

Advanced Algorithms for Fast and Scalable

Deep Packet Inspection

Sailesh Kumar
Washington University

sailesh@arl.wustl.edu

Jonathan Turner
Washington University

jon.turner@wustl.edu

John Williams
Cisco Systems

jwill@cisco.com

ABSTRACT
Modern deep packet inspection systems use regular expressions to

define various patterns of interest in network data streams. Deter-

ministic Finite Automata (DFA) are commonly used to parse

regular expressions. DFAs are fast, but can require prohibitively

large amounts of memory for patterns arising in network applica-

tions. Traditional DFA table compression only slightly reduces

the memory required and requires an additional memory access

per input character. Alternative representations of regular expres-

sions, such as NFAs and Delayed Input DFAs (D2FA) require less

memory but sacrifice throughput. In this paper we introduce the

Content Addressed Delayed Input DFA (CD2FA), which provides

a compact representation of regular expressions that match the

throughput of traditional uncompressed DFAs. A CD2FA ad-

dresses successive states of a D2FA using their content, rather

than a “content-less” identifier. This makes selected information

available earlier in the state traversal process, which makes it

possible to avoid unnecessary memory accesses. We demonstrate

that such content-addressing can be effectively used to obtain

automata that are very compact and can achieve high throughput.

Specifically, we show that for an application using thousands of

patterns defined by regular expressions, CD2FAs use as little as

10% of the space required by a conventional compressed DFA,

and match the throughput of an uncompressed DFA.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General –

Security and protection (e.g., firewalls)

General Terms
Algorithms, Design, Security.

Keywords
DFA, regular expressions, deep packet inspection.

1. INTRODUCTION
Many network services now process packets based on pay-

load content, in addition to the structured information found

in packet headers. Forwarding packets based on content

requires new levels of support in networking equipment.

Traditionally, deep packet inspection has been limited to

comparing packet content to sets of strings. Newer systems,

are now replacing string sets with regular expressions, due

to their increased expressiveness [Snort, bro, tippingPoint,

Cisco]. Cisco, has even the regular expression based con-

tent inspection capabilities into its Internetworking Operat-

ing System (IOS) [21]. In addition, layer 7 filters based on

regular expressions [30] are available for the Linux operat-

ing system. While flexible and expressive, regular expres-

sions have traditionally required substantial amounts of

memory, which severely limits their applicability in the

networking context.

This paper builds on a new technique for parsing regular

expressions using Delayed Input Deterministic Finite

Automata (D
2
FA). D

2
FAs were introduced in [3] and use

default transitions to reduce memory requirements. A de-

fault transition is followed whenever the current input char-

acter does not match any of the labeled transitions leaving

the current state. If two states have a large number of “next

states” in common, we can replace the common transitions

leaving one of the states with a default transition to the

other. No state can have more than one default transition,

but if the default transitions are chosen appropriately, the

amount of memory needed to represent the parsing automa-

ton can be dramatically reduced. Unfortunately, the use of

default transitions also reduces throughput, since no input is

consumed when a default transition is followed, but mem-

ory must be accessed to retrieve the next state. In this paper,

we develop an alternate representation for D
2
FAs that al-

lows them to be both fast and compact. The remainder of

this paper assumes familiarity with D
2
FAs [3].

The remainder of the paper is organized as follows.

Background on regular expressions and related work are

presented in Section 2. Section 3 introduces CD
2
FA. De-

tails of CD
2
FA construction are presented in Section 4. Sec-

tion 5 presents optimizations and Section 6 presents the

memory packing algorithm. Section 7 reports the experi-

mental results and the paper ends with concluding remarks

in Section 8.

2. BACKGROUND AND RELATED WORK
Deep packet inspection is becoming increasingly important

as a means to classify and control traffic based on the con-

tent, applications, and subscribers. If current trends con-

tinue, it is likely that deep packet inspection will become

embedded within the network core. Some of the well known

Internet applications which use deep packet inspection are

listed below:

• Content-based traffic management and routing, where
packets are classified and processed based upon content.

For instance, multimedia traffic originating from a privi-

leged provider can be classified based upon its content

and placed into a higher priority queue.

• Network intrusion detection systems (NIDS) generally

scan the packet header and payload in order to identify a

given set of signatures of well known security threats.

• Layer 7 switches and firewalls provide content-based
filtering, load-balancing, authentication and monitoring.

Application-aware web switches, for example, provide

scalable and transparent load balancing in data centers.

Deep packet inspection often involves scanning every

byte of the packet payload and identifying a set of matching

predefined patterns. Traditionally, rules have been repre-

sented as exact match strings consisting of known patterns

of interest. Naturally, due to their wide adoption and impor-

tance, several high speed string matching algorithms have

been proposed [7,8,9,11,12,13,14,25,26,27,28,29].

In [1], Sommer and Paxson note that regular expres-

sions might prove to be fundamentally more efficient as

compared to exact-match strings when specifying attack

signatures. Open source NIDS, Snort [5] and Bro [4] al-

ready use regular expressions to specify signatures. Com-

mercial security products, such as TippingPoint X505 [20]

and security appliances from Cisco Systems [21] also use

regular expressions. Consequently, several specialized

hardware-based regular expressions matching architectures

have been proposed [15,16,17] and specialized commercial

engines like RegEx from Tarari [22] report packet scan

rates up to 4 Gbps. The recently proposed delayed input

DFA (D
2
FA) [3] enables a high degree of integration while

using embedded memories rather than on-chip logic to store

the automata.

Hardware based approaches are able to create compact

automata by exploiting high degree of parallelism and

memory bandwidth available on-chip. While these seem

promising for ASIC devices, they are generally not as well

suited to a more cost effective implementation approach

that uses small on-chip lookup engines (implemented as

either hardware or software) together with automata defined

by tables in off-chip commodity memory. Performance of

these systems is often limited by the memory bandwidth

therefore it is critical that on-chip regular expression en-

gines minimize the number of off-chip memory accesses.

Memory bandwidth is especially critical in context of deep

packet inspection because the number of memory accesses,

is often comparable to the number of bytes in the packet

payload.

A few recent proposals emphasize the use of commodity

memories [32,33,10] however these often require very large

memory, which limits their practical application. For exam-

ple, Cisco commonly employs a gigabyte or more of mem-

ory to implement regular expression-based automata; the

cost of memory often represents a sizeable fraction of the

system cost. In order to implement regular expressions

more economically and improve scalability in the number

of rules, it is important to reduce the memory consumed

without significantly increasing the number of memory ac-

cesses.

3. INTRODUCTION TO CD
2
FAS

3.1 Content-Addressing
In a conventional DFA implementation, states are identified

by numbers and these numbers are used to locate a table

entry that contains information defining the given state.

Content-addressed D
2
FAs replace state identifiers with con-

tent labels that include part of the information that would

normally be stored in the table entry for the state. The con-

tent labels can be used to skip past default transitions that

would otherwise need to be traversed before reaching a

labeled transition that matches the current input character.

Using hashing, we can also use the content labels to locate

the table entry for the next state.

We illustrate the idea of content addressing with the

example shown in Figure 1. This figure shows three states

of a D
2
FA, R, U and V. The heavy-weight edges in the fig-

ure represent default transitions and R is the root of one of

the trees defined by the default transitions. State U has la-

beled transitions for characters c and d, in addition to its

default transition to R. State V has labeled transitions for

characters a and b, in addition to its default transition to U.

The arrows coming in from the left represent transitions

from other states to states R, U and V. For each such prede-

cessor state, we store a content label that includes the in-

formation shown in the figure, in addition to some auxiliary

information that will be discussed later. The content label

for transitions entering state U is cd,R. This label tells us

that state U has outgoing transitions labeled by the charac-

ters c and d, and that its parent is R, which is the root of a

default transition tree. The content label for transitions en-

tering state V is ab,cd,R. This tells us that state V has outgo-

ing transitions labeled by the characters a and b, and that its

parent (in the default transition tree) has outgoing transi-

R

c

d

a

b

all

ab,cd,R

cd,R

R find node R
at location R

V

U
find node U at

hash(c,d,R)

find node V at

hash(a,b,hash(c,d,R))

R

c

d

a

b

all

ab,cd,R

cd,R

R find node R
at location R

V

U
find node U at

hash(c,d,R)

find node V at

hash(a,b,hash(c,d,R))

Figure 1. Content-Addressing

tions labeled by the characters c and d, and that its parent’s

parent is R, which is the root of a default transition tree.

Suppose that the current state of the D
2
FA is one of the

predecessors of state V and that the current input character

selects a content label for a transition to state V and that the

next input character is x. While V is the next state, since V

has no labeled transition for x, we would like to avoid visit-

ing state V so that we can skip the associated memory ac-

cess. Similarly, we would like to avoid visiting state U,

since it also has no labeled transition for x. Assume that we

have a hash function h for which h(cd,R)=U and for which

h(ab,U)=V. Given the content label ab,cd,R (which is

stored at the predecessor state), we can determine that nei-

ther our immediate next state (V) nor its parent (U) has an

outgoing transition for x. Hence, we can proceed directly to

R. If on the other hand, the next input character is c or d,

then we can proceed directly to U by computing h(cd,R).

Similarly, if the next input character is a or b, we can pro-

ceed directly to V by computing h(ab,h(cd,R)).

Summarizing, we associate a content label with every

state in a D
2
FA. Each label includes a character set for the

state and each of its ancestors in the default transition tree,

plus a number identifying the state at the root of the tree.

We augment the content label with a bit string that indicates

which of the states on the path from the given state to the

root of its tree are matching states for the automaton. In our

examples, we use underlining of the character set for a

given state to denote that the state is a matching state. So, if

state U in our example matched an input pattern of interest,

we would write the content label for U as cd,R and the con-

tent label for V as ab,cd,R. Content labels are stored at

predecessor states, and hashing is used to map the labels to

the next state that we need to visit.

3.2 Complete Example
We now turn to a more complete example. Figure 2a shows

a DFA that matches the patterns a[aA]
+
b
+
, [aA]

+
c
+
, b

+
[aA]

+
,

b
+
[cC] and dd

+
. Part b of the figure shows a corresponding

space reduction graph and part c shows a D
2
FA constructed

using this space reduction graph. The default transitions are

shown as bold edges. Note that states 1 and 8 are roots of

their default transition trees and that the longest sequence of

default transitions that can be followed without consuming

an input character is 2. If we use the D
2
FA to parse an input

string, the number of memory accesses can be as large as

three times the number of characters in the input string.

Consider a parse of the string aAcba. Using the original

DFA, we can write this in the form

956441 →→→→→ abcAa

Here, the underlined state numbers indicate matching states.

Using the D
2
FA, we the parse of the string will be

98156661441 →→→→→ abcAa

Here, we are showing the intermediate states traversed by

the D
2
FA. To specify the CD

2
FA, we first need to write the

content labels for each of the states. These are listed below.

Note that since states 3 and 7 have no labeled outgoing

transitions in the D
2
FA, their content labels include empty

character sets that are indicated by dashes. The dash in the

content label for state 3 is underlined to indicate that state 3

is a matching state.

The complete representation of the CD
2
FA is shown below.

For each state, we list the content labels associated with the

character for which there is an outgoing labeled transition

from the state. Note that only states 1 and 8 have labeled

outgoing transitions for every character and states 3 and 7

have no labeled transitions.

6. c,1

7. –,1

8. 8

9. cC,8

1. 1

2. d,1

3. –, d,1

4. b,c,1

5. b,8

1

4

5

8

9

6

a,A

b

c

b

a,A

b

c

a,A

b

c

b

a,A

a,A

2

b

d

7

c,C
a,A

b

a,A

b

d

1

4

5

8

9

6

2

7

6

5

6

5 7 6
7

7

7

5

8

7

5

c,C

6

a,A

5

7
d

From

states 4-9
3

d
a,A

b

3

8

5

7

6

7

1

4

5

8

9

6

a,A

b

b
c

a,A

b

c

2

b

d

7

c,C

d

From

state 8
3

d

C
to state 1

Figure 2. a) DFA recognizing patterns [aA]+b+, [aA]+c+, b+[aA]+, b+[cC], and dd+ over alphabet {a, b, c, d, A, B, C, D} (transitions

for characters not shown in the figure leads to state 1). b) Corresponding space reduction graph (only edges of weight greater

than 4 are shown). c) A set of default transition trees (tree diameter bounded to 4 edges) and the resulting D2FA.

Let’s use this representation to parse the input string

aAcba. In state 1, we find that the content label for the first

input character (a) is b,c,1. This tells us that the next state is

h(b,h(c,1))=4, where h is an assumed hash function that

maps content labels to the original state numbers. Since

state 4 has no defined transition for the next input character

(A), we proceed directly to state 1, skipping intermediate

states h(b,h(c,1))=4 and h(c,1)=6. We are now ready to

process A. We see that its content label is also b,c,1. In this

case however, the parent of the next state does have a de-

fined transition for the next character (c), so we proceed to

that state, which we find by computing h(c,1)=6. In state 6,

we process character c using the content label c,1. Since the

label indicates that the next state h(c,1)=6 is a match state,

we make note of the match, but since state 6 has no labeled

transition for the next input character (b), we proceed to

state 1. Continuing in this way produces the parse

1 461 46 61 58 9a A c b c→ → → → →

If we compare this parse with the parse for the D
2
FA,

we see that the transitional states are simply shifted to the

left, reflecting the fact that the CD
2
FA skips past these

states as it processes each input character.

3.3 Details and Refinements
In our examples, we have assumed the existence of a hash

function that we could use to map content labels to state

numbers. Since the numbers used to identify states are arbi-

trary, any hash function that produces distinct state numbers

for each content label can be used. Note that hash values

are only needed for states that are not roots of their default

transition trees. The root states can simply be numbered

sequentially and since there are only a few such states; the

number of bits needed to represent them can also be small.

There are some tricks that can be used to ensure

uniqueness of the hash values computed for each content

label. Specifically, for each character set in a content label,

the order in which the characters are listed is arbitrary.

Consequently, we can change the order of the characters in

order to avoid conflicting hash values. If content labels are

packed into words of fixed size, we can sometimes pad la-

bel shorts by repeating some characters, thus changing the

hash value without changing the label’s meaning. In some

cases it may be necessary to augment the hash values with

additional bits to ensure uniqueness. We refer to such extra

bits as discriminators. As we report later, we have found

that very few discriminator bits are needed in practice.

To find the content label for the current input character,

we need to know where it appears in the list of content la-

bels for the current state. States that are at the roots of their

default transition trees have content labels for every symbol

in the alphabet, so we can use simple indexing to find the

appropriate label in this case. For states that are not roots,

we have content labels only for those characters for which

there is a labeled outgoing transition. The content label

used to reach the state tells us which characters the state has

outgoing transitions for. If our next character is the i-th one

in the list of characters found in the content label at the

predecessor state, then the next content label we need to

consult will be at position i in the list of content labels for

the current state. So, given the starting location of the list of

content labels for the state, we can use indexing to find the

specific content label of interest, without having to scan

past the other content labels defined for the current state.

3.4 Memory requirements of a CD
2
FA

The memory required for a CD
2
FA depends directly upon

the D
2
FA from which it is constructed and the size of the

resulting content labels. If we let a(s) denote the number of

ancestors of state s in its default transition tree (including s)

and c(s) denote the number of characters for which s and its

non-root ancestors have labeled transitions, then we need at

least () ()c s b a s r+ + bits to represent the content label for

state s, where b is the number of bits needed to represent a

character and r is the number of bits needed to represent the

identifier for a root. In addition, to identify which charac-

ters in the content label correspond to transitions from

which ancestors of state s, we can use an additional bit per

character, giving ()(1) ()c s b a s r+ + + . Additional bits may

be needed for discriminators, which we ignore for now.

Note that if we require that content labels be packed into a

fixed size word, then the depth of the default transition trees

will be limited by the word size, since both c(s) and a(s) get

large for states that are far from the roots of their trees.

If we allow the content labels to have variable lengths,

then we can potentially reduce the overall space require-

ment, since nodes close to the roots of their trees will have

smaller content labels. If the nodes with larger content la-

bels have relatively few incoming transitions, then the im-

pact of these larger content labels on the overall memory

requirements will be limited. Of course, allowing variable

length content labels also means that we have to include

length information in content labels, adding to the space

needed to represent each label. In our experimental results,

we allow content labels of two sizes: 32 bits and 64 bits.

This adds approximately c(s) bits to each content label (de-

6. c: c,1

7.

8. a: cC,8

b: 8

c: –,1

d: 1

A: cC,8

B: 1

C: –,1

D: 1

9. c: c,1

C: 1

1. a: b,c,1

b: b,8

c: 1

d: d,1

A: b,c,1

B: 1

C: 1

D: 1

2. d: –,d,1

3.

4. b: 8

5. b: b,8

tails in section 5.2), but does lead to a significant overall

space savings.

This discussion makes it clear that the problem of con-

structing D
2
FAs that lead to small CD

2
FA is non-trivial. As

shown in [3], bounding the default paths to a small constant

in general leads to larger D
2
FAs than if we allow the depth

to become large. However, small depth D
2
FAs will have

relatively small content labels. The use of variable length

content labels adds another dimension to the problem, since

it makes it desirable for states with many incoming transi-

tions to have small content labels. Hence, it makes sense to

position these states close to the roots of their default transi-

tion trees. Unfortunately, we don’t know in advance, which

states will have large numbers of incoming transitions, since

the introduction of default transitions can dramatically

change the number of labeled transitions entering a state. In

the next section, we focus on a simple heuristic approach,

which we have found produces good results experimentally.

4. CONSTRUCTION OF GOOD D
2
FAS

In this section, we attempt to construct D
2
FAs, which lead

to compact CD
2
FAs. We need to ensure that size of content

labels are bounded so that they can be fetched in a single

memory access (in our experiments, we bound them to 64-

bits), hence we only consider edges of the space reduction

graph, whose weights are sufficiently large (in our case

larger than 252). Our general objective is to create compact

CD
2
FAs and not compact D

2
FAs (which can be created by

solving a maximum weight spanning tree problem [3]),

therefore we take proper care that default paths do not grow

too deep and content labels do not become too big.

To meet these objectives, we have developed simple yet

effective heuristic called CRO, which runs in three phases,

called creation, reduction and optimization. Creation phase

creates a set of initial default transition trees whose default

paths are bounded to one default transition. Reduction

phase reduces the number of trees by iteratively dissolving

and merging trees, while maintaining the default length

bound of one transition. Optimization phase attempts to

reduce the space requirements further, by allowing some

default paths to grow longer than one default transition.

4.1 Creation phase
During the creation phase, a collection of trees on the space

reduction graph is constructed using a variant of Kruskal’s

algorithm [24]. We refer to these trees as spanning forest;

diameter of all trees in this forest is bounded to two edges,

thus the default paths contain a single default transition.

Kruskal’s algorithm examines edges in order of decreasing

weight; if adding an edge to a tree neither creates a cycle

nor violates the diameter bound of two then it is added to

the spanning forest. The variation in the Kruskal’s algo-

rithm is aimed to ensure that states, where more labeled

transitions enter, are more likely to become tree roots.

Therefore, an in-degree, equal to the total number of la-

beled transitions entering a state, is assigned to all states. As

Kruskal’s algorithm progresses, from among all unexam-

ined edges of equal weights, the ones, whose joining verti-

ces have higher in-degrees are examined earlier than exam-

ining those edges whose joining vertices have relatively

lower in-degrees.

In Figure 3a, we illustrate the outcome of creation

phase, when applied to the space reduction graph shown in

Figure 2b. Four default transition trees form, three of which

contain a single edge. In general, creation phase forms a

large number of trees which contain a single edge because,

once such a tree forms, they can not be linked to other trees

containing one or more edges (because diameter bound is

2). Consequently, the weight of the forest can be increased

further by reducing the number of trees. For instance, if,

instead of selecting the edge 2-3 in Figure 3a, we select

edges 1-2 and 1-3, then the weight can be increased by 6,

while maintaining the diameter bound. Therefore, creation

phase follows with a reduction phase, which reduces the

number of trees.

4.2 Reduction phase
During reduction phase, the number of trees is reduced in

an attempt to increase the weight of the spanning forest.

Trees in the current forest are repeatedly examined in an

order of decreasing weight (sum of weight of all edges in

the tree). For any tree under examination, it is first dis-

solved and all its edges are removed from the forest. After-

1

4

5

8

9

6

2

7

6

5

6

5 7 6 7

7

7

5

8

7

5

6
5

7

3

8

5

7

6

7

1

4

5

8

9

6

2

7

6

5

6

5 7 6
7

7

7

5

8

7

5

6
5

7

3

8

5

7

6

7

1

4

5

8

9

6

2

7

6

5

6

5 7 6 7

7

7

5

8

7

5

6
5

7

3

8

5

7

6

7

Figure 3. a) A set of default transition trees created by Kruskal’s algorithm with tree diameter bounded to 2. b) After dissolving

tree 2-3 and joining its vertices to root vertex 1. c) After dissolving tree 9-4-6 and joining its vertices to root vertices 1, 1 and 2.

wards, each vertex u of the dissolved tree is joined to the

root vertex r of one of the tree among all trees in the forest,

so that edge (u, r) has the highest weight. If the result of

dissolving and reconnecting the vertices does not lead to an

increase in the weight of the forest then the dissolved tree is

restored. Reduction phase stops when the forest remains

unaffected after a pass of examination of all trees in it.

Outcome of the reduction phase is illustrated in Figure

3b and 3c. Initially, tree 5-8 is examined, however it is not

dissolved because dissolving it and connecting its vertices

to one of the tree roots doesn’t increase the weight of the

forest. Afterwards, tree 2-3 is dissolved and vertices 2 and 3

are joined to the root vertex 1. This increases the weight of

the forest by 6. Thereafter, tree 4-6-9 is dissolved, and its

vertices 4, 6, and 9 are joined to root vertices 1, 1, and 8

respectively. The weight again increases by 6. None of the

two remaining trees can be dissolved further, therefore re-

duction phase stops.

Reduction phase, in this instance, has reduced the num-

ber of trees from 4 to 2 and increased the weight of the for-

est from 36 to 48. Thus, the total number of labeled transi-

tions in the D
2
FA has been reduced from 36 to 24. In large

automata, reduction phase is much more effective in reduc-

ing the number of default transition trees and therefore the

total number labeled transitions in a D
2
FA.

CD
2
FA synthesized immediately after reduction phase

are generally compact as i) there is reduced number of la-

beled transitions in the D
2
FA and ii) all default paths are

bounded to a single default transition leading to compact

content labels. However, even more compact CD
2
FA can be

created by allowing longer default paths for certain states,

specifically the states where not many labeled transitions

enter. Optimization phase carries out these optimizations,

where diameter of the certain parts of the trees is expanded.

4.3 Optimization phase
Prior to the optimization phase, a CD

2
FA is constructed and

content labels are associated with all labeled transitions. At

this point, some states may have many labeled outgoing

transition because their default paths are bounded to single

default transition. We may reduce the number of labeled

transitions at these states by allowing them to have longer

default paths. This, however, may increase the size of con-

tent label of transitions entering into those states, as labels

associated with those transitions will store all characters for

which transitions are defined at all states along the default

path. Therefore, it is important to selectively increase the

default path of only those states which results in an overall

space reduction.

To accomplish this, optimization phase proceeds with

an assignment of in-degree (size of content label of transi-

tions entering into the state) and out-degree (size content

label of transitions leaving the state) to all states. The eligi-

ble candidates for the default path expansion are those

states which have high out-degree and low in-degree.

Therefore, states are repeatedly examined in decreasing

order of their (out-degree – in-degree) values. For a state

under examination, a new default state from among all

states, whose default path contains a single default transi-

tion, is evaluated. If one such default state results in an

overall reduction in the memory, then it becomes the new

default transition of the examined state. The time needed to

examine a state is O(n), thus the time to once examine all n

states is O(n
2
).

After all states are examined once, default paths contain up

to two default transitions. The procedure is repeated until a

pass doesn’t result in any reduction in the total memory.

Note that during a pass, default paths grow by at most one

default transition. In practice, we found that the algorithm

stops after 1-2 passes, thus the resulting default paths con-

tain at most 2-3 default transitions and the asymptotic run

time of optimization phase remains O(n
2
).

5. OPTIMIZING CONTENT LABELS
In this section, we present optimizations to compactly en-

code CD
2
FA content labels. We begin these with an attempt

to reduce number of symbols in the alphabet.

5.1 Alphabet reduction
A CD

2
FA consists of root states, which do not have a de-

fault transition, and non-root states, which have a valid de-

fault transition. Even though, root states have labeled transi-

tions defined for all characters in the alphabet, a large frac-

tion of these leads to the same next state. We refer to the

most frequently occurring “next state” from any given state

as its common transition. If we let A denote the original

alphabet, set C(s) denote the characters, for which common

transitions are present at a root state s, then its alphabet can

be reduced to A-C(s), if we explicitly store the common

transition of the state. In general, alphabet of the root states

can be reduced to U statesroot
)(

∈
−

s
sCA . For example, root

states 1 and 8 of the D
2
FA in Figure 2c, have common tran-

sitions (over characters B and D) leading to state 1. Note

that these transitions are not explicitly shown in the figure,

assuming that all transitions which are not explicitly shown

in the figure leads to state 1. Once we remove the characters

for these common transitions from the alphabet, it can be

reduced to {a,b,c,d,A,C}.

It turns out that in all CD
2
FAs we consider in our ex-

periments, the reduced alphabet of the root states contains

less than 128 characters. Moreover, even though there are

up to a thousand root states, there are less than 64 distinct

common transitions at these states; thus, we only need a 64

entry table to store the content labels associated with the

common transitions. We also need to associate each root to

one of the table entries, which can be done efficiently by

appropriately numbering the root states. For instance if all

root states with identical common transition are assigned a

series of contiguous integers, then we only need to associate

the first and last integer value to the common transition.

The second step is to reduce the alphabet of non-root

states, which have a small number of labeled transitions and

a default transition. If L(s) is the set of characters for which

labeled transitions are present at a non-root state s, then the

alphabet of non-root states can become U statesroot
)(

−∈nons
sL .

Using this procedure, alphabet of the non-root states of the

D
2
FA shown in Figure 2c can be reduced to {b,c,d,C}.

If we take the union of the reduced alphabet of root and

non-root states, the resulting set (referred as Ar) still con-

tains much fewer characters than the ASCII alphabet, thus

characters of the reduced alphabet may require fewer bits to

represent. For instance we were able to represent them by

7-bits in our experiments, as Ar contained between 64 and

128 characters. In order to translate a character from ASCII

alphabet to the reduced alphabet, an alphabet translation

table is needed, which contains 256 entries and is indexed

by the ASCII character. Entries, which correspond to the

characters in the reduced alphabet, contain a 7-bit translated

character, while entries, for which a character is not present

in the reduced alphabet, contain a special symbol. This ta-

ble requires less than 256 bytes and therefore can be easily

stored either in the data cache or in the instruction cache via

a function call.

5.2 Optimizing content label of non-root states
Content labels of non-root states may have variable length,

which depends upon the number of labeled transitions leav-

ing the state and its non-root predecessors. In this paper, we

intend to restrict the content labels to two words (8-bytes),

so that they can be fetched in a single memory access1.

Thus, a content label may require 3 additional bits to store

its length. We can perform an optimization by considering

that memories often allow addressing at 4-byte boundaries;

in other words, memory is organized as 4-byte words, in

which case content labels will either be one or two words

long, and a single bit will be sufficient to store its length.

When content labels are variable length, a complication

may arise, as we need to know, where the content label for

an input character appears in the list of content labels for

the current state. In order to appropriately index this list,

with the content label of each state, we need to store the

length of the content labels of the states where its labeled

transition enters. Thus, the content label of a state s with

c(s) labeled transitions requires c(s) additional bits. As we

have already mentioned, we need two additional bits per

content label in the list, one to indicate whether it associates

1 These schemes can be easily extended to memory technologies,

where minimum access size is different from 8-bytes.

with a match and another to indicate the depth of the asso-

ciated next state, in its default transition tree.

Consider an example, where we seek to store the list of

content labels for state 9 of the CD
2
FA in Figure 2c. State 9

has 2 labeled transitions, one leading to state 1 on input C

and another leading to state 6 on input c. If we assume that

that content label of the first transition is 1 word long, while

the second is 2 words, then the content label of state 9

(more specifically of labeled transitions entering state 9),

will be 8,
1

0

2

1Cc ; here we indicate length of the content label

as a superscript and the depth (in its default transition tree)

of the next state as a subscript. The resulting memory struc-

ture is shown in Figure 4; state 9 requires total 3 memory

words at an address determined by applying a hash on its

content label (we discuss more about hashing in section 6).

With ASCII alphabet, (8-bit characters), content label

for a state will require 11-bits per labeled transition it has,

plus log2t bits to represent the root of its default transition
tree (t is the number of default transition trees). In our ex-

periments, we reduce the alphabet to fewer than 128 charac-

ters, thus, 7-bits represent a character, which enables us to

use only 10-bits per labeled transition. Also there are fewer

than a thousand root states, thus 10-bit are enough to repre-

sent them. Therefore, content label of a state, which has up

to 2 labeled transitions, fits in a 4-byte word, while states

with between 3 and 5 labeled transitions require two words.

Note that, we only allow a state to have up to five labeled

transitions, thus, we only consider those edges of the space

reduction graph, whose weight is higher than 251.

5.3 Numbering root states

With only log2t bits to represent root states, transitions
leaving root states are stored in a two dimensional table

with t rows and |Ar| columns. The table is indexed using the

root state number as row index and the input character as

the column index. Each cell of the table is two words long

(even though content label of many transitions may be just

1 word long); thus a root state requires 2|Ar| memory words.

6. MEMORY PACKING
When we introduced CD

2
FA, we assumed that there exists a

hash function that maps content labels to the original state

numbers. In this section, we present algorithms to devise

such mapping. While associating state numbers to content

labels, we are interested in not only associating unique

numbers but also such numbers that can be directly used as

an index into the memory. Thus, we would like to associate

a unique memory address to the content label of each state,

so that the list of content labels for all labeled transitions

leaving the state is stored at that address. This will truly

enable us to require a single memory access per input

character. Throughout this section, we refer to the state

number as the memory address where it is stored and

storing a state means storing the content labels for its

labeled transitions. We focus on storing non-root states, as

We focus on storing non-root states, as root states are sim-

ply stored as a two dimensional table.

The size of the list of content labels for a state depends

both upon the number of labeled transitions leaving the

state as well as length of their content labels (1 or 2 words).

Traditional table compression schemes [2] may be applied

to associate a unique address to each state’s content label,

however these schemes are known to be NP-hard, and they

also incur sizeable overheads as they require i) additional

pointer per state, and ii) a marker for every content label.

They also require an additional memory access per charac-

ter, which may reduce the throughput.

We present a novel method which enables, i) an optimal

memory utilization with zero space overhead, and ii) single

memory access per input character. It is based on classical

bipartite graph matching, with running time of O(n
3 / 2
),

where n is the number of states. Our method proceeds by

forming groups of states so that states with identical mem-

ory requirement belong to the same group. Since we allow a

non-root state to have at most 5 labeled transitions, the

memory requirement of a non-root state can vary from one

word to up to ten words; hence there can be up to 10 groups

of states. Afterwards, memory is partitioned in 10 regions

and states of each group are stored in different regions.

Note that, in a CD
2
FA, states can be easily associated to

their memory regions as the memory requirements of a state

can be directly inferred from the states’ content label.

Afterwards, our algorithm handles a group at a time and,

as described below, stores its states into its memory region.

6.1 Packing problem formulation
Let there are n states in a group and each state requires s

memory words to store its labeled outgoing transitions.

Clearly, the group’s memory region must contain at least ns

words. We consider a slight memory over-provisioning, so

the memory region consists of ms words (where m = n+∆,
and ∆/n is the over-provisioning). Content label of all states
of the group needs to be uniquely mapped to one of the m

memory locations (which become the content labels’ state

number). We apply a hash function (with codomain = [1,

m]) to the content labels to compute this mapping. As tradi-

tional hashing is subject to collisions, multiple content la-

bels may be mapped to a single state number. Collision

resolution policies can be applied however they are likely to

degrade the performance by requiring additional memory

accesses. They will also incur space overheads by unneces-

sarily storing the content labels (as the hash keys).

Our algorithm eliminates both these deficiencies by ena-

bling a collision free hashing, i.e. content labels are mapped

to unique state number. This is achieved by exploiting the

possibility of renaming a content label, without changing its

meaning, thus effectively changing its hash value. There are

three ways to rename content labels without changing their

out changing their meanings. a) The simplest way is to

modify the value of discriminator. b) An alternative is to

change the order in which characters appear in the content

label; thus a content label with t characters can have facto-

rial t different possible names. c) In fixed size word length

restricted content labels, yet another possibility is to pad

label shorts by repeating some characters already present in

the content label, or by modifying the unused bits. With

these facilities to modify the name of a content label with-

out changing its meaning, a naïve mapping may arbitrarily

rename them whenever a collision occurs. We develop a

more systematic approach to select the appropriate names.

Our approach progresses by evaluating all possible

names (called candidate names) that can be assigned to a

content label by employing the three mentioned methods. A

hash is then applied to the candidate names, and the result is

a set of candidate state numbers for the content label. Once

all candidate state numbers are known, a bipartite graph G

= (V1+V2, E) is constructed, where vertex set V1 corre-

sponds to the n content labels and V2 the m state numbers.

Edge set E contains all edges (u, v) such that u ∈ V1, v ∈ V2

and v is a candidate state number for u.

After constructing the bipartite graph G, the next step is

to seek a perfect matching, i.e. match each content label to

a unique state number. It is likely that no perfect matching

exists. A maximum matching M in G, which is the largest

set of pairwise non-adjacent edges, may not contain n

edges, in which case some content labels will not be as-

signed any state number. However using theoretical analy-

sis, we show that, when the number of candidate names per

content label is O(log n), then a perfect matching will exist

with high probability, even if ∆ = 0. As ∆ increases slightly,
probability of perfect matching grows very quickly, which

guarantees that little over-provisioning will always result in

a perfect matching.

Once a perfect matching is found, for each content la-

bel, we fix its name to the one, for which its state number

corresponds to a matching edge. These content labels are

guaranteed to enable a collision free hashing during lookup.

8,
1

0

2

1Cccontent label of

state 9: 2 words

C

1content label of

state 1: 1 word

Aa,

From state 8
1,

2

1c
content label of

state 6: 2 words

c

c

hash (c, C, 8)

Memory

1,
2

1cc

C 1

Figure 4. Storing list of content labels for state 9 in memory

6.2 An illustrating example
Before presenting the analysis of our memory packing,

we consider a simple example to illustrate the basic ideas.

We consider the CD
2
FA shown in Figure 2c. There are 9

states, and the content labels of labeled transitions entering

these states are shown in Figure 5a. There are 7 non-root

states. States 3 and 7 do not require any memory, as they do

not have any labeled outgoing transition (their content la-

bels, however, may be stored at other states, from where a

labeled transition enters these states). State 9 is the only

state in its group, thus its packing is trivial. States 2, 4, 5

and 6, as shown in Figure 5b, each requires one word;

therefore these are packed in a memory region containing 4

or more words.

First, we consider no memory over-provisioning (m = n

= 4), and a single bit discriminator. We limit ourselves to

using discriminators to rename content labels and do not

use other methods. Thus, there are two candidate names for

each state’s content label, and the candidate state numbers

by applying hash over these are shown in Figure 5c. The

resulting bipartite graph is shown in Figure 5d; there are

two perfect matching in this graph, one containing edges, 4-

2, 2-1, 5-4 and 6-3 and another containing edges, 4-4, 2-2,

5-1 and 6-3. Either of these will suffice in mapping unique

state numbers to the content labels. Note that, in this case,

we have not used memory over-provisioning; indeed, we

find that, we can generally avoid memory over-provisioning

and also avoid discriminators because the other two meth-

ods of renaming content labels creates enough edges in the

bipartite graph so that a perfect matching most likely exists.

6.3 Analysis of the packing problem
The possibility of an optimal packing depends on the likeli-

hood of finding a perfect matching on the above bipartite

graph. A necessary and sufficient condition that a perfect

matching exists is due to Hall’s Matching Theorem [18].

Hall’s Matching Theorem: Given a set of n items, and a

set of identifiers for each item (called its candidate set),

each item can be assigned a unique identifier from its can-

didate set if, and only if, for every k ∈ [1, n], the union of
candidate sets of any k items, contains at least k identifiers.

Thus, we have to show that, for every k content labels,

the union of their candidate state numbers contains k or

more distinct numbers. For k=1, this is obvious, as candi-

date set of any content label is non-empty. For k>1, Hall’s

theorem can be unsatisfied. This is due to the use of hashing

in determining the state numbers. Even though a content

label can have many (say l) names, its candidate set may

still contain a single state number, due to collisions. In gen-

eral, k content labels will have a total of kl random state

numbers in the union of their candidate set. Thus, in order

to compute the likelihood of a perfect matching, we com-

pute the probability with which a set of kl randomly chosen

numbers ∈ [1, m] contains k or more distinct numbers.

The problem of finding perfect matching in such bipar-

tite graphs is well studied. In [23], Motwani shows that a

perfect matching in a symmetric bipartite graph with n left

and right vertices and with random edges, exists with high

probability when the number of edges are O(n log n). In

fact, this threshold is sharp, which means that the probabil-

ity of perfect matching increases very quickly, as we add

slightly more edges after threshold. In an asymmetric case,

(when m > n), [34] shows that the probability of a perfect

matching again increases quickly, as m is greater than n.

For instance, when m/n = 1.01, (implies 1% memory over-

provisioning), a perfect matching exists with high probabil-

ity, if there are more than 7n edges in the bipartite graph.

With these results we can conclude that if we have

flexibility to assign O(log n) different names to each content

label, then we will most likely find a perfect matching with-

out any memory over-provisioning. O(log n) corresponds to

approximately 16 choices of names for each content label in

a 64K state CD
2
FA; this can be easily achieved even with-

out using discriminators. As expected, in our experiments,

we found a perfect matching in all CD
2
FAs without using

memory over-provisioning or employing the discriminators.

State
Content labels of
transitions entering

the state

size of
content
label

1 1 1

2 d, 1 1

3 −, d, 1 1

4 b, c, 1 1

5 b, 8 1

6 c, 1 1

7 −, 1 1

8 8 1

9 cC, 8 1

4

5

8

6

b

c

2

b

3

d

8

c, 1

b, 8

−, d, 1

4

5

2

6

1

3

2

4

State hash (discriminator, content label)

4
 hash (0, b, c, 1) = 2

 hash (1, b, c, 1) = 4

2
 hash (0, d, 1) = 1

 hash (1, d, 1) = 2

5
 hash (0, b, 8) = 1

 hash (1, b, 8) = 4

6
 hash (0, c, 1) = 2

 hash (1, c, 1) = 3

Content State

 label number

b, c, 1

d, 1

Using 1-bit discriminator in a content label

Figure 5. a) Content labels of states of the CD2FA shown in Figure 2. b) Non-root states requiring one word to store the content

labels associated with their labeled transitions. c) Candidate content labels (using 1-bit discriminators) and the resulting candidate

state numbers. d) Corresponding bipartite graph.

7. EXPERIMENTAL EVALUATION
In order to evaluate the effectiveness of a CD

2
FA, we per-

formed experiments on regular expression sets used in a

wide variety of networking applications. Our most impor-

tant dataset are the regular expression sets used in deep

packet inspection appliances from Cisco Systems [19],

which contains more than 750 moderately complex expres-

sions. We also considered the regular expressions used in

the Snort and Bro NIDS, and in the Linux layer-7 applica-

tion protocol classifier. Snort contains more than thousand

and half expressions, although, they don’t need to be

matched simultaneously. An effective way to implement

Snort rules is to identify the expressions for each header

rule and then group the expressions corresponding to the

overlapping rules (set of header rules a single packet can

match). We use this approach. For Bro, we present results

for the HTTP rules, which contain 648 regular expressions.

As the first step to construct compact DFA, we used the

set splitting technique proposed in [10]. We created 10 sets

of Cisco rules (Cisco, however uses slightly different

grouping, about which we are not fully aware); there were a

total of 180138 states, and each DFA had less than 64K

states. We split the Linux expressions into 3 sets with a

total 28889 states. For Snort rules, we present results for

header rule “tcp $EXTERNAL_NET any -> $HTTP_SERVERS

$HTTP_PORTS”; it contains 22 expressions, which were split

into four sets. Bro regular expressions were simple there-

fore we did not split them. Our representative regular ex-

pression groups are summarized in Table 1.

We applied CRO algorithm on these regular expression

groups to create CD
2
FAs. In Table 2, we report the out-

come of the algorithm after every phase, and also report the

number of trees in the D
2
FA, total number of labeled transi-

tions, and memory needed by the CD
2
FA. We also report

the size of the reduced alphabet. While reduction phase is

most effective in reducing memory, alphabet reduction also

reduces memory by nearly two times. It is clear that, mem-

ory reduction achieved by CD
2
FA, constructed from the

CRO algorithm, is between 2.5 to 20 times, when compared

to a table compressed DFA. If we compare CD
2
FA to

uncompressed DFA (which is a fair comparison because a

CD
2
FA matches an uncompressed DFA in terms of

throughput), the memory space reductions are much higher,

between 5 to 60 times.

While CD
2
FAs match uncompressed DFAs in terms of

throughput, in a practical system with an on-chip cache, a

CD
2
FA may surpass a DFA by achieving higher cache hits

due to its smaller memory footprint. In Figure 6, we report

the throughput results, where we have performed a trace

driven cache based memory model simulation using Dinero

IV simulator [31]. In order to create near worst-case condi-

tions for a cache, the input data stream contained a high

concentration of matching patterns (around 10% matches),

which resulted in very low spatial locality in automata tra-

versal. Even under these conditions, we found that cache hit

rates were moderately good (25-50%), enough to improve

the throughput. Hit rates of CD
2
FA were noticeably higher

(>60%) as it had much smaller memory footprint. Hence its

throughput is also much higher. Note that the throughput of

a table compressed DFA is much lower as it requires more

than one memory access per input character.

Table 2. CD
2
FA constructed after each phase of the CRO algorithm. Last column is the ratio of memory size of a

CD
2
FA and that of a table compressed DFA (DFATC)

CD2FA

Original DFA After creation phase After reduction phase After optimization phase and

alphabet reduction

Memory (MB)
Dataset

of

states

distinct

transi-

tions
No com-

pression

With table

compression

of

trees

of tran-

sitions

Memory

(MB)

of

trees

of

transi-

tions

Memory

(MB)

of

trees

of

transi-

tions

Memory

(MB)

Al-

phabet

size

size of

CD2FA

÷
size of

DFATC

Cisco590 17713 1537238 9.07 6.23 4227 1099809 8.87 243 117743 0.80 243 62043 0.39 98 0.062

Cisco103 21050 1236587 10.77 9.56 4617 1205978 9.72 684 253239 1.87 684 122679 0.86 106 0.089

Cisco7 4260 312082 2.18 1.14 838 220705 1.76 194 59077 0.44 194 32842 0.23 126 0.201

Linux56 13953 590917 7.14 3.62 1741 459215 3.73 266 156485 1.17 266 85444 0.61 123 0.168

Linux10 13003 962299 6.65 3.35 3361 870623 7.27 994 382464 3.01 994 183237 1.48 118 0.441

Snort11 37167 441414 19.03 3.55 3024 806790 6.31 257 188913 1.28 257 65629 0.36 37 0.101

Bro648 6216 149002 3.18 1.26 370 100341 0.77 24 15183 0.08 24 9779 0.05 83

Table 1. Our representative regular expression groups

Source # of regu-

lar ex-

pressions

Avg. ASCII

length of

expressions

% expressions

using wild-

cards (*, +, ?)

% expressions

length restric-

tions {,k,+}

Cisco 590 36.5 5.42 1.13

Cisco 103 58.7 11.65 7.92

Cisco 7 143.0 100 14.23

Linux 56 64.1 53.57 0

Linux 10 80.1 70 0

Snort 11 43.7 100 9.09

Bro 648 23.6 0 0

8. CONCLUDING REMARKS
In this paper we introduce the Content Addressed Delayed

Input DFA (CD
2
FA), which provides compact representa-

tion of regular expressions. A CD
2
FA is built upon the re-

cently proposed delayed input DFA (D
2
FA), whose state

numbers are replaced with content labels. The content la-

bels compactly contain information which are sufficient for

the CD
2
FA to avoid any default traversal, thus avoiding

unnecessary memory accesses and hence achieving higher

throughput. While a CD
2
FA requires number of memory

accesses equal to those required by an uncompressed DFA,

in systems with a small data cache, CD
2
FA surpasses un-

compressed DFAs in throughput, due to their small memory

footprint and high cache hit rate. We find that with a mod-

est 1 KB data cache, CD
2
FA achieves two times higher

throughput as compared to an uncompressed DFA, and at

the same time requires only 10% of the memory required by

a table compressed DFA. Consequently, CD
2
FAs can im-

plement regular expressions much more economically and

improve throughput and scalability in the number of rules.

9. ACKNOWLEDGMENTS
We are grateful to Will Eatherton for providing us the regu-

lar expression sets used in Cisco security appliances. This

work was supported by the NSF Grants CNS-0325298 and

URP grant from Cisco Systems.

REFERENCES

[1] R. Sommer, V. Paxson, “Enhancing Byte-Level Network Intrusion
Detection Signatures with Context,” ACM conf. on Computer and
Communication Security, 2003, pp. 262--271.

[2] J. E. Hopcroft and J. D. Ullman, “Introduction to Automata Theory,
Languages, and Computation,” Addison Wesley, 1979.

[3] S. Kumar et al, "Algorithms to Accelerate Multiple Regular
Expressions Matching for Deep Packet Inspection", in ACM
SIGCOMM'06, Pisa, Italy, September 12-15, 2006.

[4] Bro, http://www.icir.org/vern/bro-info.html

[5] M. Roesch, “Snort: Lightweight intrusion detection for networks,”
Systems Administration Conference (LISA), November 1999.

[6] S. Antonatos, et al, “Generating realistic workloads for network
intrusion detection systems,” In ACM Workshop on Software and
Performance, 2004.

[7] A. V. Aho, M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Comm. of ACM, 18(6):333–340, 1975.

[8] B. Commentz-Walter, “A string matching algorithm fast on the
average,” Proceedings of ICALP, pages 118–132, July 1979.

[9] S. Wu, U. Manber,” A fast algorithm for multi-pattern searching,”
Tech. R. TR-94-17, Univ of Arizona, 1994.

[10] Fang Yu, et al., “Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection”, UCB tech. report, EECS-
2005-8.

[11] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion
detection,” IEEE Infocom 2004, pages 333--340.

[12] L. Tan, and T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection and Prevention,” ISCA'05.

[13] I. Sourdis et al, “Pre-decoded CAMs for Efficient and High-Speed
NIDS Pattern Matching,” FCCM, 2004, pp. 258–267.

[14] S. Yusuf and W. Luk, “Bitwise Optimised CAM for Network
Intrusion Detection Systems,” IEEE FPL 2005.

[15] R. Sidhu and V. K. Prasanna, “Fast regular expression matching
using FPGAs,” IEEE FCCM, Rohnert Park, CA, April 2001.

[16] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic
circuit for matching complex network intrusion detection patterns,”
In 13th FCCM conference.

[17] J. Moscola, et al, “Implementation of a content-scanning module for
an internet firewall,” IEEE Workshop on FPGAs for Custom
Computing Machines, Napa, CA, USA, April 2003.

[18] Phillip Hall, "On representatives of subsets," J. London Math.
Soc.,vol. 10, pp. 26--30, 1936.

[19] Will Eatherton, John Williams, “An encoded version of reg-ex
database from cisco systems provided for research purposes”.

[20] TippingPoint X505, www.tippingpoint.com/products_ips.html

[21] Cisco IOS IPS Deployment Guide, www.cisco.com

[22] Tarari RegEx, www. tarari.com/PDF/RegEx_FACT_SHEET.pdf

[23] R. Motwani, “Average-case analysis of algorithms for matching and
related problems,” J. of the ACM, 41:1329--1356, 1994.

[24] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proc. of the American Mathematical
Society, 7:48-50, 1956.

[25] N.J. Larsson, “Structures of string matching and data compression,”
PhD thesis, Lund University, 1999 .

[26] S. Dharmapurikar, et al, “Deep Packet Inspection using Parallel
Bloom Filters,” IEEE Hot Interconnects 12, August 2003.

[27] Z. K. Baker, V. K. Prasanna, “Automatic Synthesis of Efficient
Intrusion Detection Systems on FPGAs,” in Field Programmable
Logic and Applications, Aug. 2004, pp. 311–321.

[28] Y. H. Cho, W. H. Mangione-Smith, “Deep Packet Filter with
Dedicated Logic and Read Only Memories,” Field Programmable
Logic and Applications, Aug. 2004, pp. 125–134.

[29] M. Gokhale, et al., “Granidt: Towards Gigabit Rate Network
Intrusion Detection Technology,” Field Programmable Logic and
Applications, Sept. 2002, pp. 404–413.

[30] J. Levandoski, E. Sommer, and M. Strait, “Application Layer Packet
Classifier for Linux”. http://l7-filter.sourceforge.net/.

[31] M. Hill and J. Elder, “DineroIV tracedriven uniprocessor cache
simulator,” http://www.cs.wisc.edu/markhill/DineroIV, 1998.

[32] SafeXcel Content Inspection Engine, regex acceleration IP.

[33] Network Services Processor, OCTEON CN30XX Family.

[34] D. Fotakis, et. al, “Space efficient hash tables with worst case
constant access time,” In STACS, 2003.

16-bit wide, 250MHz DDR RLDRAM (access size 8B)

0

1

2

3

4

5

DFA-TC DFA CD2FA

T
h
ro
u
g
h
p
u
t
(G
b
p
s
)

no cache

1 KB, 1-way, 8B blocks, Dcache

4 KB, 1-way, 8B blocks, Dcache

Figure 6. Throughput results on Cisco rules, without and

with data cache. Table compressed DFA (DFA-TC), uncom-

pressed DFA and CD2FA are considered and the Input data

stream results in a very high matching rate (~10%).

