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Abstract— This paper addresses the problem of efficient filter
updates in TCAMs. Under realistic conditions, filter updates
can lead to significant performance degradation. This paper
introduces an approach to using TCAMs that encodes filter
priority as a TCAM field, allowing the highest priority filter
to be identified with a small number of lookups, while greatly
simplifying filter set management, and reducing the impact of
updates on lookup throughput. Our approach supports wire-
speed processing for OC-192 links using commercially available
TCAM components.

I. I NTRODUCTION

TCAMs are widely deployed in high performance network
routers for packet classification because of their unmatched
lookup throughput, and their generality. In TCAMs, packet
filters are represented as ternary bit strings and stored in
decreasing priority order. Given a packet header, the search for
the best matched filter with the highest priority is performed on
all the entries in parallel. The index of the first matched filter
is then used to access a memory to retrieve the associated data.
This elegant architecture supports classification of a packet in
just a single clock cycle, allowing a state-of-art TCAM chip
to support a sustained search rate of 250 million packets per
second. Even for OC-192 networks, the peak packet rate in
the worst case is no more than 30M packets per second, far
less than the search capability that a TCAM provides. While
TCAMs remain the most popular choice for high performance
packet classification, they do have several drawbacks.

• Low Density & High Cost. A TCAM requires up to 16
transistors for a bit while SRAM requires just six and
SDRAM just one. Consequently, the storage density of
a TCAM is significantly lower than that of commodity
memory technologies. Moreover, the relatively small mar-
ket for TCAMs makes them expensive, with a cost per
bit that is roughly 20 times that of SRAM and hundreds
of times that of DRAM.

• High Power Consumption. Because they search all entries
in parallel on every packet, TCAMs consume a lot of
power. 25 Watts per TCAM component is a fairly typical
power budget, adding significantly to the cooling require-
ments for a backbone router. Modern TCAMs allow en-
tries to be grouped into segments, that can be selectively
searched in order to reduce power usage. When filters
are partitioned among segments appropriately, this can
significantly reduce power consumption [9], [5], [10].

• Arbitrary Range Support. TCAMs naturally support
searches on ternary bit strings. This is not ideal for packet
filters that include arbitrary ranges for some of their

fields. The naive way to solve this problem can lead to
significant expansion in the space required to represent a
filter [5]. This observation has triggered the development
of new methods that combine single field searches with
encoded range values [2], [1], [3] and proposals for direct
hardware support of range lookups [5].

• Multiple-Match Support. Recent network security appli-
cations require all the matching filters to be reported,
not just the first one. Conventional TCAMs only output
the matching filter with the smallest index. It seems
likely that future TCAMs, driven by new requirements,
will be designed to support multiple matches efficiently.
Algorithmic approaches for dealing with this problem are
discussed in [8], [1].

In this paper, we focus on TCAM filter set management,
a problem that has received relatively little attention in the
research literature. In an operating router, filter sets update
over time in response to changes in network management
policies and link availability. New filters may be inserted and
existing ones deleted or modified. Because TCAMs return
the first matching filter, based on storage position within the
TCAM, insertion of a new filter can require many other filters
to be moved in order to place the new filter at the appropriate
position. In the worst case, a large fraction of the filters in
a filter set may need to be moved for each insertion. While
many filter deletion and modification operations can be done
without moving filters (using ”lazy deletion” and in-place
modification), in the worst case these operations can also
require large numbers of filters to be moved.

While the rate at which filters are updated is much smaller
than the rate at which lookups are processed, filter updates can
have a significant impact on lookup rate, since updates must
be suspended while a control processor makes the changes
needed to complete a TCAM update. Wang et. al. show that
the movement of just 16 TCAM entries in an OC-192 router
can trigger the dropping of 18 packets [7]. As applications
requiring more frequent updates emerge, the impact of updates
on lookup performance may becomes much worse.

As we have mentioned, the lookup throughput of TCAMs
actually exceed the requirements in typical applications.This
suggests the possibility of trading off lookup throughput for
more efficient filter updates. We show that this trade-off canbe
exploited to good effect, by encoding the priority as a field in
the TCAM and using multiple lookups to identify the highest-
priority matching filter. The resulting system can sustain worst-
case lookup rates of more than 65 million per second, and
average rates of more than 80 million per second.



II. RELATED WORK

When TCAM is used for longest prefix matching (LPM),
at mostW moves are needed to insert a new prefix, whereW

is the number of unique prefix lengths [4]. Because for any
packets, there is at most one matching prefix among prefixes
of the same length, prefixes can be placed in the TCAM in
decreasing order of their lengths. This ensures the correct
IP lookup result and makes it relatively easy to update an
entry. The update algorithm uses the property that changing
the relative order of prefixes of the same length does not affect
the lookup result, so one can insert a new prefix by moving just
one prefix for every distinct prefix length. Since there are less
than 32 distinct prefix lengths, the update time is bounded and
reasonably small. One can do even better by storing prefixes
in chain-ancestor order [4]. Carefully refining the memory
layout can further reduce the total number of entry moves.
Unfortunately, as will be explained, this approach cannot be
directly used for general packet classification.

Reference [7] is one of the few prior studies of the TCAM
update problem for packet classification. The authors focuson
how to maintain consistent filter table throughput during the
update process. They show that TCAM locking can be avoided
by carefully managing the update process so that correct filter
matches are ensured, even while the filter update is in progress.
However, their method significantly increases the number of
moves required, and while they do not lock up lookups during
the update process, the filter moves do still consume TCAM
bandwidth. In addition, the filter set management process
is relatively complex and the batch processing introduces a
significant latency, which delays the time for an update to
take effect.

A typical TCAM component provides 144 bits for matching
a packet header. In IPv4 applications, some of these bits are
not needed because the standard 5-tuple packet header contains
only 104 bits. These otherwise unused bits can be used for
other purposes. The MUD algorithm uses these bits to attach
a filter index to each filter in order to support multi-match
classification [1]. In this algorithm, the filters are storedin
incremental index order. If the first lookup returns a matching
filter with index j, then in the subsequent lookups, we only
need to search the filters with index greater thanj. Our
algorithm is similar to the MUD algorithm in the sense that
it also encodes additional information in the TCAM entries.
However, the information that we add is different and, we use
it to improve the efficiency of filter set updates rather than to
enable multi-match classification.

III. A LGORITHM

If enough empty entries are allocated between any two
filters in a TCAM, then to insert a new filter, we can simply
insert it in an appropriate empty entry, without moving any
other filters. Although this is a tempting solution, there are
two problems with it. First, in order to reduce TCAM power
consumption, we prefer to store the filter set in as few TCAM
segments as possible. Allocating empty entries between filters,
makes it necessary to search more segments for a given filter

set, increasing power consumption. Second, because we cannot
predict future updates, we cannot guarantee that there will
always be an empty position in the TCAM where we need one.
When there is no empty entry, filter moves become necessary.

From this discussion, we identify two important objectives.
First, we would like to store the filter set in a TCAM
compactly without allocating empty entries between filters.
This allows a linear growth of occupied entries and segments
as the size of the filter set grows, reducing the power required
for lookups. Second, we would like to minimize the movement
of entries, so as to reduce the amount of work that must be
done for each update and to minimize the impact of updates
on lookup throughput.

A. Real Filter Priority

A filter’s order in a filter set naturally reflects its priority, so
the filter index can be used as its priority value. In fact, only
overlapping filters need to be ordered relative to one another, in
order to ensure the correctness of lookup results. Therefore,
filters can be divided into groups in such a way that filters
in the same group can exchange their order at will, without
affecting the lookup results. The order of the groups, however,
cannot be exchanged. To be specific, each group is assigned a
priority value. The group of filters with a higher priority must
be stored in a lower address region of a TCAM than the group
of filters with a lower priority.

The algorithm for grouping the filters and assigning the
priority values can be described as follows. We start from a
graph in which each vertex denotes a filter. For each filter,ri,
we examine all the other filters,rj , which overlap withri (i.e.
ri ∩ rj 6= ∅). If i > j, we create a directed edge fromrj to ri;
otherwise, we create a directed edge fromri to rj . This step
generates a directed acyclic graph. The topological order of the
vertices in this graph reflects the relative priorities of filters.
In the second step, we assign priority values to filters. Each
vertex with no predecessors is assigned a priority value of zero.
Other vertices are assigned a priority value only after all their
predecessors have been assigned a priority value. The priority
value assigned to a vertex is one plus the largest priority value
assigned to any of its predecessors. An example of this process
is shown in Figure 1.

Fig. 1. Grouping and Priority Value Assignment

We evaluated real filter sets and found that the number of
distinct priority values is much smaller than the number of



filters, as shown in Table I. We also evaluated large synthetic
filter sets generated by ClassBench [6] tool and found that
the number of priority levels is insensitive to the number of
filters. Even for filter sets with ten thousand filters, the number
of priority levels is less than 64. This property implies that if
filters are updated based on their priority values, significantly
less work needs to be done than if they are updated using their
absolute position in the TCAM.

TABLE I

REAL PRIORITY LEVELS IN SOME FILTER SETS

filter set filters priorities filter set filters priorities
acl1 814 40 fw1 283 53
acl2 623 35 fw2 184 55
acl3 2,400 22 fw3 160 49
acl4 3,061 22 ipc1 1,702 42
acl5 4,557 13 ipc2 192 42

The filter grouping is analogous to the prefix grouping by
the prefix lengths or the chain-ancestor ordering for LPM [4],
but updating filters for general packet classification is much
more complex than updating prefixes for LPM. First, the
number of priority levels in filter sets for the general packet
classification is much more than the number of unique prefix
lengths in prefix sets for the IP lookup. Second, updating a pre-
fix in a prefix length group does not affect any other prefixes.
Therefore, the number of entry moves required is bounded
by the number of unique prefix lengths. However, for general
packet classification, updating a filter may change multiple
filters’ priority values. Figure 2 illustrates the groupingresult
after a new filterR, which has an index betweenr1 and r2,
is inserted into the set. Notice thatr4, r5, and r6 all have
to change their priority values. This implies that after a new
filter is inserted, the priority values of several others need to
be adjusted to maintain a correct topological priority order.
Similar actions need to be taken after a filter is removed or
modified in the filter set.

Fig. 2. Insert a New FilterR

In the worst case, all filters need to change their priority
value. Fortunately, in reality this is unlikely to happen. We
will show this point through analysis and the simulation.

B. Using Extended Filter

We have shown that a typical TCAM entry configuration
results in some unused bits. Using a few of these unused bits,

we attach the real priority value to each filter. Now if the
packet classification always looks up the extended filters, the
filters need not be stored in their priority order in a TCAM.
Actually, a new filter can be written in any empty entry in a
TCAM and no other filter needs to be moved. Clearly, now
the search key has to also include the priority value. The
lookup process is no longer looking for the matching filter with
the minimum TCAM index but the matching filter with the
minimum attached priority value. Without the prior knowledge
of the priority, multiple lookup attempts are needed to figure
out the best matching filter with the minimum priority value.

A linear search on the priority values does not scale to
large filter sets with many priority levels. Fortunately, TCAMs
have a set of reconfigurable Global Mask Registers (GMR)
which can selectively mask out any bits in all entries as “don’t
care”. Each filter has a priority value with all bits enabled.By
configuring GMR bits, we can determine which bits of the
priority value should be considered as if each GMR enables
a range of priority values. Each TCAM lookup therefore
designates one of the preset GMRs to search only a range
of priority values. The result narrows down the search range
for the next lookup, and eventually identifies the best match.
Typically, a TCAM has up to 64 GMRs. They are more than
enough for our purpose.

Figure 3 illustrates an example where there are at most 32
priority values in the filter set. The binary decision tree is
traversed based on the search result of the previous lookup.If
the TCAM reports a match, we follow the upper branch of the
tree; otherwise, we follow the lower branch of the tree. For
example, given a packet header, we first search any matching
filter with the priority value between zero and 15. If the result
is positive, we then search any matching filter with the priority
value between zero and seven; otherwise, we search the range
eight to 11, and so forth. Since each lookup step halves the
searched priority range, this scheme needs onlylog N lookups
per packet to find the best matching filter, whereN is the
number of unique priority values.
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Fig. 3. Searching the Filter with the Minimum Priority Value.

Note that in this scheme, the only information used is
whether or not the TCAM reports a match. If we also know the
matching filter’s priority value, we can accelerate the search.
For example, if in the first attempt, we find a matching filter



with a priority value of zero, then there is no further search
needed. Even when the priority value is not zero, we can use
the value to advance the search range quickly in the decision
tree. For example, if the first search in the range of zero to
15 returns a match with the priority value of two, then in the
next step we can directly search the range zero to one rather
than zero to seven.

To achieve this, we store the filter’s priority value in the
associated data memory as a part of the filter’s associated data.
Each lookup step reads this value if there is a match in the
TCAM. The control logic then uses this information to choose
another GMR for the next lookup or terminates the lookup.
Accessing the associated data memory is pipelined with the
TCAM lookups, so the TCAM throughput is unchanged.

We also use another TCAM feature to help improve the
lookup performance. Along with the matching filter index, the
TCAM also has a multi-match output signal indicating if there
is more than one matching filter for the given key. Since our
search order is in favor of the higher priority filters, during
the search, if the multi-match signal shows only one single
match for the given key, the filter is guaranteed to be the best
matching one. In such a case, no further search is needed.

C. Lookup

The lookup of a filter (SearchTCAM [key]) involves
a sequence of recursive calls to the sub-procedure
(SearchPriorityRange [key, low, high]) that searches a
range of priority values using a GMR. In the following
pseudo code,IsMultiMatch is asserted when more than one
filters are matched.Priority(i) is filter i’s priority value
acquired from the associated data memory.Low and high
define the priority value range which can be represented with
a prefix string.

SearchTCAM [key]
1. low = 0
2. high = 2⌈log

2
MaxPriority⌉ − 1

3. SearchPriorityRange [key, low, high]

SearchPriorityRange [key, low, high]
1. get filter index i
2. if (i 6= NULL)
3. if (priority(i) = low OR ! IsMultiMatch)
4. return i as the best match
5. else if(priority(i) 6= low AND IsMultiMatch)
6. high = low + 2⌊log

2
(priority(i)−low)⌋ − 1

7. regi = i
8. SearchPriorityRange [key, low, high]
9. else
10. if (is the first TCAM lookup)
11. return NULL
12. else if(low = high OR priority(regi) = high+1)
13. return regi as the best match
14. else
15. low = high + 1
16. high = low + 2⌊log

2
(priority(regi)−low)⌋ − 1

17. SearchPriorityRange [key, low, high]

D. Update

The update process includes inserting, deleting, and modify-
ing filters. All of these may result in multiple filters changing
their priority values. Inserting a filter implies some filters need
to increase their priority value, deleting a filter implies some
filters need to decrease their priority value, and modifyinga
filter can do both. The analysis can be done through the DAG
we built in III-A.

An update involves a sequence of accesses in the TCAM
and the associated memory. By performing accesses in the
proper order, we can do an update using the spare TCAM
cycles without blocking the normal lookups. To insert a new
filter, we first get the set of filters that need to increase their
priority values. We sort these filters in decreasing priority value
order and then increase their priority value in turn. At last, we
insert the new filter in any empty entry. For a better lookup
performance, we should choose the best available entry for the
new filter. Ideally, among all the filters that overlap the new
filter, those with smaller priority values should be locatedin
the small indexed entries and those with larger priority values
should locate in the large indexed entries.

IV. EVALUATION

A. Filter Distribution

The efficiency of our algorithm depends on the filter distri-
butions. We have shown that even for very large filter sets, the
number of unique priority values, which determines the worst-
case performance bound, is small. We also examine the filter
distributions in different priority value groups. An example is
shown in Figure 4. The majority of filters are concentrated in
groups with small priority values. This fact has two favorable
implications. First, it benefits the lookup process since a packet
has a higher possibility to match a filter with small priority
value and our search starts from the filters with small priority
values. Second, it implies the long dependent chains comprise
only a few filters; hence our update process will not affect too
many filters.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

ipc1

acl1

fw1

priority value k

%
 f
ilt
e
r 
w
it
h
 p
ri
o
ri
ty
 v
a
lu
e
 >
=
k

Fig. 4. The Priority Value Distribution

Indeed, the priority dependency is a result of filter overlaps.
If the maximum number of overlapped filters that a packet can
match is small, our lookup and update algorithms both work
better. In [1], 112 real filter sets are analyzed. In only one filter
set did a packet match as many as eight filters. In the majority
of filter sets, no packet matched more than five filters.



TABLE II

LOOKUP THROUGHPUTPERFORMANCE(ASSUMETCAM RUNS AT 250MHZ CLOCK)

filter set acl1 (814 filters) fw1 (283 filters) ipc1 (1,702 filters) acl1 syn (4,415 filters)
# accesses throughput # accesses throughput # accesses throughput # accesses throughput

the best case 1.38 181 Mpkt/s 2.18 115 Mpkt/s 3.23 77 Mpkt/s 2.08 120 Mpkt/s
the average case 2.65 94 Mpkt/s 2.68 93 Mpkt/s 4.14 60 Mpkt/s 2.97 84 Mpkt/s
the worst case 3.20 78 Mpkt/s 2.90 86 Mpkt/s 5.37 47 Mpkt/s 4.66 54 Mpkt/s

B. Lookup Throughput Performance

For each filter set, we generate a packet header trace using
the ClassBench tools [6] to evaluate the lookup performance.
We evaluate the worst case lookup performance by storing all
the filters in a TCAM in decreasing priority value order. The
best case lookup performance happens when the filters are
stored in increasing priority value order and the average case
performance happens when the filters are randomly permuted
in TCAM entries.

The simulation results for some filter sets are shown in
Table II. Note that for any case, a packet needs at most six
TCAM accesses to find the best matching filter, so in the
absolute worst case, the TCAM can still classify 42 million
packets per second, which is sufficient for the OC-192 link
speed.

C. Update Performance

The update performance is determined by the number of
TCAM entry writes needed when inserting, deleting or mod-
ifying a filter. The worst case update performance happens
when we insert the filters in the reversed priority order or
delete the filters in priority order. To evaluate the worst case
update performance, we first reverse the filters’ order as they
appear in the original filter set, and then we insert the filters
into the TCAM one by one. After each filter is inserted, we
reevaluate all the filters’ current priority value and countthe
number of filters that need to update their priority value. This
number plus one more TCAM write that actually inserts the
new filter is the overall number of TCAM writes needed for
an update.

In Table III, we show the average number of TCAM writes
and the maximum number of TCAM writes needed after all
the filters are inserted into a TCAM. We can see the average
number of TCAM writes is small but the maximum number of
TCAM writes can be very large. Figure 5 shows the cumulative
distribution of the TCAM write numbers.

TABLE III

THE WORSTCASE UPDATE PERFORMANCE

filter set avg. TCAM writes max. TCAM writes
acl1 3.2 110
fw1 10.8 239
ipc1 12.3 1,099

These results further affirm us that the similar update
algorithm used for LPM is not applicable for the general
packet classification since too large number of memory moves
can be involved. On the other hand, our algorithm needs only
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Fig. 5. The Worst Case Distribution of TCAM Accesses

to rewrite the portion of the extended filters that holds the
priority value, which can be done very fast in general and
needs not block the lookup process.

V. CONCLUSIONS

In this paper we present an algorithm that trades off the
surplus search capability of TCAMs for efficient filter set
updates for packet classification. The real priority valuesof
filters are derived and attached to the filters. Using the binary
search on the priority values and some other features of
TCAMs, the algorithm maintains a lookup throughput that is
sufficient for backbone routers running at OC-192+ speeds.
At the same time, that algorithm greatly reduces the work
required for filter set management thus it is quite suitable for
the dynamic environment where filter updates occur frequently.
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