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ABSTRACT 
The Open Network Laboratory (ONL) is a remotely accessible 
network testbed of high performance routers which has been 
designed with an eye towards ease of use for users from the naïve 
to the expert. The system is built around a set of high-performance 
routers that are extendible and easily configurable through the 
Remote Laboratory Interface (RLI), an intuitive graphical 
interface.  The RLI also makes it easy to configure packet filters 
in the routers, assign flows or flow aggregates to separate queues 
with configurable QoS and attach hardware monitoring points to 
real-time charts.  The RLI’s real-time charts and user data facility 
make it easy to directly view  the effects of traffic as it moves 
through a router, allowing the user to gain better insight into 
system behavior and create compelling demonstrations.  Each port 
of the router is equipped with an embedded processor that 
supports software plugins which allow users to extend the 
system’s functionality.  This paper describes the ONL and how it 
can be used in networking education.  Our web site 
onl.arl.wustl.edu includes a short video and a tutorial. 
 

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education,  C.2 [Internetworking]: Routers 

General Terms 
Experimentation, Measurement 
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1. INTRODUCTION 
A traditional basic networking course covers the fundamental 
concepts in networking and is sometimes accompanied by a few 
laboratory exercises involving  either some socket programming 
and/or simulation experiments. Rarely, can a student experiment  

with real, high performance routers and closely observe the effect 
of configuration changes at a variety of network points in real-
time.  The closed architectures of commercial routers makes them 
largely inaccessible for this type of activity and the time and effort 
required to make experimental modifications to these systems 
makes this approach prohibitively difficult. The Open Network 
Laboratory (ONL) dramatically reduces the “barrier-to-entry” for 
this kind of activity by providing access to a remote testbed of 
open, high performance routers and hosts that can be controlled 
through an intuitive Remote Laboratory Interface (RLI). 

While ONL has been developed primarily as a tool for 
networking research, our early experience shows that it can also 
be a compelling educational tool.  The interface provided by the 
RLI is direct and intuitive, allowing relatively naïve users to start 
using ONL productively with a minimum of explicit instruction.  
Getting a simple experiment up and running takes very little time, 
and the measurement and real-time display tools make it possible 
for students to see what is happening “under the covers”.  By 
observing how configuration changes affect traffic behavior, 
queue levels and packet drops, students make a much more direct 
connection between high level classroom concepts and their 
practical implications, dramatically accelerating the speed at 
which they gain understanding and insight into the subject matter.   
We have begun using the ONL in several of our classes and have 
found it to be extremely useful and popular with students. 

Section 2 of the paper describes the architecture of ONL 
showing the technical components of the testbed.  Section 3 
describes the basic features of the Remote Laboratory Interface 
showing how an experiment can be remotely configured and 
monitored.  Section 4 discusses more advanced features such as 
packet filters and queue management.  Section 5 describes router 
plugins that are software modules that can be inserted along a 
router’s data path to provide custom processing.  Section 6 
describes a project that demonstrates many of ONL’s capabilities.  
Then, Section 7 concludes with a discussion of other experimental 
resources and future work. 

2. ONL ARCHITECTURE 
The Open Network Laboratory consists of four experimental  

routers called Network Service Platforms (NSPs) plus 40 rack-
mounted PCs that serve as end systems and control processors 
(Figure 1).  The hardware components are grouped into four 
clusters with each cluster consisting of a single NSP, a control 
processor (CP) that manages an NSP, a gigabit Ethernet subnet 
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with three connected hosts, and two directly connected hosts. This 
leaves four of each NSP’s ports uncommitted. These four ports 
are connected to a Configuration Switch that serves as an 
“electronic patch panel” to connect NSPs to each other or to 
additional hosts. Users interact with the testbed using the RLI, 
which is a standalone Java application. The RLI communicates 
with the testbed through the main ONL server which relays 
messages to the various testbed components. A second server 
(onlBSD) host is provided to facilitate preparation of software 
plugins for the NSPs’ embedded processors. 

The core component is a modular, gigabit router (Figure 2). 
The system uses a cell-switched core and each port includes an 
embedded processor subsystem called the Smart Port Card (SPC) 
[1] and a programmable logic board called the Field 
Programmable Port Extender (FPX) [2].  An FPX includes a 
large field programmable gate array with four high speed memory 
interfaces providing access to 2 MB of SRAM and 128 MB of 
DRAM. The system supports several different types of line cards, 
including one for gigabit Ethernet (GigE).  The core cell switch 
supports 1024 virtual circuits per port, virtual circuit traffic 
monitoring, multicast and two hardware priority levels. One port 
of the system is used by an external control processor for system 
management through in-band control cells. 

Packets entering the system first pass to the FPX which is 
configured to do IP routing, flow classification and packet 
scheduling. Packets that require software processing are diverted 
to the SPC on either the input or output side of an NSP. An NSP 
uses a modular design that allows easy insertion of add-on cards 
like the FPX and SPC. Such cards are equipped with connectors at 
either end and are stacked on top of one another. This makes it 
easy to upgrade individual pieces and to configure systems with a 
variety of characteristics. 

The SPC includes a dual port network interface chip (the ATM 
Port Interconnect Controller or APIC), which allows any portion 
of the traffic entering or leaving the system to be diverted to the 
Pentium processor module on the card. The APIC transfers IP 
packets directly to and from processor memory over a 32 bit PCI 
bus. In situations where 10% of the link traffic requires software 
processing, the SPC allows the execution of close to 50 
instructions per byte, which is sufficient to implement moderately 
complex applications that examine and modify packet data. 

The FPX contains two field programmable gate arrays. The 
Network Interface Device (NID) can be used to redirect any 
portion of the arriving traffic to the Reprogrammable Application 
Device (RAD), which is a Xilinx XCV2000E, with 80 KB of on-
chip SRAM and 38,400 basic logic blocks, each containing one 

flip flop, a configurable four variable logic function generator and 
miscellaneous support circuits. The RAD is equipped with 2 
SRAMs and 2 SDRAMs, which can operate at up to 100 MHz, 
giving it a raw memory bandwidth of up to 2.5 GBytes per 
second. The available resources allow it to support all the core 
packet processing functions required of an advanced router 
supporting gigabit link speeds. The FPX supports dynamic 
reconfiguration of the RAD. A complete new RAD configuration 
can be downloaded in just a few seconds. 

3. THE REMOTE LAB INTERFACE  
The RLI is a standalone Java application that allows a remote 

user to interactively configure an experiment and monitor a 
variety of measurement points within the testbed infrastructure. 
This section describes the basic features of the RLI including 
resource acquisition, routing table configuration and traffic 
monitoring. Later sections describe more advanced features such 
as bandwidth allocation and router plugins.  Example exercises 
are described at the end of each section. 

A network can be easily configured through the RLI’s main 
menus and/or per port menus.  Figure 3 shows the main RLI panel 
with its main drop-down menus at the top.  The user has added 
components using the Topology menu.  The links are shown as 
dashed lines, and the hosts and NSPs are shown in light shade 
indicating that actual testbed resources have not been allocated. A 
cluster consists of an NSP, with its Control Processor (CP), two 
directly connected hosts and a gigabit Ethernet subnet. Additional 
hosts were added and linked to each NSP by selecting the Add 
Host and Add Link menu items.  The Generate Default Routes 
selection generates routing tables at each port that will forward 
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Figure 2.  NSP Hardware. 
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Figure 1.  Open Network Laboratory Configuration. 

 
Figure 3.  Topology Construction. 



 
Figure 4.  A Traffic Display. 

packets along minimum hop paths.  Although we accepted default 
values for parameters such as link rates and queue sizes and 
accepted default routing in this example, the user can modify 
these settings as well as give special treatment to flows, and install 
plugins for special packet processing.  A configuration can be 
saved to a file by selecting File ⇒ Save As, making it very easy 
to return to an experiment later. 

This topology configuration phase is defined with logical 
resources and can be done without connecting to the ONL testbed.  
But in order to run an experiment, the logical configuration must 
be bound to actual resources.  The user connects to the ONL 
server with an ssh tunnel and selects File ⇒ Commit to allocate, 
bind and initialize physical resources.  A user can reserve 
resources in advance through a web-based reservation system or 
reserve the resources during the resource binding process. The 
RLI initiates the setup and as resources are allocated and 
initialized, dashed links become solid lines and components are 
displayed in a darker color (see Figure 4).  Users are free to 
modify the configuration at any time through the RLI and commit 
those changes. 

The RLI also provides access to a wide variety of measurement 
mechanisms that are built into the hardware.  Most of these take 
the form of counters which track either the number of packets 
observed at a particular place or the amount of data observed. All 
can be connected to real-time displays, that can be customized in a 
variety of ways to best suit the user’s needs.  For example, users 
can monitor the total traffic sent or received on a link, the amount 
sent between input and output ports, the number of packets 
discarded due to various errors, the number of packets matching 
any given route or packet filter and per flow queue lengths. Figure 
4 shows a situation where the user is monitoring the traffic 
generated by ping traffic from host n1p2 to host n2p3 as it leaves 
port 6 of NSP 1 and is about to add another plot showing the 
returning traffic coming into port 6 of NSP 1.  Simple exercises 
can be constructed to familiarize students with the concept of 
packet forwarding using only the few features we have just 
described. 

Packet Forwarding Exercise:  Students construct a network 
with two or three routers with default routing at all ports.  They 
configure a real-time chart showing the traffic flows on all inter-
router links and use the ping utility to generate traffic between 
pairs of hosts.  Then, they add route table entries with more 

specific address prefixes that route packets along more indirect 
paths and observe the effects on the ping packets.  This exercise 
can be enhanced through the use of packet filters and more 
sophisticated traffic generators (both described in the next 
section). 

4. FILTERS, QUEUES AND BANDWIDTH 
The RLI also allows the user to easily access more advanced 

features of the hardware such as packet classification, queueing, 
special routing, and bandwidth sharing.  This section describes an 
experiment that illustrates the effect of bandwidth allocation at a 
bottleneck link.  It uses the two-NSP topology described in the 
previous section (Figure 4) as a starting point but adds filters that 
redirect flows to separate reserved queues.  It also uses the iperf  
utility [3] to send UDP traffic from the three hosts n1p2, n1p3 and 
n1p4 to hosts n2p2, n2p3 and n2p4 through the bottleneck link 
joining port 6 of NSP 1 to port 7 of NSP 2.  The RLI displays 
verify that the flows are receiving their prescribed bandwidth 
allocations. 

These three flows are redirected to separate reserved queues by 
adding General Match filters in the FPX at the egress side of port 
6 of NSP 1. The FPX has three parallel lookup tables at each port: 
1) a Route Table that uses longest prefix matching, 2) a Flow 
Table that uses Exact Match (EM) filters, and 3) a Filter Table 
that uses General Match (GM) filters.   Both EM and GM filters 
match on a packet’s IP address fields, transport layer port fields 
and protocol field. But GM filters allow wild-carding on fields, 
and the highest priority entry is chosen when a packet matches 
multiple GM filters,. 

We have set the configuration parameters for the queues at port 
6 of NSP 1 so that the egress link capacity is 300 Mbps, and the 
internal switch capacity has been set to 600 Mbps giving a 2:1 
switch speed advantage. The link bandwidth can be set to any rate 
up to 1 Gb/s.  In this example, the desired bandwidth ratios of 
queues 300-302 were set to 4:2:1 by modifying entries in the 
Egress Queue Table which control the bandwidth shares of a 
Weighted Deficit Round Robin (WDRR) packet scheduler. The 
egress queue sizes for each of these flows were also set in the 
Egress Queue Table. 

Figure 5 shows two RLI charts. The top chart shows the 
bandwidths in incremental (or stacked) form.  The bottom solid 
curve (1.2 to 1.6) shows the bandwidth entering the bottleneck 

 

 
Figure 5.  Traffic Bandwidth and Queue Lengths. 



link coming from the first flow, the middle solid curve shows the 
bandwidth contributed by the first two flows, and the top solid 
curve shows the total bandwidth contributed by all three flows. 
The dashed curves show the bandwidth leaving the bottleneck 
link. Note that the bandwidths leaving the bottleneck link are 
smaller than those entering the bottleneck since the three sources 
are sending at an aggregate rate of over 700 Mbps, well over the 
300 Mbps capacity of the bottleneck.  The dashed curves indicate  
that the three UDP flows are receiving bandwidth in the 
proportion 4:2:1 when all three flows are active (middle section) 
and 2:1 (right end) when only qids 301 and 302 have packets.  
The bottom plot shows the queue length of the reserved flow 
queues and that the length of the three reserved flows is in the 
ratio 2:3:4 as required by the threshold settings. 

Queueing and Interaction Exercises:  The above example 
showed how multiple flows interact with one another and how 
their share of link bandwidth can be affected by the queueing 
subsystem.  Variations of our example include:  1) the effect of 
different rates of input streams on packet loss; 2) the effect of  
individual queue parameters (e.g., queue length and bandwidth 
share); 3) the effect of link bandwidth; and 4) the behavior of TCP 
traffic in place of, or intermixed with UDP traffic.  All of these 
effects can be easily observed using the RLI’s monitors and 
charts. 

5. ROUTER  PLUGINS  
A user can divert traffic to software plugins loaded into the 

SPCs to perform custom packet processing such as: 
• Examine or modify packet headers and/or bodies 
• Model packet delays, drops and modifications 
• Produce additional packets 
• Change the normal packet forwarding action 

Figure 6 shows how a packet at an ingress port can flow from a 
link through the FPX Lookup module to an SPC plugin, back to 
the FPX and then finally out to the switch core.  Packets can also 
be directed to the SPC on their way out of an egress port. 

A user can select from a set of pre-existing, standard plugins.  
Examples include:  
• stats:  Collect statistics on packets 
• pdelay:  Delay packets 
• strSubst:  Modify packet contents 
• multicast:  Create multicast packets 

The plugins can be used “as is” or their source code can be used 
as a basis for extension or modification. 

In order to use an existing plugin, a user creates an instance of 

the plugin at a port, creates a filter to divert traffic to the plugin 
instance and then binds the plugin instance to the filter. Figure 7 
shows the panels used to create a plugin at the egress side of port 
2 to delay TCP ACK packets.  The GM filter in this example 
places all packets into queue 8 which is headed for the SPC where 
instance 0 of the pdelay plugin will delay packets it receives by 50 
msec before forwarding them. 

A user can send messages to plugins through the RLI.  For 
example, the delay plugin can be told to change its delay, it can be 
queried for the number of packets that it has forwarded, and it can 
be told to reset its counters.  Also, data from plugins can be easily 
displayed in real-time panels like any other data. 

Plugin Usage Exercise:  Students learn how to use the delay 
plugin and experiment with network parameters to obtain high 
throughput.  Students send a TCP flow through a bottleneck link 
while using a delay plugin to delay the acknowledgements 
returned to the sender.  They observe how this affects queueing, 
learn the relationship between the bandwith-delay product and the 
queue size needed to ensure high throughput.  They use the RLI to 
modify the delay and observe the effect on traffic and queues.  

6. A SYN FLOOD MITIGATION PROJECT 
This section describes an advanced project that illustrates how 

students can add a plugin to mitigate the effects of a SYN flood 
attack and demonstrate the effectiveness of their plugin using the 
RLI’s monitoring facilities.  In a SYN flood attack [4], a 
malicious sender attempts to block new TCP connections at a 
target by sending SYN packets to begin the process of creating 
connections that it never intends to complete. 

Figure 8 shows the essential elements of the experiment.  A 
browser repeatedly makes legitimate TCP connections to a target 
Web site to send HTTP image requests.  Concurrently, an attacker 
sends a flood of spoofed SYN packets that each begins but never 
completes the process of creating a TCP connection. Eventually, 

Figure 7.  Adding a Delay Plugin to Port 2. 
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Figure 6.  The Plugin Environment. 



the partial connections at the Web site exhaust the site’s partial 
connection table blocking new connections from legitimate users. 

A GM filter diverts TCP connection packets to a plugin at the 
egress port leading to the target web site. The plugin monitors 
partial TCP connections, records these connections in its shadow 
table, and clears those that don’t complete in time.  In order to 
monitor the connection and termination phases of TCP 
connections, two GM filters are installed which divert these 
packets through the plugin. If the three-way connect handshake 
succeeds, the plugin installs an EM filter to allow the web server’s 
response packets to pass through the port without plugin 
processing. Since the reply traffic accounts for the bulk of the 
bandwidth usage at the web site, this keeps the amount of traffic 
that must be handled by the SPC relatively modest. However, 
when the plugin recognizes that a partial connection (from the 
attacker) has timed out, it sends a ReSeT packet to the server to 
release the resources consumed by the incomplete connection and 
deletes the entry from its shadow table. This ReSeT packet carries 
the source IP address that was used by the SYN packet that 
initiated the connection, making the attack mitigation mechanism 
completely transparent to the target web site. 

Figure 9 shows several displays used to demonstrate the 
effectiveness of the plugin.  On the right is a browser window 
with three Java applet panels.  The applet in the top panel plays 
the role of a Web client sending HTTP image requests at a 
specified rate (every 3 seconds in the example) and displaying the 
reply images and response times.  When an attack is successful, 
the image sequence freezes instead of displaying a new image 
every 3 seconds.  The middle panel is used to control the attack 
daemon, and the bottom panel is used to enable/disable the plugin.  
The RLI displays on the left show monitored data.  In both cases, 
the plugin has been disabled during the middle of the time interval 
shown.  The bottom display shows the image traffic volume.  
During a successful attack when the plugin is disabled, image 
transfers stop shortly after the plugin has been disabled.  The top 
display shows the number of incomplete connections as viewed 
by the Web server and the plugin.  It shows that the Web server’s 
connection table tops out (lower curve) while the plugin continues 
to see additional attacker packets. 

7. CONCLUSIONS 
ONL is one of several experimental resources that have 

become available for networking educators and researchers.  
These include Emulab[5], PlanetLab [6], the Xbone [7], and 

Schooner [8].  While these various resources have certain 
overlapping capabilities, each offers unique features that make it 
better suited for certain types of experimental uses than others.  
Planetlab allows delivery of applications to a large geographically 
distributed user population.  Emulab supports emulation of much 
larger network topologies than ONL.  However, these resources 
either use commercial routers making them difficult to change or 
use commodity PCs as routers making it difficult to evaluate the 
performance and implementation complexity.   

The strengths of ONL center on its ease of configuration, its 
extensive real-time displays and its use of extensible, high 
performance routers whose internal operations is fully open.  The 
extensive real-time displays allow students to easily make a direct 
connection to classroom concepts through experimentation and 
observation, thus creating a more satisfying educational 
experience.  ONL’s combination of easily configurable packet 
processing hardware,  and a tightly coupled software plugin 
environment makes it possible to experiment with capabilities in a 
realistic environment.  These features make the ONL a compelling 
educational tool. 

We plan to make it possible for users to modify the 
configurable logic in the FPX’s FPGAs. While the essential 
technical capabilities needed to support this exist (we routinely 
load new configurable logic files in order to add features and 
correct errors), we need to develop mechanisms to ensure this can 
be done reliably, without risking damage to system components. 

We believe that ONL can be an important complement to the 
set of resources available to networking educators and 
researchers. We hope that you will look at its extensive tutorial 
pages and register for an account at our web site onl.arl.wustl.edu.  
The web site also contains a short video that gives a quick 
overview of the RLI in action. 
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