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Abstract— This paper addresses the problem of efficient filter
updates in TCAMs. Under realistic conditions, filter updates
can lead to significant performance degradation. This paper
introduces an approach to using TCAMs that encodes filter
priority as a TCAM field, allowing the highest priority filter
to be identified with a small number of lookups, while greatly
simplifying filter set management, and reducing the impact &

fields. The naive way to solve this problem can lead to

significant expansion in the space required to represent a
filter [5]. This observation has triggered the development

of new methods that combine single field searches with

encoded range values [2], [1], [3] and proposals for direct

hardware support of range lookups [5].

updates on lookup throughput. Our approach supports wire- o Multiple-Match Support. Recent network security appli-

speed processing for OC-192 links using commercially avaible cations require all the matching filters to be reported,
TCAM components. not just the first one. Conventional TCAMs only output
the matching filter with the smallest index. It seems
likely that future TCAMs, driven by new requirements,
will be designed to support multiple matches efficiently.

I. INTRODUCTION

TCAMs are widely deployed in high performance network

routers for packet classification because of their unmaitche  Ajgorithmic approaches for dealing with this problem are
lookup throughput, and their generality. In TCAMs, packet  giscussed in [8], [1].
filters are represented as ternary bit strings and stored ing this paper, we focus on TCAM filter set management,
decreasing priority order. Given a packet header, the Béarc 5 roplem that has received relatively little attention fire t
the best matched filter with the highest priority is perfodde@ egearch literature. In an operating router, filter setsated
all the entries in parallel. The index of t'he first matchg@filt over time in response to changes in network management
is then used to access a memory to retrieve the associatd qgfjicies and link availability. New filters may be insertenta
This elegant architecture supports classification of a@aitk eyisting ones deleted or modified. Because TCAMs return
just a single clock cycle, allowing a state-of-art TCAM chigne first matching filter, based on storage position withia th
to support a sustained search rate of 250 million packets BREAM, insertion of a new filter can require many other filters
second. Even for OC-192 networks, the peak packet ratey\he moved in order to place the new filter at the appropriate
the worst case is no more than 30M packets per second, faGition. In the worst case, a large fraction of the filters in
less than the search capability that a TCAM provides. Whilg fiite; set may need to be moved for each insertion. While
TCAMSs remain the most popular choice for high performanGgany filter deletion and modification operations can be done
packet classification, they do have several drawbacks. without moving filters (using “lazy deletion” and in-place
o Low Density & High Cost. A TCAM requires up to 16 modification), in the worst case these operations can also
transistors for a bit while SRAM requires just six andequire large numbers of filters to be moved.
SDRAM just one. Consequently, the storage density of While the rate at which filters are updated is much smaller
a TCAM is significantly lower than that of commoditythan the rate at which lookups are processed, filter updates c
memory technologies. Moreover, the relatively small mahave a significant impact on lookup rate, since updates must
ket for TCAMs makes them expensive, with a cost pdre suspended while a control processor makes the changes
bit that is roughly 20 times that of SRAM and hundredseeded to complete a TCAM update. Wang et. al. show that
of times that of DRAM. the movement of just 16 TCAM entries in an OC-192 router
« High Power Consumption. Because they search all entriegan trigger the dropping of 18 packets [7]. As applications
in parallel on every packet, TCAMs consume a lot ofequiring more frequent updates emerge, the impact of egdat
power. 25 Watts per TCAM component is a fairly typicabn lookup performance may becomes much worse.
power budget, adding significantly to the cooling require- As we have mentioned, the lookup throughput of TCAMs
ments for a backbone router. Modern TCAMs allow eractually exceed the requirements in typical applicatidrsgs
tries to be grouped into segments, that can be selectivelyggests the possibility of trading off lookup throughpaot f
searched in order to reduce power usage. When filterere efficient filter updates. We show that this trade-offlecan
are partitioned among segments appropriately, this carploited to good effect, by encoding the priority as a field i
significantly reduce power consumption [9], [5], [10]. the TCAM and using multiple lookups to identify the highest-
o Arbitrary Range Support. TCAMs naturally support priority matching filter. The resulting system can sustagrst-
searches on ternary bit strings. This is not ideal for packedse lookup rates of more than 65 million per second, and
filters that include arbitrary ranges for some of theiaverage rates of more than 80 million per second.



Il. RELATED WORK set, increasing power consumption. Second, because wetcann

When TCAM is used for longest prefix matching (LPM)predict future updates, we cannot guarantee that there will
at mostiV moves are needed to insert a new prefix, whére always be an empty position in the TCAM where we need one.
is the number of unique prefix lengths [4]. Because for arWhen there is no empty entry, filter moves become necessary.
packets, there is at most one matching prefix among prefixedrom this discussion, we identify two important objectives
of the same length, prefixes can be placed in the TCAM frirst, we would like to store the filter set in a TCAM
decreasing order of their lengths. This ensures the corréefmpactly without allocating empty entries between filters
IP lookup result and makes it relatively easy to update dtis allows a linear growth of occupied entries and segments
entry. The update algorithm uses the property that changifg the size of the filter set grows, reducing the power reduire
the relative order of prefixes of the same length does nottafféor lookups. Second, we would like to minimize the movement
the lookup result, so one can insert a new prefix by moving judt entries, so as to reduce the amount of work that must be
one prefix for every distinct prefix length. Since there agss ledone for each update and to minimize the impact of updates
than 32 distinct prefix lengths, the update time is bounded afn lookup throughput.
reasonably small. One can do even better by storing prefixes ) .
in chain-ancestor order [4]. Carefully refining the memory” Real Filter Priority
layout can further reduce the total number of entry moves.A filter’s order in a filter set naturally reflects its priorityo
Unfortunately, as will be explained, this approach canret fhe filter index can be used as its priority value. In factyonl
directly used for general packet classification. overlapping filters need to be ordered relative to one amgtihe

Reference [7] is one of the few prior studies of the TCAMrder to ensure the correctness of lookup results. Thegefor
update problem for packet classification. The authors focus filters can be divided into groups in such a way that filters
how to maintain consistent filter table throughput during thin the same group can exchange their order at will, without
update process. They show that TCAM locking can be avoidatfecting the lookup results. The order of the groups, haxev
by carefully managing the update process so that correet filcannot be exchanged. To be specific, each group is assigned a
matches are ensured, even while the filter update is in psegrepriority value. The group of filters with a higher priority rsiu
However, their method significantly increases the number bé stored in a lower address region of a TCAM than the group
moves required, and while they do not lock up lookups durirgf filters with a lower priority.
the update process, the filter moves do still consume TCAMThe algorithm for grouping the filters and assigning the
bandwidth. In addition, the filter set management procepsgority values can be described as follows. We start from a
is relatively complex and the batch processing introducesgeaph in which each vertex denotes a filter. For each filter,
significant latency, which delays the time for an update twe examine all the other filters;, which overlap withr; (i.e.
take effect. rinr; #0). If ¢ > j, we create a directed edge fromto r;;

A typical TCAM component provides 144 bits for matchingptherwise, we create a directed edge frggtio r;. This step
a packet header. In IPv4 applications, some of these bits gemnerates a directed acyclic graph. The topological orbiitreo
not needed because the standard 5-tuple packet headdnsontertices in this graph reflects the relative priorities ofefis.
only 104 bits. These otherwise unused bits can be used forthe second step, we assign priority values to filters. Each
other purposes. The MUD algorithm uses these bits to attagtrtex with no predecessors is assigned a priority valueiwf.z
a filter index to each filter in order to support multi-matclOther vertices are assigned a priority value only aftertadirt
classification [1]. In this algorithm, the filters are storied predecessors have been assigned a priority value. Thétyrior
incremental index order. If the first lookup returns a maighi value assigned to a vertex is one plus the largest priorityeva
filter with index j, then in the subsequent lookups, we onlpssigned to any of its predecessors. An example of this psoce
need to search the filters with index greater thanOur is shown in Figure 1.
algorithm is similar to the MUD algorithm in the sense that
it also encodes additional information in the TCAM entries.

However, the information that we add is different and, we use
it to improve the efficiency of filter set updates rather than t |
enable multi-match classification. \
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I1l. ALGORITHM

If enough empty entries are allocated between any two
filters in a TCAM, then to insert a new filter, we can simply
insert it in an appropriate empty entry, without moving any
other filters. Although this is a tempting solution, there ar
two problems with it. First, in order to reduce TCAM power Fig. 1. Grouping and Priority Value Assignment
consumption, we prefer to store the filter set in as few TCAM
segments as possible. Allocating empty entries betweensfjiit We evaluated real filter sets and found that the number of
makes it necessary to search more segments for a given fitléstinct priority values is much smaller than the number of
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filters, as shown in Table I. We also evaluated large syrthetve attach the real priority value to each filter. Now if the
filter sets generated by ClassBench [6] tool and found thaécket classification always looks up the extended filtdues, t
the number of priority levels is insensitive to the number dflters need not be stored in their priority order in a TCAM.
filters. Even for filter sets with ten thousand filters, the twem Actually, a new filter can be written in any empty entry in a
of priority levels is less than 64. This property impliesttifa TCAM and no other filter needs to be moved. Clearly, now
filters are updated based on their priority values, signifiga the search key has to also include the priority value. The
less work needs to be done than if they are updated using tHeakup process is no longer looking for the matching filtethwi
absolute position in the TCAM. the minimum TCAM index but the matching filter with the
minimum attached priority value. Without the prior knowdgd

of the priority, multiple lookup attempts are needed to fegur
out the best matching filter with the minimum priority value.

TABLE |
REAL PRIORITY LEVELS IN SOME FILTER SETS

filter set | filters | priorities || filter set | filters | priorities A linear search on the priority values does not scale to
ac:% 2;‘31 gg f\fx; igi gg large filter sets with many priority levels. Fortunately, Akls

ac . .

acl3 2,400 22 || fw3 160 9 ha\_/e a set of re_conflgurable Global_ Mgsk Regl_sters (GMR)
acl4 3,061 22 || ipcl 1,702 42 which can selectively mask out any bits in all entries as “don
acls 4,557 13 || ipc2 192 42 care”. Each filter has a priority value with all bits enablBg.

configuring GMR bits, we can determine which bits of the

The filter grouping is analogous to the prefix grouping byriority value should be considered as if each GMR enables
the prefix lengths or the chain-ancestor ordering for LPM [4. range of priority values. Each TCAM lookup therefore
but updating filters for general packet classification is mUQjesignates one of the preset GMRs to search only a range
more complex than updating prefixes for LPM. First, thgf priority values. The result narrows down the search range
number of priority levels in filter sets for the general packeor the next lookup, and eventually identifies the best match
classification is much more than the number of unique prefiypically, a TCAM has up to 64 GMRs. They are more than
lengths in prefix sets for the IP lookup. Second, updatingea Plenough for our purpose.
fix in a prefix length group does not affect any other prefixes. Figure 3 illustrates an example where there are at most 32
Therefore, the number of entry moves required is boundglority values in the filter set. The binary decision tree is
by the number of unique prefix lengths. However, for generghyersed based on the search result of the previous lodkup.
packet classification, updating a filter may change multipiie TCAM reports a match, we follow the upper branch of the
filters’ priority values. Figure 2 illustrates the groupingsult tree: otherwise, we follow the lower branch of the tree. For
after a new filterz, which has an index betweernl andr2, example, given a packet header, we first search any matching
is inserted into the set. Notice that, r5, andr6 all have filter with the priority value between zero and 15. If the fesu
to change their priority values. This implies that after avnejs positive, we then search any matching filter with the [tyor
filter is inserted, the priority values of several othersché® yajue between zero and seven; otherwise, we search the range
be adjusted to maintain a correct topological priority ordegight to 11, and so forth. Since each lookup step halves the
Similar actions need to be taken after a filter is removed ggarched priority range, this scheme needs tigyV lookups

modified in the filter set. per packet to find the best matching filter, whe¥eis the
number of unique priority values.
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Fig. 2. Insert a New Filter? v m:w

In the worst case, all filters need to change their priority _ _ _ _ . o
value. Fortunately, in reality this is unlikely to happeneW Fig. 3. Searching the Filter with the Minimum Priority Value

will show this point through analysis and the simulation. , ) i i i
Note that in this scheme, the only information used is

B. Using Extended Filter whether or not the TCAM reports a match. If we also know the
We have shown that a typical TCAM entry configuratiomatching filter's priority value, we can accelerate the slear
results in some unused bits. Using a few of these unused bisy example, if in the first attempt, we find a matching filter



with a priority value of zero, then there is no further searcd. Update

needed. Even when the priority value is not zero, we can userpe update process includes inserting, deleting, and wodif
the value to advance the search range quickly in the decisigg filters. All of these may result in multiple filters changi
tree. For example, if the first search in the range of zero {Qeir priority values. Inserting a filter implies some fiereed
15 returns a match with the priority value of two, then in thg, increase their priority value, deleting a filter impliesnee
next step we can directly search the range zero to one rathgérs need to decrease their priority value, and modifying
than zero to seven. filter can do both. The analysis can be done through the DAG

To achieve this, we store the filter’s priority value in th&ve built in 1lI-A.
associated data memory as a part of the filter’s associatad da An update involves a sequence of accesses in the TCAM
Each lookup step reads this value if there is a match in thed the associated memory. By performing accesses in the
TCAM. The control logic then uses this information to choosgroper order, we can do an update using the spare TCAM
another GMR for the next lookup or terminates the lookugycles without blocking the normal lookups. To insert a new
Accessing the associated data memory is pipelined with thiker, we first get the set of filters that need to increaserthei
TCAM lookups, so the TCAM throughput is unchanged. priority values. We sort these filters in decreasing prjorélue

We also use another TCAM feature to help improve therder and then increase their priority value in turn. At |last
lookup performance. Along with the matching filter indexg thinsert the new filter in any empty entry. For a better lookup
TCAM also has a multi-match output signal indicating if therperformance, we should choose the best available entriaéor t
is more than one matching filter for the given key. Since omew filter. Ideally, among all the filters that overlap the new
search order is in favor of the higher priority filters, duin filter, those with smaller priority values should be located
the search, if the multi-match signal shows only one singtbe small indexed entries and those with larger priorityeal
match for the given key, the filter is guaranteed to be the bestould locate in the large indexed entries.
matching one. In such a case, no further search is needed. IV. EVALUATION

A. Filter Distribution

C. Lookup The efficiency of our algorithm depends on the filter distri-
i ) butions. We have shown that even for very large filter sets, th
The lookup of a filter GearchTCAM [key]) involves mper of unique priority values, which determines the wors
a sequence of recursive calls to the sub-procedygse nerformance bound, is small. We also examine the filter
(SearchPriorityRange [key, low, highl) that searches a yiqyinytions in different priority value groups. An exaleps
range of priority values using a GMR. In the followinggp i in Figure 4. The majority of filters are concentrated in
pseudo codelsMultiMatch is asserted when more than ongy.,ns with small priority values. This fact has two favdeab
filters are matchedPriority(i) is filter 's priority value jyhjcations. First, it benefits the lookup process sincaekpt
acquired from the associated data memdrgw and high a5 5 higher possibility to match a filter with small priority
define the priority value range which can be represented W{jlj ;e and our search starts from the filters with small piori
a prefix string. values. Second, it implies the long dependent chains ceepri

only a few filters; hence our update process will not affeot to
SearchTCAM [key]

1 low —0 B many filters.
2. h’Lgh _ 2(10g2 Max Priority] _ 1 ;
3. SearchPriorityRange [key,low, high] -
A 08 fpct
SearchPriorityRange [key, low, high] 3
1. get filter index i 2 08 ooy
2. if (i# NULL) g fwt
3. if (priority(i) = low OR ! IsMultiMatch) 5 047
4. return i as the best match %
5. else if(priority(i) # low AND IsMultiMatch) & 021 acit
6. h’Lgh = low + 2L10g2 (priority(i)—low)] _ 1 i o ‘ : )
7. regi =1 T 10 20 0 w0 50
8. SearchPriorityRange [key,low, high] priority value k
9. else
10. if (is the first TC AM lookup) Fig. 4. The Priority Value Distribution
11. return NULL
12. else if(low = high OR priority(regi) = high+1) Indeed, the priority dependency is a result of filter oveslap
13. return regi as the best match If the maximum number of overlapped filters that a packet can
14 else . match is small, our lookup and update algorithms both work
15. low = high + 1 . .
16. high = low + 21082 Griority(regi)—low)] _ 1 bette_r. In[1], 112 real filter sets are ar_1a|yz_ed. In only ohlerf_l _
17. SearchPriorityRange [key, low, high] set did a packet match as many as eight filters. In the majority

of filter sets, no packet matched more than five filters.



TABLE Il
LOOKUP THROUGHPUTPERFORMANCE(ASSUMETCAM RUNS AT 250MHz cLOCK)

filter set acll (814 filters) fwl (283 filters) ipcl (1,702 filters) acllsyn (4,415 filters)
# accesseq throughput | # accesses throughput | # accesseq throughput| # accesseq throughput
the best case 1.38 181 Mpkt/s | 2.18 115 Mpkt/s | 3.23 77 Mpkt/s | 2.08 120 Mpkt/s
the average cas¢ 2.65 94 Mpkt/s | 2.68 93 Mpkt/s | 4.14 60 Mpkt/s | 2.97 84 Mpkt/s
the worst case | 3.20 78 Mpkt/s | 2.90 86 Mpkt/s | 5.37 47 Mpkt/s | 4.66 54 Mpkt/s

B. Lookup Throughput Performance

r Writes

For each filter set, we generate a packet header trace using
the ClassBench tools [6] to evaluate the lookup performance _
We evaluate the worst case lookup performance by storing all \\ : @
the filters in a TCAM in decreasing priority value order. The 04 i V
best case lookup performance happens when the filters are 02 \\lr
stored in increasing priority value order and the average ca
performance happens when the filters are randomly permuted
in TCAM entries' 1 #'I:]COAM Entry Write;(:O 1000

The simulation results for some filter sets are shown in
Table Il. Note that for any case, a packet needs at most six Fig. 5. The Worst Case Distribution of TCAM Accesses
TCAM accesses to find the best matching filter, so in the

absolute worst case, the TCAM can still classify 42 million

packets per second, which is sufficient for the OC-192 i@ rewrite the portion of the extended filters that holds the
speed ' priority value, which can be done very fast in general and

needs not block the lookup process.

0.8 \
0.6

Fraction of Filters that need >;

C. Update Performance

Tg:l\e/l up?ate pterforma(ljncde Ish det_erml?_ed %y Itht.e number OfIn this paper we present an algorithm that trades off the
. entry writes needed when Inserting, deleting or moqs'urplus search capability of TCAMs for efficient filter set
ifying a filter. The worst case update performance happen

. ! . o f ket classification. Th | priori I
when we insert the filters in the reversed priority order qurﬁdates or packet classification e real priority valoés

, . . lliters are derived and attached to the filters. Using thergina
delete the filters in priority order. To evaluate the Wors“te:asearch on the priority values and some other features of

update _performa_n(_:e, we first reverse the f"tefs order ¥ thf’CAMs, the algorithm maintains a lookup throughput that is

appear in the original filter set, and then_ we insert the ﬁltegufﬁcient for backbone routers running at OC-192+ speeds.
Into tTe ;I'CAI:\/Ithon?Itby Pne. Aftter (_eac_th f||t<|ar IS mdsertmw%\t the same time, that algorithm greatly reduces the work
reevajuate afl the Tiiters: current priority value and co required for filter set management thus it is quite suitabte f

number of filters that need to update their priority valueisTh : : :
) . the dynamic environment where filter updates occur fredquent
number plus one more TCAM write that actually inserts the y P e

new filter is the overall number of TCAM writes needed for REFERENCES
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