
The Open Network Laboratory*

John DeHart, Fred Kuhns, Jyoti Parwatikar,
Jonathan Turner, Charlie Wiseman and Ken Wong

The Applied Research Laboratory
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

{jdd,fredk,jp,jst,cgw1,kenw}@arl.wustl.edu

ABSTRACT
The Open Network Laboratory (ONL) is a remotely accessible
network testbed of high performance routers which has been
designed with an eye towards ease of use for users from the naïve
to the expert. The system is built around a set of high-performance
routers that are extendible and easily configurable through the
Remote Laboratory Interface (RLI), an intuitive graphical
interface. The RLI also makes it easy to configure packet filters
in the routers, assign flows or flow aggregates to separate queues
with configurable QoS and attach hardware monitoring points to
real-time charts. The RLI’s real-time charts and user data facility
make it easy to directly view the effects of traffic as it moves
through a router, allowing the user to gain better insight into
system behavior and create compelling demonstrations. Each port
of the router is equipped with an embedded processor that
supports software plugins which allow users to extend the
system’s functionality. This paper describes the ONL and how it
can be used in networking education. Our web site
onl.arl.wustl.edu includes a short video and a tutorial.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education, C.2 [Internetworking]: Routers

General Terms
Experimentation, Measurement

Keywords
Experimental Computer Science, Education, Real-Time Displays

1. INTRODUCTION
A traditional basic networking course covers the fundamental
concepts in networking and is sometimes accompanied by a few
laboratory exercises involving either some socket programming
and/or simulation experiments. Rarely, can a student experiment

with real, high performance routers and closely observe the effect
of configuration changes at a variety of network points in real-
time. The closed architectures of commercial routers makes them
largely inaccessible for this type of activity and the time and effort
required to make experimental modifications to these systems
makes this approach prohibitively difficult. The Open Network
Laboratory (ONL) dramatically reduces the “barrier-to-entry” for
this kind of activity by providing access to a remote testbed of
open, high performance routers and hosts that can be controlled
through an intuitive Remote Laboratory Interface (RLI).

While ONL has been developed primarily as a tool for
networking research, our early experience shows that it can also
be a compelling educational tool. The interface provided by the
RLI is direct and intuitive, allowing relatively naïve users to start
using ONL productively with a minimum of explicit instruction.
Getting a simple experiment up and running takes very little time,
and the measurement and real-time display tools make it possible
for students to see what is happening “under the covers”. By
observing how configuration changes affect traffic behavior,
queue levels and packet drops, students make a much more direct
connection between high level classroom concepts and their
practical implications, dramatically accelerating the speed at
which they gain understanding and insight into the subject matter.
We have begun using the ONL in several of our classes and have
found it to be extremely useful and popular with students.

Section 2 of the paper describes the architecture of ONL
showing the technical components of the testbed. Section 3
describes the basic features of the Remote Laboratory Interface
showing how an experiment can be remotely configured and
monitored. Section 4 discusses more advanced features such as
packet filters and queue management. Section 5 describes router
plugins that are software modules that can be inserted along a
router’s data path to provide custom processing. Section 6
describes a project that demonstrates many of ONL’s capabilities.
Then, Section 7 concludes with a discussion of other experimental
resources and future work.

2. ONL ARCHITECTURE
The Open Network Laboratory consists of four experimental

routers called Network Service Platforms (NSPs) plus 40 rack-
mounted PCs that serve as end systems and control processors
(Figure 1). The hardware components are grouped into four
clusters with each cluster consisting of a single NSP, a control
processor (CP) that manages an NSP, a gigabit Ethernet subnet

* This work was supported by NSF (ANI-023826).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'06, March 1–5, 2006, Houston, Texas, USA.
Copyright 2006 ACM 1-59593-259-3/06/0003...$5.00.

with three connected hosts, and two directly connected hosts. This
leaves four of each NSP’s ports uncommitted. These four ports
are connected to a Configuration Switch that serves as an
“electronic patch panel” to connect NSPs to each other or to
additional hosts. Users interact with the testbed using the RLI,
which is a standalone Java application. The RLI communicates
with the testbed through the main ONL server which relays
messages to the various testbed components. A second server
(onlBSD) host is provided to facilitate preparation of software
plugins for the NSPs’ embedded processors.

The core component is a modular, gigabit router (Figure 2).
The system uses a cell-switched core and each port includes an
embedded processor subsystem called the Smart Port Card (SPC)
[1] and a programmable logic board called the Field
Programmable Port Extender (FPX) [2]. An FPX includes a
large field programmable gate array with four high speed memory
interfaces providing access to 2 MB of SRAM and 128 MB of
DRAM. The system supports several different types of line cards,
including one for gigabit Ethernet (GigE). The core cell switch
supports 1024 virtual circuits per port, virtual circuit traffic
monitoring, multicast and two hardware priority levels. One port
of the system is used by an external control processor for system
management through in-band control cells.

Packets entering the system first pass to the FPX which is
configured to do IP routing, flow classification and packet
scheduling. Packets that require software processing are diverted
to the SPC on either the input or output side of an NSP. An NSP
uses a modular design that allows easy insertion of add-on cards
like the FPX and SPC. Such cards are equipped with connectors at
either end and are stacked on top of one another. This makes it
easy to upgrade individual pieces and to configure systems with a
variety of characteristics.

The SPC includes a dual port network interface chip (the ATM
Port Interconnect Controller or APIC), which allows any portion
of the traffic entering or leaving the system to be diverted to the
Pentium processor module on the card. The APIC transfers IP
packets directly to and from processor memory over a 32 bit PCI
bus. In situations where 10% of the link traffic requires software
processing, the SPC allows the execution of close to 50
instructions per byte, which is sufficient to implement moderately
complex applications that examine and modify packet data.

The FPX contains two field programmable gate arrays. The
Network Interface Device (NID) can be used to redirect any
portion of the arriving traffic to the Reprogrammable Application
Device (RAD), which is a Xilinx XCV2000E, with 80 KB of on-
chip SRAM and 38,400 basic logic blocks, each containing one

flip flop, a configurable four variable logic function generator and
miscellaneous support circuits. The RAD is equipped with 2
SRAMs and 2 SDRAMs, which can operate at up to 100 MHz,
giving it a raw memory bandwidth of up to 2.5 GBytes per
second. The available resources allow it to support all the core
packet processing functions required of an advanced router
supporting gigabit link speeds. The FPX supports dynamic
reconfiguration of the RAD. A complete new RAD configuration
can be downloaded in just a few seconds.

3. THE REMOTE LAB INTERFACE
The RLI is a standalone Java application that allows a remote

user to interactively configure an experiment and monitor a
variety of measurement points within the testbed infrastructure.
This section describes the basic features of the RLI including
resource acquisition, routing table configuration and traffic
monitoring. Later sections describe more advanced features such
as bandwidth allocation and router plugins. Example exercises
are described at the end of each section.

A network can be easily configured through the RLI’s main
menus and/or per port menus. Figure 3 shows the main RLI panel
with its main drop-down menus at the top. The user has added
components using the Topology menu. The links are shown as
dashed lines, and the hosts and NSPs are shown in light shade
indicating that actual testbed resources have not been allocated. A
cluster consists of an NSP, with its Control Processor (CP), two
directly connected hosts and a gigabit Ethernet subnet. Additional
hosts were added and linked to each NSP by selecting the Add
Host and Add Link menu items. The Generate Default Routes
selection generates routing tables at each port that will forward

ATM
Switch
Core

FPX
SPC

PP

PP

PP

.
.

.

CP

ex
te

rn
a
l

lin
ks

Lookup

.
.

. . . .

. . .

SPC plugin
env.

FPX

ATM
Switch
Core

FPX
SPC

PP

PP

PP

.
.

.

CP

ex
te

rn
a
l

lin
ks

Lookup

.
.

. . . .

. . .

SPC plugin
env.

FPX

Lookup

.
.

.
.

.
. . . .

. . .

.

SPC plugin
env.

FPX

Figure 2. NSP Hardware.

16

control subnet

CP 23

0
GE

1 2,3

NSP1

CP 23

0
GE

1 2,3

NSP2

CP 23

0
GE

1 2,3

NSP3

CP 23

0
GE

1 2,3

NSP4

4-7 4-74-7 4-7

configuration switch

onl server

onlBSD

netBSD server
for plugin prep

192.160.1.* 192.160.4.*192.160.3.*192.160.2.*

Internet

onl

usr

1616

control subnet

CP 23

0
GE

1 2,3

NSP1

CPCP 2233

0
GE

1 2,3

NSP1

CP 23

0
GE

1 2,3

NSP2

CPCP 2233

0
GE

1 2,3

NSP2

CP 23

0
GE

1 2,3

NSP3

CPCP 2233

0
GE

1 2,3

NSP3

CP 23

0
GE

1 2,3

NSP4

CPCP 2233

0
GE

1 2,3

NSP4

4-7 4-74-7 4-7

configuration switch

onl server

onlBSDonlBSD

netBSD server
for plugin prep

192.160.1.* 192.160.4.*192.160.3.*192.160.2.*

InternetInternet

onlonl

usrusr

Figure 1. Open Network Laboratory Configuration.

Figure 3. Topology Construction.

Figure 4. A Traffic Display.

packets along minimum hop paths. Although we accepted default
values for parameters such as link rates and queue sizes and
accepted default routing in this example, the user can modify
these settings as well as give special treatment to flows, and install
plugins for special packet processing. A configuration can be
saved to a file by selecting File ⇒ Save As, making it very easy
to return to an experiment later.

This topology configuration phase is defined with logical
resources and can be done without connecting to the ONL testbed.
But in order to run an experiment, the logical configuration must
be bound to actual resources. The user connects to the ONL
server with an ssh tunnel and selects File ⇒ Commit to allocate,
bind and initialize physical resources. A user can reserve
resources in advance through a web-based reservation system or
reserve the resources during the resource binding process. The
RLI initiates the setup and as resources are allocated and
initialized, dashed links become solid lines and components are
displayed in a darker color (see Figure 4). Users are free to
modify the configuration at any time through the RLI and commit
those changes.

The RLI also provides access to a wide variety of measurement
mechanisms that are built into the hardware. Most of these take
the form of counters which track either the number of packets
observed at a particular place or the amount of data observed. All
can be connected to real-time displays, that can be customized in a
variety of ways to best suit the user’s needs. For example, users
can monitor the total traffic sent or received on a link, the amount
sent between input and output ports, the number of packets
discarded due to various errors, the number of packets matching
any given route or packet filter and per flow queue lengths. Figure
4 shows a situation where the user is monitoring the traffic
generated by ping traffic from host n1p2 to host n2p3 as it leaves
port 6 of NSP 1 and is about to add another plot showing the
returning traffic coming into port 6 of NSP 1. Simple exercises
can be constructed to familiarize students with the concept of
packet forwarding using only the few features we have just
described.

Packet Forwarding Exercise: Students construct a network
with two or three routers with default routing at all ports. They
configure a real-time chart showing the traffic flows on all inter-
router links and use the ping utility to generate traffic between
pairs of hosts. Then, they add route table entries with more

specific address prefixes that route packets along more indirect
paths and observe the effects on the ping packets. This exercise
can be enhanced through the use of packet filters and more
sophisticated traffic generators (both described in the next
section).

4. FILTERS, QUEUES AND BANDWIDTH
The RLI also allows the user to easily access more advanced

features of the hardware such as packet classification, queueing,
special routing, and bandwidth sharing. This section describes an
experiment that illustrates the effect of bandwidth allocation at a
bottleneck link. It uses the two-NSP topology described in the
previous section (Figure 4) as a starting point but adds filters that
redirect flows to separate reserved queues. It also uses the iperf
utility [3] to send UDP traffic from the three hosts n1p2, n1p3 and
n1p4 to hosts n2p2, n2p3 and n2p4 through the bottleneck link
joining port 6 of NSP 1 to port 7 of NSP 2. The RLI displays
verify that the flows are receiving their prescribed bandwidth
allocations.

These three flows are redirected to separate reserved queues by
adding General Match filters in the FPX at the egress side of port
6 of NSP 1. The FPX has three parallel lookup tables at each port:
1) a Route Table that uses longest prefix matching, 2) a Flow
Table that uses Exact Match (EM) filters, and 3) a Filter Table
that uses General Match (GM) filters. Both EM and GM filters
match on a packet’s IP address fields, transport layer port fields
and protocol field. But GM filters allow wild-carding on fields,
and the highest priority entry is chosen when a packet matches
multiple GM filters,.

We have set the configuration parameters for the queues at port
6 of NSP 1 so that the egress link capacity is 300 Mbps, and the
internal switch capacity has been set to 600 Mbps giving a 2:1
switch speed advantage. The link bandwidth can be set to any rate
up to 1 Gb/s. In this example, the desired bandwidth ratios of
queues 300-302 were set to 4:2:1 by modifying entries in the
Egress Queue Table which control the bandwidth shares of a
Weighted Deficit Round Robin (WDRR) packet scheduler. The
egress queue sizes for each of these flows were also set in the
Egress Queue Table.

Figure 5 shows two RLI charts. The top chart shows the
bandwidths in incremental (or stacked) form. The bottom solid
curve (1.2 to 1.6) shows the bandwidth entering the bottleneck

Figure 5. Traffic Bandwidth and Queue Lengths.

link coming from the first flow, the middle solid curve shows the
bandwidth contributed by the first two flows, and the top solid
curve shows the total bandwidth contributed by all three flows.
The dashed curves show the bandwidth leaving the bottleneck
link. Note that the bandwidths leaving the bottleneck link are
smaller than those entering the bottleneck since the three sources
are sending at an aggregate rate of over 700 Mbps, well over the
300 Mbps capacity of the bottleneck. The dashed curves indicate
that the three UDP flows are receiving bandwidth in the
proportion 4:2:1 when all three flows are active (middle section)
and 2:1 (right end) when only qids 301 and 302 have packets.
The bottom plot shows the queue length of the reserved flow
queues and that the length of the three reserved flows is in the
ratio 2:3:4 as required by the threshold settings.

Queueing and Interaction Exercises: The above example
showed how multiple flows interact with one another and how
their share of link bandwidth can be affected by the queueing
subsystem. Variations of our example include: 1) the effect of
different rates of input streams on packet loss; 2) the effect of
individual queue parameters (e.g., queue length and bandwidth
share); 3) the effect of link bandwidth; and 4) the behavior of TCP
traffic in place of, or intermixed with UDP traffic. All of these
effects can be easily observed using the RLI’s monitors and
charts.

5. ROUTER PLUGINS
A user can divert traffic to software plugins loaded into the

SPCs to perform custom packet processing such as:
• Examine or modify packet headers and/or bodies
• Model packet delays, drops and modifications
• Produce additional packets
• Change the normal packet forwarding action

Figure 6 shows how a packet at an ingress port can flow from a
link through the FPX Lookup module to an SPC plugin, back to
the FPX and then finally out to the switch core. Packets can also
be directed to the SPC on their way out of an egress port.

A user can select from a set of pre-existing, standard plugins.
Examples include:
• stats: Collect statistics on packets
• pdelay: Delay packets
• strSubst: Modify packet contents
• multicast: Create multicast packets

The plugins can be used “as is” or their source code can be used
as a basis for extension or modification.

In order to use an existing plugin, a user creates an instance of

the plugin at a port, creates a filter to divert traffic to the plugin
instance and then binds the plugin instance to the filter. Figure 7
shows the panels used to create a plugin at the egress side of port
2 to delay TCP ACK packets. The GM filter in this example
places all packets into queue 8 which is headed for the SPC where
instance 0 of the pdelay plugin will delay packets it receives by 50
msec before forwarding them.

A user can send messages to plugins through the RLI. For
example, the delay plugin can be told to change its delay, it can be
queried for the number of packets that it has forwarded, and it can
be told to reset its counters. Also, data from plugins can be easily
displayed in real-time panels like any other data.

Plugin Usage Exercise: Students learn how to use the delay
plugin and experiment with network parameters to obtain high
throughput. Students send a TCP flow through a bottleneck link
while using a delay plugin to delay the acknowledgements
returned to the sender. They observe how this affects queueing,
learn the relationship between the bandwith-delay product and the
queue size needed to ensure high throughput. They use the RLI to
modify the delay and observe the effect on traffic and queues.

6. A SYN FLOOD MITIGATION PROJECT
This section describes an advanced project that illustrates how

students can add a plugin to mitigate the effects of a SYN flood
attack and demonstrate the effectiveness of their plugin using the
RLI’s monitoring facilities. In a SYN flood attack [4], a
malicious sender attempts to block new TCP connections at a
target by sending SYN packets to begin the process of creating
connections that it never intends to complete.

Figure 8 shows the essential elements of the experiment. A
browser repeatedly makes legitimate TCP connections to a target
Web site to send HTTP image requests. Concurrently, an attacker
sends a flood of spoofed SYN packets that each begins but never
completes the process of creating a TCP connection. Eventually,

Figure 7. Adding a Delay Plugin to Port 2.

Attacker

User

NSP

Target
Web Site

Partial
Conn.
Table

Shadow
Table

AttackerAttacker

UserUser

NSP

Target
Web Site

Partial
Conn.
Table

Shadow
Table

Figure 8. Mitigating a SYN Flood Attack.
Lookup

.
.

. . . .

. . .

SPC plugin
env.

FPX

to/from
links

to/from
switch core

Lookup

.
.

.
.

.
. . . .

. . .

.

SPC plugin
env.

FPX

to/from
links

to/from
switch core

Figure 6. The Plugin Environment.

the partial connections at the Web site exhaust the site’s partial
connection table blocking new connections from legitimate users.

A GM filter diverts TCP connection packets to a plugin at the
egress port leading to the target web site. The plugin monitors
partial TCP connections, records these connections in its shadow
table, and clears those that don’t complete in time. In order to
monitor the connection and termination phases of TCP
connections, two GM filters are installed which divert these
packets through the plugin. If the three-way connect handshake
succeeds, the plugin installs an EM filter to allow the web server’s
response packets to pass through the port without plugin
processing. Since the reply traffic accounts for the bulk of the
bandwidth usage at the web site, this keeps the amount of traffic
that must be handled by the SPC relatively modest. However,
when the plugin recognizes that a partial connection (from the
attacker) has timed out, it sends a ReSeT packet to the server to
release the resources consumed by the incomplete connection and
deletes the entry from its shadow table. This ReSeT packet carries
the source IP address that was used by the SYN packet that
initiated the connection, making the attack mitigation mechanism
completely transparent to the target web site.

Figure 9 shows several displays used to demonstrate the
effectiveness of the plugin. On the right is a browser window
with three Java applet panels. The applet in the top panel plays
the role of a Web client sending HTTP image requests at a
specified rate (every 3 seconds in the example) and displaying the
reply images and response times. When an attack is successful,
the image sequence freezes instead of displaying a new image
every 3 seconds. The middle panel is used to control the attack
daemon, and the bottom panel is used to enable/disable the plugin.
The RLI displays on the left show monitored data. In both cases,
the plugin has been disabled during the middle of the time interval
shown. The bottom display shows the image traffic volume.
During a successful attack when the plugin is disabled, image
transfers stop shortly after the plugin has been disabled. The top
display shows the number of incomplete connections as viewed
by the Web server and the plugin. It shows that the Web server’s
connection table tops out (lower curve) while the plugin continues
to see additional attacker packets.

7. CONCLUSIONS
ONL is one of several experimental resources that have

become available for networking educators and researchers.
These include Emulab[5], PlanetLab [6], the Xbone [7], and

Schooner [8]. While these various resources have certain
overlapping capabilities, each offers unique features that make it
better suited for certain types of experimental uses than others.
Planetlab allows delivery of applications to a large geographically
distributed user population. Emulab supports emulation of much
larger network topologies than ONL. However, these resources
either use commercial routers making them difficult to change or
use commodity PCs as routers making it difficult to evaluate the
performance and implementation complexity.

The strengths of ONL center on its ease of configuration, its
extensive real-time displays and its use of extensible, high
performance routers whose internal operations is fully open. The
extensive real-time displays allow students to easily make a direct
connection to classroom concepts through experimentation and
observation, thus creating a more satisfying educational
experience. ONL’s combination of easily configurable packet
processing hardware, and a tightly coupled software plugin
environment makes it possible to experiment with capabilities in a
realistic environment. These features make the ONL a compelling
educational tool.

We plan to make it possible for users to modify the
configurable logic in the FPX’s FPGAs. While the essential
technical capabilities needed to support this exist (we routinely
load new configurable logic files in order to add features and
correct errors), we need to develop mechanisms to ensure this can
be done reliably, without risking damage to system components.

We believe that ONL can be an important complement to the
set of resources available to networking educators and
researchers. We hope that you will look at its extensive tutorial
pages and register for an account at our web site onl.arl.wustl.edu.
The web site also contains a short video that gives a quick
overview of the RLI in action.

8. REFERENCES
[1] John D. DeHart, William D. Richard, Edward W. Spitznagel,

and Dave Taylor, “The Smart Port Card: An Embedded
Unix Processor Architecture for Network Management and
Active Networking,” Washington University, Department of
Computer Science Technical Memorandum WUCS-TM-01-
15, July 2001.

[2] John W. Lockwood, Naji Naufel, Jon S. Turner, and David
Taylor, “Reprogrammable Network Packet Processing on the
Field Programmable Port Extender (FPX),” Proc. ACM Intl.
Symp. On Field Programmable Gate Arrays (FPGA’2001),
Monterey, CA, Feb. 2001, pp. 87-93.

[3] http://dast.nlanr.net/Projects/iperf/.
[4] CERT, “TCP SYN Flooding and IP Spoofing Attacks,”

Advisory CA-1996-21, 1996.
[5] Brian White, Jay Lepreau, Leigh Stoller, et. al., “An

Integrated Experimental Environment for Distributed
Systems and Networks,” Proc. 5th Symp. on Op. Sys. Design
& Implementation, Dec. 2002, pp. 255-270.

[6] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier,
Larry Peterson, et.al., “Planetlab: An Overlay Testbed for
Broad-Coverage Services,” ACM Computer
Communications Review, Vol. 33, No. 3, July 2003.

[7] Joe Touch, “Dynamic Internet Overlay Deployment and
Management Using the X-Bone,” Computer Networks, July
2001.

[8] http://www.schooner.wall.wisc.edu/.

Plugin
Disabled
Plugin

Disabled
Plugin

Disabled

Figure 9. SYN Flood Mitigation Displays.

