
regarded as reasonable. Recent studies of interaction be-
tween queueing at IP routers and TCP congestion control
offered alternative guidelines. First, we explore and rec-
oncile contradictions between the existing rules. Then, we
argue that the problem of link buffer sizing needs a new for-
mulation: design a buffer sizing algorithm that accommo-
dates needs of all Internet applications without engaging
IP routers in any additional signaling. Our solution keeps
network queues short: set the buffer size to �� datagrams,
where � is the number of input links. We also explain how
end systems can utilize the network effectively despite such
small buffering at routers.

1 Introduction

Simplicity of IP (Internet Protocol) [23] is often cited as
the primary reason for the explosive growth of the Inter-
net. IP merely defines a format of datagrams. End systems
communicate by sending datagrams over a series of links
and routers. IP expects from routers nothing but best-effort
forwarding of datagrams to appropriate output links. Apart
from enabling the forwarding function, IP networks require
no signaling between routers.

Although the minimal signaling promotes quick deploy-
ment, IP networks can suffer from congestion when a router
has to buffer or discard datagrams destined for a busy output
link. To avoid persistent congestion, end systems are ex-
pected to curb their transmission upon inferring congestion
from implicit signs such as datagram loss. Many applica-
tions rely on TCP (Transmission Control Protocol) [19] for
congestion control. Other applications communicate over
UDP (User Datagram Protocol) [18] and need to control
congestion on their own.

End-to-end protocols for congestion control are based on
perpetual probing for available capacity. Even with a static
set of end-to-end connections, their total load on a shared
bottleneck link does not converge to a single value but os-
cillates within a range [8]. If the bottleneck link has a small
buffer, the oscillations can lead to incomplete utilization of
the link. If the buffer is large, queueing at the link can create
unnecessary delays.

The question of how much buffer an IP router should al-
locate for its Droptail FIFO link is traditionally formulated
as a problem of fully utilizing the bottleneck link without
excessive queueing. For a long time, setting the buffer size
to the product of the link bitrate and round-trip propagation
delay was considered reasonable. More elaborate recent
analyses indicate that the traditional rule of thumb should
be adjusted. One guideline suggests decreasing the buffer
size as the number of connections increases. Other propos-
als argue that the optimal buffer size grows proportionally
to the number of connections.

In this paper, we explore contradictions between existing
guidelines for link buffer sizing. After tracing the contra-
dictions to differences in goals and assumptions, we derive
a reconciling rule. Then, we argue that the new guideline
is also inadequate because it solves an incorrectly formu-
lated problem. Our new problem formulation for link buffer
sizing requires from an acceptable solution to accommo-
date needs of all Internet applications and be implementable
within the Internet architecture. We propose such a solution,
which prescribes small buffers. We conclude by explaining
how end systems can utilize the network effectively without
large buffering at routers.

The rest of the paper is structured as follows. Section 2
reviews existing guidelines. Their contradictions are ex-
plained and reconciled in Section 3. Section 4 argues that
Internet application diversity and guideline implementabil-
ity require a new problem formulation for link buffer siz-
ing. Section 5 presents our solution for the reformulated
problem. Section 6 finishes the paper with a summary.



2 Existing guidelines for link buffer sizing

The traditional rule of thumb prescribes setting the buffer
size to the bitrate-delay product. Whereas the guideline is
often attributed to Villamizar and Song [24], the rule has
been priorly suggested by others, e.g., Jacobson [13]. The
bitrate-delay-product guideline is easily derivable from a
model where the bottleneck link has a Droptail FIFO buffer
and serves only one connection. The model assumes that
the connection operates with a repetitive pattern where the
sender halves its load on the network upon overflowing
the buffer and then increases the load additively until the
next overflow occurs [8]. The assumed additive-increase
multiplicative-decrease (AIMD) pattern approximates well
the congestion-avoidance mode in such versions of TCP as
Reno [13] and NewReno [12]. After an overflow of the link
buffer, the sender decreases its load on the network from
�� to �. If the product of the link bitrate and round-trip
propagation delay of the connection equals �, then the de-
crease drains the buffer completely without underutilizing
the link. Since the buffer size in this setting also equals �,
the analysis leads to the guideline of setting the link buffer
size to the bitrate-delay product.

The above simple model considers only one TCP con-
nection. Recent analyses of models where a bottleneck
link serves multiple connections have yielded two mutually
contradictory guidelines: over-square-root and connection-
proportional allocation.

Over-square-root generalizes the traditional guideline
by prescribing to set the buffer size to the bitrate-delay prod-
uct divided by

�
� where � is the number of TCP connec-

tions [3]. The refinement is derived from evidence that some
connections might lose no datagrams during an overflow
of the buffer. Due to the consequent asynchrony of indi-
vidual load reductions, the amplitude of total load oscilla-
tions is smaller for a larger number of connections [3, 22].
Hence, the over-square-root guideline proposes decreasing
the buffer size as the number of TCP connections increases.

Connection-proportional allocation takes an opposite
view and suggests that the buffer size should be proportional
to the number of TCP connections [10, 14, 16]. This guide-
line stems from an observation that the connections can suf-
fer from high datagram losses and frequent retransmission
timeouts if the link buffer does not accommodate at least
few datagrams per connection.

3 Contradictions reconciled

Although over-square-root and connection-proportional
allocation agree that the traditional rule is inadequate for
scenarios with multiple connections, the new guidelines
conflict on whether the buffer size should be decreased or
increased. Furthermore, connection-proportional allocation

does not scale up the buffer as the link bitrate or network
propagation delays increase. In this section, we explore and
reconcile the contradictions between the guidelines.

3.1 Experimental validation

Since practice is the best judge of theory, we check valid-
ity of the guidelines by conducting ns-2 [17] simulations in
a traditional single-bottleneck topology shown in Figure 1a.
End systems �� and �� host respectively sending and re-
ceiving ends of unicast applications; with � varying from 1
to � , the network contains �� end systems. All the appli-
cations communicate data via datagrams of size 1500 bytes.
The link from router �� to router �� is a bottleneck for
each of the applications. This link has a propagation delay
of 50 ms. Each of the other links has a propagation delay of
0.5 ms and a bitrate that is twice larger than the bottleneck
bitrate. Every link uses FIFO Droptail buffering.

In the first series of our experiments, each of the� appli-
cations transfers a long file over TCP NewReno. We repeat
the experiments for the following three values of the bottle-
neck bitrate: 100 Mbps, 10 Mbps, and 1 Mbps.

For file transfers, full utilization of the bottleneck link is
not a goal in itself. What is important for this application
is file delivery time. Hence, a file transfer views the link
buffer size as optimal if it maximizes end-to-end goodput
defined as the ratio of the file size to the file delivery time. In
addition to end-to-end goodput, we also track loss rates and
round-trip times. We perform all the measurements over the
whole experiment duration of 200 seconds.

Figures 2 and 3 present our results. For the bottleneck
bitrate of 100 Mbps, the original rule approximates the op-
timal buffer size precisely. Figure 2a offers no solid justi-
fication for making the buffer size either smaller or larger
than the bitrate-delay product. For the bottleneck bitrate of
10 Mbps, the graphs exhibit a different trend after the num-
ber of TCP NewReno connections exceeds 50. Instead of
remaining constant at the bitrate-delay product, the optimal
buffer size starts growing. The growth is approximately lin-
ear and therefore consistent with connection-proportional
allocation. The bottleneck bitrate of 1 Mbps provides even
stronger support for this guideline: Figure 2c shows that
the optimal buffer size is approximately proportional to the
number of TCP connections over the whole explored range
from 1 to 100 connections. Neither of the experiments vali-
dates over-square-root that prescribes decreasing the buffer
size as the number of connections grows.

3.2 Analysis and reconciliation

First of all, why do our experiments show no reasons to
follow over-square-root? The guideline is derived from a
model where tens of thousands connections share a back-



1
R2

50ms

0.5ms

S

S D

D

1

2

1

NS ND

2

Bottleneck link

0.5ms

R
20 Mbps

EE 1

1C

4R
50ms50ms50ms

100 Mbps

0.5ms
100 Mbps

50.5ms

25 100 Mbps
0.5ms

1
S

S

C
25B

1

Z
1 25

25

25

B

Z

25D

D1

100 Mbps

20 Mbps

50.5ms
100 Mbps

50.5ms
100 Mbps

50.5ms
100 Mbps

1
R 3R

2R

(a) Single-bottleneck topology (b) Multiple-bottleneck topology

Figure 1. Network topologies in our experiments

bone bottleneck link. Besides, Appenzeller, Keslassy, and
McKeown [3] indicate that desynchronization of load re-
ductions appears and reveals the

�
� adjustment only when

� is at least on the order of thousand connections. Hence,
checking validity of over-square-root requires experiments
in a high-speed network with thousands of concurrent con-
nections. Unfortunately, we were not able to complete such
simulations in ns-2. Furthermore, the scenario assumed by
the over-square-root model is not easy to find in the modern
Internet where bottlenecks are typically not backbone links
but slower access links serving fewer connections.

Whereas our results offer no sound basis for judging cor-
rectness of over-square-root for a backbone bottleneck link,
Figure 2 shows clearly that the guideline fails in many re-
alistic scenarios. In particular, when 100 TCP connections
share the 100 Mbps bottleneck link, the optimal buffer size
equals the bitrate-delay product; however, over-square-root
sets the buffer size to 10% of the bitrate-delay product and
leads to underutilization of the bottleneck link and thereby
to lower goodput of the file transfers.

With the
�
� refinement out of the way, let us now fo-

cus on the contradiction between the bitrate-delay product
and connection-proportional allocation. Figure 2 indicates
that validity of these guidelines depends on the ratio of
the bitrate-delay product to the number of TCP NewReno
connections. If the ratio is high, the bitrate-delay product
is a precise approximation for the optimal buffer size. If
the ratio is low, the optimal buffer size is consistent with
connection-proportional allocation. What makes the ratio
such an important parameter? Our analysis confirms cor-
rectness of logical derivations behind both guidelines. The
contradictory conclusions are due to differences in goals
and assumptions. The original rule strives to utilize the bot-
tleneck link fully and assumes that a TCP connection oper-
ates uninterruptedly in the congestion-avoidance mode. If
the bottleneck link buffer does not accommodate at least
few datagrams for the connection, the assumption can be
wrong because high loss rates cause frequent retransmis-
sion timeouts. On the other hand, connection-proportional

allocation pursues an objective of keeping each connection
in the congestion-avoidance mode but does not concern it-
self with the bottleneck link utilization. Hence, if the ratio
of the bitrate-delay product to the number of connections
is high, connection-proportional allocation underutilizes the
link and thereby fails to maximize end-to-end goodput.

Since the contradictions between the existing guidelines
are due to differences in their assumptions and goals, we
can derive a consistent guideline from a model that com-
bines the objectives of keeping each TCP connection in
the congestion-avoidance mode and utilizing the bottleneck
link fully: set the buffer size to the maximum of the bitrate-
delay product and connection-proportional allocation.

4 New problem formulation

In Section 3, we derived a reconciling guideline. Is our
guideline the final word in link buffer sizing? Even we an-
swer this question not affirmatively. First, if desynchroniza-
tion of load reductions does occur with thousands of TCP
connections, the link-utilization component of the guideline
(i.e., bitrate-delay product) has to be amended respectively.
However, a more fundamental reason exists for discounting
our new guideline as well as the guidelines it reconciles –
we are solving an incorrectly formulated problem.

Figure 2 hints at this flaw in the current approach by
demonstrating that the optimal buffer size for Vegas [7] ver-
sion of TCP does not depend on the bitrate-delay product
but remains approximately proportional to the number of
connections. With TCP Vegas, the optimal buffer size is
different due to a different algorithm employed for load ad-
justments: since Vegas relies on AIAD (additive-increase
additive-decrease) in the congestion-avoidance mode, the
total load oscillations are proportional to the number of con-
nections. The failure of our NewReno guideline to identify
the optimal buffer size for Vegas prompts us to spell out a
traditional formulation of the buffer sizing problem: find the
buffer size that optimizes performance of long file transfers
over a version of TCP.



0 20 40 60 80 100
Number of long file transfers

0

500

1000

1500

O
pt

im
al

 b
uf

fe
r 

si
ze

 (
K

B
)

TCP Vegas

TCP NewReno

Bitrate−delay product

Over−square−root

0 50 100 150 200
Number of long file transfers

0

200

400

600

800

1000

O
pt

im
al

 b
uf

fe
r 

si
ze

 (
K

B
)

TCP Vegas

TCP NewReno

Bitrate−delay product

Over−square−root

0 20 40 60 80 100
Number of long file transfers

0

100

200

300

400

500

O
pt

im
al

 b
uf

fe
r 

si
ze

 (
K

B
)

TCP Vegas

TCP NewReno

Bitrate−delay product

Over−square−root

(a) 100 Mbps bottleneck link (b) 10 Mbps bottleneck link (c) 1 Mbps bottleneck link

Figure 2. Optimal buffer size for the file transfers over TCP

0 20 40 60 80 100
Number of long file transfers

60.0

70.0

80.0

90.0

100.0

E
nd

−
to

−
en

d 
go

od
pu

t (
M

bp
s) TCP Vegas

TCP NewReno

0 50 100 150 200
Number of long file transfers

8.5

9.0

9.5

10.0

E
nd

−
to

−
en

d 
go

od
pu

t (
M

bp
s)

TCP VegasTCP NewReno

0 20 40 60 80 100
Number of long file transfers

0.980

0.985

0.990

0.995

1.000

E
nd

−
to

−
en

d 
go

od
pu

t (
M

bp
s)

TCP Vegas

TCP NewReno

0 20 40 60 80 100
Number of long file transfers

0

0.002

0.004

0.006

0.008

E
nd

−
to

−
en

d 
lo

ss
 r

at
e

TCP Vegas

TCP NewReno

0 50 100 150 200
Number of long file transfers

0

0.02

0.04

0.06

0.08

0.1

E
nd

−
to

−
en

d 
lo

ss
 r

at
e

TCP Vegas

TCP NewReno

0 20 40 60 80 100
Number of long file transfers

0

0.03

0.06

0.09

0.12

E
nd

−
to

−
en

d 
lo

ss
 r

at
e

TCP Vegas

TCP NewReno

0 20 40 60 80 100
Number of long file transfers

100

120

140

160

R
ou

nd
−t

rip
 d

el
ay

 (
m

s)

TCP Vegas

TCP NewReno

0 50 100 150 200
Number of long file transfers

0

200

400

600

800

R
ou

nd
−t

rip
 d

el
ay

 (
m

s)

TCP Vegas

TCP NewReno

0 20 40 60 80 100
Number of long file transfers

0

1000

2000

3000

4000

R
ou

nd
−

tr
ip

 d
el

ay
 (

m
s)

TCP Vegas

TCP NewReno

(a) 100 Mbps bottleneck link (b) 10 Mbps bottleneck link (c) 1 Mbps bottleneck link

Figure 3. End-to-end goodput, loss rate, and round-trip delay when the link buffer size is optimal



We argue that the traditional problem formulation is too
limited. Buffer sizing should accommodate not only a par-
ticular TCP version or application class but also other types
of Internet traffic. Besides, a useful formulation of the prob-
lem should explicitly require that a proposed guideline is
implementable within the Internet architecture. Sections 4.1
and 4.2 discuss these two issues below.

4.1 Diversity of Internet applications

Long file transfers over TCP are common in the Internet.
However, the Internet also serves other traffic such as short
file transfers over TCP and interactive streaming over UDP.
Whereas link buffer sizing affects these other applications
as well, the impact is qualitatively different.

Unlike with large files, short file transfers over TCP do
not operate in the congestion-avoidance mode for long. It
is not AIMD dynamics anymore but other factors that dom-
inate optimal buffer sizing. In particular, queueing at the
bottleneck link contributes heavier to file delivery time as
files become smaller. Recent studies [2, 3, 4] show that a
small constant buffer is sufficient for optimal performance
of short file transfers regardless of their number.

For interactive streaming over UDP, queueing delays
are even more consequential since interaction at round-trip
times larger than few hundred milliseconds makes humans
uncomfortable. Whereas such applications reject TCP due
to its jittery transmission and extra delay of its reliable in-
order delivery, communication over UDP comes with re-
sponsibility of performing own congestion control. What a
particular streaming application views as an optimal buffer
size depends greatly on its algorithm for congestion control.

Sizing a link buffer to optimize performance of long file
transfers can cause huge queueing delays, such as several
seconds shown in Figure 3c. As we discuss above, exten-
sive queueing can be undesirable for short file transfers and
interactive streaming. To quantify the impact of link buffer
sizing on different types of Internet applications, we con-
duct additional ns-2 experiments in the multiple-bottleneck
network topology depicted in Figure 1b. The topology rep-
resents a common Internet scenario where backbone links
are utilized lightly, and bottlenecks are at access links. The
network contains four routers ��, ��, ��, and �� and car-
ries balanced bidirectional traffic on each link. There are
three groups of traffic: between end systems �� and ��, be-
tween end systems �� and 	�, and between end systems ��

and 
�, where � varies from 1 to 25. The following appli-
cations form each group: an interactive video application
transmitting one constant-bit-rate 2 Mbps stream over UDP
in each direction; eight long file transfers over TCP, four
in each direction; short web downloads, twenty sources in
each direction. For the web downloads, every source pe-
riodically generates a 36-KB data burst, transmits it over

0 500 1000 1500 2000 2500
R1−R2 link buffer size (KB)

0

100

200

300

400

R
1−

R
2 

qu
eu

ei
ng

 d
el

ay
 (

m
s)

TCP Vegas

TCP NewReno

Bitrate−delay product

(a) Link ��-��

0 500 1000 1500 2000 2500
R1−R2 link buffer size (KB)

0

10

20

30

40

50

R
3−

R
4 

lin
k 

qu
eu

ei
ng

 d
el

ay
 (

m
s)

TCP Vegas

TCP NewReno

Bitrate−delay product

(b) Link ��-��

Figure 4. Link queueing delays in the multiple-
bottleneck topology

TCP, and then goes idle for a time interval that has a du-
ration distributed exponentially with the mean of 1 second.
All the applications use datagrams of size 1500 bytes. TCP
applications employ either NewReno or Vegas. Each link
uses FIFO Droptail buffering. All the applications have the
same round-trip propagation delay. Hence, the bitrate-delay
product for a link is the same for every application using
this link. Our evaluation focuses on the applications trans-
mitting data from end systems ��. Links ��-��, ��-��,
��-��, and ��-�� are the four bottlenecks for these appli-
cations. Once again, we measure link loss rates, queueing
delays, and utilizations over the whole experiment duration
of 200 seconds.

Figure 4 reports queueing delays for links ��-�� and
��-�� when the buffer size of link ��-�� varies but the
buffer sizes of all the other links are set to their bitrate-
delay products. Figure 5 plots end-to-end performance
metrics meaningful for each type of the examined appli-



0 500 1000 1500 2000 2500
R1−R2 link buffer size (KB)

200

400

600

800

1000

1200
R

ou
nd

−
tr

ip
 d

el
ay

 fo
r 

in
te

ra
ct

iv
e 

vi
de

o 
(m

s)

TCP Vegas

TCP NewReno

Bitrate−delay product

(a) Round-trip time of interactive video

0 500 1000 1500 2000 2500
R1−R2 link buffer size (KB)

200

300

400

500

600

700

800

G
oo

dp
ut

 fo
r 

la
rg

e 
fil

e 
tr

an
sf

er
s 

(K
bp

s)

TCP Vegas

TCP NewReno

Bitrate−delay product

(b) End-to-end goodput of long file transfers

0 500 1000 1500 2000 2500
R1−R2 link buffer size (KB)

2

2.5

3

3.5

4

D
el

iv
er

y 
tim

e 
fo

r 
w

eb
 d

ow
nl

oa
ds

 (
s)

TCP Vegas

TCP NewReno

Bitrate−delay product

(c) Delivery time of short web downloads

Figure 5. Performance of different applica-
tions in the multiple-bottleneck topology

cations: round-trip time for interactive video, goodput for
long file transfers, and delivery time for short web down-
loads. For TCP NewReno, the traditional guideline of set-

0 50 100 150 200
Number of long file transfers

8

8.5

9

9.5

10

E
nd

−
to

−
en

d 
go

od
pu

t (
M

ps
)

0.25 B

0.5 B

1 B
2 B

Figure 6. Impact of suboptimal buffer sizes on
long file transfers over TCP NewReno

ting the buffer size for link ��-�� to its bitrate-delay prod-
uct results in low link loss rates and high link utilizations
for both links ��-�� and ��-��, large end-to-end good-
puts for the file transfers, and small delivery times for the
web downloads. However, the bitrate-delay-product setting
inflates the round-trip time above 600 ms, which is unac-
ceptably large for interactive video.

The above experiments show that choosing a large buffer
to accommodate long file transfers can lethally hurt in-
teractive streaming. Can a smaller buffer reconcile needs
of all the applications? Earlier studies reply affirmatively
by demonstrating that small buffer sizes do not disrupt
file transfers substantially in terms of average goodput,
even though individual goodputs can become more vari-
able [4, 20]. To examine sensitivity of end-to-end goodput
to suboptimal buffer sizes, we repeat the experiments from
Section 3.1 by setting the buffer size of the 10 Mbps bot-
tleneck link to different fractions of the bitrate-delay prod-
uct �. As expected, Figure 6 shows that end-to-end good-
put decreases when the fraction reduces from 1 to 0.5 and
further to 0.25. However, the extent of the decrease is not
substantial and does not grow together with the number of
long file transfers. Therefore, selecting a significantly lower
buffer size can provide long file transfers with reasonably
good performance.

4.2 Implementability of sizing guidelines

Section 4.1 indicates that reconciling diverse needs of In-
ternet applications favors small buffers. Before we describe
our specific solution for link buffer sizing in Section 5, we
now discuss importance and difficulties of implementing a
sizing guideline within the Internet architecture.

Simplicity of the Internet architecture plays an implicit
but major role in traditional formulations of the buffer sizing



problem. Due to minimality of signaling, the Internet relies
on end systems to control congestion without enabling them
to notify routers about buffer requirements of applications.
In more sophisticated architectures such as Intserv [6], link
buffer sizing has a different formulation because these ar-
chitectures offer an application an ability to reserve buffer
space at routers. Since the problem formulation intrinsi-
cally depends on the network architecture, an acceptable
guideline for link buffer sizing in the Internet has to be im-
plementable without engaging IP routers in any additional
signaling.

The constraint of no additional signaling poses serious
implementation challenges even for the existing guidelines.
Some of the rules require from the router to know the num-
ber of connections. However, IP does not provide routers
with reliable means to acquire such knowledge. Albeit tech-
niques exist for grouping datagrams into flows according
to IP addresses, port numbers, and other header fields, it
is difficult to use flow statistics to estimate accurately such
quantities as the number of long file transfers over a specific
TCP version [16]. It is even harder to implement guidelines
involving the bitrate-delay product: whereas IP offers no
explicit mechanism for a router to learn round-trip propa-
gation delays of passing traffic, inferring these delays from
datagram headers seems all but infeasible.

Let us now study an option of implementing the guide-
lines approximately. The bitrate-delay-product rule can be
approximated by replacing the round-trip propagation delay
with round-trip time (RTT), which includes both propaga-
tion and queueing. Consider a scenario where a bottleneck
link with bitrate � serves a single TCP NewReno connec-
tion that delivers a long file and operates in the congestion-
avoidance mode. Round-trip propagation delay for the con-
nection is �. The router infers average RTT of the con-
nection precisely and sets the link buffer size to the prod-
uct of � and RTT. The initial buffer size is set optimally
to ��. Then, the connection load oscillates between ��
and ���, and queueing delay oscillates between � and �.
Since average RTT becomes ����, the router increases the
buffer size to �����. The connection load oscillates now
between ������ and �����, and queueing delay oscil-
lates between ����� and ����. Since average RTT climbs
to ������, the router raises the buffer size to �������, and
the vicious circle of unnecessary increases continues as the
buffer size converges to ���, which is three times larger
than desired. Furthermore, it is easy to construct multiple-
bottleneck topologies where sizing the buffers with RTT in-
stead of round-trip propagation delay leads to unbounded
growth of buffer sizes and queueing delays.

In the above examples, routers automatically inflate their
buffer sizes in proportion to increasing RTT. Note that if the
approximated guideline is carried out by humans, the same
disastrous effects ensue, albeit at a slower pace.

Whereas we clearly demonstrate that replacing the prop-
agation delay in a guideline with RTT can be extremely dan-
gerous, it is reasonable to inquire about current practices
in buffer configuration. Anecdotal evidence suggests that
router operators either allocate the whole buffer space pro-
vided by the manufacturer or set the buffer size to a bitrate-
”delay” product where “delay” is an arbitrarily-chosen large
constant, e.g., 500 ms or a transoceanic propagation time.
As our analysis shows, choosing such huge buffers can lead
to excessive queueing. End-to-end Internet measurements
indirectly confirm the aforesaid practices and their conse-
quences: Aikat, Kaur, Smith, and Jeffay [1] report that RTT
of a TCP connection can vary by several seconds.

5 Solving the reformulated problem

Section 4 argues that a buffer sizing guideline should rec-
oncile needs of diverse Internet applications and be imple-
mentable within the Internet architecture. Hence, we re-
formulate the problem of link buffer sizing as follows: de-
sign a buffer sizing algorithm that accommodates needs of
all Internet applications without engaging IP routers in any
additional signaling.

Section 4 also shows challenges posed by the application
diversity and implementability requirement, e.g., without
extra signaling, routers cannot compute round-trip propaga-
tion delays. Given the severe constraints, what might be an
acceptable solution for the reformulated problem? Our pro-
posal comes from the observation that small buffers are bet-
ter suitable for reconciling needs of different applications.
Whereas end systems have many options for dealing with
link underutilization, an end system cannot remove queue-
ing delay that other end systems create at a shared Droptail
FIFO buffer. To make our proposal specific, we suggest the
following guideline: set the buffer size to �� datagrams,
where � is the number of input links.

The reference to � in our guideline is for enabling the
router to losslessly handle simultaneous datagram arrivals
from each input link. We see no fundamental reason for fa-
voring the coefficient of �. However, overall expression ��

ensures that the buffer size is small enough to avoid signifi-
cant queueing delays.

Anticipating a valid criticism that the small buffer size
increases TCP loss rates and timeout frequencies, we now
elaborate on how end systems can utilize the network ef-
fectively without large buffering at routers. Arguments
for connection-proportional allocation are based on the fact
that to operate in the desirable congestion-avoidance mode,
a TCP connection should have RTT that corresponds to
a window of at least few data segments. However, the
performance-boosting delay does not have to added by the
network. Instead, end systems can do the needed queueing,
e.g., by delaying acknowledgments [5, 9]. The end-system



option is actually more preferable because it does not im-
pose the delay on the other traffic.

End systems can address also concerns about link under-
utilization. With the minimal buffer at the bottleneck link,
TCP NewReno in the congestion-avoidance mode provides
at least 75% utilization of the link because the load oscil-
lates between 100% and at least 50% of the link bitrate. To
achieve higher utilization, end systems can adopt smoother
congestion control such as TCP Vegas or smooth UDP-
based alternatives [11, 15]. For example, merely changing
the AIMD decrease factor from 0.5 to 0.875 [21] boosts the
bottleneck link utilization to at least 94%.

6 Conclusion

This paper revisited the old question of how much buffer
an IP router should allocate for its Droptail FIFO link. For a
long time, setting the buffer size to the bitrate-delay product
has been regarded as reasonable. Recent studies of interac-
tion between queueing at IP routers and TCP congestion
control proposed alternative guidelines. In this paper, we
explored and reconciled contradictions between the existing
rules. Then, we argued that the problem of link buffer sizing
needs a new formulation: design a buffer sizing algorithm
that accommodates needs of all Internet applications with-
out engaging IP routers in any additional signaling. Our
solution keeps network queues short: set the buffer size to
�� datagrams, where � is the number of input links. We
also explained how end systems can utilize the network ef-
fectively despite such small buffering at routers.

Acknowledgments

We would like to thank Dmitri Loguinov, Konstantin
Avrachenkov, and anonymous ISCC 2005 reviewers for
comments and suggestions that greatly helped us to prepare
the improved final version of this paper.

References

[1] J. Aikat, J. Kaur, D. Smith, and K. Jeffay. Variability in
TCP Round-trip Times. In Proceedings ACM SIGCOMM
Internet Measurement Conference, October 2003.

[2] E. Altman, K. Avrachenkov, and C. Barakat. TCP Network
Calculus: The Case of Large Delay-Bandwidth Product. In
Proceedings IEEE INFOCOM 2002, July 2002.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
Router Buffers. In Proceedings ACM SIGCOMM 2004,
September 2004.

[4] K. Avrachenkov, U. Ayesta, E. Altman, P. Nain, and
C. Barakat. The Effect of Router Buffer Size on the TCP per-
formance. In Proceedings LONIIS Workshop on Telecommu-
nication Networks and Teletraffic Theory, January 2002.

[5] K. Blandford, S. Goldman, S. Gorinsky, Y. Zhou, and
D. Dooly. Smartacking: Improving TCP Performance from
the Receiving End. Technical Report WUCSE-2005-4,
www.arl.wustl.edu/�gorinsky/pdf/WUCSE-TR-2005-4.pdf,
Department of Computer Science and Engineering,
Washington University in St. Louis, January 2005.

[6] R. Braden, D. Clark, and S. Shenker. Integrated Services
in the Internet Architecture: an Overview. RFC 1633, June
1994.

[7] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. In
Proceedings ACM SIGCOMM 1994, August 1994.

[8] D. Chiu and R. Jain. Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Net-
works. Journal of Computer Networks and ISDN, 17(1):1–
14, June 1989.

[9] D. Clark. Window and Acknowledgement Strategy in TCP.
RFC 813, July 1982.

[10] A. Dhamdhere, H. Jiang, and C. Dovrolis. Buffer Sizing for
Congested Internet Links. In Proceedings IEEE INFOCOM
2005, March 2005.

[11] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
Based Congestion Control for Unicast Applications. In Pro-
ceedings ACM SIGCOMM 2000, August 2000.

[12] S. Floyd and T. Henderson. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 2582, April 1999.

[13] V. Jacobson. Modified TCP Congestion Control Algorithm.
End2end-interest mailing list, April 1990.

[14] L. Le, K. Jeffay, and D. Smith. Sizing Router Buffers
for Application Performance. Technical Report UNC-
CS-TR05-111, Department of Computer Science, Univer-
sity of North Carolina, www.cs.unc.edu/�le/papers/sizing-
buffers.pdf, January 2005.

[15] D. Loguinov and H. Radha. Increase-Decrease Congestion
Control for Real-time Streaming: Scalability. In Proceed-
ings IEEE INFOCOM 2002, June 2002.

[16] R. Morris. Scalable TCP Congestion Control. In Proceed-
ings IEEE INFOCOM 2000, March 2000.

[17] UCB/LBNL/VINT Network Simulator ns-2. www-
mash.cs.berkeley.edu/ns, May 2004.

[18] J. Postel. User Datagram Protocol. RFC 768, October 1980.
[19] J. Postel. Transmission Control Protocol. RFC 793, Septem-

ber 1981.
[20] L. Qiu, Y. Zhang, and S. Keshav. Understanding the Per-

formance of Many TCP Flows. Computer Networks, 37(3-
4):277–306, November 2001.

[21] K. Ramakrishnan and R. Jain. A Binary Feedback Scheme
for Congestion Avoidance in Computer Networks with Con-
nectionless Network Layer. In Proceedings ACM SIG-
COMM 1988, August 1988.

[22] J. Sun, M. Zukerman, K.-T. Ko, G. Chen, and S. Chan. Ef-
fect of Large Buffers on TCP Queueing Behavior. In Pro-
ceedings IEEE INFOCOM 2004, March 2004.

[23] Univeristy of Southern California. DoD Standard Internet
Protocol. RFC 760, January 1980.

[24] C. Villamizar and C. Song. High Performance TCP in the
ANSNET. ACM SIGCOMM Computer Communication Re-
view, 24(5):45–60, November 1994.


