
Packet Classification Using Coarse-grained Tuple Spaces

Haoyu Song
Washington University

St. Louis, MO
hs1@arl.wustl.edu

Jonathan Turner
Washington University

St. Louis, MO
jon.turner@wustl.edu

Sarang Dharmapurikar
Washington University

St. Louis, MO
sarang@arl.wustl.edu

ABSTRACT
While the problem of high performance packet classification
has received a great deal of attention in recent years, the
research community has yet to develop algorithmic meth-
ods that can overcome the drawbacks of TCAM-based so-
lutions. This paper introduces a hybrid approach, which
partitions the filter set into subsets that are easy to search
efficiently. The partitioning strategy groups filters that are
close to one another in tuple space [10], which makes it possi-
ble to use information from single field lookups to limit the
number of subsets that must be searched. We can trade-
off running time against space consumption by adjusting
the coarseness of the tuple space partition. We find that
for two-dimensional filter sets, the method finds the best-
matching filter with just four hash probes while limiting the
memory space expansion factor to about 2. We also intro-
duce a novel method for Longest Prefix Matching (LPM),
which we use as a component of the overall packet classifi-
cation algorithm. Our LPM method uses a small amount of
on-chip memory to speedup the search of an off-chip data
structure, but uses significantly less on-chip memory than
earlier methods based on Bloom filters.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms
Algorithms, Design, Performance

Keywords
Packet Classification, Longest Prefix Matching

1. INTRODUCTION
Network routers, firewalls and intrusion prevention sys-

tems use packet classification as an enabling mechanism for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’06, December 3–5, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-580-0/06/0012 ...$5.00.

several higher level functions, including access control, traf-
fic engineering and quality-of-service mapping. Effective al-
gorithmic solutions for packet classification remain elusive.
Although TCAMs provide an effective, general solution for
high performance systems, TCAMs are relatively expensive,
have high power consumption and may not even be avail-
able in some system contexts. Hence, there is continuing
interest in identifying algorithmic approaches that are more
broadly applicable and can provide high throughput without
excessive memory consumption.

Algorithmic methods for packet classification use one of
more on-chip lookup engines (implemented either in hard-
ware, or as software threads) accessing a data structure in
off-chip memory. The key objective in this approach is to
minimize the number of off-chip memory accesses needed
to complete a lookup. While some classification methods
are able to achieve fast lookup rates, this often comes at
the expense of a large expansion in the memory required
to represent the filter set (some methods consume several
thousand bytes per filter). In this paper, we study an ap-
proach to packet classification that partitions the filter set
into subsets that are easy to search efficiently. The parti-
tioning strategy groups filters that are close to one another
in tuple space [10], which makes it possible to use informa-
tion from single field lookups to limit the number of subsets
that must be searched. The method provides a straightfor-
ward way to trade-off running time against space consump-
tion by adjusting the coarseness of the tuple space partition.
To implement the one-dimensional lookups, we use a novel
method for Longest Prefix Matching (LPM), which uses a
small amount of on-chip memory to reduce the number of
off-chip memory accesses needed. This approach improves
on the technique first developed in [4], significantly reducing
the amount of on-chip memory needed to obtain bounded
worst-case performance.

Although our methods can be extended to handle general
packet classification, we focus here on the special case of
two-dimensional classification, in which each filter specifies
a pair of prefixes. 2D packet classification is widely used in
basic Access Control Lists (ACL) [3]. Moreover, EGT-PC [1]
shows that it can also be used in general packet classification
with some extensions. We show that our method is capa-
ble of high lookup rates without significantly expanding the
memory required to represent the filters.

The remainder of this paper is organized as follows. We
discuss the related work in Section 2. We describe the packet
classification algorithm in Section 3. Our Longest Prefix
Matching algorithm is described in Section 4. We discuss

the tuple partition issues in Section 5 and evaluate the al-
gorithm performance using different filter sets in Section 6.
We conclude the paper in Section 7

2. RELATED WORK
Some previous work addresses the 2D packet classifica-

tion problem. The AQT algorithm [2] applies the 2D cut-
ting technique. Its performance highly depends on the filter
set structure. The GOT [12] and EGT [1] algorithms are
both trie-based, and have a worst-case lookup performance
of α×w, where w is the longest prefix length and α is some
constant factor. They traverse the prefix trees and jump be-
tween them to examine all possible matches. Another type
of algorithm uses the tuple space search technique. A tuple
is defined as a pair of unique prefix lengths (u, v). Filters be-
longing to the same tuple are stored in one hash table. The
lookups are conducted by querying the hash tables. The
storage and the lookup time depend on the number of tu-
ples. The 2D tuple space search requires w2 hash queries
per lookup in the worst case. An enhanced version, called
rectangle search, reduces the number to 2w−1, at the cost of
preprocessing and more storage [10]. However, this still re-
quires up to 63 hash queries per lookup for IPv4 in the worst
case. Another algorithm [14] that operates on conflict-free
filter sets uses binary search to reduce the number of hash
queries to log2 w, which is 25 for IPv4. Unfortunately, most
2D filter sets are not conflict-free. Despite the differences,
the performance of the above algorithms depends on the pre-
fix length w, which makes these algorithms less attractive
for the IPv6 case.

Since our algorithm is directly derived from the tuple
space search algorithm [10] and the crossproducting algo-
rithm [12], we discuss these two algorithms in detail.

2.1 Tuple Space Search
Each filter in a 2D filter set is specified as a pair of pre-

fixes. We define the lengths of these prefixes as a tuple,
denoted as (i, j), where i is the length of the source IP ad-
dress prefix and j is the length of the destination IP address
prefix. Hence, filters can be grouped into different tuples.
Filters in a tuple can be easily stored in a hash table with
the i-bit prefix of source IP address and the j-bit prefix of
destination IP address as the key. Figure 1 illustrates the
idea, in which each grid represents a tuple. Although there
are 33 × 33 = 1089 tuples in total, it is possible that some
tuples contain no filter at all so we do not assign hash tables
for these tuples. The number of nonempty tuples in some
ACL filter sets is reported in Table 1.

Table 1: Number of Nonempty Tuples
Filter Set # filters # tuples

ACL1 426 31
ACL2 527 50
ACL3 1,588 89
ACL-syn 6,826 31

When each nonempty tuple is assigned a hash table, the
lookup can simply query all the hash tables to find the best
matching filter. However, we cannot afford to perform so
many hash queries per lookup for high performance packet
classification. A simple optimization, called tuple space
pruning, can help reduce the number of hash tables queried

per lookup. This method performs single field lookups first
to determine a subset of tuples for which there are match-
ing filters. For example, assume there is a tuple (i, j) and
we perform the LPM on the source IP address of a packet,
obtaining the lengths of all the matching prefixes for the
packet. If none of these lengths equals i, we do not need to
search the tuple (i, j) at all. If the cost of performing LPMs
can be kept low, this optimization can help improve the
average-case performance. However, the worst-case perfor-
mance remains the same. Another optimization, called rect-
angle search, aims to improve the worst-case performance.
It uses the property that more specific filters have higher
priority than less specific filters. For example, in Figure 1,
if we find a matching filter in the tuple (20, 12), shown as the
dark grid, then we do not need to search the hash tables in
the region A because all tuples in this region are less specific
tuples than the one matched. If any of these filters did have
higher priority than the filter in tuple (20, 12), we would
never match that tuple, making it redundant. With this op-
timization, the worst-case number of hash table queries is
just 2w − 1 as opposed to w2 in the original scheme.

i

j

Source IP Prefix Length

D
es
ti
n
at
io
n
 I
P
 P
re
fi
x
 L
en
g
th

0 32

0

32

Figure 1: 2D Tuple Space Search

An alternate way to reduce the number of searches that
must be performed is to group filters into coarse-grained tu-
ples (CGT), rather than individual tuples. For example, we
might group filters whose source address prefix lengths are
in the range 21-24 and whose destination prefix lengths are
in the range 9-16. If the number of CGTs is small, and
we can search them quickly, we can obtain good worst-case
performance. However, if we make the CGTs too large, the
space required to represent the filters is likely to become
excessively large. We can also use the tuple-space prun-
ing technique to reduce the number of CGTs that must be
searched in typical lookups. If the given packet’s header
does not have matching prefixes with lengths in the ranges
defined by a given CGT, then we don’t have to search that
CGT.

Our approach can be used in combination with any method
to search the CGTs. In this paper, we use cross-product ta-
bles to represent the filters in each CGT, since cross-product
tables can be searched with a single hash lookup.

2.2 Crossproducting
The crossproducting algorithm is among the most straight-

forward ways to do packet classification. For each field, we
assign each prefix on that field a unique ID. To classify a

packet, the crossproducting algorithm performs LPMs on
both fields first. The resulting IDs are combined to form an
index, and then the index is used to retrieve the matching
filter from a direct lookup table. If the source IP address
field has m unique prefixes and the destination IP address
field has n unique prefixes, the number of entries in the di-
rect lookup table is m×n. Although the lookup is very fast,
the storage can be excessively large.

In the direct lookup table, not all the entries contain orig-
inal filters. There are many “pseudo-filters” that come from
the cross-products of original filters. These pseudo-filters
must be stored and significantly expand the space used to
represent the filter set. In Figure 2, A and C are nested pre-
fixes in the source IP address field, as are B and D in the
destination IP address field. Assume the prefix pair (A, B)
is an original filter, R1. If the prefix pairs (A, D), (C, B), or
(C, D) are not original filters, we need to add pseudo-filters
for each to guarantee correct lookups. For example, if the
single field lookups return the matching prefixes C and D,
the results imply a match to the filter R1. Without the
pseudo-filter (C, D), we will miss this match.

SIP DIP

R1

Figure 2: 2D Filter Expansion

The expanded filter set can be produced easily. Let s be
any source prefix and d be any destination prefix. If there
is an original filter (si, di) such that si is a prefix of s, and
di is a prefix of d, then let (sj , dj) be the highest priority
such prefix and include an pseudo-filter (s, d) that maps to
(sj , dj). We evaluate the filter set expansion effect for some
ACL filter sets. The expansion factors are shown in Table 2.
The synthetic ACL filter set is expanded by more than 500
times.

Table 2: ACL Filter Set Expansion
Filter Set Original filters After Expansion Table Entries

ACL1 426 19,885 29,294
ACL2 527 37,624 70,798
ACL3 1,588 222,396 408,157
ACL-syn 6,826 3,511,456 26,404,362

We can also see form the last column of Table 2 that 32%
to 87% of entries in the direct lookup table actually do not
contain any matching filter. Having the filters (ps1, pd1) and
(ps2, pd2) does not necessarily mean we need to have two
pseudo filters (ps1, pd2) and (ps2, pd1), because a match on
(ps1, pd2) or (ps2, pd1) may not incur a match on any original
filters. The empty table entries waste memory resources.
This fact suggests that we use a hash table instead of a direct
lookup table for better storage efficiency. By using FHT to
implement the hash tables, we can achieve the similar lookup
throughput as that of direct lookup tables.

3. COMBINING THE TWO ALGORITHMS
Using a hash table rather than a direct lookup table for

the crossproducting algorithm can significantly reduce the
storage requirement. However, if we keep all the filters in a
single hash table, the expanded filter set due to the pseudo-
filters may still be too large. To mitigate the filter expansion
effect, we split the filters into several subsets and build a
hash table for each of them. Now the pseudo-filters are only
required for the cross-products of the filters in each subset.
Because the number of nested prefixes on each field in each
subset can be much smaller than that when all the filters
are put together, the overall number of pseudo-filters can be
significantly reduced. As a tradeoff, now we need to query
multiple hash tables to find a matching filter.

Combining the above ideas with the CGT specification,
our new algorithm allows a nice throughput-storage tradeoff
and therefore is fast and scalable.

We defer the discussion of the methods used to group
tuples to Section 5. Now assume we have partitioned the
tuples into k groups. For each group, we store the filters in a
hash table, adding pseudo-filters as needed to ensure that we
can correctly identify the matching filter. Figure 3 illustrates
a tuple partition. There are nine tuple sets from A to I in
the figure. The tuple set I’s specification is ([8, 16], [9, 21]),
for instance.

0 32

0

32

7 8 16 17

8

9

21

22

E

H

A B C

Figure 3: 2D Coarse-grained Tuple Space Partition

The lookup process is described as follows. We perform
single field LPMs for both fields first. Since our coarse-
grained tuples divide each IP address field into several seg-
ments, the LPMs need to return the longest matching prefix
in each segment. We can easily adapt our new LPM algo-
rithm discussed in Section 4 to support this. Through pre-
processing, we embed such information in each SMT root so
that the LPM performance is not affected. We use the re-
sults to determine the set of hash tables to query. Then we
query these hash tables from more specific tuples to less spe-
cific tuples and terminate the search once the best matching
filter is found. We use an example as shown in Figure 3 to
illustrate the lookup algorithm. Suppose that for a given
packet, the single field lookups show its source IP address
has a matching prefix in segments [0, 7] and [17, 32], and
its destination IP address has a matching prefix in segments
[9, 21] and [22, 32]. So the best matching filter can exist only
in the hash tables for the tuple sets D, F , G, and I. Now
the logical choice is to start the search from the tuple sets I,
G, and F , because if we find matching filters belonging to
these tuple sets, we do not need to search the tuple set D.
If no match is found in these tables, we proceed to search

the tuple set D.
With the above mentioned tuple partition, each tuple set

is mapped to a grid in the 2D plane as shown in Figure 3.
Choosing the number of segments for each field is a tradeoff
of throughput and storage. At one extreme, when both fields
have 33 segments, the algorithm regresses to a naive tuple
space search algorithm. At another extreme, when both
fields have only one segment, the algorithm regresses to a
naive crossproducting algorithm.

To keep the LPM cost low, we use the LPM algorithm
discussed in Section 4 to perform prefix matching on each
field and the FHT data structure discussed in [8] to improve
the hash query performance.

4. LONGEST PREFIX MATCHING
We can take advantage of on-chip memory to improve

hash table lookup performance [8]. We consider applying
this technique to further improve the LPM performance.

Using hash tables for LPM is not new. Dharmapurikar
et. al. have presented a scheme to assign each unique prefix
length a Bloom filter [4]. The queries to the Bloom fil-
ters are performed in parallel, and then the search for the
longest matching prefix in an off-chip hash table starts from
the longest length for which the corresponding Bloom filter
reports a positive match. If no false positive is present, only
one hash table query is needed to retrieve the best matching
prefix.

However, LPM using Bloom filters has some disadvan-
tages for IP lookups. Each distinct prefix length requires
a Bloom filter, so the total number of Bloom filters can be
large. Although the total number of items programmed in
these Bloom filters is simply the number of prefixes in a
table, the item distribution among these Bloom filters can
be highly skewed. This makes engineering the system to
best use the on-chip memory resource a challenging prob-
lem. In addition, a large number of Bloom filters leads to
poor worst-case performance. If all the Bloom filters re-
turn a false positive, we need as many hash table queries
as the number of Bloom filters for a packet lookup. There-
fore, reducing the number of Bloom filters not only lowers
the system complexity and but also improves the worst-case
performance. To reduce the number of Bloom filters, the
algorithm in [4] selects a few thresholds based on the prefix
length distribution and expands the prefixes to their near-
est thresholds. Now we need only one Bloom filter for each
threshold. However, the prefix expansion increases the total
number of prefixes in a route table a great deal, increasing
the number of items that must be stored in both the on-chip
memory and the off-chip hash table.

In addition to increasing the memory required, prefix ex-
pansion also significantly increases the incremental update
cost. One single update might need a large number of mem-
ory operations on both the Bloom filter and the associated
hash table. In an environment where the route table changes
frequently, the update cost can become prohibitively large.

On the other hand, most successful IP lookup algorithms
are essentially variations of the basic binary trie that allow
for examining multiple bits per memory access [9]. Smart
encoding techniques such as Tree Bitmap (TBM) [5] and
Shape Shifting Tries (SST) [9] avoid the prefix expansion,
improving storage efficiency and providing faster lookup through-
put. However, searching in a trie always starts from the root,
so the worst-case performance of these algorithms is propor-

tional to the maximum trie depth [5] and is sensitive to the
underlying trie structure [9].

Combining the hash table and trie data structures leads
to a new LPM algorithm. It retains the memory efficiency of
the trie-based algorithm and meanwhile allows the search to
bypass intermediate trie nodes with the assistance of hash
tables. The algorithm can be used in a high-performance IP
lookup engine, especially for IPv6. It is suitable for hard-
ware implementation and can sustain OC-192 and above
line-speed processing by using only one commodity mem-
ory chip. The algorithm exhibits a nice tradeoff between
throughput and storage, which allows system designers to
decide the configurations based on the available on-chip and
off-chip memory resource and the desired lookup through-
put. In this paper we apply this LPM algorithm as a part
of the packet classification algorithm.

4.1 Background
Some LPM algorithms take advantage of the trie data

structure to support a pipelined architecture [6]. Ideally,
pipelined lookups allow the completion of one packet lookup
per clock cycle. Unfortunately, this technique has serious
problems. It consumes too much memory bandwidth and
the skewed storage requirement of the pipeline stages makes
engineering the system difficult and inefficient. Another
technique interleaves memory accesses from multiple par-
allel IP lookup engines [5, 9]. When these lookup engines
share the same memory interface, they try to fully utilize
the available memory bandwidth to gain a high aggregated
lookup throughput. The bandwidth of a single SRAM chip
today can be higher than 14 Gbps. Current VLSI technol-
ogy makes it easy and low-cost to deploy multiple engines
and synchronize their behavior. So the core problem here
is to lower the bandwidth share of each engine. In other
words, we should focus on reducing the number of off-chip
memory accesses needed for a single packet lookup in order
to achieve a higher overall lookup throughput.

The central piece of our LPM algorithm is a set of on-chip
Bloom filters. As discussed in [8], Bloom filters have drawn
significant attention in the networking research community
recently due to their efficient use of memory. Reference [4]
discusses using Bloom filters for IP lookups. Our work is
built upon this algorithm and significantly improves it.

Sangireddy et. al. present an Elevator-Stair algorithm
that combines hash tables and PATRICIA trees [7]. Hash
tables are built on selected levels to indicate if there are
longer prefixes starting from these levels. However, as the
name of algorithm implies, the LPM starts from the tree
root, searching the hash tables level by level to determine
where to find the potential longest matching prefix. While
this is akin to our algorithm, our algorithm supports directly
jumping to the destination hash table, resulting in a faster
search speed. Their algorithm uses the PARTRICIA tree
for the second layer search. However, the PARTRICIA tree
can only compress tree paths without any branch. Hence it
is not as effective as other encoded multibit trie algorithms.
Moreover, the algorithm does not use Bloom Filters to sum-
marize the items in hash tables, so the algorithm has to
physically access many of the off-chip hash tables.

4.2 LPM using Hash Table and Trie
The easiest way to organize data for IP lookup is to group

the prefixes based on their lengths and store each group in a

hash table. When lookups are performed in software, the bi-
nary search on these hash tables based on the prefix lengths
is the best choice [13], resulting in the O(log W) lookup
time performance, where W is the number of unique prefix
lengths. When lookups are performed in hardware, how-
ever, we can take advantage of the embedded fast memory
and the parallel processing capability of hardware to use the
brute force method. As proposed in [4], an on-chip Bloom
filter is used to summarize the items in each hash table. The
lookup process probes all the Bloom filters simultaneously
and uses the output of the Bloom filters to determine which
hash table to query. In practice, the lookups can be very
fast. Unfortunately, due to the possibility of false positive
in Bloom filters, the worst-case lookup time performance is
as poor as O(W). When using the prefix expansion tech-
nique [11] to reduce W , i.e. the number of Bloom filters and
hash tables, significantly more storage is required.

The high level idea of our algorithm is simple: with the
reduced number of Bloom filters, instead of performing the
prefix expansion, we encode the subtree between two length
thresholds using the TBM or SST encoding technique. In
a sense our new algorithm can be seen as a multi-bit trie
algorithm with multilevel jump tables.

For example, assume we have a prefix table shown in Ta-
ble 3. If we assign each unique length a Bloom filter, we need
at least five Bloom filters. Future updates can drastically
change the situation so more Bloom filters are expected.
Here we get a sense of the difficulty of engineering such a
system. Now we assume the table is just as it is. Six items
are programmed in the Bloom filters and in the worst case
we need five hash table queries to find the best matching
prefix when all the Bloom filters show a false positive.

Table 3: Prefix Table
ID Prefix

p0 *
p1 1*
p2 000*
p3 101*
p4 1000*
p5 10010*
p6 1001101*

Now we want to use the prefix expansion technique to
reduce the number of Bloom filters to two. By carefully an-
alyzing the prefix length distribution, we decide to set the
two length thresholds to 4 and 7. The expanded table is
shown in Table 4. The table size is doubled and 15 items
need to be programmed in the two Bloom filters. Although
the worst-case number of hash table queries is reduced to
only 2, the storage required is significantly increased. More-
over, if now we need to remove the prefix p1, we need to
remove five items from the on-chip Bloom filters and the
off-chip hash tables. This is a high update cost.

Rather than expanding the prefix table, our algorithm
seeks to encode the prefixes between the length thresholds
using the trie data structure. As shown in Figure 4, the bi-
nary trie nodes are grouped into subtrees and the subtrees
are encoded using either TBM or SST. Now in the first
Bloom filter, we need to program only two items “10010”
and “10011”, and in the second Bloom filter, we need to pro-
gram only one item “1001101”. The root nodes of subtrees,

Table 4: Expanded Prefix Table
ID Prefix ID Prefix

p0 * p1 1101*
p2 0000* p1 1110*
p2 0001* p1 1111*
p4 1000* p5 1001000*
p1 1001* p5 1001001*
p3 1010* p5 1001010*
p3 1011* p5 1001011*
p1 1100* p6 1001101*

associated with the items in the Bloom filters, are stored
in the off-chip hash tables. In addition, the best matching
prefix so far for each item is also stored along with the item
in hash tables. For example, in the hash table entry asso-
ciated with the item “10010”, the best matching prefix so
far is itself, “10010*”. However, in the hash table entry as-
sociated with the item “10011*”, the best matching prefix
so far is p1 or “1*”. Now there are only three items in the
Bloom filters. Compared with the previous scheme, it is a
huge saving.

A

C

E

G

I

H

J

K L

M

N

F

D

B

0

0

0

0

0

0

0

0

1

1

1

1

1

p0

p1

p2
p3

p4

p5

p6

Figure 4: LPM Data Structure

There are some subtle points about this data structure.
First, the items programmed in the Bloom filters may not
be the prefixes in the Table. Rather, they are the prefixes
of the paths that cross the length thresholds. See the path
“1001101” in Figure 4 for an example. Second, if a long
path cross multiple thresholds, then the prefixes of this path
with different threshold lengths are programmed in multiple
Bloom filters. We created a sort of dependency among the
Bloom filters. This feature can help filter out certain false
positive pattern. A match in a Bloom filter for a longer
threshold can be a true match only if all the Bloom filters
for the shorter thresholds show matches too. In other words,
if any Bloom filter shows a mismatch, we know that the
matches in Bloom filters for longer thresholds are definitely
false positive, so we do not need to query their associated
off-chip hash tables.

With this data structure, the LPM lookups are quite sim-
ple. Give an IP address, we extract the prefixes according

to the length thresholds of the Bloom filters and then use
these prefixes to query the Bloom filters in parallel. We then
determine which hash table to query based on the Bloom fil-
ter outputs. If a Bloom filter and all the Bloom filters for
shorter length thresholds report a match, we then query the
hash table for this Bloom filter to verify the match. If it
turns out to be a true match, then the best matching prefix
is either the one stored in the hash table entry or a longer
prefix in the subtree. So we traverse the subtree to search
for a longer prefix. The best matching prefix is returned
according to the search result. If the query to a hash table
shows that a match in a Bloom filter is a false positive, then
we go ahead to query the hash table for the Bloom filter
with a shorter length threshold.

This architecture suggests that the worst-case lookup per-
formance is determined by the number of Bloom filters and
the cost to traverse a subtree. In the example shown in
Figure 4, we can read a subtree in just one memory access,
so in the worst case, a packet lookup needs two hash table
queries to retrieve a valid multibit trie node and one extra
memory access to retrieve the next hop per lookup. For this
example, the worst-case performance is identical to that of
the original method with prefix expansion. However, our al-
gorithm uses much less memory and provides better support
of incremental updates.

Now we describe the algorithm formally. The data struc-
ture construction algorithm starts from the binary prefix
tree. The tree is partitioned into k segments at depth d0, d1,
d2, ... dk, where 0 = d0 < d1 < d2 < ... < dk ≤ w. We then
assign an on-chip Bloom filter Bi and an off-chip hash table
Hi for each depth di when i > 0. For any path starting from
the root with its length ≥ j, there is a record in each Bloom
filters Br if dr ≤ j. In the Bloom filter Bi, the di-bit prefix
of the path is programmed. A unique path prefix is only pro-
grammed in a Bloom filter once. Since the prefixes of a path
with different lengths are present in a sequence of Bloom fil-
ters, we call it Chained Path Bloom Filters (CPBF). All the
paths ended in a segment (di, di+1) forms a set of subtrees
for which the roots are the tree nodes at the depth di. We
use either Tree Bitmap or Shape Shifting Tries to encode
these subtrees. Each such encoded subtree is called a Seg-
ment Multibit Trie (SMT). The stride or the node capacity
is determined by the word size of the off-chip memory. All
the path prefixes programmed in a Bloom filter Bi are also
stored in the hash table Hi. Along with the path prefixes,
the hash table stores the corresponding SMT root node and
the length of the longest matching prefix of the root node.

The IP lookup process includes two steps. First, con-
struct the Bloom Filter keys, query the Bloom Filters, and
use the outputs to determine which Hash Table to search.
Second, retrieve the best match so far and the SMT root
from the Hash Table, traverse the SMT, and determine the
best match.

In the first step, we use the prefixes of the IP address with
length d1, d2, ...dk as keys to query the corresponding Bloom
filters in parallel. We examine the match status from B1 to
Bk. If the first negative match is reported by Bj , then the
length of the longest matching prefix must be shorter than
dj , even if some Bloom filters with index greater than j re-
port a positive match. The dependency of the CPBF is able
to filter out this kind of false positive without requiring any
off-chip memory access. If j = 1, we know the best match
exists in the SMT between depth 0 and depth d1; other-

wise, we query the hash table Hj−1 to verify the match. If
it turns out the match in Bj−1 is a false positive, we then
back to query the hash table with smaller index and so on.
Finally, we can find exactly the segment which contains the
best match. Once we find a true match in a hash table, in
the second step, we retrieve the associated SMT root and
traverse the SMT to find a longer matching prefix. The
longest matching prefix in this SMT is returned as the best
match. If the search fails, the stored best prefix is returned.
The best matching prefix can then be used as a key to re-
trieve the associated information, such as the next hop for
IP lookups.

CPBF provides a mechanism to fast jump the search to
the target segment when doing LPM. The encoded SMT
efficiently uses the memory and supports fast lookups. The
combination of these two forms a more scalable and faster
LPM algorithm.

4.3 Implementation Consideration
When designing the LPM system, we need to determine

the number of Bloom filters as well as the set of length
thresholds. Our algorithm is very flexible: each segment
can have a different number of bits. We can optimize the
segment partition to fit different applications. When the al-
gorithm is used for IP lookups, we can engineer the design
to gain the best throughput. For example, if we use TBM
to encode the SMTs and one memory word can encode a
node with a stride of s, we can partition the binary tree into
dW/se segments, where W is the longest length of the pre-
fixes in a table. So bW/scs Bloom filters are needed to cover
path lengths s, 2s, ... , bW/scs. Since an SMT is encoded
using a single memory word, one to bW/sc off-chip memory
accesses are needed to find the best matching prefix. Here
we assume each hash table query requires just one off-chip
memory access, which is reasonable with the use of FHT for
implementing the hash tables.

If the on-chip memory resource becomes a concern, we can
reduce the number of Bloom filters by letting each segment
cover αs bits. Now only bW/αsc Bloom filters are needed
and an SMT could have a depth of α. This means one to
bW/αsc + α memory accesses are required to find the best
matching prefix. Our algorithm allows a tradeoff between
throughput and storage. This is especially attractive for
IPv6, where W is a large number. Assume the longest prefix
length is 64 and the memory word size supports TBM nodes
with a stride of 5, Figure 5 shows the number of Bloom filters
required versus the worst-case number of memory accesses
required for a packet lookup when we vary the value of α.
The upper curve shows the absolute worst-case performance
when Bloom filters can show false positives. If we assume
there is no false positive from the Bloom filters, the worst-
case performance is determined by the depth of SMTs, which
is shown in the lower curve in Figure 5.

When no Bloom filter is used, the performance is sim-
ply that of the multibit trie algorithm. When just one
Bloom filter is used, the performance improves almost two
times. While more Bloom filters tend to worsen the absolute
worst-case performance, the average-case performance and
the usual performance are both improved substantially.

In [9] we take advantage of the tree sparsity to encode the
subtrees using SST which can generally cover a larger stride
per node. Similarly, we can expect a better performance if
SST can also be used to encode SMTs. We use the following

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12

of Bloom Filters

W
o
rs
t
C
a
s
e
 #
 o
f

M
e
m
o
ry
 A
c
c
e
s
s
e
s

with BF false positive

without BF false positive

Figure 5: The Worst-Case Performance vs the Num-
ber of Bloom Filters

algorithm to partition the binary tree and construct the data
structure dynamically.

Step 1 Traverse the binary tree and find the largest depth
di such that every subtree rooted at depth di can be en-
coded as an SMT of depth k, for some specified k. The
SMTs combine the TBM-type and SST-type nodes in
order to minimize di. If di > 0, go to the step 2. Oth-
erwise, the binary tree root is reached, so encode the
subtree rooted at the binary tree root and halt.

Step 2 Build a Bloom filter for depth di. All the tree nodes
at depth di have a record in the Bloom filter. Encode
the subtrees and store them in the associated hash
table. Store the best matching prefix so far for each
item in the associated hash table.

Step 3 Prune the binary tree at depth di and repeat the
previous steps on the remainder tree.

Figure 6 shows an example of such a tree partition when
k = 1. Assume an SST node can encode five binary nodes
and an TBM node can support a stride of 3. At the first
iteration, we get the threshold at the depth 4. At the second
iteration, we get the second threshold at the depth 1. The
algorithm terminates at the third iteration.

A

C

E

G

I

H

J

K L

M

N

F

D

B

0

0

0

0

0

0

0

0

1

1

1

1

1

d2 = 4

d1 = 1

Figure 6: Tree Partition Using TBM and SST

Using this algorithm, the size of segments is not necessary
to be the same, but adapts to the structure of the binary
tree. Hence, we can reduce the required number of Bloom
filters to the minimum. Note that we can also increase the
desired SMT depth to further reduce the number of Bloom
filters required at the cost of a little lower throughput.

4.4 LPM Performance
Assume there is no false positive from Bloom filters. Hence,

traversing one SMT is the only cost incurred to find the
longest matching prefix. In the worst case when all the k
Bloom filters show a false positive, the extra cost is k hash
queries. In this case, the performance is the same as the
worst-case performance of the multi-bit trie algorithm.

Assume the best matching prefix is stored in Hi. Clearly,
Bi should report a true match. We need to access only one
SMT if and only if Bi+1 does not show a false positive, so the
probability is (1− f), where f is the false positive rate of a
Bloom Filter. Similarly, we need to access two SMTs if and
only if Bi+1 shows a false positive and Bi+2 does not show
a false positive, so the probability is f(1 − f). Therefore,
the average number of STMs accessed per packet lookup is:

(1−f)+2f(1−f)+ ...+(k−i)fk−i−1(1−f)+(k−i+1)fk−i

f is typically a very small value, so we can let 1 − f =
1. Assume for the lookups, the best matching prefixes are
evenly distributed in all the hash tables, then the average
number of STMs accessed per packet lookup is:

1 +
2(k − 1)

k
f +

3(k − 2)

k
f2 + ... +

2(k − 1)

k
fk−2 + fk−1

A QDRII SRAM has an equivalent word size of 72 bits,
which is sufficient to encode a TBM node with a stride of 5
or an SST covering a 16-node binary subtree [9]1. We use
the largest available BGP route table to demonstrate our
algorithm’s performance. There are about 200K prefixes in
this table, and the lengths are distributed between 8 and 32.
We evaluate our algorithm using only five Bloom filters for
path lengths of 8, 13, 18, 23 and 28. This partition ensures
that each SMT contains a single TBM node.

Table 5: BGP Table Results I
Depth # SMTs # Expanded Prefixes

8 128 22
13 2,648 405
18 23,689 47,155
23 71,913 286,769
28 10,333 1,319,789
32 — 89,640

Total 108,711 1,743,780

As shown in Table 5, the number of SMTs defines the
number of items that must be stored in both the on-chip
Bloom filters and the off-chip hash tables. If the original
method was used with Bloom filters for lengths 8, 13, 18,

1When each SMT can be encoded using a single node, the
node data structure does not need the EBM and the child
pointer fields. Therefore, the node can support a larger
stride or can cover more binary nodes. However, here we
use the conservative numbers for evaluation

23, 28, and 32, the number of items stored corresponds to
the number of expanded prefixes, shown in the right column.
Thus, our method reduces the storage required by more than
an order of magnitude.

We can reduce the number of Bloom filters further at the
cost of one more memory access per lookup. The results
are shown in Table 6. By reducing the number of Bloom
filters, our algorithm needs fewer and fewer items in Bloom
filters. However, the prefix expansion scheme needs more
and more items. By eliminating two Bloom filters, now the
prefix expansion scheme generates more than 50 expanded
prefixes per original prefix on average.

Table 6: BGP Table Results II
Depth # SMTs # SMT nodes # expanded prefixes

8 128 2,776 22
18 23,689 95,602 58,240
28 10,333 10,333 10,206,672
32 — — 89,640

Total 34,150 108,711 10,354,574

Figure 7 shows the worst-case number of memory accesses
per packet lookup versus the number of items stored per
original prefix, for our algorithm and the prefix expansion
scheme. Our algorithm provides a good worst-case perfor-
mance with very low storage overhead. For the prefix ex-
pansion scheme to reach the similar worst-case performance,
significantly more storage is required.

0

5

10

15

20

25

0.01 0.1 1 10 100 1000

Items / Prefix

W
o
rs
t-
C
a
s
e
 #

M
e
m
o
ry
 A
c
c
e
s
s
e
s

prefix expansion

TBM encoded SMT

Figure 7: The Worst-Case Performance vs the Num-
ber of Items per Prefix

Finally, we investigate the effect of dynamically determin-
ing the segment sizes using SST and TBM together on the
synthetic IPv6 table we used in [9]. There are 47 unique
prefix lengths distributed from 18 to 64. If the naive Bloom
filter scheme is applied, up to 47 Bloom filters are required
and the worst-case performance is 47 hash table queries per
packet lookup. If TBM is used to encode the SMTs and
the memory word supports a stride of 5, then we can reduce
the number of Bloom filters to just 10 and the worst-case
performance now is 10 hash table queries per packet lookup.
Table 7 summarizes the results. Because the binary trie is
very sparse, the number of SMTs exceeds the number of
expanded prefixes, so we can see the storage of our scheme
is actually worse than that of the prefix expansion scheme.
However, if we reduce the number of Bloom filters further,
the number of SMTs will decrease and the number of ex-
panded prefixes will increase.

By using SST and TBM together, an encoded SMT node
can cover either 16 binary tree nodes or support a stride of

Table 7: IPv6 BGP Table Results (TBM only)
Depth # SMTs # expanded prefixes

18 31,667 —
23 86,617 142
28 126,489 1,285
33 130,347 18,819
38 128,264 35,464
43 111,077 86,807
48 85,447 204,972
53 28,730 133,787
58 24,141 34,729
63 13,460 51,464
64 — 11,840

Total 766,239 579,309

5. Letting each SMT contain a single node, we run the dy-
namic algorithm to determine the segment size and reduce
the number of Bloom filters to 7. Now in the worst case, we
need just seven hash queries per packet lookup to find the
best matching prefix. Table 8 summarizes the results. The
table also shows when the prefix expansion is used to sup-
port these thresholds, the table size is expanded to almost
100 times larger, while in our scheme, the items stored in
Bloom filters are only 3.5 times more than the number of
original prefixes. When a single QDRII SRAM chip is used,
our algorithm can perform lookups for 200 million packets
per second in the usual case and 25 million packets per sec-
ond in the worst case. With a false positive rate of 0.008,
our algorithm requires 12 Mb on-chip memory when FHT
is used to implement the Bloom filters and the associated
hash tables. On the other hand, the prefix expansion scheme
requires 339 Mb on-chip memory.

Table 8: IPv6 BGP Table Results (SST and TBM)
Depth # SMTs # expanded prefixes

18 31,667 —
21 56,935 24
26 116,436 632
31 132,874 3,667
36 130,320 99,013
41 117,051 73,021
49 38,465 1,083,665
64 — 16,515,728

Total 623,748 17,775,750

We can see our new LPM algorithm has significant advan-
tages over the previous algorithms for IP lookups. In our 2D
packet classification algorithm, it allows us to significantly
reduce the cost of single field lookups.

5. TUPLE PARTITION
If we visualize the tuple space in a 2D plane, the key for

good performance of our packet classification algorithm is
to come up with effective tuple partitions. There are two
dimensions to approach this problem. First, if we are given
the acceptable worst-case throughput, we seek to minimize
the storage. Second, if we are given the storage we can use,
we seek to maximize the throughput.

Now we consider the first approach. With the simple grid
tuple definition, once the worst-case number of hash queries

Table 9: Filter Set Expansion for Different Configurations
Filter Set # filters 1× 1 1× 2 2× 1 2× 2 2× 4 4× 2 3× 3

ACL1 426 19,885 2,851 997 472 445 472 445
ACL2 527 37,674 9,317 8,978 1,225 922 899 596
ACL3 1,588 222,396 55,046 28,537 3,212 3,160 1,779 1,737
ACL-syn 6,826 3,511,456 384,353 34,579 9,666 7,992 9,666 7,992

is chosen, we need to determine how to assign the num-
ber of segments and the boundary of each segment on each
field. The goal is to minimize the size of the expanded fil-
ter set. This optimization problem can be achieved through
dynamic programming. In practice, we need also to con-
sider the performance of LPM so it is better to have regular
sized segments. Fortunately, we find that the regular sized
segments can result in good performance.

Besides the grid-based partition, it turns out that we can
have arbitrary tuple partitions. Figure 8 shows a simple
example. There are only three tuple sets. The tuple set B
can be represented as ([12, 23], [1, 25]) ∪ ([1, 11], [9, 25]), for
instance. Note that we have removed the tuple sets (0, 0),
(0, [1, 32]), and ([1, 32], 0) from the tuple space, because the
filters in them can be handled by the LPMs on both fields so
that these filters do not need to be stored in any hash table.
The lookup process for such partitions is almost the same
with a minor difference. It is possible we find in a tuple we
may have multiple prefix length combinations that we need
to check. However, we only need to check the most specific
combinations, thanks to the “pseudo filters”. Hence, the
number of hash table queries is still bounded by the number
of tuples.

Source IP Prefix Length

D
es
ti
n
at
io
n
 I
P
 P
re
fi
x
 L
en
g
th

1 32
1

32

11 23

8
9

25
26

12 24

A

B

C

Figure 8: Another Tuple Partition Scheme

We can preset the tuple partition in favor of the LPM
implementation. In this case, we have little control of the
filter expansion but we can guarantee the worst-case perfor-
mance. On the other hand, we can dynamically determine
the tuple partition by constraining the filter set expansion
so we can control the storage but not the worst-case per-
formance. For example, we may want the overall filter set
expansion factor to be no more than α. On way to achieve
this is to partition the space incrementally. If the expansion
ratio for a particular tuple set is too high, we divide it into
smaller subsets.

While simple tuple partitions seem to work well on current
filter sets, it makes sense to study better tuple partition al-
gorithms for larger filter sets in the future. We believe there

are many opportunities for future work in this direction.

6. EVALUATION
We first evaluate the grid tuple partition. We perform

experiments on several ACL filter sets and summarize the
results in Table 9 and Figure 9. In the first row of the table,
α × β means that the source IP address field has α equal
sized segments and the destination IP address field has β
equal sized segments. Therefore, the values of α × β give
the worst-case number of hash queries for a packet. In the
figure, the dotted lines indicate the original size of the filter
sets. We can see that at the cost of a very small number
of hash queries, the size of the expanded filter set decreases
quickly to approach its original size.

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1 4 7 10 13 16

hash queries

#
 e
x
p
a
n
d
e
d
 f
il
te
rs

acl3

acl2

acl1

acl-syn

Figure 9: Filter Set Expansion vs. Number of Hash
Queries

We use the LPM algorithm discussed in Section 4 to per-
form single field lookups. We assign Bloom filters at the
same segment boundaries. Table 10 shows the total number
of items that need to be programmed into the Bloom fil-
ters for LPM. The numbers are typically very small, which
implies a small amount of on-chip memory usage.

We evaluate the algorithm performance when using irreg-
ular tuple partitions as shown in Figure 10. There are two
to four tuple sets for different configurations. The tuple sets
are equalled spaced on each axis. The simulation results are
shown in Table 11. The size of the expanded filter sets is
significantly reduced when a finer tuple partition is used.
Sometimes when a finer tuple partition is used, the overall
number of filters in the expanded filter set does not change.
This is because some tuple sets do not contain any filter at
all. Actually, for these evaluated filters sets, at most two
tuple sets need to be searched even with the configuration
(c) where there are four tuple sets, so in the worst case, a
packet lookup requires only two hash table queries.

Finally, we dynamically determine the tuple partition by
setting the filter set expansion factor to 2. For ACL2 and

Table 10: Number of Items in Bloom Filters for LPM
Filter Set 1× 1 1× 2 2× 1 2× 2 2× 4 4× 2 3× 3

ACL1 0 61 3 64 184 72 120
ACL2 0 49 43 92 163 160 207
ACL3 0 59 57 116 368 310 385
ACL-syn 0 387 191 578 1,168 943 1,103

Table 11: # Filters for Different Tuple Configurations
Filter Set # filters Single Tuple Config. (a) Config. (b) Config. (c)

ACL1 426 1,004 1,004 1,004 542
ACL2 527 3,027 3,027 2,604 1,914
ACL3 1,588 174,561 6,730 6,730 6,692
ACL-syn 6,826 185,799 185,799 185,799 12,306

1 16 17 32
1

16

17

32

1
1

1

1

16

16

17

17

32

32 32

3210 11 21 22

10
11

21
22

8

8

9

9

2425

24
25

Source IP Prefix Length

D
es

ti
n
at

io
n
 I
P
 P

re
fi
x
 L

en
g
th

(a) (b) (c)

Figure 10: Experiments on Irregular Tuples

ACL3, we cannot achieve this goal with the approach shown
in Figure 8. This means we need better tuple partition algo-
rithms. For ACL1 and ACL-syn, we get the tuple partition
shown in Figure 11. The figure also shows the number of fil-
ters before and after filter set expansion. The results show
that two tuple sets are enough to satisfy our storage con-
straint.

0 23 24 32
0

23
24

32

0
0

32

32

23
24

Source IP Prefix Length

D
es

ti
n
at

io
n
 I
P
 P

re
fi
x
 L

en
g
th

ACL1: 426 548 ACL-syn: 6,826 12,381

2324
Source IP Prefix Length

Figure 11: Dynamic Tuple Partition

7. CONCLUSION
In this paper we deal with a special case of the packet clas-

sification problem where each filter is specified as two pre-
fixes. We present a novel packet classification algorithm de-
rived from the tuple space search algorithm and the crosspro-
ducting algorithm. When implemented with our LPM and
FHT techniques, the algorithm performs much better than
previous algorithms for 2D IPv4 packet classification. It
becomes even more attractive in IPv6 scenarios, where the
previous algorithms suffer from the much longer prefixes.
With a flexible tuple partition scheme, our algorithm ex-

hibits an attractive tradeoff between storage and through-
put, which allows the designer to control the system per-
formance based on the available resource and the desired
classification throughput. Our algorithm is fast yet yields
small on-chip and off-chip memory consumption. Moreover,
our LPM algorithm alone significantly improve previous al-
gorithms and can be used for high performance IP lookups.

8. REFERENCES
[1] F. Baboescu, S. Singh, and G. Varghese. Packet

classification for core routers: Is there an alternative to
CAMs? In IEEE INFOCOM, 2003.

[2] M. Buddhikot, S. Suri, and M. Waldvogel. Space
Decomposition Techniques for Fast Layer-4 Switching. In
Conference on Protocols for High Speed Networks, 1999.

[3] E. Cohen and C. Lund. Packet Classification in Large ISPs:
Design and Evaluation of Decision Tree Classifiers. In ACM
SIGMETRICS/Performance, 2005.

[4] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor.
Longest Prefix Matching using Bloom Filters. In ACM
SIGCOMM, Aug. 2003.

[5] W. Eatherton, G. Varghese, and Z. Dittia. Tree Bitmap:
hardware/software IP Lookups with Incremental Updates.
ACM SIGCOMM Computer Communication Review, 2004.

[6] J. Hasan and T. N. Vijaykumar. Dynamic Pipelining:
Making IP Lookup Truly Scalable. In ACM SIGCOMM,
2005.

[7] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani.
Scalable, Memory Efficient, High-Speed IP Lookup
Algorithms. IEEE/ACM Transactions on Networking, 13,
Aug. 2005.

[8] H. Song, S. Dharmarpurikar, J. Turner, and J. Lockwood.
Fast Hash Table Lookup Using Extended Bloom Filter: An
Aid to Network Processing. In ACM SIGCOMM, 2005.

[9] H. Song, J. Turner, and J. Lockwood. Shape Shifting Tries
for Faster IP Lookup. In IEEE ICNP, 2005.

[10] V. Srinivasan, S. Suri, and G. Varghese. Packet
Classification Using Tuple Space Search. In ACM
SIGCOMM, 1999.

[11] V. Srinivasan and G. Varghese. Fast Address Lookups
using Controlled Prefix Expansion. ACM Transaction on
Computer Systems, 17, Feb. 1999.

[12] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel.
Fast and Scalable Layer Four Switching. In ACM
SIGCOMM, 1998.

[13] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner.
Scalable High Speed IP Routing Lookups. In ACM
SIGCOMM, 1997.

[14] P. Warkhede, S. Suri, and G. Varghese. Fast Packet
Classification for Two-Dimensional Conflict-Free Filters. In
IEEE INFOCOM, 2001.

