

Strong Performance Guarantees for
Asynchronous Crossbar Schedulers

 Jonathan Turner

Washington University
jon.turner@wustl.edu

Abstract – Crossbar-based switches are commonly used to
implement routers with throughputs up to about 1 Tb/s.
The advent of crossbar scheduling algorithms that provide
strong performance guarantees now makes it possible to
engineer systems that perform well, even under extreme
traffic conditions. Up to now, such performance guaran-
tees have only been developed for crossbars that switch
cells rather than variable length packets. Cell-based
schedulers may fail to deliver the expected performance
guarantees when used in routers that forward packets of
variable length. We show how to obtain performance
guarantees for asynchronous crossbars that are directly
comparable to the performance guarantees previously
available only for synchronous, cell-based crossbars. In
particular we define derivatives of the Group by Virtual
Output Queue (GVOQ) scheduler of Chuang et. al. and
the Least Occupied Output First Scheduler of Krishna et.
al. and show that both can provide strong performance
guarantees in systems with speedups ≥2. We also show
that there are schedulers for segment-based crossbars,
(introduced recently by Katevenis and Passas) that can
deliver strong performance guarantees with small buffer
requirements and no bandwidth fragmentation.

1. INTRODUCTION
Crossbar switches have long been a popular choice for
transferring data from inputs to outputs in mid-range
performance switches and routers [1]. Unlike bus-based
switches, crossbars can provide throughputs approach-
ing 1 Tb/s, while allowing individual line cards to op-
erate at speeds comparable to the external links. How-
ever the control of high performance crossbars is chal-
lenging, requiring crossbar schedulers that match in-
puts to outputs in the time it takes for a minimum
length packet to be forwarded. The matching selected
by the scheduler has a major influence on system per-
formance, placing a premium on algorithms that can
produce high quality matchings in a very short period
of time.

Traditionally, crossbars schedulers have been
evaluated largely on the basis of how they perform on
random traffic arrival patterns that do not cause long
term overloads at inputs or outputs. Most often, such
evaluations have been carried out using simulation [9].

Recently, there has been a growing body of work pro-
viding rigorous performance guarantees for such sys-
tems [7,12] in the context of well-behaved, random traf-
fic. A separate thread of research concentrates on
schedulers that can provide strong performance guaran-
tees that apply to arbitrary traffic patterns [2,6,15], in-
cluding adversarial traffic that may overload some out-
puts for extended periods of time. The work reported
here belongs to this second category. Since the internet
lacks comprehensive mechanisms to manage traffic,
extreme traffic conditions can occur in the internet due
to link failures, route changes or simply unusual traffic
conditions. For these reasons, we argue that it is impor-
tant to understand how systems perform when they are
subjected to such extreme conditions. Moreover, we
argue that strong performance guarantees are desirable
in backbone routers, if they can be obtained at an ac-
ceptable cost.

There are two fundamental properties that are com-
monly used to evaluate crossbar schedulers in this
worst-case sense. A scheduler is said to be work-
conserving if an output link is kept busy so long as
there are packets addressed to the output, anywhere in
the system. A scheduler is said to be order-preserving
if it is work-conserving and it always forwards packets
in the order in which they arrived. A crossbar with an
order-preserving scheduler faithfully emulates an ideal
non-blocking switch with FIFO output queues. In their
seminal paper, Chuang, et. al. provided the first exam-
ple of an order-preserving scheduler [2] for a crossbar
with small speedup. (The speedup of a crossbar switch
is the ratio of the ideal throughput of the crossbar to the
total capacity of its external links. So a crossbar with a
speedup of S has the potential to forward data S times
faster than the input links can supply it.) In fact,
Chuang, et. al. showed a stronger property; that certain
schedulers can emulate an output queued switch that
implements any one of a large class of scheduling algo-
rithms at the outputs.

The strong performance guarantees that have been
established to date, apply only to crossbars that forward
fixed length data units, or cells. There is a sound practi-

- 2 -

cal justification for concentrating on such systems,
since routers commonly use cell-based crossbars. Vari-
able length packets are received at input line cards,
segmented into fixed length cells for transmission
through the crossbar and reassembled at the output line
cards. This simplifies the implementation of the cross-
bar and allows for synchronous operation, which allows
the scheduler to make better decisions than would be
possible with asynchronous operation. Unfortunately,
cell-based crossbar schedulers that deliver strong per-
formance guarantees when viewed from the edge of the
crossbar, can fail to deliver those guarantees for the
router as a whole. For example, a system using a work-
conserving cell-based scheduler can fail to keep an out-
going link busy, even when there are complete packets
for that output present in the system.

We show that strong performance guarantees can
be provided for packets, using asynchronous crossbars
that directly handle packets, rather than cells, if the
crossbars are equipped with a moderate amount of in-
ternal buffer space. Specifically, we define packet-
oriented derivatives of the Group by Virtual Output
Queue algorithm (GVOQ) of [2] and the Least Occupied
Output First Algorithm (LOOFA) of [6,15] and show
that they can deliver strong performance guarantees for
systems with a speedup of 2. Because our crossbar
schedulers operate asynchronously, we have had to
develop new methods for analyzing their performance.
These methods now make it possible to evaluate asyn-
chronous crossbars in a way that is directly comparable
to synchronous crossbars.

The use of buffered crossbars is not new. An early
ATM switch from Fujitsu used buffered crossbars, for
example [12]. However, most systems use unbuffered
crossbars, because the addition of buffers to each of the
n2 crosspoints in an n×n crossbar has been viewed as
prohibitively expensive. There has recently been re-
newed interest in buffered crossbars [3,4,8,9,10,12,16]. A
recent paper by Chuang et. al. [3] advocates the use of
buffers in cell-based crossbars in order to reduce the
complexity of the scheduling algorithms. The authors
argue that ongoing improvements in electronics now
make it feasible to add buffering to a crossbar, without
requiring an increase in the number of integrated circuit
components. Hence, the cost impact of adding buffer-
ing is no longer a serious obstacle. Our results add fur-
ther weight to the case for buffered crossbars, as the
use of buffering allows inputs and outputs to operate
independently and asynchronously, allowing variable
length packets to be handled directly. Katevenis et. al
[8,9] have also advocated the use of buffered crossbars
for variable length packets and have demonstrated their
feasibility by implementing a 32 port buffered crossbar
with 2 KB buffers at each crosspoint.

Section 2 provides a more detailed discussion of
the issue of switching cells vs. packets. Our main re-
sults are given in sections 3 and 4. Section 3, contains
results for an asynchronous version of GVOQ and sec-
tion 4 presents results for an asynchronous version of
LOOFA. In section 5, we discuss the impact of buffer-
ing on crossbar implementations and show that there
are schedulers for segment-based crossbars [9] that can
achieve strong performance guarantees with fairly mod-
est buffer requirements and no bandwidth fragmenta-
tion. Section 6 concludes the paper.

2. SWITCHING PACKETS VS. CELLS
As noted in the introduction, most crossbar-based
routers, segment packets into cells at input line cards,
before forwarding them through the crossbar to output
line cards, where they are reassembled into packets.
This enables synchronous operation, allowing the
crossbar scheduler to make decisions involving all in-
puts and outputs at one time. Unfortunately, cell-based
crossbars have some drawbacks. One is simply the
added complication of segmentation and reassembly.
More seriously, the segmentation of packets into cells
can lead to degraded performance if the incoming pack-
ets cannot be efficiently packed into fixed length cells.
In the worst-case, arriving packets may be slightly too
large to fit in a single cell, forcing the input line cards
to forward them in two cells. This effectively doubles
the bandwidth that the crossbar requires in order to
handle worst-case traffic. While one can reduce the
impact of this problem by allowing parts of more than
one packet to occupy the same cell, this adds complex-
ity and does nothing to improve performance in the
worst-case.

In addition, crossbar schedulers that operate on
cells, without regard to packet boundaries, can fail to
deliver the expected guarantees from the perspective of
the system as a whole. In a system that uses a cell-
based crossbar scheduler, an output line card cannot
typically begin transmission of a packet on its outgoing
link until all cells of the packet have been received.
Consider a scenario in which n input line cards receive
packets of length L at time t, all addressed to the same
output. If the length of the cell used by the crossbar is
C, each packet must be segmented into /L C⎡ ⎤⎢ ⎥ cells

for transmission through the fabric. A crossbar sched-
uler that operates on cells has no reason to prefer one
input over another. Assuming that it forwards cells
from each input in a fair fashion, ()/ 1n L C −⎡ ⎤⎢ ⎥ cells

will pass through the crossbar before the output line
card has a complete packet that it can forward on the
output link. While some delay between the arrival of a
packet and its transmission on the output link, is un-

- 3 -

avoidable, delays that are substantially longer than the
time it takes to receive a packet on the link are clearly
undesirable. In this situation, the delay is about n times
larger than the time taken for the packet to be received.

Interestingly, one can obtain strong performance
guarantees for packets using cell-based schedulers that
are packet-aware. Chuang, et. al. [2] showed that cell-
based crossbars can emulate an output-queued switch
using any push-in, first-out (PIFO) queueing discipline.
A PIFO queueing discipline is one in which the relative
transmission order of the cells awaiting transmission at
any time is predictable. That is, the relative transmis-
sion order of cells currently in the queue is not affected
by future arrivals. Such a queueing discipline can be
implemented by inserting arriving cells into a list. Ar-
riving cells may be inserted in the list at any point, but
departing cells are always taken from the front of the
list. It is straightforward to define PIFO scheduling poli-
cies that keep the cells of a packet together (simply
insert later arriving cells of a given packet right after
their immediate predecessor). This makes it possible to
provide strong performance guarantees for packets, not
just cells. (Thanks to the anonymous referee who made
this observation in his insightful review of an earlier
version of this paper [17].) Note that this method may
require that the output line card forward cells that form
the initial part of a packet, before all cells in the packet
are received, but this is feasible in this context, since
the crossbar scheduler can guarantee that the remaining
cells are received by the time they are needed.

While packet-aware schedulers can provide
packet-level performance guarantees in systems that
use cell-based crossbars, such systems still suffer from
bandwidth fragmentation, since packet lengths are gen-
erally not even multiples of the cell length. To achieve
the desired performance guarantees in the worst-case,
one must double the speedup implied by the idealized
analysis, significantly adding to the system cost.

Asynchronous crossbars offer an alternative to cell-
based crossbars. They eliminate the need for segmenta-
tion and reassembly and are not subject to bandwidth
fragmentation, allowing one to halve the worst-case
bandwidth required by the crossbar. Unfortunately,
there is no obvious way to obtain strong performance
guarantees for unbuffered asynchronous crossbars,
since the ability of the scheduler to coordinate the
movement of traffic through the system, seems to de-
pend on its ability to make decisions involving all in-
puts and outputs at one time. A scheduler that operates
on packets must deal with the asynchronous nature of
packet arrivals, and must schedule packets as they ar-
rive and as the inputs and outputs of the crossbar be-
come available. In particular, if a given input line card
finishes sending a packet to the crossbar at time t, it
must then select a new packet to send to the crossbar.
It may have packets that it can send to several different
outputs, but its choice of output is necessarily limited to
those outputs that are not currently receiving packets
from other inputs. This can prevent it from choosing
the output that it would prefer, were its choices not so
constrained. One can conceivably ameliorate this situa-
tion by allowing an input to select an output that will
become available in the near future, but this adds com-
plication and sacrifices some of the crossbar band-
width. Moreover, it is not clear that such a strategy can
lead to a scheduling algorithm with good worst-case
performance and small speedup.

The use of buffered crossbars offers a way out of
this dilemma. The addition of buffers to each crosspoint
of an n×n crossbar effectively decouples inputs from
outputs, enabling the asynchronous operation that vari-
able length packets seem to require. A diagram of a
system using a buffered crossbar is shown in Figure 1.
In addition to the now conventional Virtual Output
Queues (VOQ) at each input, a buffered crossbar has a
small buffer at each of its crosspoints. As pointed out in
[3], the buffers allow inputs and outputs to operate in-
dependently, enabling the use of simpler crossbar
scheduling mechanisms, but the buffers have an even
greater import for asynchronous crossbars. With buff-
ers, whenever an input finishes sending a packet to the
crossbar, it can select a packet from one of its virtual
output queues, so long as the corresponding crosspoint
buffer has room for the packet. We show that cross-
point buffers of modest size are sufficient to allow
strong performance guarantees with the same speedup
required by cell-based schedulers.

3. PACKET GVOQ
In this section, we show that a well-known cell-
switching scheduler can be converted into an asynchro-

Virtual
Output
Queues

Output Queues

Crosspoint
Buffers

Virtual
Output
Queues

Output Queues

Crosspoint
Buffers

Figure 1. Packet switch with unbuffered crossbar

- 4 -

nous crossbar scheduler with comparable worst-case
performance.

3.1 Preliminaries
To start, we introduce common notations that will be
used in the analysis to follow. We say a packet x is an
ij-packet if it is present at input i and is to be forwarded
to output j. We let s(x) denote the time at which the first
bit of x is received on an input link and we let f(x) be
the time at which the last bit is received. We let L(x)
denote the number of bits in x and LM denote the maxi-
mum packet length (in bits). The time unit is the time it
takes for a single bit to be transferred on an external
link, so f(x)–s(x) = L(x). The time at which a new
packet is selected by an input and sent to the crossbar is
referred to as a scheduling event or more simply, an
event. We let Vij denote the virtual output queue at
input i that contains packets for output j and we let
Vij(t) denote the number of bits in Vij at time t. Simi-
larly, we let Bij denote the crosspoint buffer for packets
from input i to output j, Bij(t) denote the number of bits
in Bij at time t, and B denote the capacity of the cross-
point buffers. For all the quantities that include a time
parameter, we sometimes omit the time parameter when
its value can be understood from the context.

We say that a given asynchronous crossbar sched-
uler is T-work-conserving for a given speedup S and
crosspoint buffer size B, if whenever there is an idle
output link, no input contains a packet x for that output
link for which f(x)+T is less than the current time. That
is, a T-work conserving scheduler allows an output link
to be idle only so long as there are no packets present
for that output that are “older” than T.

 We focus on schedulers for systems in which pack-
ets are fully buffered at the input line cards where they
arrive before they are sent to the crossbar. We say that
a VOQ is active, if the last bit of the first packet in the
VOQ has been received from the external link. Other-
wise, it is inactive. Note that a VOQ can become inac-
tive, even while it remains non-empty. For an active
VOQ, we refer to the time period since it last became
active as the current active period and for VOQ Vij, we
let sij(t)=s(x), where x is the first packet received by Vij
in the current active period at time t.

Once a packet has been selected by an input line
card for transmission to the crossbar, it is sent at the
rate allowed by the system’s speedup S. Similarly, once
an output line card selects a packet from a crosspoint
buffer, it transfers bits from the crosspoint buffer at the
rate allowed by the speedup, until the packet is fully
transferred. Packets may be streamed through the
crosspoint buffer without fully buffering them and may
be forwarded by an output line card to the external link

as soon as the first bit is received by the output line
card. Since the speedup is at least 1, the output line card
is guaranteed that once it receives the first bit, the re-
maining bits will arrive in time to be sent on the outgo-
ing link. (Note, this property is not shared by systems
that use cell-based schedulers that are not packet-
aware, forcing those systems to wait until the last cell
of a packet has been received before starting transmis-
sion of a packet on the outgoing link.)

We consider only schedulers that keep the inputs
and outputs busy whenever possible. In particular, if an
input line card has any packet x at the head of one of its
VOQs that is complete (all bits received from the input
link) and the crosspoint buffer for x has room for it,
then the input must be transferring bits to some cross-
point buffer at rate S. Similarly, if any crosspoint buffer
for output j is not empty, then output j must be transfer-
ring bits from some crosspoint buffer at rate S. A
scheduler that satisfies these properties is called a
prompt scheduler.

Group by Virtual Output Queue (GVOQ) is a cell
switch scheduling algorithm first described in [2] and
extended to buffered crossbars in [3]. We define the
Packet GVOQ (PGV) packet switch scheduling algo-
rithm as follows. The algorithm imposes a total order
on the active VOQs at each input. The relative order of
two VOQs does not change so long as they both remain
active. When a VOQ becomes active, it is placed first in
the VOQ ordering. When a VOQ becomes inactive, it is
removed from the VOQ ordering. At each event, the
scheduler selects some active VOQ for which the cross-
point buffer has enough space to accommodate the first
packet in the VOQ. If multiple VOQs are eligible under
this criterion, it selects the VOQ that comes first in the
ordering.

We say that one of two active VOQs precedes an-
other if it comes before the other in the VOQ ordering.
We extend the VOQ ordering to apply to packets and to
individual bits in the VOQs. Packets (and bits) in differ-
ent VOQs are ordered according to the VOQ ordering,
while those in the same VOQ are ordered according to
their position within the VOQ. We also say that a packet
(or bit) x precedes a VOQ V if x is in V, or in some VOQ
that precedes V.

3.2 Work-Conservation
We first prove a work-conservation result for PGV.
This result does not depend on the specific policy used
by the output line card to select a crosspoint buffer, so
we leave the output policy undefined here. Hence, the
result applies to a class of PGV schedulers with a vari-
ety of specific instantiations.

- 5 -

For an active VOQ Vij, we let pij(t) be the number of
bits in VOQs at input i that precede Vij at time t (this
includes bits in Vij). To simplify the analysis, we also
define p ij(t) to be the number of bits present at input i at
time t that have arrived since sij. Note that p ij(t) may
include bits from a packet that is currently arriving on
the input link but has not yet been fully received. Also,
note that any VOQ that became non-empty after x last
became active, is either not yet active or became active
after Vij. Furthermore, any VOQ that last become non-
empty before Vij last became active, also became active
before Vij. Hence, pij(t)≤p ij(t). So if p ij(t)=Vij(t), then Vij
is first in the VOQ ordering at input i. We define qj(t)
to be the number of bits at output j at time t, we define
slackij(t)=qj(t)–pij(t) and we define σij(t)=qj(t)–p ij(t).
Note that slackij(t)≥σij(t).

In the remainder of this section, we show that PGV
schedulers are T-work-conserving when S≥2, B≥2LM
and T ≥2LM. However, before we get into the details of
the analysis, we give an overview the overall argument,
to provide some intuition for the more technical points
to come. The first major step in the analysis is to show
that σij does not decrease with time. We then use this to
show that any VOQ that has been active for longer than
T time units has σij>0 and hence it has positive slack.

We can establish both these properties by making a
few observations about the behavior of the crosspoint
buffers when S>1. First, during any time period when a
crosspoint buffer Bij is non-empty, qj must increase.
Second, during any time period when Bij is not too full
to accept a new packet, pij must decrease and hence p ij
must decrease. Note also, that there is a minimum time
before Bij becomes too full for a new packet, that it
must be non-empty. Similarly, it remains non-empty for
a minimum time period after it ceases to be too full to
accept a new packet. Consequently, every time the
status of Bij changes between being too full for a new
packet and not being too full, there is an increase in σij.
The duration of these periods is directly related to the
size of the crosspoint buffer. These points are illus-
trated in Figure 2.

The asynchronous nature of the crossbar means that
at the start of an active period, σij can be negative. We
can overcome this initial deficit using the fact that σij
increases when the crosspoint buffer becomes too full
to accept a new packet and the fact that the crosspoint
buffer must become too full to accept a new packet
within T time units of the start of an active period.

The final step in the analysis establishes the T-work-
conservation property using the fact that shortly after a
VOQ becomes active, it has positive slack. Turning
these high level ideas into an actual proof of work-

conservation requires that we first formulate and prove
two lemmas.

Lemma 1. Consider an active period of Vij that spans
the time interval [t1,t2] where t1≥the time of the first
scheduling event of the period. For any PGV scheduler
with speedup S≥2 and B≥2LM, σij(t2)≥σij(t1).

proof. First, note that during any time period, p ij can
increase by at most the duration of the time period, due
to new bits arriving at input i at the link rate. Similarly,
qj can decrease by at most the duration of the time pe-
riod, as bits are sent on the outgoing link at the link
rate. The resulting decrease in σij can be offset by in-
creases caused by the transfer of bits from input i to the
crossbar or from the crossbar to output j.

 For now, let t1 and t2 be the times of consecutive
events at input i. Let x be the first packet in Vij at time
t1. If, at time t1, Bij does not have room for x, then it
contains at least LM bits. This means that output j will
be transferring bits from some crosspoint buffer for at
least the next LM/S time units at rate S, by which time
the next event at input i must have occurred. Since S ≥2,
this is sufficient to offset any decrease in σij caused by
new arrivals at input i or departures from output j. On
the other hand, if Bij does have room for x at time t1,
then either x must be selected for transmission to the
crossbar or some packet that precedes x must be se-
lected. In either case, the transfer of bits to the crossbar
offsets the effects of new arrivals and departures.
Hence σij does not decrease.

By induction, this generalizes to t1 and t2 equal to
the times of any scheduling events at input i. It also
holds between any two times that follow the first
scheduling event of the active period, since the change

slack
increases

Bij ≤ B−LM Bij > B−LM Bij ≤ B−LM

qj

pij

slack
increases

net
gain

pij must
decrease

qj must
increase

pij must
decrease

slack
increases

Bij ≤ B−LM Bij > B−LM Bij ≤ B−LM

qj

pij

slack
increases

net
gain

pij must
decrease

qj must
increase

pij must
decrease

Figure 2. Gain in slack due to changes in crosspoint

buffer status

- 6 -

in σij between two events is determined by the situation
at the first event.

 Lemma 2. Let x be the first packet to be received at the
start of an active period for Vij and let t≥f(x)+2LM be-
long to the active period in which x arrives. For any
PGV scheduler with speedup S=2 and B≥3LM,
slackij(t)≥σij(t)>0.

proof. Let τ< f (x)+LM/2 be the time of the first schedul-
ing event at input i in the active period. Note that if
Bij(τ)>B−LM then Bij(f(x))>B−LM and Bij has been non-
empty since before f(x)−(B−LM)/2≤s(x). This implies
that qj has been increasing at rate 1 since before s(x), so
qj(τ)>L(x)+(τ−f(x)). Since p ij(f(x))=L(x) and p ij can
grow at a rate no faster than 1, σij(τ)>0. By Lemma 1,
this remains true for the remainder of the active period.

Now, suppose that Bij(τ)≤B−LM. If there is no event
in the interval [τ,f(x)+2LM] when Bij contains more than
B−LM bits, then at every event in this interval, the
scheduling algorithm will select either Vij or a VOQ
that precedes Vij. Consequently,

(() 2) () (()) ((() 2))

() 2 2 () 2
() 2

0

ij M M

M

M M

p f x L L x f x f x L

L x f x L
L x L L

τ τ

τ

+ ≤ + − − + −

≤ + − −
< + −
≤

This implies that Vij is empty by f(x)+2LM contradicting
the hypothesis of the lemma. Hence, there must be
some event in [τ,f(x)+2LM] when Bij contains more than
B−LM bits. Let t0 be the time of the first such event. So,
Bij(t0)>B−LM. and t0≤f(x)+2LM. Note also that
t0>τ+L(x)/2 since at least one packet must be trans-
ferred to Bij between τ and t0. This implies that

0 0() () (()) ()
() / 2 () / 2

ij

M

M

p t L x f x t
L x L L x
L

τ τ≤ + − − −

< + −
≤

Since Bij(t0)>B−LM, Bij has been non-empty since before
t0–(B−LM)/2, meaning that qj(t0)>(B−LM)/2≥LM. Conse-
quently, σij(t0)>0 and by Lemma 1, this remains true for
the remainder of the active period.

Theorem 1. Any PGV scheduler with S=2 and B≥3LM is
T-work-conserving for T≥2LM.

proof. Suppose some output j is idle at time t and no
input is currently sending it a packet, but some input i
has a packet x for output j with f(x)+2LM<t. By Lemma
2, slackij(t)>0. Since, qj(t)=0, this implies that pij(t)<0,
which contradicts the fact that Vij is active at t.

Using a more precise analysis, we can reduce the re-
quired crossbar buffer size.

Theorem 2. Any PGV scheduler with S=2 and B≥2LM is
T-work-conserving for T≥2LM.

The proof of Theorem 2 requires two additional lem-
mas. The first is a stronger version of Lemma 1 and the
second is a stronger version of Lemma 2.

Lemma 3. Consider an active period of Vij that spans
the time interval [t1,t2] where t1≥the time of the first
scheduling event of the period. For any PGV scheduler
with S≥2 and B≥2LM, if σij(t1)>–Vij(t1) then σij(t2)>–
Vij(t2).

Lemma 4. Let x be the first packet to be received at the
start of an active period for Vij and let t≥f(x)+2LM be-
long to the active period in which x arrives. For any
PGV scheduler with speedup S=2 and B≥2LM,
slackij(t)≥σij(t)>–Vij(t).

The proofs of these lemmas, together with the proof of
Theorem 2 can be found in the appendix.

3.3 More general performance guarantees
The analysis of the previous section can be modified to
show that some variants of PGV can provide more gen-
eral performance guarantees.

We say that an asynchronous crossbar T-emulates
an output-queued switch with a given scheduling policy
if it transmits packets at the same time that they would
be sent in an output-queued switch that buffers arriving
packets at its input, then places them directly into an
output queueing system that is followed by a fixed out-
put delay of length T. We show that variants of PGV
can T-emulate an output-queued switch using any re-
stricted PIFO queueing discipline, where a restricted
PIFO queueing discipline is one that forwards the pack-
ets from each input in the order they were received at
the input (packets from different inputs need not be
forwarded in the order of reception). Our result for
PGV generalizes the corresponding result for cell-based
crossbars given in [3].

The output line cards in the asynchronous crossbar
system are assumed to use the same PIFO policy as the
ideal output-queued switch that is being emulated. They
also select packets from crosspoint buffers in accor-
dance with the PIFO policy. In addition, they do not
start to forward packets on outgoing links, until their
age (the difference between the current time and the
time of the arrival of the last bit) is at least equal to a
threshold value, T. Note that a system that holds pack-
ets until their age is equal to T can still be T-work-
conserving. The input line cards order their VOQs in the
same way discussed in the previous section. We call the
variant of PGV defined in this way PGV-RP, where RP
stands for restricted PIFO.

- 7 -

We extend our definition of the precedes relation to
packets at different inputs, sending to, a common out-
put. In particular, if x and y are packets with a common
destination j, we say that x precedes y if the PIFO-RP
queueing discipline under consideration transmits x
before y. For packets at the same input, this is consis-
tent with our original definition since the PIFO-RP
queueing discipline transmits packets going to the same
output in their arrival order, as does the FIFO queueing
discipline that applies to the individual VOQs. We de-
fine qij(t) to be the number of bits at output j that pre-
cede the bits in Vij. We re-define slackij(t)=qij(t)–pij(t)
and σij(t)=qij(t)–p ij(t).

The key elements of the proof are captured in two
lemmas which establish that σij does not decrease and
that it exceeds a specified minimum value shortly after
the start of an active period. The proofs of the lemmas
can be found in the appendix. The proofs are similar to
the ones used to establish work-conservation. The main
difference is that qij does not necessarily increase when-
ever the crosspoint buffer Bij is non-empty, since the
output may be receiving a “lower priority” packet at the
time Bij becomes non-empty. However, qij is guaranteed
to start increasing within LM/2 of the time that Bij be-
comes non-empty, and this is enough to establish the
desired performance guarantee, albeit with some ad-
justment in the crossbar buffer size.

Lemma 5. Consider an active period of Vij that spans
the time interval [t1,t2] where t1≥the time of the first
scheduling event of the period. For a PGV-RP scheduler
with speedup S≥2 and B≥2LM, σij(t2)≥σij(t1).

Lemma 6. Let x be the first packet to be received at the
start of an active period for Vij and let t≥f(x)+2LM be-
long to the active period in which x arrives. For any
PGV-RP scheduler with speedup S=2 and B≥5LM,
slackij(t)≥σij(t)> LM/2.

Theorem 3. An output-queued switch using any re-
stricted PIFO scheduler can be T-emulated by an asyn-
chronous crossbar with a PGV-RP scheduler with S=2,
B≥5LM and T≥(5/2)LM.

proof. Suppose that up until time t, the asynchronous
crossbar faithfully emulates the output-queued switch,
but that at time t, the output queued switch begins to
forward a packet x from input i while the asynchronous
crossbar does not. Since the output queued switch has
an output delay of T, it follows that f(x)≤t–T, so t–
LM/2≥f(x)+2LM. Since the crossbar has sent everything
sent by the output-queued switch up until t, it follows
that qij(t–LM/2)≤LM/2. By Lemma 6, slackij(t–
LM/2)>LM/2 and hence pij(t–LM/2)<0, which contradicts
the fact that Vij is active at t–LM/2.

The analysis of Lemma 6 requires a crossbar buffer
of size at least 5LM. We conjecture that this can be re-
duced to 3LM and possibly 2LM, using a more sophisti-
cated analysis.

4. PACKET LOOFA
The Least Occupied Output First Algorithm (LOOFA) is
a cell scheduling algorithm described in [6]. We define
an asynchronous crossbar scheduling algorithm based
on LOOFA, called Packet LOOFA (PLF). Like PGV, PLF
imposes a total order on the VOQs at each input, which
is extended to an order on all the bits at the input. At
each scheduling event, the PLF scheduler selects some
VOQ for which the crosspoint buffer has enough space
to accommodate the first packet in the VOQ. If multiple
VOQs are eligible under this criterion, it selects the
VOQ that comes first in the ordering. The work-
conservation result we prove below does not depend on
the specific policy used by the output to select a cross-
point buffer.

The ordering of the VOQs is determined by the
number of bits in the output queues. In particular, when
a VOQ Vij becomes active, it is inserted immediately
after the last VOQ Vih, for which qh≤qj. If there is no
such VOQ, it is placed first in the ordering. At each
scheduling event, VOQs may be re-ordered, based on
the output occupancy. We allow one VOQ to move
ahead of another during this re-ordering, only if its out-
put has strictly fewer bits.

The work-conservation result for PLF is comparable
to that for PGV, but the required analysis is technically
more difficult because in PLF, the relative orders of
VOQs can change. Because they can change, PLF is also
more responsive to changes in output queue lengths
than PGV. While this has no effect on work-
conservation when S ≥2, it can be expected to yield
better performance for smaller speedups.

To analyze PLF, we need some additional terminol-
ogy. A non-empty interval for input i, is any continuous
time period during which there is some non-empty VOQ
at input i. We say that a VOQ V is older than a VOQ W
at time t if both are active, and W last became active
after V. We say that a VOQ is mature at time t if
f(x)≤t−T, where x is the first packet received by Vij in its
current active period and T=2LM. We define πij(t) to be
the number of bits present at input i at time t that pre-
cede Vij and that arrived before sij(t). We define p ij(t) to
be πij(t) plus the number of bits present at input i that
have arrived since sij. Finally, we let
slackij(t)=qj(t)−pij(t) and σij(t)=qj(t) −p ij(t). Note that
pij(t)≤p ij(t) and slackij(t)≥σij(t).

Our first lemma plays essentially the same role as
Lemma 1, in the work-conservation result for PGV.

- 8 -

Lemma 7. Let times t1 and t2 be the times of consecu-
tive scheduling events in the same non-empty interval
at input i and let M be the set of VOQs that are mature
at t1. For any PLF scheduler with speedup S≥2 and
B≥2LM, if all Vij in M satisfy σij(t1)≥LM/2, then all Vij in
M that are still mature at t2 satisfy σij(t2)≥LM/2.

Our next lemma extends Lemma 7 to establish a lower
bound on σ for all mature VOQs.

Lemma 8. Let times t1 and t2 be the times of consecu-
tive scheduling events in the same non-empty interval
at input i and let M be the set of VOQs that are mature
at t1. For any PLF scheduler with speedup S≥2 and
B≥16LM/3, if all Vij in M satisfy σij(t1)≥LM/2, then all Vij
that are mature at t2 satisfy σij(t2)≥LM/2.

Note that we can use Lemma 8 to show by induction
that σij(t)≥LM/2, if Vij is mature at time t, where t is the
time of some event at input i. The basis of the induction
is trivially satisfied, since, at the time τ of the first
scheduling event following a period when all VOQs at
input i are empty, there are no mature VOQs, hence all
mature VOQs satisfy slackij(τ)≥ σij(τ)≥LM/2.

Theorem 4. Any PLF scheduler with S=2 and B≥16LM/3
is T-work-conserving for T≥5LM/2.

proof. Suppose some output j is idle at time t and no
input is currently sending it a packet, but some input i
has a packet x for output j with f(x)+T<t. This implies
that at the time τ of the most recent event at input i, Vij
was mature and this means (by the discussion following
Lemma 8) that slackij(τ)≥LM/2. Since qj(t)=0,
qj(τ)≤LM/2, but this implies that pij(τ)≤0, which contra-
dicts the assumption that Vij is not empty.

By combining the analyses used to prove Theorems 3
and 4, we can obtain the following result for which the
proof is omitted.

Theorem 5. An output-queued switch using any re-
stricted PIFO scheduler can be T-emulated by an asyn-
chronous crossbar with a PLF-RP scheduler with S=2,
B≥22LM/3 and T≥3LM.

5. COST OF CROSSBAR BUFFERS
One possible objection to the use of crosspoint buffers
that are large enough to hold packets is that they might
be too expensive, even for modern integrated circuit
components. A 32 port crossbar equipped with buffers
large enough to hold two 1500 byte packets would re-
quire a total of more than 3 MB of SRAM. While this is
a substantial amount for on-chip memory, it falls within
the range of what is currently feasible, as has been
demonstrated recently by Katevenis et. al. [8]. More-
over, high performance crossbars are often imple-
mented using multiple crossbar components operating

in parallel. The buffer space required by each such
component is thus reduced in proportion to the number
of parallel components. For a system designed to sup-
port 40 Gb/s external links, a typical design might use
16 to 32 chips operating in parallel. This reduces the
memory requirement per chip to about 100 to 200 KB.
This is a fairly modest requirement and opens up the
possibility of handling larger packets.

It is also possible to substantially reduce the size of
the crossbar buffers by switching variable length seg-
ments rather than complete packets [9]. In section 2, we
observed that a packet-aware variant of a GVOQ sched-
uler for cell-based crossbars can be used to provide
strong performance guarantees for packets. We can
apply the same approach to a system in which packets
are divided into segments of variable length before
sending them through the crossbar. If segment lengths
vary from the minimum packet size to at least twice the
minimum packet size, we can divide a packet into seg-
ments with no “wasted space”. We can then forward
the segments through an asynchronous crossbar using a
packet-aware scheduling algorithm, which keeps the
segments of a packet together. This requires that the
PIFO scheduling policy at the outputs, insert segments
of a packet into consecutive positions in the output list.
It also requires that the output scheduling policy for the
crossbar select the next segment based on where the
segment goes in the output list.

The size of the crossbar buffers in such a system is a
function of the maximum segment size, not the maxi-
mum packet size. A 32 port crossbar with a minimum
segment size of 50 bytes, a maximum segment size of
100 bytes and crossbar buffers large enough for two
maximum length segments, would require a total of 200
KB of memory. If the crossbar were implemented using
16 components in parallel, the amount of memory per
component drops to about 12.5 KB. Moreover, such a
crossbar can be used in systems switching packets of
arbitrary length. If we dimension the crosspoint buffer
size to hold eight maximum length segments (allowing
us to use a PLF-RP scheduler), the amount of memory
per component grows only to 50 KB.

Also observe that in a segment-based system, an in-
put line card can forward segments to an output line
card before all segments of the packet have been re-
ceived. The performance guarantee for the crossbar will
ensure that remaining segments are transferred through
the crossbar in time to be forwarded on the outgoing
link, if the system is operated with a speedup of 2.
Thus, we not only reduce the amount of buffering re-
quired, but we reduce the delay as well.

- 9 -

6. CONCLUDING REMARKS
The results of sections 3 and 4 can be extended to sys-
tems that place different constraints on where and when
packets are buffered. In particular, most routers buffer
packets at both input and output line cards, not just at
the inputs. Buffering packets at the inputs allows error
checks to be performed on the packets before forward-
ing them to the switch. Buffering them at the outputs
allows similar checks to be performed, but is arguably
less essential, since packet errors are less likely to occur
within a router than on the external links. Having said
that, other considerations may dictate that packets be
buffered at outputs, as well as inputs and this raises the
question of how the performance guarantees are af-
fected. It turns out that the effect is fairly minor, requir-
ing only that the value of T be increased by LM/2, to
accommodate the added delay for a maximum length
packet to be fully buffered at the outputs.

With an asynchronous crossbar, it is possible to
build a system in which packets pass from inputs to
outputs without ever being fully buffered. This is
known as cut-through switching [5] and can provide
superior delay performance. While cut-through switch-
ing is not typically used in routers, it can be useful in
system contexts where it is important to minimize la-
tency. While our results cannot be directly applied to
such systems, it seems likely that similar results could
be developed for this model. Indeed, the segment-based
switches discussed in the previous section already ap-
proach the behavior of a cut-through switch, and there
seems little reason to suppose that the results would not
generalize to the cut-through model. The key require-
ment needed to obtain work-conservation is that once a
packet has been selected to advance from an input line
card to the crossbar or from the crossbar to an output
line card, the flow of bits in that packet must not be
interrupted until the end of the packet is reached. Inputs
(outputs) must also be able to forward multiple packets
to (from) the crossbar concurrently in certain cases.
Consider for example, an input that is forwarding bits
of a packet x to the crossbar as they come in. Since the
bits are arriving at the link rate, the transfer of the bits
of x to the crossbar uses only half the crossbar band-
width (assuming S=2). If another packet y at the input
becomes eligible for forwarding while x is still coming
in (because its crossbar buffer has drained sufficiently
to accommodate it), the input must be able to forward y
to the crossbar concurrently with x in order to fully
exploit the crossbar bandwidth. Without the ability to
transfer packets concurrently to and from the crossbar,
it will not be possible to achieve work-conservation.

There are several ways the work described here can
be extended. First, there are opportunities for tightening

the results shown here, particularly with respect to the
crossbar buffer size. Our analysis showing that a PGV
scheduler can emulate an output-queued switch with a
restricted PIFO scheduler requires a buffer size of 5LM.
As noted earlier, it seems likely that this can be reduced
to 3LM. The buffer size results for PLF are also not as
strong as one might expect. There seems no intrinsic
reason to suppose that PLF requires a larger crossbar
buffer size than PGV. An analysis that directly com-
pares the behavior of a PLF scheduler to the PGV
scheduler may be able to reduce the buffer size re-
quirement for PLF. Another worthwhile direction for
further work is developing performance guarantees for
other scheduling algorithms.

It would also be interesting to see if the analysis
techniques can be extended to provide stronger per-
formance guarantees. In particular, it would be useful
to show that an asynchronous buffered crossbar can
emulate an output-queued switch using any PIFO
queueing discipline, not just any restricted PIFO disci-
pline. The difficulty in making the transition from re-
stricted PIFO queueing disciplines to unrestricted PIFO
disciplines is that once a packet is in a crossbar buffer,
there is no way for a later arriving packet from the
same input to reach the output line card before it does,
even if the queueing discipline gives it higher priority.
Reference [3] describes several techniques that can be
used to allow cell switches using buffered crossbars to
over-come this crosspoint blocking phenomenon. One
involves increasing the speedup and allowing later ar-
riving packets to displace packets already in crossbar
buffers. Another method requires no increase in
speedup, but uses a more complex form of buffering in
the crossbar. It seems likely that these methods can be
generalized to accommodate asynchronous crossbars.

Still another direction to explore is how scheduling
algorithms that deliver strong performance guarantees
when operated with a speedup of 2 perform when oper-
ated with a smaller speedup. Since the crossbar cost
increases in direct proportion to the speedup, there are
practical reasons to be interested in the performance of
systems with smaller speedup, even if they are not able
to deliver strong performance guarantees. A compre-
hensive simulation study exploring how such systems
perform under a wide range of conditions would have
considerable practical value.

- 10 -

References
[1] Anderson, T., S. Owicki., J. Saxe and C. Thacker. “High

speed switch scheduling for local area networks,” ACM
Trans. on Computer Systems, 11/93.

[2] Chuang, S.-T. A. Goel, N. McKeown, B. Prabhakar
“Matching output queueing with a combined input
output queued switch,” IEEE Journal on Selected Areas
in Communications, 12/99.

[3] Chuang, Shang-Tse, Sundar Iyer, Nick McKeown.
“Practical Algorithms for Performance Guarantees in
Buffered Crossbars,” Proceedings of IEEE INFOCOM,
3/05.

[4] Iyer, S., R. Zhang, and N. McKeown, “Routers with a
Single Stage of Buffering”, ACM SIGCOMM ’02,
Pittsburgh, USA, Sep. 2002.

[5] Kermani, Parviz and Leonard Kleinrock. “Virtual Cut-
Through: A New Computer Communication Switching
Technique.” Computer Networks 3: 267-286, 1979.

[6] Krishna, P., N. Patel, A. Charny and R. Simcoe. “On the
speedup required for work-conserving crossbar
switches,” IEEE J. Selected Areas of Communications,
6/99.

[7] Leonardi, E., M. Mellia, F. Neri, and M.A. Marsan, “On
the stability of input-queued switches with speed-up,”
IEEE/ACM Transactions on Networking, Vol. 9, No. 1,
pp. 104–118, February 2001.

[8] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, N.
Chrysos: "Variable Packet Size Buffered Crossbar
(CICQ) Switches", Proc. IEEE International Conference
on Communications (ICC 2004), Paris, France, 20-24
June 2004, vol. 2, pp. 1090-1096.

[9] M. Katevenis, G. Passas: "Variable-Size Multipacket
Segments in Buffered Crossbar (CICQ) Architectures",
Proc. IEEE International Conference on
Communications (ICC 2005), Seoul, Korea, 16-20 May
2005.

[10] B. Magill, C. Rohrs, R. Stevenson, “Output-Queued
Switch Emulation by Fabrics With Limited Memory”, in
IEEE Journal on Selected Areas in Communications, pp.
606–615, May 2003.

[11] McKeown, Nick. “iSLIP: a scheduling algorithm for
input-queued switches,” IEEE Transactions on
Networking, 4/99.

[12] McKeown, N., A. Mekkittikul, V. Anantharam, and J.
Walrand. “Achieving 100% Throughput in an Input-
Queued Switch,” IEEE Transactions on
Communications, Vol. 47, No. 8, Aug. 1999.

[13] Mhamdi, L., Mounir Hamdi, “MCBF: A High-
Performance Scheduling Algorithm for Buffered
Crossbar Switches”, IEEE Communications Letters,
2003.

[14] Nojima, S., E. Tsutsui, H. Fukuda, M.Hashimoto.
“Integrated Services Packet Network Using Bus Matrix
Switch”, IEEE Journal on Selected Areas of
Communications, 10/87.

[15] Rodeheffer, Thomas L. and James B. Saxe. “An
Efficient Matching Algorithm for a High-Throughput,
Low-Latency Data Switch .” Compaq Systems Research
Center, Research Report 162, 11/5/98.

[16] Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao, “CIXB-1:
Combined Input-One-cell-Crosspoint Buffered Switch,”
IEEE Workshop on High Performance Switching and
Routing, Dallas, TX, July 2001.

[17] Turner, Jonathan. “When is a Work-Conserving Switch Not?”
Washington University Computer Science and Engineering
Technial Report, WUCSE-2005-14, 4/05.

APPENDIX
Here, we collect various proofs that were omitted from
the main body of the paper. Lemmas 3 and 4 are used
to prove Theorem 2, the stronger version of the work-
conservation result for PGV.

Lemma 3. Consider an active period of Vij that spans
the time interval [t1,t2] where t1≥the time of the first
scheduling event of the period. For any PGV scheduler
with S≥2 and B≥2LM, if σij(t1)>–Vij(t1) then σij(t2)>–
Vij(t2).

proof. If Vij(t2)≥Vij(t1) then the result follows from
Lemma 1. Assume then that Vij(t2)<Vij(t1). Let t1 and t2
be the times of consecutive events at input i.
Vij(t2)<Vij(t1) implies that Vij was selected at t1. This
means that during the interval [t1,t2], qj is increasing at
rate ≥1, while pij and p ij are decreasing at rate ≥1. This
results in a net increase in σij at least equal to the de-
crease in Vij. Consequently, σij(t2)>–Vij(t2). The result
generalizes to any interval following the first schedul-
ing event of the active period, by the same argument
used in the proof of Lemma 1.

 Lemma 4. Let x be the first packet to be received at the
start of an active period for Vij and let t ≥f(x)+2LM be-
long to the active period in which x arrives. For any
PGV scheduler with speedup S=2 and B≥2LM,
slackij(t)≥σij(t)>–Vij(t).

proof. Let τ<f(x)+LM/2 be the time of the first schedul-
ing event at input i in the active period. Note that if
Bij(τ)>0 then Bij has been positive since before f(x).
This implies that qj has been increasing at rate ≥1 since
before f(x), so qj(τ)>(τ–f(x)). Since p ij(τ)–Vij(τ)≤(τ–
f(x)), it follows that σij(τ)>–Vij(τ). By Lemma 3, this
remains true for the remainder of the active period.

Now, suppose that Bij(τ)=0. Define z(t) to be the
first packet in Vij at time t. If there is no event in the
interval [τ, f(x)+2LM] when Bij contains more than
B−L(z(t)) bits, then at every event in this interval, the
scheduling algorithm will select either Vij or some other
VOQ that precedes Vij. Consequently,

(() 2) () (())

((() 2))
() 2(()) 2

0

ij M

M

M

p f x L L x f x

f x L
L x f x L

τ

τ
τ

+ ≤ + −

− + −
≤ + − −
<

This implies that Vij is empty by f(x)+2LM contradicting
the hypothesis of the lemma. Hence, there must be
some event in [τ,f(x)+2LM] when Bij contains more than
B−L(z(t)) bits. Let t0 be the time of the first such event.
So, Bij(t0)>B−L(z(t0)). and t0≤f(x)+2LM. Note also that
t0>τ+(B−L(z(t)))/2 since Bij(τ)=0. This implies that

- 11 -

0 0

0

() () (()) ()

() / 2 ((())) / 2
ij

M

p t L x f x t

L x L B L z t

τ τ≤ + − − −

< + − −

Since Bij(t0)>B−L(z(t0)), Bij has been non-empty since
before t0–(B−L(z(t0)))/2, meaning that
qj(t0)>(B−L(z(t0)))/2. Consequently,

0 0

0 0

() ((())) (() / 2)

/ 2 (()) ()
ij M

M ij

t B L z t L x L

L L z t V t

σ > − − +

≥ − ≥ −

and by Lemma 3, this remains true for the remainder of
the active period.

Theorem 2. Any PGV scheduler with S=2 and B≥2LM is
T-work-conserving for T≥2LM.

proof. Suppose some output j is idle at time t and no
input is currently sending it a packet, but some input i
has a packet x for output j with f(x)+2LM<t. By Lemma
4, slackij(t)>–Vij(t). Since, qj(t)=0, this implies that
pij(t)< Vij(t), which is not possible.

Lemmas 5 and 6 are used to prove Theorem 3, the
emulation result for PGV-RP.

Lemma 5. Consider an active period of Vij that spans
the time interval [t1,t2] where t1≥the time of the first
scheduling event of the period. For a PGV-RP scheduler
with speedup S≥2 and B≥2LM, σij(t2)≥σij(t1).

proof. Assume that t1 and t2 are the times of two con-
secutive events at input i. Let z be the first packet in Vij
at t1. If Bij does not have room for z at time t, then
Bij(t1)>LM. This means that Bij became non-empty be-
fore t1–LM/2. This implies that between the time Bij be-
come non-empty and t1, there has been a scheduling
event at output j. So, by t1, output j is receiving bits that
precede those in Vij, leading to an increase in qij. Since
Bij(t1)>LM, qij will continue to increase until at least the
next scheduling event at input i.

On the other hand, if Bij does have room for z at t1,
then either z must be selected for transmission to the
crossbar at t1 or some packet that precedes z must be
selected. In either case, this leads to a decrease in p ij.
Consequently, whether Bij has room for z or not, the
transfer of bits to or from the crossbar is sufficient to
offset the effects of new arrivals at input i and depar-
tures from output j. This ensures that there is no de-
crease in σij.

Lemma 6. Let x be the first packet of an active period
for Vij and let t ≥f(x)+2LM belong to the active period in
which x arrives. For any PGV-RP scheduler with
speedup S=2 and B≥5LM, slackij(t)≥σij(t)>LM/2.

proof. Let τ< f(x)+LM /2 be the time of the first schedul-
ing event at input i in the active period. Suppose first,

that Bij(τ)>4LM. Consequently, Bij became non-empty
before f(x)–2LM. This implies that qij has been increas-
ing at rate 1 since before s(x)–LM/2 and since
p ij(f(x))=L(x) and p ij can increase at a rate no greater
than 1, it follows that σij(τ)>LM/2. By Lemma 5, this
remains true for the remainder of the active period.

Now, suppose that Bij(τ)≤4LM. If there is no event in
the interval [τ,f(x)+2LM] when Bij contains more than
B−LM bits, then at every event in this interval, the
scheduling algorithm will select either Vij or a VOQ that
precedes Vij. Consequently,

(() 2) () (())

((() 2))
() 2(()) 2

0

ij M

M

M

p f x L L x f x

f x L
L x f x L

τ

τ
τ

+ ≤ + −

− + −
≤ + − −
≤

This implies that Vij is empty by f(x)+2LM contradicting
the hypothesis of the lemma. Hence, there must be
some event in [τ,f(x)+2LM] when Bij contains more than
B−LM bits. Let t0 be the time of the first such event. So,
Bij(t0)>B−LM. and t0≤f(x)+2LM. Note also that
t0>τ+L(x)/2 since at least one packet must have been
sent from Vij in order to make Bij(t0)>B−LM. This im-
plies that

0 0() () (()) ()

() / 2 () / 2
ij

M

M

p t L x f x t

L x L L x
L

τ τ≤ + − − −

< + −
≤

Since Bij(t0)>B−LM, Bij has been non-empty since before
t0–(B−LM)/2, meaning that qij has been growing since
before t0–(B−2LM)/2, so qij(t0)>(B−2LM)/2≥3LM/2. Con-
sequently, σij(t0)>LM/2 and by Lemma 5, this remains
true for the remainder of the active period.

Lemmas 7 and 8 are used to prove Theorem 4, the
work-conservation result for PLF.

Lemma 7. Let t1 and t2 be the times of consecutive
scheduling events in the same non-empty interval at
input i and let M be the set of VOQs that are mature at
t1. For any PLF scheduler with speedup S≥2 and B≥2LM,
if all Vij in M satisfy σij(t1)≥LM/2, then all Vij in M that
are still mature at t2 satisfy σij(t2)≥LM/2.

proof. Let Vij be a VOQ in M that is still mature at t2 and
let ∆=t2−t1. If Bij(t1)>B−LM, then output j receives 2∆
bits during the interval [t1,t2]. However, if Bij(t1)≤B−LM,
then 2∆ bits that precede Vij at t1, leave input i during
[t1,t2]. This implies that if no VOQ that is older than Vij
passes Vij during [t1,t2], then σij(t2)≥σij(t1)≥LM/2. Note
that we are not concerned with VOQs younger than Vij
passing it, since the relative ordering of these VOQs

- 12 -

with Vij does not affect p ij and hence does not affect σij.
In fact, σij(t2)≥σij(t1) even if there are some older VOQs
that pass Vij, so long as at t1, these VOQs no longer con-
tain bits that arrived before sij(t1).

Assume then that r>0 bits belonging to older VOQs
that arrived before sij(t1) do pass Vij during [t1,t2] and let
Vih be the VOQ in the set of older VOQs that pass Vij
that comes latest in the VOQ ordering at t1. Let k be the
number of bits present at input i at t1 that precede Vih
but not Vij, and that arrived before sij(t1). Note that
k≤p ih(t1)–p ij(t1) and that r≤k. Since Vih passes Vij, output
h must receive fewer bits than output j does during
[t1,t2], and since output j can receive no more than 2∆
bits during [t1,t2], output h receives fewer than 2∆. This
implies that Bih(t1)<2∆≤B−LM. Consequently, Vih is eli-
gible for selection at t1, which implies that some packet
z with 2∆ bits, that precedes Vih at t1 left input i during
[t1,t2].

We consider three cases. First, if z arrived after sij(t1)
then, the departure of z reduces by 2∆, the number of
bits that are present at input i that arrived after sij(t1).
Consequently,

2 1 1() () 2 ()ij ij ijp t p t r p t k≤ + + ∆ − ∆ ≤ + − ∆

Similarly, if z arrived before sij(t1) and z precedes Vij at
t1 then the departure of z reduces πij by 2∆. Conse-
quently,

2 1 1() () 2 ()ij ij ijp t p t r p t k≤ + + ∆ − ∆ ≤ + − ∆

Finally, if z arrived before sij(t1) and z does not precede
Vij at t1 then r+2∆≤k and

2 1 1() () ()ij ij ijp t p t r p t k≤ + + ∆ ≤ + − ∆

So, in all three cases p ij(t2)≤p ij(t1)+k–∆.

Since Vih passes Vij, qj(t2) > qh(t2) ≥ qh(t1)−∆ and so,

2 1 1

1 1

() (()) (())
() () / 2

ij h ij

h ih M

t q t p t k
q t p t L

σ ≥ − ∆ − + − ∆

≥ − ≥

Our next lemma extends Lemma 7.

Lemma 8. Let t1 and t2 be the times of consecutive
scheduling events in the same non-empty interval at
input i and let M be the set of VOQs that are mature at
t1. For any PLF scheduler with speedup S≥2 and
B≥16LM/3, if all Vij in M satisfy σij(t1)≥LM/2, then all Vij
that are mature at t2 satisfy σij(t2)≥LM/2.

proof. Since Lemma 7 covers the case of VOQs that
were mature at t1, we only concern ourselves with those
VOQs that become mature during [t1,t2]. Let Vij be such

a VOQ, let x be the first packet that entered Vij in the
current active period for Vij and let τ be the time of the
first event in the current active period for Vij. Note that
because Vij became mature during [t1,t2],
t2−LM/2≤t1<f(x)+T≤t2. We divide the analysis into three
cases.

Case 1. πij(t2)=0 and Bij(τ)>B−LM. Since Bij(τ)>B−LM,
output j has been receiving bits from the crossbar at
rate 2, since before f(x)−(B−LM)/2≤s(x)−3LM/2 and will
continue to do so until at least τ+(B−LM)/2. If
t2≤τ+(B−LM)/2, qj(t2)≥t2−(s(x)−3LM/2) and since
πij(t2)=0, p ij(t2)≤t2−s(x). Hence σij(t2)≥LM/2. Assume
then that t2>τ+(B−LM)/2. In this case,

[]
[]

2

2

2

() (() / 2) (() () / 2)

(() / 2)
3() / 2 2 ()

j M M

M

M

q t B L f x B L

t B L
B L t f x

τ

τ
τ

≥ + − − − −

− − + −

= − + − −

and

()2 2 2

2

() 3() / 2 2 () (())

3() / 2 2 2 ()
3() / 2 2 ()

2(() / 2) ()
3() / 2 6 / 2

j M

M

M

M

M M M

t B L t f x t s x

B L t L x
B L f x

f x T L L x
B L L L

σ τ

τ

≥ − + − − − −

≥ − + − −
≥ − +

− + + −
≥ − − ≥

This completes Case 1.

Case 2. πij(t2)=0 and Bij(τ)≤B−LM. In this case, Vij is
eligible to be selected at τ, so Vij or some other VOQ
preceding Vij must be selected at τ. Suppose there is no
event in [τ, t2] when Bij has more than B−LM bits. Then,

2 2() () (()) ()

() / 2 (/ 2)
2 0

ij

M M

M

p t L x f x t

L x L T L
L T

τ τ≤ + − − −

≤ + − −
≤ − =

This contradicts the fact that Vij is active at t2, so there
must be some event in [τ,t2] when Bij has more than
B−LM bits. Let t be the time of the first such event and
note that
t≥τ+L(x)/2, since at least one packet must enter Bij to
make Bij(t)>B−LM. Since Bij(t)>B−LM, qj(t)>(B−LM)/2.
Also,

() () (()) ()

() (()) () / 2
ij

M

p t L x f x t

L x f x L x
L

τ τ

τ

≤ + − − −

≤ + − −
≤

So, σij(t)≥(B−LM)/2−LM≥LM/2. If t+(B−LM)/2≥t2, then qj
continues to grow at rate 1 until t2. This is enough to
compensate for any growth in p ij. Hence, σij(t2)≥LM/2.
Assume then that t+(B−LM)/2<t2. In this case, qj contin-

- 13 -

ues to grow at rate 1 until t+(B−LM)/2 giving
qj(t+(B−LM)/2)>B−LM. Thus,

()2 2

2

() () (() / 2)
3() / 2 ()

j M M

M

q t B L t t B L
B L t τ

≥ − − − + −

≥ − − −

and since p ij(t2)≤t2−s(x),

2 2 2

2

() 3(/ 2) () (())

3(/ 2) 2 2 () ()
3(/ 2) 2(() / 2)

2 ()
3(/ 2) 6 / 2

ij M

M

M M

M

M M M

t B L t t s x

B L t f x L x
B L f x T L

f x L
B L L L

σ τ≥ − − − − −

≥ − − + −
≥ − − + +

+ −
≥ − − ≥

This completes Case 2.

Case 3. πij(t2)>0. This implies that there is some VOQ
that precedes Vij at t2 and is older than Vij. Suppose that
Vij is the first such VOQ to become mature in [t1,t2]. Let
Vih be an older VOQ that precedes Vij at t2 and assume
further, that among all such VOQs, it comes latest in the
VOQ ordering at t2. Note that with these assumptions,
either Vih was mature at t1, or there is no VOQ that is
both older than Vih and that precedes Vih. In either case
σih(t2)≥LM/2, Let k=pij(t2)−pih(t2). Note that all bits that
precede Vij at t2, but not Vih must have arrived since
s(x), where x is first packet of the current active period
for Vij (otherwise, there would be some VOQ older than
Vij that precedes Vij and comes later in the VOQ order-
ing than Vih). Since Vih is older than Vij, these bits also
arrived after Vih became active. Consequently,
pih(t2)≤p ih(t2)–k and so,

2 2 2

2 2

() () ()
() ()
/ 2

ih h ih

h ih

M

slack t q t p t
q t p t k
L k

= −
≥ − +
≥ +

Consequently, qj(t2)−pij(t2) ≥ qh(t2)−pih(t2)−k ≥ LM/2.
Note that this inequality holds even when pij(t2)=p ij(t2)
implying that, σij(t2)≥LM/2 also. We can establish the
result for all VOQs that become active during [t1,t2] by
induction. The inductive step follows by the same ar-
gument, using the fact that all older VOQs to become
active in [t1,t2] have σ(t2)≥LM/2.

