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Abstract – Crossbar-based switches are commonly used to 
implement routers with throughputs up to about 1 Tb/s. 
The advent of crossbar scheduling algorithms that provide 
strong performance guarantees now makes it possible to 
engineer systems that perform well, even under extreme 
traffic conditions. Up to now, such performance guaran-
tees have only been developed for crossbars that switch 
cells rather than variable length packets. Cell-based 
schedulers may fail to deliver the expected performance 
guarantees when used in routers that forward packets of 
variable length. We show how to obtain performance 
guarantees for asynchronous crossbars that are directly 
comparable to the performance guarantees previously 
available only for synchronous, cell-based crossbars. In 
particular we define derivatives of the Group by Virtual 
Output Queue (GVOQ) scheduler of Chuang et. al. and 
the Least Occupied Output First Scheduler of Krishna et. 
al. and show that both can provide strong performance 
guarantees in systems with speedups ≥2. We also show 
that there are schedulers for  segment-based crossbars, 
(introduced recently by Katevenis and Passas) that can 
deliver strong performance guarantees with small buffer 
requirements and no bandwidth fragmentation. 

1. INTRODUCTION 
Crossbar switches have long been a popular choice for 
transferring data from inputs to outputs in mid-range 
performance switches and routers [1]. Unlike bus-based 
switches, crossbars can provide throughputs approach-
ing 1 Tb/s, while allowing individual line cards to op-
erate at speeds comparable to the external links. How-
ever the control of high performance crossbars is chal-
lenging, requiring crossbar schedulers that match in-
puts to outputs in the time it takes for a minimum 
length packet to be forwarded. The matching selected 
by the scheduler has a major influence on system per-
formance, placing a premium on algorithms that can 
produce high quality matchings in a very short period 
of time. 

Traditionally, crossbars schedulers have been 
evaluated largely on the basis of how they perform on 
random traffic arrival patterns that do not cause long 
term overloads at inputs or outputs. Most often, such 
evaluations have been carried out using simulation [9]. 

Recently, there has been a growing body of work pro-
viding rigorous performance guarantees for such sys-
tems [7,12] in the context of well-behaved, random traf-
fic. A separate thread of research concentrates on 
schedulers that can provide strong performance guaran-
tees that apply to arbitrary traffic patterns [2,6,15], in-
cluding adversarial traffic that may overload some out-
puts for extended periods of time. The work reported 
here belongs to this second category. Since the internet 
lacks comprehensive mechanisms to manage traffic, 
extreme traffic conditions can occur in the internet due 
to link failures, route changes or simply unusual traffic 
conditions. For these reasons, we argue that it is impor-
tant to understand how systems perform when they are 
subjected to such extreme conditions. Moreover, we 
argue that strong performance guarantees are desirable 
in backbone routers, if they can be obtained at an ac-
ceptable cost.  

There are two fundamental properties that are com-
monly used to evaluate crossbar schedulers in this 
worst-case sense. A scheduler is said to be work-
conserving if an output link is kept busy so long as 
there are packets addressed to the output, anywhere in 
the system. A scheduler is said to be order-preserving 
if it is work-conserving and it always forwards packets 
in the order in which they arrived. A crossbar with an 
order-preserving scheduler faithfully emulates an ideal 
non-blocking switch with FIFO output queues. In their 
seminal paper, Chuang, et. al. provided the first exam-
ple of an order-preserving scheduler [2] for a crossbar 
with small speedup. (The speedup of a crossbar switch 
is the ratio of the ideal throughput of the crossbar to the 
total capacity of its external links. So a crossbar with a 
speedup of S has the potential to forward data S times 
faster than the input links can supply it.) In fact, 
Chuang, et. al. showed a stronger property; that certain 
schedulers can emulate an output queued switch that 
implements any one of a large class of scheduling algo-
rithms at the outputs.  

The strong performance guarantees that have been 
established to date, apply only to crossbars that forward 
fixed length data units, or cells. There is a sound practi-
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cal justification for concentrating on such systems, 
since routers commonly use cell-based crossbars. Vari-
able length packets are received at input line cards, 
segmented into fixed length cells for transmission 
through the crossbar and reassembled at the output line 
cards. This simplifies the implementation of the cross-
bar and allows for synchronous operation, which allows 
the scheduler to make better decisions than would be 
possible with asynchronous operation. Unfortunately, 
cell-based crossbar schedulers that deliver strong per-
formance guarantees when viewed from the edge of the 
crossbar, can fail to deliver those guarantees for the 
router as a whole. For example, a system using a work-
conserving cell-based scheduler can fail to keep an out-
going link busy, even when there are complete packets 
for that output present in the system. 

We show that strong performance guarantees can 
be provided for packets, using asynchronous crossbars 
that directly handle packets, rather than cells, if the 
crossbars are equipped with a moderate amount of in-
ternal buffer space.  Specifically, we define packet-
oriented derivatives of the Group by Virtual Output 
Queue algorithm (GVOQ) of [2] and the Least Occupied 
Output First Algorithm (LOOFA) of [6,15] and show 
that they can deliver strong performance guarantees for 
systems with a speedup of 2. Because our crossbar 
schedulers operate asynchronously, we have had to 
develop new methods for analyzing their performance. 
These methods now make it possible to evaluate asyn-
chronous crossbars in a way that is directly comparable 
to synchronous crossbars. 

The use of buffered crossbars is not new. An early 
ATM switch from Fujitsu used buffered crossbars, for 
example [12]. However, most systems use unbuffered 
crossbars, because the addition of buffers to each of the 
n2 crosspoints in an n×n crossbar has been viewed as 
prohibitively expensive. There has recently been re-
newed interest in buffered crossbars [3,4,8,9,10,12,16]. A 
recent paper by Chuang et. al. [3] advocates the use of 
buffers in cell-based crossbars in order to reduce the 
complexity of the scheduling algorithms. The authors 
argue that ongoing improvements in electronics now 
make it feasible to add buffering to a crossbar, without 
requiring an increase in the number of integrated circuit 
components. Hence, the cost impact of adding buffer-
ing is no longer a serious obstacle. Our results add fur-
ther weight to the case for buffered crossbars, as the 
use of buffering allows inputs and outputs to operate 
independently and asynchronously, allowing variable 
length packets to be handled directly. Katevenis et. al 
[8,9] have also advocated the use of buffered crossbars 
for variable length packets and have demonstrated their 
feasibility by implementing a 32 port buffered crossbar 
with 2 KB buffers at each crosspoint. 

Section 2 provides a more detailed discussion of 
the issue of switching cells vs. packets. Our main re-
sults are given in sections 3 and 4. Section 3, contains 
results for an asynchronous version of GVOQ and sec-
tion 4 presents results for an asynchronous version of 
LOOFA. In section 5, we discuss the impact of buffer-
ing on crossbar implementations and show that there 
are schedulers for segment-based crossbars [9] that can 
achieve strong performance guarantees with fairly mod-
est buffer requirements and no bandwidth fragmenta-
tion. Section 6 concludes the paper. 

2. SWITCHING PACKETS VS. CELLS  
As noted in the introduction, most crossbar-based 
routers, segment packets into cells at input line cards, 
before forwarding them through the crossbar to output 
line cards, where they are reassembled into packets. 
This enables synchronous operation, allowing the 
crossbar scheduler to make decisions involving all in-
puts and outputs at one time. Unfortunately, cell-based 
crossbars have some drawbacks. One is simply the 
added complication of segmentation and reassembly. 
More seriously, the segmentation of packets into cells 
can lead to degraded performance if the incoming pack-
ets cannot be efficiently packed into fixed length cells. 
In the worst-case, arriving packets may be slightly too 
large to fit in a single cell, forcing the input line cards 
to forward them in two cells. This effectively doubles 
the bandwidth that the crossbar requires in order to 
handle worst-case traffic. While one can reduce the 
impact of this problem by allowing parts of more than 
one packet to occupy the same cell, this adds complex-
ity and does nothing to improve performance in the 
worst-case.  

In addition, crossbar schedulers that operate on 
cells, without regard to packet boundaries, can fail to 
deliver the expected guarantees from the perspective of 
the system as a whole. In a system that uses a cell-
based crossbar scheduler, an output line card cannot 
typically begin transmission of a packet on its outgoing 
link until all cells of the packet have been received. 
Consider a scenario in which n input line cards receive 
packets of length L at time t, all addressed to the same 
output. If the length of the cell used by the crossbar is 
C, each packet must be segmented into /L C⎡ ⎤⎢ ⎥  cells 

for transmission through the fabric. A crossbar sched-
uler that operates on cells has no reason to prefer one 
input over another. Assuming that it forwards cells 
from each input in a fair fashion, ( )/ 1n L C −⎡ ⎤⎢ ⎥  cells 

will pass through the crossbar before the output line 
card has a complete packet that it can forward on the 
output link. While some delay between the arrival of a 
packet and its transmission on the output link, is un-
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avoidable, delays that are substantially longer than the 
time it takes to receive a packet on the link are clearly 
undesirable. In this situation, the delay is about n times 
larger than the time taken for the packet to be received. 

Interestingly, one can obtain strong performance 
guarantees for packets using cell-based schedulers that 
are packet-aware. Chuang, et. al. [2] showed that cell-
based crossbars can emulate an output-queued switch 
using any push-in, first-out (PIFO) queueing discipline. 
A PIFO queueing discipline is one in which the relative 
transmission order of the cells awaiting transmission at 
any time is predictable. That is, the relative transmis-
sion order of cells currently in the queue is not affected 
by future arrivals. Such a queueing discipline can be 
implemented by inserting arriving cells into a list. Ar-
riving cells may be inserted in the list at any point, but 
departing cells are always taken from the front of the 
list. It is straightforward to define PIFO scheduling poli-
cies that keep the cells of a packet together (simply 
insert later arriving cells of a given packet right after 
their immediate predecessor). This makes it possible to 
provide strong performance guarantees for packets, not 
just cells. (Thanks to the anonymous referee who made 
this observation in his insightful review of an earlier 
version of this paper [17].) Note that this method may 
require that the output line card forward cells that form 
the initial part of a packet,  before all cells in the packet 
are received, but this is feasible in this context, since 
the crossbar scheduler can guarantee that the remaining 
cells are received by the time they are needed.  

While packet-aware schedulers can provide 
packet-level performance guarantees in systems that 
use cell-based crossbars, such systems still suffer from 
bandwidth fragmentation, since packet lengths are gen-
erally not even multiples of the cell length. To achieve 
the desired performance guarantees in the worst-case, 
one must double the speedup implied by the idealized 
analysis, significantly adding to the system cost. 

Asynchronous crossbars offer an alternative to cell-
based crossbars. They eliminate the need for segmenta-
tion and reassembly and are not subject to bandwidth 
fragmentation, allowing one to halve the worst-case 
bandwidth required by the crossbar. Unfortunately, 
there is no obvious way to obtain strong performance 
guarantees for unbuffered asynchronous crossbars, 
since the ability of the scheduler to coordinate the 
movement of traffic through the system, seems to de-
pend on its ability to make decisions involving all in-
puts and outputs at one time. A scheduler that operates 
on packets must deal with the asynchronous nature of 
packet arrivals, and must schedule packets as they ar-
rive and as the inputs and outputs of the crossbar be-
come available. In particular, if a given input line card 
finishes sending a packet to the crossbar at time t, it 
must then select a new packet to send to the crossbar.  
It may have packets that it can send to several different 
outputs, but its choice of output is necessarily limited to 
those outputs that are not currently receiving packets 
from other inputs. This can prevent it from choosing 
the output that it would prefer, were its choices not so 
constrained. One can conceivably ameliorate this situa-
tion by allowing an input to select an output that will 
become available in the near future, but this adds com-
plication and sacrifices some of the crossbar band-
width. Moreover, it is not clear that such a strategy can 
lead to a scheduling algorithm with good worst-case 
performance and small speedup. 

The use of buffered crossbars offers a way out of 
this dilemma. The addition of buffers to each crosspoint 
of an n×n crossbar effectively decouples inputs from 
outputs, enabling the asynchronous operation that vari-
able length packets seem to require. A diagram of a 
system using a buffered crossbar is shown in Figure 1. 
In addition to the now conventional Virtual Output 
Queues (VOQ) at each input, a buffered crossbar has a 
small buffer at each of its crosspoints. As pointed out in 
[3], the buffers allow inputs and outputs to operate in-
dependently, enabling the use of simpler crossbar 
scheduling mechanisms, but the buffers have an even 
greater import for asynchronous crossbars. With buff-
ers, whenever an input finishes sending a packet to the 
crossbar, it can select a packet from one of its virtual 
output queues, so long as the corresponding crosspoint 
buffer has room for the packet. We show that cross-
point buffers of modest size are sufficient to allow 
strong performance guarantees with the same speedup 
required by cell-based schedulers. 

3. PACKET GVOQ 
In this section, we show that a well-known cell-
switching scheduler can be converted into an asynchro-
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Figure 1. Packet switch with unbuffered crossbar 
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nous crossbar scheduler with comparable worst-case 
performance. 

3.1 Preliminaries 
To start, we introduce common notations that will be 
used in the analysis to follow. We say a packet x is an 
ij-packet if it is present at input i and is to be forwarded 
to output j. We let s(x) denote the time at which the first 
bit of x is received on an input link and we let f(x) be 
the time at which the last bit is received. We let L(x) 
denote the number of bits in x and LM denote the maxi-
mum packet length (in bits). The time unit is the time it 
takes for a single bit to be transferred on an external 
link, so f(x)–s(x) = L(x). The time at which a new 
packet is selected by an input and sent to the crossbar is 
referred to as a scheduling event or more simply, an 
event.  We let Vij denote the virtual output queue at 
input i that contains packets for output j and we let 
Vij(t) denote the number of bits in Vij at time t. Simi-
larly, we let Bij denote the crosspoint buffer for packets 
from input i to output j,  Bij(t) denote the number of bits 
in Bij at time t, and B denote the capacity of the cross-
point buffers. For all the quantities that include a time 
parameter, we sometimes omit the time parameter when 
its value can be understood from the context. 

We say that a given asynchronous crossbar sched-
uler is T-work-conserving for a given speedup S and 
crosspoint buffer size B, if whenever there is an idle 
output link, no input contains a packet x for that output 
link for which f(x)+T is less than the current time. That 
is, a T-work conserving scheduler allows an output link 
to be idle only so long as there are no packets present 
for that output that are “older” than T. 

 We focus on schedulers for systems in which pack-
ets are fully buffered at the input line cards where they 
arrive before they are sent to the crossbar. We say that 
a VOQ is active, if the last bit of the first packet in the 
VOQ has been received from the external link. Other-
wise, it is inactive. Note that a VOQ can become inac-
tive, even while it remains non-empty. For an active 
VOQ, we refer to the time period since it last became 
active as the current active period and for VOQ Vij, we 
let sij(t)=s(x), where x is the first packet received by Vij 
in the current active period at time t.  

Once a packet has been selected by an input line 
card for transmission to the crossbar, it is sent at the 
rate allowed by the system’s speedup S. Similarly, once 
an output line card selects a packet from a crosspoint 
buffer, it transfers bits from the crosspoint buffer at the 
rate allowed by the speedup, until the packet is fully 
transferred. Packets may be streamed through the 
crosspoint buffer without fully buffering them and may 
be forwarded by an output line card to the external link 

as soon as the first bit is received by the output line 
card. Since the speedup is at least 1, the output line card 
is guaranteed that once it receives the first bit, the re-
maining bits will arrive in time to be sent on the outgo-
ing link. (Note, this property is not shared by systems 
that use cell-based schedulers that are not packet-
aware, forcing those systems to wait until the last cell 
of a packet has been received before starting transmis-
sion of a packet on the outgoing link.) 

We consider only schedulers that keep the inputs 
and outputs busy whenever possible. In particular, if an 
input line card has any packet x at the head of one of its 
VOQs that is complete (all bits received from the input 
link) and the crosspoint buffer for x has room for it, 
then the input must be transferring bits to some cross-
point buffer at rate S. Similarly, if any crosspoint buffer 
for output j is not empty, then output j must be transfer-
ring bits from some crosspoint buffer at rate S. A 
scheduler that satisfies these properties is called a 
prompt scheduler. 

Group by Virtual Output Queue (GVOQ) is a cell 
switch scheduling algorithm first described in [2] and 
extended to buffered crossbars in [3]. We define the 
Packet GVOQ (PGV) packet switch scheduling algo-
rithm as follows. The algorithm imposes a total order 
on the active VOQs at each input. The relative order of 
two VOQs does not change so long as they both remain 
active. When a VOQ becomes active, it is placed first in 
the VOQ ordering. When a VOQ becomes inactive, it is 
removed from the VOQ ordering. At each event, the 
scheduler selects some active VOQ for which the cross-
point buffer has enough space to accommodate the first 
packet in the VOQ. If multiple VOQs are eligible under 
this criterion, it selects the VOQ that comes first in the 
ordering.  

We say that one of two active VOQs precedes an-
other if it comes before the other in the VOQ ordering. 
We extend the VOQ ordering to apply to packets and to 
individual bits in the VOQs. Packets (and bits) in differ-
ent VOQs are ordered according to the VOQ ordering, 
while those in the same VOQ are ordered according to 
their position within the VOQ. We also say that a packet 
(or bit) x precedes a VOQ V if x is in V, or in some VOQ 
that precedes V. 

3.2 Work-Conservation 
We first prove a work-conservation result for PGV. 
This result does not depend on the specific policy used 
by the output line card to select a crosspoint buffer, so 
we leave the output policy undefined here. Hence, the 
result applies to a class of PGV schedulers with a vari-
ety of specific instantiations. 
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For an active VOQ Vij, we let pij(t) be the number of 
bits in VOQs at input i that precede Vij at time t (this 
includes bits in Vij). To simplify the analysis, we also 
define p ij(t) to be the number of bits present at input i at 
time t that have arrived since sij. Note that p ij(t) may 
include bits from a packet that is currently arriving on 
the input link but has not yet been fully received. Also, 
note that any VOQ that became non-empty after x last 
became active, is either not yet active or became active 
after Vij. Furthermore, any VOQ that last become non-
empty before Vij last became active, also became active 
before Vij. Hence, pij(t)≤p ij(t). So if p ij(t)=Vij(t), then Vij 
is first in the VOQ ordering at input i. We define qj(t) 
to be the number of bits at output j at time t, we define 
slackij(t)=qj(t)–pij(t) and we define σij(t)=qj(t)–p ij(t). 
Note that slackij(t)≥σij(t). 

In the remainder of this section, we show that PGV 
schedulers are T-work-conserving when S≥2, B≥2LM 
and T ≥2LM. However, before we get into the details of 
the analysis, we give an overview the overall argument, 
to provide some intuition for the more technical points 
to come. The first major step in the analysis is to show 
that σij does not decrease with time. We then use this to 
show that any VOQ that has been active for longer than 
T time units has σij>0 and hence it has positive slack. 

We can establish both these properties by making a 
few observations about the behavior of the crosspoint 
buffers when S>1. First, during any time period when a 
crosspoint buffer Bij is non-empty, qj must increase. 
Second, during any time period when Bij is not too full 
to accept a new packet, pij must decrease and hence p ij 
must decrease. Note also, that there is a minimum time 
before Bij becomes too full for a new packet, that it 
must be non-empty. Similarly, it remains non-empty for 
a minimum time period after it ceases to be too full to 
accept a new packet. Consequently, every time the 
status of Bij changes between being too full for a new 
packet and not being too full, there is an increase in σij. 
The duration of these periods is directly related to the 
size of the crosspoint buffer. These points are illus-
trated in Figure 2. 

The asynchronous nature of the crossbar means that 
at the start of an active period, σij can be negative. We 
can overcome this initial deficit using the fact that σij 
increases when the crosspoint buffer becomes too full 
to accept a new packet and the fact that the crosspoint 
buffer must become too full to accept a new packet 
within T time units of the start of an active period. 

The final step in the analysis establishes the T-work-
conservation property using the fact that shortly after a 
VOQ becomes active, it has positive slack. Turning 
these high level ideas into an actual proof of work-

conservation requires that we first formulate and prove 
two lemmas. 

Lemma 1. Consider an active period of Vij that spans 
the time interval [t1,t2] where t1≥the time of the first 
scheduling event of the period. For any PGV scheduler 
with speedup S≥2 and B≥2LM, σij(t2)≥σij(t1). 

proof. First, note that during any time period, p ij can 
increase by at most the duration of the time period, due 
to new bits arriving at input i at the link rate. Similarly, 
qj can decrease by at most the duration of the time pe-
riod, as bits are sent on the outgoing link at the link 
rate. The resulting decrease in σij can be offset by in-
creases caused by the transfer of bits from input i to the 
crossbar or from the crossbar to output j. 

 For now, let t1 and t2 be the times of consecutive 
events at input i. Let x be the first packet in Vij at time 
t1. If, at time t1, Bij does not have room for x, then it 
contains at least LM bits. This means that output j will 
be transferring bits from some crosspoint buffer for at 
least the next LM/S time units at rate S, by which time 
the next event at input i must have occurred. Since S ≥2, 
this is sufficient to offset any decrease in σij caused by 
new arrivals at input i or departures from output j. On 
the other hand, if Bij does have room for x at time t1, 
then either x must be selected for transmission to the 
crossbar or some packet that precedes x must be se-
lected. In either case, the transfer of bits to the crossbar 
offsets the effects of new arrivals and departures. 
Hence σij does not decrease. 

By induction, this generalizes to t1 and t2 equal to 
the times of any scheduling events at input i. It also 
holds between any two times that follow the first 
scheduling event of the active period, since the change 
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in σij between two events is determined by the situation 
at the first event.  

 Lemma 2. Let x be the first packet to be received at the 
start of an active period for Vij and let t≥f(x)+2LM be-
long to the active period in which x arrives. For any 
PGV scheduler with speedup S=2 and B≥3LM, 
slackij(t)≥σij(t)>0. 

proof. Let τ< f (x)+LM/2 be the time of the first schedul-
ing event at input i in the active period. Note that if 
Bij(τ)>B−LM then Bij(f(x))>B−LM and Bij has been non-
empty since before f(x)−(B−LM)/2≤s(x). This implies 
that qj has been increasing at rate 1 since before s(x), so 
qj(τ)>L(x)+(τ−f(x)). Since p ij(f(x))=L(x) and p ij can 
grow at a rate no faster than 1, σij(τ)>0. By Lemma 1, 
this remains true for the remainder of the active period. 

Now, suppose that Bij(τ)≤B−LM. If there is no event 
in the interval [τ,f(x)+2LM] when Bij contains more than 
B−LM bits, then at every event in this interval, the 
scheduling algorithm will select either Vij or a VOQ 
that precedes Vij. Consequently, 

( ( ) 2 ) ( ) ( ( )) (( ( ) 2 ) )

( ) 2 2 ( ) 2
( ) 2

0

ij M M

M

M M

p f x L L x f x f x L

L x f x L
L x L L

τ τ

τ

+ ≤ + − − + −

≤ + − −
< + −
≤

 

This implies that Vij is empty by f(x)+2LM contradicting 
the hypothesis of the lemma. Hence, there must be 
some event in [τ,f(x)+2LM] when Bij contains more than 
B−LM bits. Let t0 be the time of the first such event. So, 
Bij(t0)>B−LM. and t0≤f(x)+2LM. Note also that 
t0>τ+L(x)/2 since at least one packet must be trans-
ferred to Bij between τ and t0. This implies that  

0 0( ) ( ) ( ( )) ( )
( ) / 2 ( ) / 2

ij

M

M

p t L x f x t
L x L L x
L

τ τ≤ + − − −

< + −
≤

 

Since Bij(t0)>B−LM, Bij has been non-empty since before 
t0–(B−LM)/2, meaning that qj(t0)>(B−LM)/2≥LM. Conse-
quently, σij(t0)>0 and by Lemma 1, this remains true for 
the remainder of the active period.  

Theorem 1. Any PGV scheduler with S=2 and B≥3LM is 
T-work-conserving for T≥2LM. 

proof. Suppose some output j is idle at time t and no 
input is currently sending it a packet, but some input i 
has a packet x for output j with f(x)+2LM<t. By Lemma 
2, slackij(t)>0. Since, qj(t)=0, this implies that pij(t)<0, 
which contradicts the fact that Vij is active at t.  

Using a more precise analysis, we can reduce the re-
quired crossbar buffer size. 

Theorem 2. Any PGV scheduler with S=2 and B≥2LM is 
T-work-conserving for T≥2LM. 

The proof of Theorem 2 requires two additional lem-
mas. The first is a stronger version of Lemma 1 and the 
second is a stronger version of Lemma 2. 

Lemma 3. Consider an active period of Vij that spans 
the time interval [t1,t2] where t1≥the time of the first 
scheduling event of the period. For any PGV scheduler 
with S≥2 and B≥2LM, if σij(t1)>–Vij(t1) then σij(t2)>–
Vij(t2). 

Lemma 4. Let x be the first packet to be received at the 
start of an active period for Vij and let t≥f(x)+2LM be-
long to the active period in which x arrives. For any 
PGV scheduler with speedup S=2 and B≥2LM, 
slackij(t)≥σij(t)>–Vij(t). 

The proofs of these lemmas, together with the proof of 
Theorem 2 can be found in the appendix. 

3.3 More general performance guarantees 
The analysis of the previous section can be modified to 
show that some variants of PGV can provide more gen-
eral performance guarantees. 

We say that an asynchronous crossbar T-emulates 
an output-queued switch with a given scheduling policy 
if it transmits packets at the same time that they would 
be sent in an output-queued switch that buffers arriving 
packets at its input, then places them directly into an 
output queueing system that is followed by a fixed out-
put delay of length T. We show that variants of PGV 
can T-emulate an output-queued switch using any re-
stricted PIFO queueing discipline, where a restricted 
PIFO queueing discipline is one that forwards the pack-
ets from each input in the order they were received at 
the input (packets from different inputs need not be 
forwarded in the order of reception).  Our result for 
PGV generalizes the corresponding result for cell-based 
crossbars given in [3]. 

The output line cards in the asynchronous crossbar 
system are assumed to use the same PIFO policy as the 
ideal output-queued switch that is being emulated. They 
also select packets from crosspoint buffers in accor-
dance with the PIFO policy. In addition, they do not 
start to forward packets on outgoing links, until their 
age (the difference between the current time and the 
time of the arrival of the last bit) is at least equal to a 
threshold value, T. Note that a system that holds pack-
ets until their age is equal to T can still be T-work-
conserving. The input line cards order their VOQs in the 
same way discussed in the previous section. We call the 
variant of PGV defined in this way PGV-RP, where RP 
stands for restricted PIFO. 
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We extend our definition of the precedes relation to 
packets at different inputs, sending to, a common out-
put. In particular, if x and y are packets with a common 
destination j, we say that x precedes y if the PIFO-RP 
queueing discipline under consideration transmits x 
before y. For packets at the same input, this is consis-
tent with our original definition since the PIFO-RP 
queueing discipline transmits packets going to the same 
output in their arrival order, as does the FIFO queueing 
discipline that applies to the individual VOQs. We de-
fine qij(t) to be the number of bits at output j that pre-
cede the bits in Vij. We re-define slackij(t)=qij(t)–pij(t) 
and σij(t)=qij(t)–p ij(t). 

The key elements of the proof are captured in two 
lemmas which establish that σij does not decrease and 
that it exceeds a specified minimum value shortly after 
the start of an active period. The proofs of the lemmas 
can be found in the appendix. The proofs are similar to 
the ones used to establish work-conservation. The main 
difference is that qij does not necessarily increase when-
ever the crosspoint buffer Bij is non-empty, since the 
output may be receiving a “lower priority” packet at the 
time Bij becomes non-empty. However, qij is guaranteed 
to start increasing within LM/2 of the time that Bij be-
comes non-empty, and this is enough to establish the 
desired performance guarantee, albeit with some ad-
justment in the crossbar buffer size. 

Lemma 5. Consider an active period of Vij that spans 
the time interval [t1,t2] where t1≥the time of the first 
scheduling event of the period. For a PGV-RP scheduler 
with speedup S≥2 and B≥2LM, σij(t2)≥σij(t1). 

Lemma 6. Let x be the first packet to be received at the 
start of an active period for Vij and let t≥f(x)+2LM be-
long to the active period in which x arrives. For any 
PGV-RP scheduler with speedup S=2 and B≥5LM, 
slackij(t)≥σij(t)> LM/2. 

Theorem 3. An output-queued switch using any re-
stricted PIFO scheduler can be T-emulated by an asyn-
chronous crossbar with a PGV-RP scheduler with S=2, 
B≥5LM and T≥(5/2)LM. 

proof. Suppose that up until time t, the asynchronous 
crossbar faithfully emulates the output-queued switch, 
but that at time t, the output queued switch begins to 
forward a packet x from input i while the asynchronous 
crossbar does not. Since the output queued switch has 
an output delay of T, it follows that f(x)≤t–T, so t–
LM/2≥f(x)+2LM. Since the crossbar has sent everything 
sent by the output-queued switch up until t, it follows 
that qij(t–LM/2)≤LM/2. By Lemma 6, slackij(t–
LM/2)>LM/2 and hence pij(t–LM/2)<0, which contradicts 
the fact that Vij is active at t–LM/2.   

The analysis of Lemma 6 requires a crossbar buffer 
of size at least 5LM. We conjecture that this can be re-
duced to 3LM and possibly 2LM, using a more sophisti-
cated analysis. 

4. PACKET LOOFA 
The Least Occupied Output First Algorithm (LOOFA) is 
a cell scheduling algorithm described in [6]. We define 
an asynchronous crossbar scheduling algorithm based 
on LOOFA, called Packet LOOFA (PLF). Like PGV, PLF 
imposes a total order on the VOQs at each input, which 
is extended to an order on all the bits at the input. At 
each scheduling event, the PLF scheduler selects some 
VOQ for which the crosspoint buffer has enough space 
to accommodate the first packet in the VOQ. If multiple 
VOQs are eligible under this criterion, it selects the 
VOQ that comes first in the ordering. The work-
conservation result we prove below does not depend on 
the specific policy used by the output to select a cross-
point buffer. 

The ordering of the VOQs is determined by the 
number of bits in the output queues. In particular, when 
a VOQ Vij becomes active, it is inserted immediately 
after the last VOQ Vih, for which qh≤qj. If there is no 
such VOQ, it is placed first in the ordering. At each 
scheduling event, VOQs may be re-ordered, based on 
the output occupancy. We allow one VOQ to move 
ahead of another during this re-ordering, only if its out-
put has strictly fewer bits. 

The work-conservation result for PLF is comparable 
to that for PGV, but the required analysis is technically 
more difficult because in PLF, the relative orders of 
VOQs can change. Because they can change, PLF is also 
more responsive to changes in output queue lengths 
than PGV. While this has no effect on work-
conservation when S ≥2, it can be expected to yield 
better performance for smaller speedups. 

To analyze PLF, we need some additional terminol-
ogy. A non-empty interval for input i, is any continuous 
time period during which there is some non-empty VOQ 
at input i.  We say that a VOQ V is older than a VOQ W 
at time t if both are active, and W last became active 
after V. We say that a VOQ is mature at time t if 
f(x)≤t−T, where x is the first packet received by Vij in its 
current active period and T=2LM. We define πij(t) to be 
the number of bits present at input i at time t that pre-
cede Vij and that arrived before sij(t). We define p ij(t) to 
be πij(t) plus the number of bits present at input i that 
have arrived since sij. Finally, we let 
slackij(t)=qj(t)−pij(t) and σij(t)=qj(t) −p ij(t). Note that 
pij(t)≤p ij(t) and  slackij(t)≥σij(t). 

Our first lemma plays essentially the same role as 
Lemma 1, in the work-conservation result for PGV. 



 

 

- 8 - 

Lemma 7. Let times t1 and t2 be the times of consecu-
tive scheduling events in the same non-empty interval 
at input i and let M be the set of VOQs that are mature 
at t1. For any PLF scheduler with speedup S≥2 and 
B≥2LM, if all Vij in M satisfy σij(t1)≥LM/2, then all Vij in 
M that are still mature at t2 satisfy σij(t2)≥LM/2. 

Our next lemma extends Lemma 7 to establish a lower 
bound on σ for all mature VOQs.  

Lemma 8. Let times t1 and t2 be the times of consecu-
tive scheduling events in the same non-empty interval 
at input i and let M be the set of VOQs that are mature 
at t1. For any PLF scheduler with speedup S≥2 and 
B≥16LM/3, if all Vij in M satisfy σij(t1)≥LM/2, then all Vij 
that are mature at t2 satisfy σij(t2)≥LM/2. 

Note that we can use Lemma 8 to show by induction 
that σij(t)≥LM/2, if Vij is mature at time t, where t is the 
time of some event at input i. The basis of the induction 
is trivially satisfied, since, at the time τ of the first 
scheduling event following a period when all VOQs at 
input i are empty, there are no mature VOQs, hence all 
mature VOQs satisfy slackij(τ)≥ σij(τ)≥LM/2. 

Theorem 4. Any PLF scheduler with S=2 and B≥16LM/3 
is T-work-conserving for T≥5LM/2. 

proof. Suppose some output j is idle at time t and no 
input is currently sending it a packet, but some input i 
has a packet x for output j with f(x)+T<t.   This implies 
that at the time τ of the most recent event at input i, Vij 
was mature and this means (by the discussion following 
Lemma 8) that slackij(τ)≥LM/2. Since qj(t)=0, 
qj(τ)≤LM/2, but this implies that pij(τ)≤0, which contra-
dicts the assumption that Vij is not empty.  

By combining the analyses used to prove Theorems 3 
and 4, we can obtain the following result for which the 
proof is omitted. 

Theorem 5. An output-queued switch using any re-
stricted PIFO scheduler can be T-emulated by an asyn-
chronous crossbar with a PLF-RP scheduler with S=2, 
B≥22LM/3 and T≥3LM. 

5. COST OF CROSSBAR BUFFERS 
One possible objection to the use of crosspoint buffers 
that are large enough to hold packets is that they might 
be too expensive, even for modern integrated circuit 
components. A 32 port crossbar equipped with buffers 
large enough to hold two 1500 byte packets would re-
quire a total of more than 3 MB of SRAM. While this is 
a substantial amount for on-chip memory, it falls within 
the range of what is currently feasible, as has been 
demonstrated recently by Katevenis et. al. [8]. More-
over, high performance crossbars are often imple-
mented using multiple crossbar components operating 

in parallel. The buffer space required by each such 
component is thus reduced in proportion to the number 
of parallel components. For a system designed to sup-
port 40 Gb/s external links, a typical design might use 
16 to 32 chips operating in parallel. This reduces the 
memory requirement per chip to about 100 to 200 KB. 
This is a fairly modest requirement and opens up the 
possibility of handling larger packets.  

It is also possible to substantially reduce the size of 
the crossbar buffers by switching variable length seg-
ments rather than complete packets [9]. In section 2, we 
observed that a packet-aware variant of a GVOQ sched-
uler for cell-based crossbars can be used to provide 
strong performance guarantees for packets. We can 
apply the same approach to a system in which packets 
are divided into segments of variable length before 
sending them through the crossbar. If segment lengths 
vary from the minimum packet size to at least twice the 
minimum packet size, we can divide a packet into seg-
ments with no “wasted space”. We can then forward 
the segments through an asynchronous crossbar using a 
packet-aware scheduling algorithm, which keeps the 
segments of a packet together. This requires that the 
PIFO scheduling policy at the outputs, insert segments 
of a packet into consecutive positions in the output list. 
It also requires that the output scheduling policy for the 
crossbar select the next segment based on where the 
segment goes in the output list. 

The size of the crossbar buffers in such a system is a 
function of the maximum segment size, not the maxi-
mum packet size. A 32 port crossbar with a minimum 
segment size of 50 bytes, a maximum segment size of 
100 bytes and crossbar buffers large enough for two 
maximum length segments, would require a total of 200 
KB of memory. If the crossbar were implemented using 
16 components in parallel, the amount of memory per 
component drops to about 12.5 KB. Moreover, such a 
crossbar can be used in systems switching packets of 
arbitrary length. If we dimension the crosspoint buffer 
size to hold eight maximum length segments (allowing 
us to use a PLF-RP scheduler), the amount of memory 
per component grows only to 50 KB. 

Also observe that in a segment-based system, an in-
put line card can forward segments to an output line 
card before all segments of the packet have been re-
ceived. The performance guarantee for the crossbar will 
ensure that remaining segments are transferred through 
the crossbar in time to be forwarded on the outgoing 
link, if the system is operated with a speedup of 2. 
Thus, we not only reduce the amount of buffering re-
quired, but we reduce the delay as well. 
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6. CONCLUDING REMARKS 
The results of sections 3 and 4 can be extended to sys-
tems that place different constraints on where and when 
packets are buffered. In particular, most routers buffer 
packets at both input and output line cards, not just at 
the inputs. Buffering packets at the inputs allows error 
checks to be performed on the packets before forward-
ing them to the switch. Buffering them at the outputs 
allows similar checks to be performed, but is arguably 
less essential, since packet errors are less likely to occur 
within a router than on the external links. Having said 
that, other considerations may dictate that packets be 
buffered at outputs, as well as inputs and this raises the 
question of how the performance guarantees are af-
fected. It turns out that the effect is fairly minor, requir-
ing only that the value of T be increased by LM/2, to 
accommodate the added delay for a maximum length 
packet to be fully buffered at the outputs. 

With an asynchronous crossbar, it is possible to 
build a system in which packets pass from inputs to 
outputs without ever being fully buffered. This is 
known as cut-through switching [5] and can provide 
superior delay performance. While cut-through switch-
ing is not typically used in routers, it can be useful in 
system contexts where it is important to minimize la-
tency. While our results cannot be directly applied to 
such systems, it seems likely that similar results could 
be developed for this model. Indeed, the segment-based 
switches discussed in the previous section already ap-
proach the behavior of a cut-through switch, and there 
seems little reason to suppose that the results would not 
generalize to the cut-through model. The key require-
ment needed to obtain work-conservation is that once a 
packet has been selected to advance from an input line 
card to the crossbar or from the crossbar to an output 
line card, the flow of bits in that packet must not be 
interrupted until the end of the packet is reached. Inputs 
(outputs) must also be able to forward multiple packets 
to (from) the crossbar concurrently in certain cases. 
Consider for example, an input that is forwarding bits 
of a packet x to the crossbar as they come in. Since the 
bits are arriving at the link rate, the transfer of the bits 
of x to the crossbar uses only half the crossbar band-
width (assuming S=2). If another packet y at the input 
becomes eligible for forwarding while x is still coming 
in (because its crossbar buffer has drained sufficiently 
to accommodate it), the input must be able to forward y 
to the crossbar concurrently with x in order to fully 
exploit the crossbar bandwidth. Without the ability to 
transfer packets concurrently to and from the crossbar, 
it will not be possible to achieve work-conservation. 

There are several ways the work described here can 
be extended. First, there are opportunities for tightening 

the results shown here, particularly with respect to the 
crossbar buffer size. Our analysis showing that a PGV 
scheduler can emulate an output-queued switch with a 
restricted PIFO scheduler requires a buffer size of 5LM. 
As noted earlier, it seems likely that this can be reduced 
to 3LM. The buffer size results for PLF are also not as 
strong as one might expect. There seems no intrinsic 
reason to suppose that PLF requires a larger crossbar 
buffer size than PGV. An analysis that directly com-
pares the behavior of a PLF scheduler to the PGV 
scheduler may be able to reduce the buffer size re-
quirement for PLF. Another worthwhile direction for 
further work is developing performance guarantees for 
other scheduling algorithms. 

It would also be interesting to see if the analysis 
techniques can be extended to provide stronger per-
formance guarantees. In particular, it would be useful 
to show that an asynchronous buffered crossbar can 
emulate an output-queued switch using any PIFO 
queueing discipline, not just any restricted PIFO disci-
pline. The difficulty in making the transition from re-
stricted PIFO queueing disciplines to unrestricted PIFO 
disciplines is that once a packet is in a crossbar buffer, 
there is no way for a later arriving packet from the 
same input to reach the output line card before it does, 
even if the queueing discipline gives it higher priority. 
Reference [3] describes several techniques that can be 
used to allow cell switches using buffered crossbars to 
over-come this crosspoint blocking phenomenon. One 
involves increasing the speedup and allowing later ar-
riving packets to displace packets already in crossbar 
buffers. Another method requires no increase in 
speedup, but uses a more complex form of buffering in 
the crossbar. It seems likely that these methods can be 
generalized to accommodate asynchronous crossbars. 

Still another direction to explore is how scheduling 
algorithms that deliver strong performance guarantees 
when operated with a speedup of 2 perform when oper-
ated with a smaller speedup. Since the crossbar cost 
increases in direct proportion to the speedup, there are 
practical reasons to be interested in the performance of 
systems with smaller speedup, even if they are not able 
to deliver strong performance guarantees. A compre-
hensive simulation study exploring how such systems 
perform under a wide range of conditions would have 
considerable practical value. 
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APPENDIX 
Here, we collect various proofs that were omitted from 
the main body of the paper. Lemmas 3 and 4 are used 
to prove Theorem 2, the stronger version of the work-
conservation result for PGV. 

Lemma 3. Consider an active period of Vij that spans 
the time interval [t1,t2] where t1≥the time of the first 
scheduling event of the period. For any PGV scheduler 
with S≥2 and B≥2LM, if σij(t1)>–Vij(t1) then σij(t2)>–
Vij(t2). 

proof. If Vij(t2)≥Vij(t1) then the result follows from 
Lemma 1. Assume then that Vij(t2)<Vij(t1). Let t1 and t2 
be the times of consecutive events at input i. 
Vij(t2)<Vij(t1) implies that Vij was selected at t1. This 
means that during the interval [t1,t2], qj is increasing at 
rate ≥1, while pij and p ij are decreasing at rate ≥1. This 
results in a net increase in σij at least equal to the de-
crease in Vij. Consequently, σij(t2)>–Vij(t2). The result 
generalizes to any interval following the first schedul-
ing event of the active period, by the same argument 
used in the proof of Lemma 1.  

 Lemma 4. Let x be the first packet to be received at the 
start of an active period for Vij and let t ≥f(x)+2LM be-
long to the active period in which x arrives. For any 
PGV scheduler with speedup S=2 and B≥2LM, 
slackij(t)≥σij(t)>–Vij(t). 

proof. Let τ<f(x)+LM/2 be the time of the first schedul-
ing event at input i in the active period. Note that if 
Bij(τ)>0 then Bij has been positive since before f(x). 
This implies that qj has been increasing at rate ≥1 since 
before f(x), so qj(τ)>(τ–f(x)). Since p ij(τ)–Vij(τ)≤(τ–
f(x)), it follows that σij(τ)>–Vij(τ). By Lemma 3, this 
remains true for the remainder of the active period. 

Now, suppose that Bij(τ)=0. Define z(t) to be the 
first packet in Vij at time t. If there is no event in the 
interval [τ, f(x)+2LM] when Bij contains more than 
B−L(z(t)) bits, then at every event in this interval, the 
scheduling algorithm will select either Vij or some other 
VOQ that precedes Vij. Consequently, 
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This implies that Vij is empty by f(x)+2LM contradicting 
the hypothesis of the lemma. Hence, there must be 
some event in [τ,f(x)+2LM] when Bij contains more than 
B−L(z(t)) bits. Let t0 be the time of the first such event. 
So, Bij(t0)>B−L(z(t0)). and t0≤f(x)+2LM. Note also that 
t0>τ+(B−L(z(t)))/2 since Bij(τ)=0. This implies that  
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Since Bij(t0)>B−L(z(t0)), Bij has been non-empty since 
before t0–(B−L(z(t0)))/2, meaning that 
qj(t0)>(B−L(z(t0)))/2. Consequently, 
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and by Lemma 3, this remains true for the remainder of 
the active period.   

Theorem 2. Any PGV scheduler with S=2 and B≥2LM is 
T-work-conserving for T≥2LM. 

proof. Suppose some output j is idle at time t and no 
input is currently sending it a packet, but some input i 
has a packet x for output j with f(x)+2LM<t. By Lemma 
4, slackij(t)>–Vij(t). Since, qj(t)=0, this implies that 
pij(t)< Vij(t), which is not possible.  

Lemmas 5 and 6 are used to prove Theorem 3, the 
emulation result for PGV-RP. 

Lemma 5. Consider an active period of Vij that spans 
the time interval [t1,t2] where t1≥the time of the first 
scheduling event of the period. For a PGV-RP scheduler 
with speedup S≥2 and B≥2LM, σij(t2)≥σij(t1). 

proof. Assume that t1 and t2 are the times of two con-
secutive events at input i. Let z be the first packet in Vij 
at t1. If Bij does not have room for z at time t, then 
Bij(t1)>LM. This means that Bij became non-empty be-
fore t1–LM/2. This implies that between the time Bij be-
come non-empty and t1, there has been a scheduling 
event at output j. So, by t1, output j is receiving bits that 
precede those in Vij, leading to an increase in qij. Since 
Bij(t1)>LM, qij will continue to increase until at least the 
next scheduling event at input i. 

On the other hand, if Bij does have room for z at t1, 
then either z must be selected for transmission to the 
crossbar at t1 or some packet that precedes z must be 
selected. In either case, this leads to a decrease in p ij. 
Consequently, whether Bij has room for z or not, the 
transfer of bits to or from the crossbar is sufficient to 
offset the effects of new arrivals at input i and depar-
tures from output j. This ensures that there is no de-
crease in σij.  

Lemma 6. Let x be the first packet of an active period 
for Vij and let t ≥f(x)+2LM belong to the active period in 
which x arrives. For any PGV-RP scheduler with 
speedup S=2 and B≥5LM, slackij(t)≥σij(t)>LM/2. 

proof. Let τ< f(x)+LM /2 be the time of the first schedul-
ing event at input i in the active period. Suppose first, 

that Bij(τ)>4LM. Consequently, Bij became non-empty 
before f(x)–2LM. This implies that qij has been increas-
ing at rate 1 since before s(x)–LM/2 and since 
p ij(f(x))=L(x) and p ij can increase at a rate no greater 
than 1, it follows that σij(τ)>LM/2. By Lemma 5, this 
remains true for the remainder of the active period.  

Now, suppose that Bij(τ)≤4LM. If there is no event in 
the interval [τ,f(x)+2LM] when Bij contains more than 
B−LM bits, then at every event in this interval, the 
scheduling algorithm will select either Vij or a VOQ that 
precedes Vij. Consequently, 
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This implies that Vij is empty by f(x)+2LM contradicting 
the hypothesis of the lemma. Hence, there must be 
some event in [τ,f(x)+2LM] when Bij contains more than 
B−LM bits. Let t0 be the time of the first such event. So, 
Bij(t0)>B−LM. and t0≤f(x)+2LM. Note also that 
t0>τ+L(x)/2 since at least one packet must have been 
sent from Vij in order to make Bij(t0)>B−LM. This im-
plies that  

0 0( ) ( ) ( ( )) ( )

( ) / 2 ( ) / 2
ij

M

M

p t L x f x t

L x L L x
L

τ τ≤ + − − −

< + −
≤

 

Since Bij(t0)>B−LM, Bij has been non-empty since before 
t0–(B−LM)/2, meaning that qij has been growing since 
before t0–(B−2LM)/2, so qij(t0)>(B−2LM)/2≥3LM/2. Con-
sequently, σij(t0)>LM/2 and by Lemma 5, this remains 
true for the remainder of the active period.   

Lemmas 7 and 8 are used to prove Theorem 4, the 
work-conservation result for PLF. 

Lemma 7. Let t1 and t2 be the times of consecutive 
scheduling events in the same non-empty interval at 
input i and let M be the set of VOQs that are mature at 
t1. For any PLF scheduler with speedup S≥2 and B≥2LM, 
if all Vij in M satisfy σij(t1)≥LM/2, then all Vij in M that 
are still mature at t2 satisfy σij(t2)≥LM/2. 

proof. Let Vij be a VOQ in M that is still mature at t2 and 
let ∆=t2−t1. If Bij(t1)>B−LM, then output j receives 2∆  
bits during the interval [t1,t2]. However, if Bij(t1)≤B−LM, 
then 2∆ bits that precede Vij at t1, leave input i during 
[t1,t2]. This implies that if no VOQ that is older than Vij 
passes Vij during [t1,t2], then σij(t2)≥σij(t1)≥LM/2. Note 
that we are not concerned with VOQs younger than Vij 
passing it, since the relative ordering of these VOQs 
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with Vij does not affect p ij and hence does not affect σij. 
In fact, σij(t2)≥σij(t1) even if there are some older VOQs 
that pass Vij, so long as at t1, these VOQs no longer con-
tain bits that arrived before sij(t1).  

Assume then that r>0 bits belonging to older VOQs 
that arrived before sij(t1) do pass Vij during [t1,t2] and let 
Vih be the VOQ in the set of older VOQs that pass Vij 
that comes latest in the VOQ ordering at t1. Let k be the 
number of bits present at input i at t1 that precede Vih 
but not Vij, and that arrived before sij(t1). Note that 
k≤p ih(t1)–p ij(t1) and that r≤k. Since Vih passes Vij, output 
h must receive fewer bits than output j does during 
[t1,t2], and since output j can receive no more than 2∆ 
bits during [t1,t2], output h receives fewer than 2∆. This 
implies that Bih(t1)<2∆≤B−LM. Consequently, Vih is eli-
gible for selection at t1, which implies that some packet 
z with 2∆ bits, that precedes Vih at t1 left input i during 
[t1,t2].  

We consider three cases. First, if z arrived after sij(t1) 
then, the departure of z reduces by 2∆, the number of 
bits that are present at input i that arrived after sij(t1). 
Consequently, 

2 1 1( ) ( ) 2 ( )ij ij ijp t p t r p t k≤ + + ∆ − ∆ ≤ + − ∆  

Similarly, if z arrived before sij(t1) and z precedes Vij at 
t1 then the departure of z reduces πij by 2∆. Conse-
quently,  

2 1 1( ) ( ) 2 ( )ij ij ijp t p t r p t k≤ + + ∆ − ∆ ≤ + − ∆  

Finally, if z arrived before sij(t1) and z does not precede 
Vij at t1 then r+2∆≤k and 

2 1 1( ) ( ) ( )ij ij ijp t p t r p t k≤ + + ∆ ≤ + − ∆  

So, in all three cases p ij(t2)≤p ij(t1)+k–∆.  

Since Vih passes Vij, qj(t2) > qh(t2) ≥ qh(t1)−∆ and so, 

2 1 1

1 1

( ) ( ( ) ) ( ( ) )
( ) ( ) / 2

ij h ij

h ih M

t q t p t k
q t p t L

σ ≥ − ∆ − + − ∆

≥ − ≥
 

 

Our next lemma extends Lemma 7.  

Lemma 8. Let t1 and t2 be the times of consecutive 
scheduling events in the same non-empty interval at 
input i and let M be the set of VOQs that are mature at 
t1. For any PLF scheduler with speedup S≥2 and 
B≥16LM/3, if all Vij in M satisfy σij(t1)≥LM/2, then all Vij 
that are mature at t2 satisfy σij(t2)≥LM/2. 

proof. Since Lemma 7 covers the case of VOQs that 
were mature at t1, we only concern ourselves with those 
VOQs that become mature during [t1,t2]. Let Vij  be such 

a VOQ, let x be the first packet that entered Vij in the 
current active period for Vij and let τ be the time of the 
first event in the current active period for Vij. Note that 
because Vij became mature during [t1,t2], 
t2−LM/2≤t1<f(x)+T≤t2. We divide the analysis into three 
cases. 

Case 1. πij(t2)=0 and Bij(τ)>B−LM. Since Bij(τ)>B−LM, 
output j has been receiving bits from the crossbar at 
rate 2, since before f(x)−(B−LM)/2≤s(x)−3LM/2 and will 
continue to do so until at least τ+(B−LM)/2. If 
t2≤τ+(B−LM)/2, qj(t2)≥t2−(s(x)−3LM/2) and since 
πij(t2)=0, p ij(t2)≤t2−s(x). Hence σij(t2)≥LM/2. Assume 
then that t2>τ+(B−LM)/2. In this case, 

[ ]
[ ]

2

2

2

( ) ( ( ) / 2) ( ( ) ( ) / 2)

( ( ) / 2)
3( ) / 2 2 ( )

j M M

M

M

q t B L f x B L

t B L
B L t f x

τ

τ
τ

≥ + − − − −

− − + −

= − + − −

 

and 

( )2 2 2

2

( ) 3( ) / 2 2 ( ) ( ( ))

3( ) / 2 2 2 ( )
3( ) / 2 2 ( )

2( ( ) / 2) ( )
3( ) / 2 6 / 2

j M

M

M

M

M M M

t B L t f x t s x

B L t L x
B L f x

f x T L L x
B L L L

σ τ

τ

≥ − + − − − −

≥ − + − −
≥ − +

− + + −
≥ − − ≥

 

This completes Case 1. 

Case 2. πij(t2)=0  and Bij(τ)≤B−LM. In this case, Vij is 
eligible to be selected at τ, so Vij or some other VOQ 
preceding Vij must be selected at τ. Suppose there is no 
event in [τ, t2] when Bij has more than B−LM bits. Then, 

2 2( ) ( ) ( ( )) ( )

( ) / 2 ( / 2)
2 0

ij

M M

M

p t L x f x t

L x L T L
L T

τ τ≤ + − − −

≤ + − −
≤ − =

 

This contradicts the fact that Vij is active at t2, so there 
must be some event in [τ,t2] when Bij has more than 
B−LM bits. Let t be the time of the first such event and 
note that  
t≥τ+L(x)/2, since at least one packet must enter Bij to 
make Bij(t)>B−LM. Since Bij(t)>B−LM, qj(t)>(B−LM)/2. 
Also, 

( ) ( ) ( ( )) ( )

( ) ( ( )) ( ) / 2
ij

M

p t L x f x t

L x f x L x
L

τ τ

τ

≤ + − − −

≤ + − −
≤

 

So, σij(t)≥(B−LM)/2−LM≥LM/2. If t+(B−LM)/2≥t2, then qj 
continues to grow at rate 1 until t2. This is enough to 
compensate for any growth in p ij. Hence, σij(t2)≥LM/2. 
Assume then that t+(B−LM)/2<t2. In this case, qj contin-
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ues to grow at rate 1 until t+(B−LM)/2 giving 
qj(t+(B−LM)/2)>B−LM. Thus, 

( )2 2

2

( ) ( ) ( ( ) / 2)
3( ) / 2 ( )

j M M

M

q t B L t t B L
B L t τ

≥ − − − + −

≥ − − −
 

and since p ij(t2)≤t2−s(x), 

2 2 2

2

( ) 3( / 2) ( ) ( ( ))
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3( / 2) 2( ( ) / 2)
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This completes Case 2. 

Case 3. πij(t2)>0. This implies that there is some VOQ 
that precedes Vij at t2 and is older than Vij. Suppose that 
Vij is the first such VOQ to become mature in [t1,t2]. Let 
Vih be an older VOQ that precedes Vij at t2 and assume 
further, that among all such VOQs, it comes latest in the 
VOQ ordering at t2. Note that with these assumptions, 
either Vih was mature at t1, or there is no VOQ that is 
both older than Vih and that precedes Vih. In either case 
σih(t2)≥LM/2, Let k=pij(t2)−pih(t2). Note that all bits that 
precede Vij at t2, but not Vih must have arrived since 
s(x), where x is first packet of the current active period 
for Vij (otherwise, there would be some VOQ older than 
Vij that precedes Vij and comes later in the VOQ order-
ing than Vih). Since Vih is older than Vij, these bits also 
arrived after Vih became active. Consequently, 
pih(t2)≤p ih(t2)–k and so, 

2 2 2

2 2

( ) ( ) ( )
( ) ( )
/ 2

ih h ih

h ih

M

slack t q t p t
q t p t k
L k

= −
≥ − +
≥ +

 

Consequently, qj(t2)−pij(t2) ≥ qh(t2)−pih(t2)−k ≥ LM/2. 
Note that this inequality holds even when pij(t2)=p ij(t2) 
implying that, σij(t2)≥LM/2 also. We can establish the 
result for all VOQs that become active during [t1,t2] by 
induction. The inductive step follows by the same ar-
gument, using the fact that all older VOQs to become 
active in [t1,t2] have σ(t2)≥LM/2.   

 


