

When is a Work-Conserving Switch Not?

Jonathan S. Turner
jon.turner@wustl.edu
WUCSE-2005-14

April 22, 2005

Department of Computer Science
Campus Box 1045
Washington University
One Brookings Drive
St. Louis, MO 63130-4899

Abstract

Crossbar-based switches are commonly used to implement routers with throughputs up to
about 1 Tb/s. The advent of work-conserving crossbar scheduling algorithms now makes it
possible to engineer systems that perform well, even under extreme traffic conditions. Unfor-
tunately, all the published work-conservation results for crossbar scheduling apply only to
systems that switch fixed-length cells, not variable length packets. Routers that use a cell-
based crossbar with a nominally work-conserving scheduler to switch variable length packets
can fail to be work-conserving at the external links, since the router cannot forward a packet
until all of its constituent cells reach the output line card. Speedups as large as the number of
inputs and outputs can be required to achieve work-conservation, using schedulers that oper-
ate only on cells. There appear to be fundamental obstacles to achieving practical work-
conservation for variable length packet switches based on unbuffered crossbars. However, we
show that adding buffers to crossbars allows work-conservation to be achieved for variable
length packet switching, using modest speedups. In particular we define packet versions of
the Group by Virtual Output Queue (GVOQ) scheduler of Chuang et. al. and the Least Occu-
pied Output First (LOOFA) scheduler of Krishna et. al. and show that they are both work-
conserving for speedups ≥2. Specific versions of both algorithms are also shown to be order-
preserving for speedups ≥2, meaning that they can exactly emulate an ideal, output queued
switch.

This work is supported by the National Science Foundation (grant #CNS-0325298).

- 2 -

When is a Work-Conserving Switch Not?
 Jonathan Turner

Washington University
jon.turner@wustl.edu

1. INTRODUCTION
Crossbar switches have long been a popular choice for
transferring data from inputs to outputs in mid-range
performance switches and routers [1]. Unlike bus-
based switches, crossbars can provide throughputs
approaching 1 Tb/s, while allowing individual line
cards to operate at speeds comparable to the external
links. However the control of high performance
crossbars is challenging, requiring crossbar schedul-
ers that match inputs to outputs in the time it takes for
a minimum length packet to be forwarded. The match-
ing selected by the scheduler has a major influence on
system performance, placing a premium on algorithms
that can produce high quality matchings in a very
short period of time.

Traditionally, crossbars schedulers have been
evaluated largely on the basis of how they perform on
random traffic arrival patterns that do not cause long
term overloads at inputs or outputs. More recently,
there has been growing interest in crossbar schedulers
that are capable of performing well under worst-case
conditions, including traffic patterns that involve ex-
tended overload periods at some outputs [2,5,8]. Since
extended overloads are a common occurrence in
internet routers, it is important to understand how
crossbar schedulers perform in such situations.

There are two fundamental properties that are
commonly used to evaluate crossbar schedulers in this
worst-case sense. A scheduler is said to be work-
conserving if an output link is kept busy so long there
are packets addressed to the output, anywhere in the
system. A scheduler is said to be order-preserving if it
is work-conserving and it always forwards packets in
the order in which they arrived. A crossbar with an
order-preserving scheduler faithfully emulates an
ideal non-blocking switch with FIFO output queues.
In their seminal paper, Chuang, et. al. provided the
first example of an order-preserving scheduler [2] for
a crossbar with small speedup. (The speedup of a

crossbar switch is the ratio of the ideal throughput of
the crossbar to the total capacity of its external links.
So a crossbar with a speedup of S has the potential to
forward data S times faster than the input links can
supply it.) Krishna, et. al. showed that a somewhat
simpler scheduler is work-conserving for the same
speedup (S=2) and Rodeheffer and Saxe [10] showed
that this algorithm can be made order-preserving if the
speedup is increased to 3.

The work-conservation properties that have been
established to date, apply only to crossbars that for-
ward fixed length data units, or cells. There is a sound
practical justification for concentrating on such sys-
tems, since routers commonly use cell-based cross-
bars. Variable length packets are received at input line
cards, segmented into fixed length cells for transmis-
sion through the crossbar and reassembled at the out-
put line cards. This simplifies the implementation of
the crossbar and allows for synchronous operation,
which allows the scheduler to make better scheduling
decisions than would be possible with asynchronous
operation. Unfortunately, cell-based crossbar schedul-
ers that are work-conserving when viewed from the
edge of the crossbar, can fail to deliver work-
conserving operation for the router as a whole. That
is, an outgoing link may remain idle, even while com-
plete packets for that link are present in the system.
We show that much larger speedups are needed to
make routers built around cell-oriented crossbar
schedulers work-conserving. However, we also show
that work-conservation can be restored, using crossbar
schedulers that schedule packets, rather than cells, if
the crossbars are equipped with a moderate amount of
internal buffer space. Specifically, we define packet-
oriented versions of the Group by Virtual Output
Queue algorithm of [2] and the Least Occupied Out-
put First algorithm of [5] and show that both are
work-conserving with a speedup of 2. Moreover, we
show that order-preservation can also be established
for both algorithms using a speedup of 2. Unlike cell-

- 3 -

based crossbar schedulers, our packet schedulers op-
erate asynchronously. This has required the develop-
ment of new methods for analyzing their performance
and these methods now make it possible to evaluate
asynchronous crossbars in a way that is directly com-
parable to synchronous crossbars.

The use of buffered crossbars is not new. An early
ATM switch from Fujitsu used buffered crossbars, for
example [7]. However, most systems use unbuffered
crossbars, because the addition of buffers to each of
the n2 crosspoints in an n×n crossbar has been viewed
as prohibitively expensive. A recent paper by Chuang
et. al. [3] advocates the use of buffered crossbars in
cell-based switches in order to reduce the complexity
of the scheduling algorithms. The authors argue that
ongoing improvements in electronics now make it
feasible to add buffering to a crossbar, without requir-
ing an increase in the number of integrated circuit
components. Hence, the cost impact of adding buffer-
ing is no longer a serious obstacle. Our results add
further weight to the case for buffered crossbars, as
the use of buffering allows inputs and outputs to oper-
ate independently and asynchronously, allowing vari-
able length packets to be handled directly.

Section 2 provides a more detailed discussion of
the issue of switching cells vs. packets. Our main re-
sults are given in sections 3 and 4, where we establish
work-conservation and order-preservation properties
for packet versions of two crossbar scheduling algo-
rithms. In section 5, we briefly study how the packet
version of the Least Occupied Output First scheduler
performs when operated with speedups smaller than 2.
Section 6 concludes the paper with a discussion of
alternate buffering strategies, some practical imple-
mentation issues and an outline of ways this work can
be extended.

2. SWITCHING PACKETS VS. CELLS
As noted in the introduction, most crossbar-based
routers, segment packets into cells at input line cards,
before forwarding them through the crossbar to output
line cards, where they are reassembled into packets.
This enables synchronous operation, allowing the
crossbar scheduler to make decisions involving all

inputs and outputs at one time. Unfortunately, cell-
based crossbars have some significant drawbacks.
First, the segmentation of packets into cells can lead
to degraded performance if the incoming packets can-
not be efficiently packed into fixed length cells. In the
worst-case, arriving packets may be just slightly too
large to fit in a single cell, forcing the input line cards
to forward them in two cells. This effectively doubles
the bandwidth that the crossbar requires in order to
handle worst-case traffic. Increasing the crossbar
bandwidth by this amount can be unacceptably expen-
sive, particularly in systems where the line cards are
connected to the crossbar via inter-chassis optical
links. While one can reduce the impact of this prob-
lem by allowing parts of more than one packet to oc-
cupy the same cell, this adds complexity and does
nothing to improve performance in the worst-case.
For this reason, the ability to forward variable length
packets through the crossbar is highly desirable.

However, the trouble with cell-based crossbars is
not just the bandwidth loss due to segmentation.
Crossbar schedulers that operate on cells can interfere
with the objective of work-conservation, by delaying
the delivery of complete packets to outputs. In a sys-
tem that uses a cell-based crossbar scheduler, an out-
put line card cannot begin transmission of a packet on
its outgoing link until all cells of the packet have been
received. Consider a scenario in which n input line
cards receive packets of length L, all addressed to the
same output, at time t. If the length of the cell used by
the crossbar is C, each packet must be segmented into
⎡L/C⎤ cells for transmission through the fabric. A
crossbar scheduler that operates on cells will typically
forward cells from each input in a fair fashion, mean-
ing that close to n(⎡L/C⎤−1)+1 cells will pass through
the crossbar before the output line card has a complete
packet that it can forward on the output link. While
some delay between the arrival of a packet and its
transmission on the output link, is unavoidable, delays
that are substantially longer than the time it takes to
receive a packet on the link are clearly undesirable, if
not intolerable. In the given scenario, a speedup of n
is needed to bring the delay down to this level.

- 4 -

The basic problem with cell-based crossbar
schedulers is their failure to consider which packets
different cells belong to. There is no obvious solution
to this problem in the context of unbuffered crossbars,
since the ability of the scheduler to coordinate the
movement of traffic through the system, seems to de-
pend on its ability to make decisions involving all
inputs and outputs at one time. A scheduler that oper-
ates on packets must deal with the asynchronous na-
ture of packet arrivals, and must schedule packets as
they arrive and as the inputs to the crossbar become
available. In particular, if a given input line card fin-
ishes sending a packet to the crossbar at time t, it must
then select a new packet to send to the crossbar. It
may have packets that it can send to several different
outputs, but its choice of output is necessarily limited
to those outputs that are not currently receiving pack-
ets from other inputs. This can prevent it from choos-
ing the output that it would prefer, were its choices
not so constrained. One can conceivably ameliorate
this situation by allowing an input to select an output
that will become available in the near future, but this
adds complication and sacrifices some of the crossbar
bandwidth. Moreover, it is not clear that such a strat-
egy can lead to a scheduling algorithm with good
worst-case performance and small speedup.

The use of buffered crossbars offers a way out of
this dilemma. The addition of buffers to each cross-
point of an n×n crossbar effectively decouples inputs
from outputs, enabling the asynchronous operation
that variable length packets seem to require. A dia-
gram of a system using a buffered crossbar is shown

in Figure 1. In addition to the now conventional vir-
tual output queues at each input, and the single queue
at each output, a buffered crossbar has a small buffer
at each of its crosspoints. As pointed out in [3], the
buffers allow inputs and outputs to operate independ-
ently, enabling the use of simpler crossbar scheduling
mechanisms. But the buffers have an even greater im-
port for packet-based scheduling, since they allow
inputs and outputs to operate asynchronously. Spe-
cifically, whenever an input finishes sending a packet
to the crossbar, it can select a packet from one of its
virtual output queues, so long as the corresponding
crosspoint buffer has room for the packet. We show in
the next section that if the crosspoint buffers are large
enough to hold two maximum length packets, we can
achieve work-conservation with the same speedup
required by cell-based schedulers.

3. WORK-CONSERVING SCHEDULERS
In this section, we show that two well-known cell-
switching schedulers can be converted into packet-
switching schedulers that provide comparable per-
formance guarantees.

3.1 Preliminaries
To start, we introduce common notations that will be
used in the analysis to follow. We say a packet x is an
ij-packet if it is present at input i and is to be for-
warded to output j. We let s(x) denote the time at
which the first bit of x is received on an input link and
we let f(x) be the time at which the last bit is received.
We let L(x) denote the number of bits in x and LM de-
note the maximum packet length (in bits). The time

Virtual
Output
Queues

Output Queues

Crosspoint
Buffers

Virtual
Output
Queues

Output Queues

Crosspoint
Buffers

Figure 1. Packet switch using buffered crossbar

- 5 -

unit is the time it takes for a single bit to be trans-
ferred on an external link, so f(x)–s(x) = L(x). For a
packet x at the front of its VOQ, we let R(x,t) denote
the number of bits not yet sent to the crossbar at time
t. The time at which a new packet is selected by an
input and sent to the crossbar is referred to as a sched-
uling event or more simply, an event. We let Vi,j de-
note the virtual output queue at input i that contains
packets for output j and we let Vi,j(t) denote the num-
ber of bits in Vi,j at time t. Similarly, we let Bi,j denote
the crosspoint buffer for packets from input i to output
j, Bi,j(t) denote the number of bits in Bi,j at time t, and
B denote the capacity of the crosspoint buffers. We
also, let Qj denote the buffer at output j and let Qj(t)
denote the number of bits it contains at time t. For all
the quantities that include a time parameter, we some-
times omit the time parameter when its value can be
understood from the context.

We say that a given packet switch scheduler is T-
work-conserving for a given speedup S and crosspoint
buffer size B, if whenever there is an idle output link,
no input contains a packet x for that output link for
which s(x)+T is less than the current time. That is, a
work conserving scheduler allows an output link to be
idle only so long as there are no packets present for
that output that are “older” than T.

The schedulers we focus on here are designed for
systems in which packets are fully buffered at the in-
put line cards where they arrive before they are sent to
the crossbar. We say that a VOQ is active, if the last
bit of the first packet in the VOQ has been received
from the external link. Otherwise, it is inactive. Note
that a VOQ can become inactive, even while it re-
mains non-empty. For an active VOQ, we refer to the
time period since it last became active as the current
active period and for any packet x in a VOQ, we let
τA(x) denote the time of the first event in the current
active period. Once a packet has been selected by an
input line card for transmission to the crossbar, it is
sent at the rate allowed by the system’s speedup S.
Similarly, once an output line card selects a packet
from a crosspoint buffer, it transfers bits from the
crosspoint buffer at the rate allowed by the speedup,
until the packet is fully transferred. Packets may be
streamed through the crossbar buffer without fully
buffering them and may be forwarded by an output
line card to the external link as soon as the first bit is
received by the output line card. Since the speedup is
at least 1, the output line card is guaranteed that once

it receives the first bit, the remaining bits will arrive
in time to be sent on the outgoing link. (Note, this
property is not shared by systems that use cell-based
schedulers, forcing those systems to wait until the last
cell of a packet has been received before starting
transmission of a packet on the outgoing link.) In sec-
tion 6 we discuss how similar results can be obtained
for systems that place different conditions on where
packets are buffered.

We consider only schedulers that keep the inputs
and outputs busy whenever possible. In particular, if
an input line card has any packet x at the head of one
of its VOQs that is complete (all bits received from
the input link) and the crosspoint buffer for x has
room for it, then the input must be transferring bits to
some crosspoint buffer at rate S. Similarly, if any
crosspoint buffer for output j is not empty, then output
j must be transferring bits from some crosspoint
buffer at rate S. A scheduler that satisfies these prop-
erties is called a prompt scheduler. Prompt schedulers
have the following useful property

Lemma 1. For a prompt scheduler,

Bi,j(t) ≤ (1+1/(S–1))Qj(t)

for all values of i, j and t. In particular, if S≥2,
Bi,j(t)≤2Qj(t).

proof. For a prompt scheduler, whenever any of an
output’s crosspoint buffers is non-empty, the length of
the output buffer increases at rate S–1. Since a cross-
point buffer can increase at rate no more than S, the
length of the crosspoint buffer can be at most S/(S–1)
= (1+1/(S–1)) times larger than the length of the out-
put buffer.

3.2 Packet GVOQ
Group by Virtual Output Queue (GVOQ) is a cell
switch scheduling algorithm first described in [2] and
extended to buffered crossbars in [3]. We define the
Packet GVOQ (PGV) packet switch scheduling algo-
rithm as follows. The algorithm imposes a total order
on the active VOQs at each input. This order is ex-
tended to an order on all the packets in the active
VOQs (packets in the same VOQ are ordered by their
position in the VOQ, while packets in different VOQs
are ordered according to their VOQs). We say that
one packet precedes another if it comes before the
other in this ordering. The relative order of two VOQs
does not change so long as they both remain non-
empty. When a VOQ becomes active, it is placed first

- 6 -

in the VOQ ordering. When a VOQ becomes inactive,
it is removed from the VOQ ordering. At each event,
the PGV algorithm selects some VOQ for which the
crosspoint buffer has enough space to accommodate
the first packet in the VOQ. If multiple VOQs are eli-
gible under this criterion, it selects the VOQ that
comes first in the ordering. The work-conservation
result we prove below does not depend on the specific
policy used by the output line card to select a cross-
point buffer, so we leave the output policy undefined
here. Hence, we are actually defining a class of PGV
schedulers with a variety of specific instantiations.

For a packet x at an input, we let p(x,t) = the num-
ber of bits in x’s VOQ plus the number of bits in
packets whose VOQs became non-empty after x’s
VOQ last became active. Note that p(x,t) may include
bits from packets that are in the process of arriving on
the input link but have not yet been fully received.
Also, note that any VOQ that became non-empty after
x last became active, is either not yet active or became
active after x’s VOQ. Hence, p(x) is an upper bound
on the number of bits in the packets that precede x in
the packet ordering (including x itself). So if
p(x,t)=L(x) and no bits of x have been sent to the
crossbar yet, then x is the first packet in the ordering
at input i at time t. More generally, if p(x,t)=R(x,t),
then x is the first packet in the ordering at input i at
time t. We define q(x,t) to be the number of bits in the
output that x is going to, at time t and we define
slack(x,t) = q(x,t) – p(x,t).

Now, we show that PGV is work-conserving when
operated with a speedup of 2. Our proof requires sev-
eral lemmas. The first is similar to lemmas used in the
work-conservation proofs for cell-switching algo-
rithms.

Lemma 2. Let x be an ij-packet at input i at times t1
and t2>t1, where t1≥f(x) and t1≥τA(x). For any PGV
scheduler with speedup S and B≥2LM,

slack(x,t2)≥slack(x,t1)+(S–2)(t2–t1).

That is, slack increases at rate at least S–2. Hence, for
S≥2, slack does not decrease for any packet in a VOQ
after the first event of the current active period.

proof. First, note that during any time period, p(x) can
increase by at most the duration of the time period,

due to new bits arriving at input x at the link rate.
Similarly, q(x) can be decrease by at most the duration
of the time period, as bits are sent on the outgoing
link at the link rate. The resulting decrease in slack
can be offset by increases caused by the transfer of
bits from input i to the crossbar or from the crossbar
to output j.

Now, consider what happens between any two
consecutive events at input i. Let w be the first packet
in the VOQ containing x. If, at the time of the first
event, Bi,j does not have room for w, then it contains at
least LM bits (recall that the crosspoint buffer size is
2LM). This means that output j will be transferring bits
from some crosspoint buffer for at least the next LM/S
time units at rate S, by which time the next event at
input i must have occurred. On the other hand, if Bi,j
does have room for w at the time of the first event,
then either w must be selected for transmission to the
crossbar or some packet that precedes w must be se-
lected. In either case, this removes bits preceding x at
rate S throughout this time period. Consequently,
whether Bi,j has room for w or not, the transfer of bits
to/from the crossbar contributes to an increase in
slack(x) at rate S, giving a net rate of increase of at
least S–2.

Lemma 3. Let x1 be the first packet in Vi,j at the time
t1, of some event at input i, and let x2 be the first
packet in Vi,j at some time t2>t1 in the same active pe-
riod for Vi,j. For any PGV scheduler with speedup
S≥2, if slack(x1,t1)≥–L(x1), then slack(x2,t2)≥–R(x2,t2).

proof. Suppose that t2 is the time of the next schedul-
ing event at input i after t1. If the event at t1 does not
select a packet from Vi,j, the inequality remains true at
the time of the next event by Lemma 2. Suppose then,
that the event at t1 does select x1 from Vi,j. Until the
time of the next event, bits of x1 are sent to the cross-
bar at rate S, which means that output j must also be
receiving bits from the crossbar at rate S. This means
that slack(x1) experiences a net increase of at least
L(x1) during the time between the two events, if S≥2.
So, at the time the last bit of x1 is being sent to the
crossbar, slack(x1)≥0. Consequently,

slack(x2,t2) = slack(x1,t2)–L(x2) ≥ –L(x2) = –R(x2,t2)

- 7 -

It follows by induction that the result holds if t2 is the
time of any event later than t1.

To complete the proof, we need to show that the
condition on slack is maintained throughout the time
interval between two consecutive events. If x is the
packet at the head of the queue at the time t of some
event, then x remains at the head of the queue be-
tween time t and the time of the next event. If x is not
selected at time t, then the result follows by Lemma 2.
If x is selected at time t, then during the time interval
immediately following the event, slack(x) increases at
a rate ≥2S–2≥S. Since the bits of x are also being
transferred to the crossbar at rate S, the increase in
slack is sufficient to keep up with the rate at which
bits are leaving the input. Hence, slack(x)≥–R(x) holds
throughout the period up to the next event.

Lemma 4. Let x be the first packet in Vi,j at time t. For
any PGV scheduler with speedup S≥2 and B≥2LM,
either slack(x,t)≥–R(x,t) or

p(x,t) < L(x1) + LM /S – (t–τA(x))(S–1).

proof. Let x1, x2,… be the packets that arrive during
the active period for Vi,j that includes time t. Let
τ1=τA(x) and let the time of subsequent events by la-
beled, τ2, τ3,… Note that if slack(x,τk)≥–L(x) (where x
is the first packet in Vi,j at τk), then the condition on
slack in the statement of the lemma holds at all later
times by Lemma 3. Hence, it suffices to show that the
condition on p in the statement of the lemma holds up
until the first event where the condition on slack holds
(see Figure 2). We show this, by induction on k. For
k=1, note that x1 is the first packet in Vi,j at τ1. If
slack(x1,τ1)≥–L(x1), then we’re done. Assume there-
fore, that slack(x1,τ1)<–L(x1). Because τ1<f(x1)+LM /S,
and because Vi,j became the first VOQ in the ordering
at input i at time s(x1), p(x1,τ1)<L(x1)+LM /S.

For k>1, let x′ be the first packet in Vi,j at time τk−1. If
slack(x′,τk−1)≥–L(x′), then we’re done. Assume there-

fore, that slack(x′,τk−1)<–L(x′). By the induction hy-
pothesis,

p(x′,τk−1) < L(x1) + LM /S – (τk–1–τ1)(S–1)

Consequently,

)1)((/)()(
),(),(),(

111

111

−−−++′−<

′+′=′

−

−−−

SSLxLxL
xpxslackxq

kM

kkk

ττ
τττ

If x′=x1, then

MMkijMk LSLBSLxq ≤−<<′ −−)1/()(and/),(11 ττ

where the second inequality follows from Lemma 1.
If x′≠x1, then (τk–1–τ1)≥L(x1)/S and

)(/2
//)()(

)()/)1((/)()(),(

1

111

xLSL
SLSxLxL

xLSSSLxLxLxq

M

M

Mk

′−≤
++′−=

−−++′−<′ −τ

and by Lemma 1,

)(2

))(/2))(1/(11()(1

xLL

xLSLSB

M

Mkij

′−<

′−−+<−τ

In both cases there is room for x′ in Bi,j. Consequently,
either x′ is selected at τk–1, or some packet w that pre-
cedes x′ is selected. Thus, at every event at which the
condition on slack fails to hold, the packet selected at
that event is selected either from Vi,j or a VOQ that
precedes Vi,j. This means that all bits sent to the cross-
bar between τ1 and τk precede x. Thus,

p(x,τk) < L(x1) + LM /S –(τk –τ1)(S–1)

By the same reasoning, at any time t in the interval
between τk−1 and τk

p(x′,t) < L(x1) + LM /S – (t –τ1)(S–1)

Lemma 5. Let x be the first packet in Vi,j at time t and
let s(x)≤ t–T where T=(1+1/(S–1))LM. If x has not yet
been selected for transmission to the crossbar, then,

τA(x)=τ1f(x1)s(x1)
≤ LM < LM/S

arrival of x1 slack(x) = –L(x)p(x,t) < L(x1) + LM /S – (t–τA(x))(S–1)

τ2 τ3 τk

τA(x)=τ1f(x1)s(x1)
≤ LM < LM/S

arrival of x1 slack(x) = –L(x)p(x,t) < L(x1) + LM /S – (t–τA(x))(S–1)

τ2 τ3 τk

Figure 2. Diagram for Lemma 4.

- 8 -

for any PGV scheduler with speedup S≥2 and B≥2LM,
slack(x,t)≥ –L(x).

proof. By Lemma 4, either slack(x,t)≥–L(x) or

p(x,t) < L(x1) + LM /S – (t–τA(x))(S–1)

In the first case, we’re done, so assume slack(x,t)<
–L(x) and let x1 be the first packet to arrive in the cur-
rent active period. If x=x1, then since

)1(/)(
)/)(()(

)(

1

−+≥
++−>

+≥

SSLx
TSLxLx

Txst

MA

MA

τ
τ

it follows that p(x,t)<L(x1). That is, the number of bits
that precede x at time t is less than the length of x,
which contradicts the fact that x has not been selected
yet.

Assume therefore, that x≠x1. In this case s(x)≥f(x1),
which means that s(x)>τA(x)–LM /S. Consequently,

)1(/)(
/)(

)(

−++≥
+−>

+>

SSLLx
TSLx

Txst

MMA

MA

τ
τ

Hence,

0)1))(1(/(/)(),(1 ≤−−+−+< SSSLLSLxLtxp MMM

which is not possible. This yields a contradiction to
the assumption that slack(x,t)<–L(x).

It is straightforward to show that the bound on T in
Lemma 5, cannot be improved significantly. It’s also
worth noting that a similar result can be shown with
respect to f(x) instead of s(x). In this case, the time
bound becomes LM /(S–1). We’re now in a position to
prove our first work-conservation result.

Theorem 1. Any PGV scheduler with S≥2 and B≥2LM
is T-work-conserving, for any T ≥(1+1/(S–1))LM . In
particular, it is (2LM)-work-conserving.

proof. Suppose some output j is idle at time t and no
input is currently sending it a packet, but some input i
has a packet x for output j with s(x)+T<t. Assume,
without loss of generality, that x is the first packet in
Vi,j at time t. Then by Lemma 5, slack(x,t)≥–L(x).
Since q(x,t)=0, this implies p(x,t)≥–L(x). In other
words, the only bits that precede x are the bits in x
itself. This means that input i can forward x to the
crossbar at time t. Since the scheduler is prompt, this
means that output j must be receiving bits from some

input at time t contradicting the assumption that out-
put j is idle at time t.

3.3 Packet LOOFA.
The Least Occupied Output First Algorithm (LOOFA)
is a cell crossbar scheduling algorithm described in
[5]. We define a packet crossbar scheduling algorithm
based on LOOFA, called Packet LOOFA (PLF). Like
PGV, PLF imposes a total order on the VOQs at each
input, which is extended to an order on all the packets
at the input. In PLF, one VOQ precedes another if its
output contains fewer bits. At each scheduling event,
the PLF scheduler selects some VOQ for which the
crosspoint buffer has enough space to accommodate
the first packet in the VOQ. If multiple VOQs are eli-
gible under this criterion, it selects the VOQ that
comes first in the ordering. The work-conservation
results we prove below do not depend on the specific
policy used by the output to select a crosspoint buffer.

The work-conservation result for PLF is compara-
ble to that for PGV, but the required analysis is tech-
nically more difficult because the relative orders of
VOQs can change. PLF is more responsive to changes
in output queue lengths than PGV. While this has no
effect on work-conservation when S≥2, it can yield
better performance for smaller speedups.

To simplify the analysis to follow, we can view
each time period [t1,t2] between two consecutive
scheduling events at an input, as consisting of three
sub-intervals [t1,t1+], [t1+,t2−] and [t2−,t2]. We view the
arrival of bits on inputs as occurring during the first
sub-interval, the transfer of bits from inputs to outputs
as occurring during the second sub-interval and the
forwarding of bits on the outputs as occurring during
the third sub-interval. Note then, that for any packet x
at input i at both t1 and t2,

slack(x,t1+) ≥ slack(x,t1)–(t2–t1)

Also, if slack(x,t2–)≥(t2–t1)–L(x), it follows that
q(x,t2–)≥(t2–t1) and consequently slack(x,t2)≥–L(x).
Our first lemma focuses on how the slack changes
during the “middle” sub-interval. For an input i, let
minSlack(i,t) denote the minimum slack at time t
among all the packets present at input i.

Lemma 6. Let times t1 and t2 be the times of consecu-
tive scheduling events at input i. For any PLF sched-
uler with speedup S and B≥2LM,

minSlack(i,t2–)≥minSlack(i,t1+)+S(t2–t1)

- 9 -

That is, minSlack increases at rate at least S.

proof. Let x be any ij-packet at input i at time t1+, let
∆=(t2–t1) and let slack(x,t1+)= minSlack(i,t1+)+ σ. We
will show that slack(x) increases by at least S∆− σ
during the sub-interval [t1+,t2−]. The lemma then fol-
lows directly. (Note that it is not sufficient to prove
that the slack of a packet x that has minimum slack at
the start of the sub-interval increases by S∆, since x
may not have minimum slack at the end of the sub-
interval.)

First, consider any packet y at input i that is not se-
lected at t1 and whose destination output receives
fewer than S∆ bits during [t1+,t2−]. Since ∆≤LM/S, the
crosspoint buffers for this output must have contained
fewer than LM bits at t1 meaning that the crossbar
buffer for y must have contained fewer than LM bits at
t1. Consequently, y was eligible for selection at t1 and
since it was not selected, the packet that was selected
must have preceded y at t1. So, for any packet y that
remains at input i, either the output receives S∆ bits
during the interval, or the input sends S∆ bits to the
crossbar from a packet that precedes y at the start of
the interval.

 We say that a packet y at input i passes x, if at
time t1+, x precedes y and at time t2−, y precedes x. If
no packets pass x, the argument in the last paragraph
implies that either q(x) increases by S∆ or p(x) de-
creases by S∆. Either way, slack(c) increases by at
least S∆ − σ.

Assume then, that there are r >0 bits in packets that
pass x and let y be the packet in the set of packets that
pass x that comes latest in the packet ordering at t1+.
Let m be the number of bits received by output j dur-
ing [t1+,t2−]. Then,

),(),(),(),(1221 +−−+ ≥≥=+ tyqtyqtxqmtxq

Let k=p(y,t1+)–p(x,t1+). Now,

σ
σ

σ

++−+≤
+−≤

+=−

++

++

+++

)),(()),((
),(),(

),(),(),(

11

11

111

ktxpmtxq
typtyq

timinSlacktxptxq

So (m− k) ≥ − σ. Since y passes x, its output must re-
ceive fewer than m bits, so S∆ bits that precede it at t1+
must be forwarded. Of these at least S∆− (k−r) must
also precede x at t1+. So,

kStxprkSrtxptxp +∆−≤−−∆−+≤ ++−),())((),(),(112

Combining this, with q(x,t2−) = q(x,t1+)+ m gives,

σ−∆+≥
−+∆+≥

+∆−−+≥
−=

+

+

++

−−−

Stxslack
kmStxslack

kStxpmtxq
txptxqtxslack

),(
)(),(

)),(()),((
),(),(),(

1

1

11

222

That is, slack(x) increases by at least S∆ − σ.

Lemma 6 has an important consequence that is
captured in the following Corollary.

Corollary 1. Let x be a packet at input i which is not
selected at the time t1 of some scheduling event. For
any PLF scheduler with speedup S≥2 and B≥2LM, if
the next scheduling event at input i occurs at t2 and
slack(x,t1)≥–L(x), then slack(x,t2)≥–L(x).

proof. By the discussion preceding Lemma 6 and
Lemma 6 itself,

slack(x,t1+)≥slack(x,t1)–(t2–t1)

and

slack(x,t2–)≥ slack(x,t1+)+2(t2–t1)

Combining these two inequalities with slack(x,t1)≥–
L(x) gives slack(x,t2–)≥(t2–t1)–L(x). By the discussion
preceding Lemma 6, this implies slack(x,t2)≥–L(x).

Also note in the real system, rather than the artificial
version we have adopted for the purposes of analysis,
if slack(x)≥–L(x) at time t1 then this remains true
throughout the interval between t1 and t2.

Lemma 7. Let x1 be the first packet in Vi,j at the time
t1, of some event at input i, and let x2 be the first
packet in Vi,j at some time t2>t1 in the same active pe-
riod for Vi,j. For any PLF scheduler with speedup S≥2,
if slack(x1,t1)≥–L(x1), then slack(x2,t2)≥–R(x2).

proof. Suppose that t2 is the time of the next schedul-
ing event at input i after t1. If the event at t1 does not
select a packet from Vi,j, the inequality remains true at
the time of the next event by Corollary 1. Suppose
then, that the event at t1 does select x1 from Vi,j. Until
the time of the next event, bits of x1 are sent from the
crossbar at rate S, which means that output j must also
be receiving bits from the crossbar at rate S. This
means that slack(x1) experiences a net increase of at
least L(x1) during the time between the two events, if
S≥2. So, at the time the last bit of x1 is being sent to
the crossbar, slack(x1)≥0. Consequently,

slack(x2,t2) = slack(x1,t2) –L(x2) ≥ –L(x2) = –R(,x2)

- 10 -

It follows by induction that the result holds if t2 is the
time of any event later than t1.

To complete the proof, we need to show that the
condition on slack is maintained throughout the time
interval between two consecutive events. If x is the
packet at the head of the queue at the time t of some
event, then x remains at the head of the queue be-
tween time t and the time of the next event. If x is not
selected at time t, then the result follows the discus-
sion following Corollary 1. If x is selected at time t,
then during the time interval immediately following
the event, slack(x) increases at a rate ≥2S–2≥S. Since
the bits of x are also being transferred to the crossbar
at rate S, the increase in slack is sufficient to keep up
with the rate at which bits are leaving the input.
Hence, slack(x)≥–R(x) holds throughout the period up
to the next event.

Lemma 8. Let x be the first packet in Vi,j at time t. For
any PLF scheduler with speedup S≥2 and B≥2LM, ei-
ther

slack(x,t)≥–R(x,t)

or

p(x,t) < L(x1) + LM /S –(t.–τA(x))(S–1).

The proof of Lemma 8 is essentially the same as the
proof of Lemma 4, with references to Lemma 3 re-
placed with reference to Lemma 7.

Lemma 9. Let x be the first packet in Vi,j at time t and
let s(x)≤ t–T where T=(1+1/(S–1))LM. If x has not yet
been selected for transmission to the crossbar, then,
for any PLF scheduler with speedup S≥2 and B≥2LM,
slack(x,t)≥ –L(x).

The proof of Lemma 9 is essentially the same as the
proof of Lemma 5, with references to Lemma 4 re-
placed with reference to Lemma 8. This leads directly
to the work-conservation result for PLF.

Theorem 2. Any PLF scheduler with S≥2 and B≥2LM
is T-work-conserving, for any T ≥(1+1/S+1/S(S–1))LM.
In particular, it is (2LM)-work-conserving.

The proof is essentially the same as the proof of Theo-
rem 1.

4. ORDER PRESERVING SCHEDULERS
The analysis of the previous section can be modified
to show that variants of PGV and PLF are order-
preserving, not just work-conserving. Corresponding
results for unbuffered cell-based crossbars are proved

in [2] and [10]. To convert the work-conserving
schedulers to order-preserving schedulers, we assign
to each packet x, a timestamp equal to s(x). The out-
puts use the timestamps to select packets from cross-
point buffers, always selecting the oldest packet first.
(We note that similar results can be proved for time-
stamps equal to f(x).) The output line cards forward
packets in the order of their timestamps and delay
packets until their “age” exceeds a threshold equal to
(1+1/(S–1)+1/S)LM. We call the resulting versions of
PGV and PLF, PGV with Timestamps (PGVT) and
PLF with Timestamps (PLFT).

We define a packet crossbar scheduler to be T-
order-preserving for a given speedup S and crosspoint
buffer size B, if it is T-work-conserving and all pack-
ets are forwarded in the order of their timestamps. We
show that PGV and PLF are T-work-conserving for T

= (1+1/(S–1)+1/S)LM.

To facilitate the analysis, we define a specific, im-
plementation of the algorithms and phrase our analy-
sis in terms of that implementation. This implementa-
tion is an artificial construct created entirely for the
purpose of simplifying the analysis. It is not intended
for practical use. In this implementation, we view
each output line card as consisting of two stages. The
first stage contains a time-ordered queue that forwards
packets to the second stage in the order of their time-
stamps, once their age exceeds a threshold of (1+1/(S–
1))LM. Bits are forwarded from the first stage to the
second stage at the external link rate. The second
stage can be viewed as an interruptible delay buffer
with a delay of LM/S. In most situations, bits flow
through the delay buffer in the order they enter, and
flow out to the external link after a delay of LM/S.
However, we allow the flow of data through the delay
buffer to be interrupted. In particular, if the first stage
starts receiving bits from a packet that has a smaller
timestamp than any packets currently passing through
the delay buffer, the bits of the new packet will be
inserted into the delay buffer ahead of all packets with
smaller timestamps. Those bits in the delay buffer that
are behind the insertion point are “stalled” while the
insertion takes place. The insertion operation does not
affect the bits of a packet that has already started
flowing out on the external link.

We re-define q(x) to be the number of bits in the
first stage of the output that packet x is going to that
belong to the same packet as x or that belong to pack-
ets with timestamps smaller than the timestamp for x

- 11 -

(for simplicity, we assume that all packets have
unique timestamps). With this alteration, we define
slack as before, relative to the re-defined q. We start
with the analysis for PGVT, which uses a series of
lemmas that parallel those of section 3.1

Lemma 10. Let x be an ij-packet at input i at times t1
and t2>t1, where t1≥f(x) and t1≥τA(x). For any PGVT
scheduler with speedup S and B≥2LM,

slack(x,t2) ≥ slack(x,t1) + (S–2)(t2–t1)

That is, slack increases at rate at least S–2. Hence, for
S≥2, slack does not decrease for any packet in a VOQ
after the first event of the current active period.

proof. Consider what happens between any two con-
secutive events at input i. Let w be the first packet in
the VOQ containing x. If, at the time of the first event,
Bi,j does not have room for w, then it contains more
than LM bits. Since packets are transferred to and from
the crossbar at rate S, Bi,j must have contained a
packet at the time of the most recent scheduling event
at output j. Since inputs forward packets from each
VOQ in the order they are received, the first packet in
Bi,j at that time must have been “older” than x (had a
smaller timestamp). Since outputs select packets from
crosspoint buffers according to their timestamps, this
means that the packet selected by output j at its last
scheduling event was older than x. It also means that
until the next event at input i, output j will be receiv-
ing bits from packets that are older than x at rate S,
contributing to an increase in q(x). On the other hand,
if Bi,j does have room for w at the time of the first
event at input i, then either w must be selected for
transmission to the crossbar or some packet that pre-
cedes w must be selected. In either case, this removes
bits preceding x at rate S throughout this time period,
contributing to a decrease in p. Consequently, whether
Bi,j has room for w or not, the transfer of bits to/from
the crossbar contributes to an increase in slack(x) at
rate S, giving a net rate of increase of at least S–2.

Lemma 11. Let x1 be the first packet in Vi,j at the time
t1, of some event at input i, and let x2 be the first
packet in Vi,j at some time t2>t1 in the same active pe-
riod for Vi,j. For a PGVT scheduler with speedup S≥2,
if slack(x1,t1)≥–L(x1), then slack(x2,t2)≥–R(x2).

The proof of Lemma 11 is essentially the same as that
of Lemma 3. It simply must be re-interpreted in terms
of the redefined q and using Lemma 10, in place of
Lemma 2.

Lemma 12. Let x be the first packet in Vi,j at time t.
For a PGVT scheduler with speedup S≥2 and B≥2LM,
either slack(x,t)≥–R(x,t) or

p(x,t) < L(x1) + LM /S –(t–τA(x))(S–1).

The proof of Lemma 12 is essentially the same as that
of Lemma 4.

Lemma 13. Let x be the first packet in Vi,j at time t
and let s(x)≤ t–T where T=(1+1/(S–1))LM. If x has not
yet been selected for transmission to the crossbar,
then, for any PGVT scheduler with speedup S ≥2 and
B≥2LM, slack(x,t) ≥ –L(x).

The proof of Lemma 13 is essentially the same as that
of Lemma 5.

Theorem 3. A PGVT scheduler with S≥2 and B≥2LM
is T-order-preserving for T≥(1+1/(S–1)+1/S)LM. In
particular, it is ((5/2)LM)-order-preserving.

proof. Consider the portion of the system that includes
only the first stage of each of the output line cards. If
the first stage is modified so that it does not hold
packets until their age exceeds the threshold of
(1+1/(S–1))LM, then this can be viewed as a complete
system using the original PGV scheduling algorithm.
Hence, it is ((1+1/(S–1))LM)-work-conserving by
Theorem 1. Now note that this remains true, if the
first stage holds packets back until their age exceeds
the threshold of (1+1/(S–1))LM. Since the output
process of the second stage is just a time-shifted ver-
sion of its input process, it follows that the entire sys-
tem is T-work-conserving for T=(1+1/(S–1)+1/S)LM.

Now suppose that at some time t, some output j is
about to forward a packet z on the external link and
the system contains a packet x for output j with a
smaller timestamp than z. Assume, without loss of
generality, that x is the packet satisfying these condi-
tions with the smallest timestamp. Note that if any bits
from x had reached the output line card by time t, then
x would be forwarded instead of z. Therefore, we can
assume that no bit of x has reached the output line
card.

Since z is about to be forwarded on the external
link at time t, either z entered the second stage at some
time t′≤t–LM/S or it entered later than t–LM/S and was
inserted in front of some other packet with a larger
timestamp. It’s easy to show by induction that either z
or some packet with a timestamp larger than z was
entering the second stage at some time t′≤ t–LM/S.

- 12 -

Such a packet could only have entered the second
stage at a time later than s(x)+(1+1/(S–1))LM. Hence,
at some time t′ in [s(x)+(1+1/(S–1))LM, t–LM/S], there
was a packet entering the second stage with a larger
timestamp than x.

 This implies that q(x,t′)=0 and by Lemma 13,
slack(x,t′) = –L(x). This implies that p(x,t′) = –L(x).
Consequently, there are no bits at input i that precede
x at time t′, except the bits in x itself, meaning that x is
eligible for transmission to the crossbar at t′. Once x
enters the crossbar, it can be delayed only for the time
it takes the packet currently entering the output line
card to complete. This means that by t, x must be en-
tering the line card, yielding a contradiction that es-
tablishes the theorem.

The corresponding result for PLFT can be proved
using a similar analysis, which we omit. The analysis
rests on a similar series of lemmas. Only the first of
these is significantly different, and combines elements
of Lemmas 6 and 10.

Theorem 4. A PLFT scheduler with S≥2 and B≥2LM is
T-order-preserving for T≥(1+1/(S–1)+1/S)LM. In par-
ticular, it is ((5/2)LM)-order-preserving.

5. EFFECT OF LIMITED SPEEDUP
The analytical results of the last two sections show
that the two crossbar scheduling algorithms studied
perform well when the speedup is ≥ 2. However, they
say nothing about how they can be expected to per-
form when the speedup is limited to less than 2. Since
the cost of a crossbar scales up in proportion to its
speedup, a designer might well choose to engineer a
system with a smaller speedup, even though it means
foregoing strong performance guarantees.

We adopt the simulation methodology used in ref-
erences [8, 9], where a so-called stress test was used
to probe the performance of a switch scheduler under
demanding traffic conditions. We use a different traf-
fic pattern than [8, 9]. In particular, we adapt a pattern
used by Chuang et. al. in [2] as a worst-case example
for their Critical Cells First scheduler. The traffic pat-
tern involves n inputs and n phases. Input i receives
packets during the first i phases, and no new traffic
after that. In phase j, all of the arriving traffic is ad-
dressed to output j. Note that an ideal output-queued

switch can complete transmission of all the packets
within one packet time of the last packet’s arrival. In
fact, a crossbar operating with a speedup of 1 can also
forward all the packets with no delay if the traffic pat-
tern is known in advance. However, it is a difficult
traffic pattern for a scheduler that must react to the
arriving traffic with no fore-knowledge of what is to
come.

Figure 3 shows an example of how the PLF algo-
rithm performs on the test pattern. In this example,
n=6 and the phase duration is equal to the time it
takes for 50 packets to arrive on the input links. The
packet length is fixed at 1000 bytes, the crosspoint
buffer at 2000 bytes and the speedup is 1.2. The out-
put line cards select the crosspoint buffer for which
the corresponding input has the longest backlog of
waiting packets.

The first chart shows the time history of the aggre-
gated backlogs at the input line cards for each of the
outputs (that is V(+,j) denotes V1,j + ⋅ ⋅ ⋅ + V6,j). The
vertical line at time 300 is the time when an ideal out-
put queued switch would be finished sending the last
packet. In this case, the simulated switch completed
the transmission of the last packet at about time 350,
an overshoot of about 16%.

The second chart shows the time history of the ag-
gregated backlogs at the crossbar buffers and the out-
puts. Most of the outputs have substantial backlogs
until about time 285, when all the output-side back-
logs are gone, even though the inputs still have data to
be transferred.

The third chart shows the time history of the miss
fraction of the six outputs, plus an average miss frac-
tion. We say that an output is incurring a miss, if the
output is idle, but there is a packet in the system that
has been fully received. The miss fraction for a given
time interval is the fraction of that interval during
which misses are taking place. Note that we “charge”
for a miss even if the packets that are present for the
target output just arrived. Thus, a system may be T-
work-conserving and still incur misses. For the spe-
cific test case illustrated, we observe short bursts of
misses at the start of the fifth and sixth phases, then a
longer period of misses from about time 285 to 330.

- 13 -

Figure 4 shows the results from a large number of
similar tests. These cases involved larger switches
(n=64) and phases long enough for 50 packets to ar-
rive. The chart shows the overshoot for the test runs
as a percentage, where the overshoot is the amount of
extra time taken to forward the packets relative to an
ideal, output-queued switch. For these results, the
packet lengths have a bimodal distribution with peaks
at the minimum and maximum packet lengths of 50
and 1000 bytes and an average of 200. Half of the
total probability is in the two peaks, while the re-
mainder is distributed uniformly across the intermedi-
ate packet lengths. The crossbar buffer size is 2000
bytes, twice the maximum packet length. The speedup
is varied on the x-axis and the different curves show
how the system performs for different output packet
selection methods. In addition to the longest VOQ
selection method mentioned earlier, we show results
for random selection and selection based on time-
stamp value. We observe that the longest VOQ and

timestamp selection methods provide virtually identi-
cal performance with respect to the overshoot metric,
while the random selection method is clearly inferior.

Figure 5 shows a similar set of results in which the
amount of buffer space in the crossbar buffers is var-
ied. For these results, the longest VOQ selection
method is used and the packet lengths have the same
bimodal distribution as for the previous results. Re-
ducing the crossbar buffer size from 2000 to 1000
bytes makes very little difference in the results, and
while increasing the buffer size to 4000 yields some
improvement, the difference is fairly small.

The results suggest that a designer might reasona-
bly choose to implement a system with a speedup as
low as 1.5.

6. CONCLUDING REMARKS
While our results have been derived for asynchronous
crossbars that operate directly on variable length
packets, they can also be applied to systems that seg-

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400
time (1000s)

A
g
g
r.

 V
O

Q
 (

K
B
)

V (+,1)

V (+,2)
V (+,3)

V (+,5)

V (+,4)

V (+,6)

ideal finish time

PLF, longest VOQ

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400
time (1000s)

M
is

s
F
ra

ct
io

n PLF, longest VOQ

average
miss rate

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

time (1000s)

A
g
g
r.

 X
B
+

O
Q

 (
K
B
)

PLF, longest VOQ

B(+,1)+Q (1) B(+,6)+Q (6)

B(+,5)+Q (5)

B(+,4)+Q (4)

B(+,3)+Q (3)

B(+,2)+Q (2)

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400
time (1000s)

A
g
g
r.

 V
O

Q
 (

K
B
)

V (+,1)

V (+,2)
V (+,3)

V (+,5)

V (+,4)

V (+,6)

ideal finish time

PLF, longest VOQ

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400
time (1000s)

M
is

s
F
ra

ct
io

n PLF, longest VOQ

average
miss rate

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

time (1000s)

A
g
g
r.

 X
B
+

O
Q

 (
K
B
)

PLF, longest VOQ

B(+,1)+Q (1) B(+,6)+Q (6)

B(+,5)+Q (5)

B(+,4)+Q (4)

B(+,3)+Q (3)

B(+,2)+Q (2)

Figure 3. Sample Test Pattern Results

- 14 -

ment packets into cells, if the schedulers are modified
to incorporate hysteresis. In such a scheduler, once a
VOQ has been selected, the input must continue to
supply cells from that VOQ until all cells in the
packet have been transferred to the crossbar. Simi-
larly, once an output has selected a particular crossbar
buffer, it must continue to select that buffer until all
cells of the packet have been transferred.

The results can also be extended to systems that
place different constraints on where and when packets
are buffered. In particular, most routers buffer packets
at both inputs and output line cards, not just at the
inputs. Buffering packets at the inputs allows error
checks to be performed on the packets before for-
warding them to the switch. Buffering them at the
outputs allows similar checks to be performed, but is
arguably less essential, since packet errors are less
likely to occur within a router than on the external
links. Having said that, other considerations may dic-
tate that packets be buffered at outputs, as well as in-
puts and this raises the question of how the T-work-
conservation and T-order-preservation properties are
affected. It turns out that the effect is fairly minor,
requiring only that the value of T be increased by
LM/S, to accommodate the added delay for a maxi-
mum length packet to be fully buffered at the outputs.

With an asynchronous crossbar, it is possible to
build a system in which packets pass from inputs to
outputs without ever being fully buffered. This is
known as cut-through switching [4] and can provide
superior delay performance. While cut-through
switching is not typically used in routers, it can be
useful in system contexts where it is important to
minimize latency. While our results cannot be directly
applied to such systems, it seems likely that similar

results could be shown. The key requirement needed
to obtain work-conservation is that once a packet has
been selected to advance from an input line card to the
crossbar or from the crossbar to an output line card,
the flow of bits in that packet must not be interrupted
until the end of the packet is reached. Inputs (outputs)
must also be able to forward multiple packets to
(from) the crossbar concurrently in certain cases.
Consider for example, an input that is forwarding bits
of a packet x to the crossbar as they come in. Since
the bits are arriving at the link rate, the transfer of the
bits of x to the crossbar uses only half the crossbar
bandwidth (assuming S=2). If another packet y at the
input becomes eligible for forwarding while x is still
coming in (because its crossbar buffer has drained
sufficiently to accommodate it), the input must be
able to forward y to the crossbar concurrently with x
in order to fully exploit the crossbar bandwidth.
Without the ability to transfer packets concurrently to
and from the crossbar, it will not be possible to
achieve work-conservation.

One possible objection to the use of crosspoint
buffers that are large enough to hold packets is that
they are likely to be too expensive, even for modern
integrated circuits. A 32 port crossbar equipped with
buffers large enough to hold two 1500 byte packets
would require a total of more than 3 MB of SRAM.
While this is a substantial amount for on-chip mem-
ory, it falls within the range of what is currently feasi-
ble. Moreover, high performance crossbars are gener-
ally implemented using multiple components operat-
ing in parallel. The buffer space required by each such
component is thus reduced in proportion to the num-
ber of components. For a system designed to support
40 Gb/s external links, a typical design might use 16

0

0.1

0.2

0.3

0.4

0.5

1 1.1 1.2 1.3 1.4 1.5 1.6

Speedup

O
v
e
rs

h
oo

t

n =64

longest,
timestamp

random

Figure 4. Results for different output packet selec-
tion criteria

0

0.1

0.2

0.3

0.4

0.5

1 1.1 1.2 1.3 1.4 1.5 1.6

Speedup

O
v
er

sh
o
o
t

n =64

B =1000

B =4000

B =2000

Figure 5. Results for different crossbar buffer sizes.

- 15 -

to 32 chips operating in parallel. This reduces the
memory requirement per chip to about 100 to 200
KB. This is a fairly modest requirement and opens up
the possibility of handling larger packets.

There are several ways the work described here
can be extended. First work-conservation results can
be developed for other scheduling algorithms, using
the analysis techniques for asynchronous crossbars
developed here. Another natural direction is to extend
the analysis techniques to enable the establishment of
stronger performance guarantees, such as delay
bounds. Reference [3] shows how cell switches using
buffered crossbars can provide such guarantees and it
would be useful to develop similar guarantees for
packet switches using buffered crossbars. Another
interesting direction would be to establish work-
conservation and order-preservation results for sys-
tems that use cut-through switching.

While we have argued that buffered crossbars
seem to be needed to achieve work-conservation, it’s
conceivable that they are not. It would certainly be
interesting to see if comparable results could be ob-
tained without buffers in the crossbar. Alternatively, it
may be possible to obtain similar results with buffers
that are smaller than 2LM.

References
[1] Anderson, T., S. Owicki., J. Saxe and C. Thacker. “High

speed switch scheduling for local area networks,” ACM
Trans. on Computer Systems, 11/93.

[2] Chuang, S.-T. A. Goel, N. McKeown, B. Prabhakar
“Matching output queueing with a combined input output
queued switch,” IEEE Journal on Selected Areas in
Communications, 12/99.

[3] Chuang, Shang-Tse, Sundar Iyer, Nick McKeown. “Practical
Algorithms for Performance Guarantees in Buffered
Crossbars,” Proceedings of IEEE INFOCOM, 3/05.

[4] Kermani, Parviz and Leonard Kleinrock. “Virtual Cut-
Through: A New Computer Communication Switching
Technique.” Computer Networks 3: 267-286, 1979.

[5] Krishna, P., N. Patel, A. Charny and R. Simcoe. “On the
speedup required for work-conserving crossbar switches,”
IEEE J. Selected Areas of Communications, 6/99.

[6] McKeown , Nick. “iSLIP: a scheduling algorithm for input-
queued switches,” IEEE Transactions on Networking, 4/99.

[7] Nojima, S., E. Tsutsui, H. Fukuda, M.Hashimoto. “Integrated
Services Packet Network Using Bus Matrix Switch”, IEEE
Journal on Selected Areas of Communications, 10/87.

[8] Pappu, P., J. Turner and K. Wong. “Stress-Resistant
Scheduling Algorithms for CIOQ Switches, ,” Proceedings
of ICNP, 11/03.

[9] Pappu, Prashanth, Jonathan Turner and Ken Wong. “Work-
Conserving Distributed Schedulers for Terabit Routers,”
Proceedings of SIGCOMM, 9/04.

[10] Rodeheffer, Thomas L. and James B. Saxe. “An Efficient
Matching Algorithm for a High-Throughput, Low-Latency
Data Switch .” Compaq Systems Research Center, Research
Report 162, 11/5/98

