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Abstract

While the problem of general packet classification has received a great deal of attention from researchers
over the last ten years, there is still no really satisfactory solution. Ternary Content Addressable Memory
(TCAM), although widely used in practice, is both expensiveand consumes a lot of power. Algorithmic
solutions, which rely on commodity memory chips, are relatively inexpensive and power-efficient, but have
not been able to match the generality and performance of TCAMs.

In this paper we propose a new approach to packet classification, which combines architectural and
algorithmic techniques. Our starting point is the well-known crossproducting algorithm, which is fast but
has significant memory overhead due to the extra rules neededto represent the crossproducts. We show
how to modify the crossproduct method in a way that drastically reduces the memory required, without
compromising on performance. We avoid unnecessary accesses to off-chip memory by filtering off-chip
accesses using on-chip Bloom filters. For packets that matchp rules in a rule set, our algorithm requires just
4 + p + ǫ independent memory accesses on average, to return all matching rules, whereǫ ≪ 1 is a small
constant that depends on the false positive rate of the Bloomfilters. Each memory access is just 256 bits,
making it practical to classify small packets at OC-192 linkrates using two commodity SRAM chips. For
rule set sizes ranging from a few hundred to several thousandfilters, the average rule set expansion factor
attributable to the algorithm is just 1.2. The memory consumption per rule is 36 bytes in the average case.
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1 Introduction

The general packet classification problem has received a great deal of attention over the last decade. The
ability to classify packets into flows based on their packet headers is important for QoS, security, virtual
private networks (VPN) and packet filtering applications. Conceptually, a packet classification system must
compare each packet header received on a link against a largeset of rules, and return the identity of the
highest priority rule in the set that matches the packet header (or in some cases, all matching rules). Each rule
can match a large number of packet headers, since the rule specification supports address prefixes, wild cards
and port number ranges. Much of the research to date has concentrated on algorithmic techniques which use
hardware or software lookup engines, which access data structures stored in commodity memory. However
none of the algorithms developed to date have been able to displace TCAMs, in practical applications.

TCAMs offer consistently high performance, which is largely independent of the characteristics of the
rule set, but they are relatively expensive and use large amounts of power. A TCAM requires a deterministic
time for each lookup, and recent devices can classify more than 100 million packets per second. Although
TCAMs are a favorite choice of network equipment vendors, alternative solutions are still being sought,
primarily due to the high cost of the TCAM devices and their high power consumption. The cost per bit of a
high performance TCAM is about 15 times larger than a comparable SRAM [2], [1] and they consume more
than 50 times as much power, per access [16],[13]. This gap between SRAM and TCAM cost and power
consumption makes it worthwhile to continue to explore better algorithmic solutions.

In this paper we introduce an algorithmic solution which is both fast and highly memory efficient. It is
based on the well-known “Crossproducting Algorithm” [11].The crossproducting algorithm decomposes
the packet classification problem into a set of single field lookup problems and combines the results to form a
key to retrieve the best matched rule from a direct-lookup table. From the throughput perspective, the single
field lookups are the only real performance bottleneck. However, the major problem with this algorithm is
its prohibitively high memory consumption due to the large number of additional “crossproduct rules” that
must be added to the rule set. Even small rule sets can requireimpractically large amounts of memory.

Leveraging recent advances in algorithms and architectures, we introduce some new ideas to address
these problems. In particular, our Multi-Subset Crossproducting Algorithm significantly reduces this mem-
ory overhead while preserving the overall speed of the algorithm. First of all, we perform the single field
lookup by longest prefix matching (LPM) on each field, using the fast and memory efficient Bloom filter
based algorithm introduced in the Chapter [4]. Using this algorithm, on an average, only one off-chip mem-
ory access is needed for each single field lookup. Therefore,with very high probability, the longest prefix
matching can be performed on the source and destination addresses and the source and destination ports in
just four memory accesses.

To reduce memory consumption, we divide the rules into multiple subsets and then construct a
crossproduct table for each subset. This reduces the overall crossproduct overhead drastically. In addi-
tion, instead of a direct lookup table, a hash table is used tofurther reduce the size of the crossproduct
lookup table. Since the rules are divided into multiple subsets, we need to perform a lookup in each subset.
However, we can use Bloom filters to avoid lookups in subsets that contain no matching rules, making it
possible to sustain high throughput. In particular, we showthat the highest priority matching rule can be
found using onlyp more memory accesses, wherep is the number of rules a packet can match. In summary,
we demonstrate a method, based on Bloom filters and hash tables, that can classify a packet in4 + p + ǫ
memory accesses whereǫ is a small constant≪ 1 determined by the false positive probability of the Bloom
filters. With two memory chips, one for the LPM tables and the other for rule tables, the LPM phase of 4
memory accesses and rule lookup phase ofp memory accesses can be pipelined. With pipelining, the mem-
ory accesses per packet can be reduced tomax{4, p}. We also show how a special case of our algorithm
is in fact a highly optimized variant of the well-known TupleSpace Search algorithm proposed by Srini-
vasan et. al. [10] We also discuss the underlying architectural issues in realizing this method in hardware.
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We leverage some of the existing work on Bloom filters and hardware implementation to design our packet
classification system. Our results show that our architecture can handle large rule sets, containing hundreds
of thousands of rules, efficiently with an average memory consumption of 30 to 36 bytes per rule.

The rest of the chapter is organized as follows. In the next section we discuss the related work. We
describe the naive crossproducting algorithm in more details in Section 3. In Section 4, we discuss our
Multi-Subset Crossproducting Algorithm. In Section 5 we describe our heuristics for intelligent partitioning
of the rules into subsets to reduce the overall crossproducts. Finally, in Section 6 we discuss the architectural
issues in implementing our algorithm in hardware. Section 7concludes the chapter.

2 Related Work

There is a vast body of literature on packet classification. An excellent survey and taxonomy of the existing
packet classification algorithms and architectures can be found in [13]. Here, we discuss only the algorithms
that are closely related to our work.

Algorithms that can provide deterministic lookup throughput is akin to the basic crossproducting algo-
rithm [11]. The basic idea of the crossproducting algorithmis to perform a lookup on each field first and
then combine the results to form a key to index a crossproducttable. The best-matched rule can be retrieved
from the crossproduct table in only one memory access. The single field lookup can be performed by direct
table lookup as in the RFC algorithm [6], or by using any rangesearching, or LPM algorithm. The BV [7]
and ABV [3] algorithms use bit vector intersections to replace the crossproduct table lookup. However, the
width of a bit vector equals to the number of rules and each unique value on each field needs to store such a
bit vector. Hence, the storage requirement is significant, which limits its scalability.

Using a similar reduction tree, the DCFL [12] algorithm useshash tables rather than direct lookup tables
to implement the crossproduct tables at each tree level. However, depending on the lookup results from the
previous level, each hash table needs to be queried multipletimes and multiple results are retrieved. For
example, at the first level, if a packet matchesm nested source IP address prefixes andn nested destination
IP address prefixes, we needm × n hash queries to the hash table with the keys that combine these two
fields and the lookups typically result in multiple valid outputs that require further lookups. For a multi-
dimensional packet classification, this incurs a large performance penalty.

TCAMs are widely used for packet classification. The latest TCAM devices also include the banking
mechanism to reduce the power consumption by selectively turning off the unused banks. Traditionally,
TCAM devices needed to expand the range values into prefixes for storing a rule with range specifications.
The recently introduced algorithm, DIRPE [8], uses a clevertechnique to encode ranges differently which
results in less overall rule expansion compared to the traditional method. The authors also recognized that
in modern security applications, it is not sufficient to stopthe matching process after the first match is found
but all the matching rules for a packet must be reported. Theydevised a multi-match scheme with TCAMs
which involves multiple TCAM accesses.

Yu et. al. described a different algorithm for multi-match packet classification based on geometric
intersection of rules [15]. A packet can match multiple rules because the rules overlap. However, if the rules
are broken into smaller sub-rules such that all the rules aremutually exclusive then the packet can match
only one rule at a time. This overlap-free rule set is obtained through geometric intersection. Unfortunately,
the rule set expansion due to the newly introduced rules by the intersection can be very large. In [16], they
describe a modified algorithm called SSA which reduces the overall expansion. They observe that if the
rules are partitioned into multiple subsets in order to reduce the overlap then the resulting expansion will
be small. At the same time one would need to probe each subset independently to search a matching rule.
In a way, our algorithm is similar to SSA in that we also try to reduce the overlap between the rules by
partitioning them into multiple subsets and thus reduce theoverall expansion. However, while SSA only
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cares about an overlap in all the dimensions, our algorithm considers the overlap in any dimension for the
purpose of partitioning. Hence the partitioning techniqueare different. Moreover, SSA is a TCAM based
algorithm whereas ours is memory based. Finally, SSA requires a probe of all the subsets formed, one by
one, requiring as many TCAM accesses as there are subsets. Our algorithm needs onlyp memory accesses,
just as many as the number of matching rules per packet.

3 Naive Crossproducting Algorithm

The naive crossproducting algorithm works as follows. Let afive-tuple rule be specified asr =
[v1, v2, v3, v4, v5] where eachvi is a prefix of fieldi. Let Vi = ∪vi i.e. Vi is a set of all the distinct prefixes
of the fieldi present in the rule set. The crossproducting algorithm creates all the possible rules of the form
r′ = [v′1, v

′

2, v
′

3, v
′

4, v
′

5] wherev′i ∈ Vi. In other words, the algorithm simply produces the crossproduct
setV1 × V2 × V3 × V4 × V5. Given a five-tuple of the packet header, a matching rule can be searched as
follows. First we perform an independent search on each fieldand find the most specific prefix i.e. the
longest matching prefix . After having obtained these longest matching prefixes for each fieldui, we create
a unique keyu = [u1, u2, u3, u4, u5] and use it to directly index the crossproduct rule table. Each rule in the
crossproduct table is either the original rule or an artificial rule generated in the process of crossproducting.
Moreover, each extra rule either corresponds to an originalrule or does not correspond to anything. Hence,
upon a match, we either get the ID of an original rule or we don’t get any ID implying there was no match.
Thus, when there is a match, the correct matching rule can always be found. This can be illustrated with
the example shown in Figure 1. Here, we show only a two dimensional rule set where each field is four bits
wide for the purpose of illustration. The original rule set is shown in Figure 1(A). Figure 1(C) shows the
crossproduct table for this rule set. Figure 1(B) shows the representation of the rules using a trie.

In this rule set, the first field contains 4 unique prefixes{1*, 00*, 01*, 101*} which can be labeled as
{1, 2, 3, 4} respectively. Likewise, the second field contains 4 unique prefixes{*, 00*, 11*, 100*}, which
can also labeled as{1, 2, 3, 4} respectively. A straightforward crossproduct table will contain4 × 4 = 16
entries. Among the these 16 entries are the six original rules (white colored rows) and the remaining are
generated due to the crossproduct. There are crossproduct rules that correspond to an original rule, i.e. a
match of these crossproduct rule implies a match for one or more of the original rules. We call these rules
“pseudo-rules” (blue colored rows). Take for instance the rulep7 = [101*, 00*]. If there is a match for this
rule then it implies a match for original rulesr1 andr2 sincep7 is more specific to bothr1 andr2. There
are also some entries which do not map to any original rule, e.g. [01*, 1*], which we call “empty rules”
(green colored rows). To illustrate the rule matching process, assume that we get a packet with header value
[1011, 0011]. We perform the longest prefix matching on each of these fields and find that these prefixes
are 101 with label 4 and 00 with label2. The entry at the location4× 2 = 8 in the table can be look up for
a match. Since there is a matching rulep7, we can declare a match for the original matching rulesr1 andr2.

This algorithm has two problems: 1) A large number of empty rules 2) A very large number of pseudo-
rules. The first problem can be mitigated by using a hash tableinstead of direct lookup table. The crossprod-
uct table maintains all the possible entries generated fromthe crossproduct so that it can be directly indexed.
Since there are several empty rules, the sparsity can be utilized to compress the table further by using a hash
table. This is a trivial modification to the crossproduct table. Henceforth we assume that the crossproduct
table contains only the rules that correspond to at least oneof the original rules, i.e. we have only pseudo-
rules and the original rules but no empty rules. A trie based representation of the pseudo-rules along with the
original rules is shown in Figure 1(D). We will use this trie based representation to illustrate our algorithm
further. We build a trie for each field. We mark the nodes corresponding to the prefixes involved in the rules.
A connection between the marked nodes of each field represents a rule.

With this representation, it is easy to see that after the empty rules are removed from the crossproduct
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table, the remaining pseudo-rules are the rules such that ifwe keep following themarkedancestors of the
nodes of each field then there is at least one combination of marked ancestors that represents one of the
original rules. In fact, now we can create the crossproduct rule set with an alternative and more efficient
procedure described below. First, we introduce the following notations.

• Let R denote the set of original rules andC the set of rules after crossproduct.

• Let u ≺ v denote thatu is a prefix ofv. (Note thatv ≺ v always holds). Since each prefix corresponds
to a marked node in the trie, we will use the terms prefix and marked node interchangeably. Hence,
u ≺ v also denotes that the nodeu is the marked ancestor of marked nodev.

• Let r denote a rule. Letr.vi denote the prefix of fieldi in the rule. Letr.Id denote the set of rule IDs
associated with this rule.

• Let Ti denote the trie built from the prefixes of fieldi.

The pseudo-code for the crossproduct algorithm is described below:

BuildCrossproductTable(S)
1. for each r ∈ R
2. for each field i
3. InsertInTrie(r.vi , Ti)

4. for each r ∈ R
5. for each field i
6. Vi ← Vi ∪ r.vi ∪GetAllMarkedDescendants(r.vi, Ti)
7. for each nodev1 ∈ V1

8. for each nodev2 ∈ V2

9. for each nodev3 ∈ V3

10. for each nodevk ∈ Vk

11. c.v1 ← v1, c.v2 ← v2,. . .c.vk ← vk

12. if c ∈ C
13. c.Id← c.Id ∪ r.Id
14. else
15. c.Id← r.Id
16. C ← C ∪ c

Thus, to build a crossproduct table, we first build a trie for each field with the prefixes of that field in
all the rules (line 1-3). Then we pick rules one by one and for each we locate the node corresponding to
each field prefix in the corresponding trie and get the set of all the corresponding descendants (line 5-6)
including the node under consideration. A set of such descendent’s for fieldi, including the given node
itself, is denoted byVi. Then we take the crossproduct of these sets and insert the resulting rules into the
crossproduct set. Note that this crossproduct set will alsoinclude the original rule since we are also including
the nodes of the original rule in the crossproduct. Each of the crossproduct rules points to the original rule
under consideration for which the crossproduct is being generated. While doing so, we see if the rule is
already inserted into the table while considering any otheroriginal rule. If it is then we just need to append
the ID of the original rule under consideration to the set of rule IDs associated with this pseudo-rule (line 12-
13). Thus, a match for this pseudo-rule will mean a match for all the rule IDs of the original rules associated
with it. If the rule is not present in the table then it is addedand the associated rule ID is set to the original
rule ID (line 14-16). The resulting rule setC consists of both the original rules and the crossproduct rules.
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ClassifyPacket(P )
1. for each field i
2. r.vi ← LPM(P.fi)
3. {match, {Id}} ← HashTableLookup(r)

The packet classification process is simple:
As the algorithm describes, we first execute LPM on each field valuefi of packetP and assign the

longest matching prefix to a ruler. Then we look up this rule in the hash table. The result of thislookup
indicates if the rule matched or not and also outputs a set of matching rule IDs associated with a matching
rule.

It is evident that the crossproduct algorithm is efficient interms of memory accesses: the memory
accesses are required for only LPM on each field and the final hash table lookup to search the rule in the
crossproduct table. For 5-tuple classification, we don’t need to perform the LPM for the port field; it can be a
direct lookup in a small on-chip table. Moreover, if we use the Bloom filter based LPM technique described
in the previous chapter, we would need approximately one memory access per LPM. Therefore, the entire
classification process takes five memory accesses with very high probability to classify a packet.
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Figure 1:Illustration of basic ideas. (A) Rule set (B) Rule representation using trie (C) Crossproduct table (D)
Representation of original rules and pseudo-rules using trie

However, the overhead of pseudo-rules can be very large. If each field has 100 unique values in the
rule set (ignoring the protocol field) then the expanded ruleset can be potentially as large as1004 making it
impractical to scale for larger rule sets.
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In order to get a sense of the amount of expansion the naive crossproducting algorithm can cause, we
experimented with several real life rule sets as well as synthetic rule sets which preserve the structure of
the real rule sets. We used the synthetic rule set generator ClassBench [14]. The real life rule sets obtained
from access control lists (ACL), firewalls (FW) and IP chains(IPC) were used as seeds to generate larger
rule sets with approximately ten thousand rules (all the rule sets with name ending in ‘s’ in Table 1). Note
that our algorithm needs the ranges to be expanded into prefixes. Due to this expansion, the size of the rule
set increases. The reported number of rules in each set is thenumber after the range to prefix expansion.
The number of rules in each set and the expansion factor,δ after the naive crossproduct is shown in Table 1.
As the table shows, the expansion factor can be very large. The smallest expansion was observed to be
200 times the original rule set size and the largest was5.7 × 106 times! Clearly, the naive crossproducting
algorithm is impractical for large rule sets.

So how can we reduce the overhead of the pseudo-rules and alsopreserve the fast speed of the algorithm?
We present our Multi-subset Crossproducting Algorithm that achieves this objective.

4 Multi-subset Crossproducting Algorithm

In the naive scheme we require just one hash table access to get the list of matching rules. However, if we
allow ourselves to use multiple hash table accesses then we can split the rule set into multiple smaller subsets
and take the crossproduct within each of them. With this arrangement, the total number of pseudo-rules can
be reduced significantly compared to the naive scheme. This is illustrated in Figure 2. We divide the rule set
into three subsets. Within each subset, we take a crossproduct, retaining only the rules that correspond to
one of the original rules within that subset. This results ininserting pseudo-rulesp7 in subset 1 (G1) andp2

in subset 2 (G2). All the other pseudo-rules vanish and the overhead is significantly reduced. Why does the
number of pseudo-rules reduce drastically? This is becausethe crossproduct is inherently multiplicative in
nature. When the number of overlapping prefixes of a fieldi get reduced by a factor ofxi due to partitioning,
the resulting reduction in the crossproduct rules is of the orderΠxi and hence large.

After having reduced the crossproduct memory overhead, an independent hash table can be maintained
for each rule subset and an independent rule lookup can be performed in each. The splitting introduces two
extra memory access overheads: 1) The entire LPM process on all the fields needs to be repeated for each
subset 2) a separate hash table access per subset is needed tolookup the final rule. We now describe how to
avoid the first overhead and reduce the second overhead.

With reference to our example in Figure 2, due to the partitioning of rules into subsetsG1, G2 andG3,
the sets of valid prefixes of the first field are{m1, m4} for G1, {m1, m3} for G2 and{m2} for G3. Hence,
the longest prefix for one subset might not be the longest prefix in other subset requiring a separate LPM for
each subset.

However, this can be easily avoided by modifying the LPM datastructure. For each field, we maintain
only one global data structure which contains the unique prefixes of that field from all the subsets. When
we perform the LPM on a field, the matching prefix is the longestone across all the subsets. Therefore, the
longest prefix for individual subsets is either the prefix that matches or its sub-prefix. With each prefix in
the LPM table, we can maintain a list of sub-prefixes, one for each subset, which is the longest prefix for
that subset.

Conceptually, the LPM table for fieldi consists of entries where each entryti consists of a prefix
ti.v which is the lookup key portion of that entry and the associated information consists ofg entries,
ti.u[1] . . . ti.u[g] whereg is the number of subsets formed. Eachti.u[j] is eitherNULL or has a value
such thatti.u[j] is the longest matching prefix of fieldi in subsetj which obeysti.u[j] ≺ ti.v. If
ti.u[j] == NULL then there isn’t any prefix ofti.v which is the longest prefix in that subset.

After a global LPM on the field, we have all the information we need about the matching prefixes in
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Figure 2:Dividing rules in separate subsets to reduce overlap. The corresponding LPM tables.

individual subsets. Secondly, sinceti.u[j] is a prefix ofti.v, we do not need to maintain the complete prefix
ti.u[j] but just the length of the prefixti.u[j]. The prefixti.u[j] can always be obtained by considering the
correct number of bits ofti.v.

The LPM table for the example shown in Figure 2(A) is shown in Figure 2(B). In this example, since we
have three subsets, with each prefix we have three entries each corresponding to a subset. For instance, the
table for field 1 tells us that if the longest matching prefix onthis field in the packet is 101 then there is a
sub prefix of101 of length 3 (which is101=m4 itself) that is the longest prefix inG1, there is a sub prefix
of length 1 (which is1 =m1) that is the longest prefix inG2 and there is no sub prefix (indicated by —) of
101 that is the longest prefix inG3.

Likewise, the table for field 2 says that if the longest matching prefix for this field in the packet header
is 100 then there is a sub prefix of100 of length 3 (which is100=n4) that is the longest prefix inG1, there
is a sub prefix of length 3 (hence again100=n4) that is the longest prefix inG2 and finally there is a sub
prefix of length 0 (hence∗ = n1) that is the longest prefix inG3. Thus, after finding the longest prefix of
a field, we can read the list of longest prefixes for all the subsets and use it to probe the hash tables. For
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example if101 is the longest matching prefix for field 1 and100 for the field 2 then we will probe theG1

rule hash table with the key〈101, 100〉, theG2 rule hash table with the key〈1, 100〉 and we don’t need
to probe theG3 hash table.

The classification algorithm is described below.

ClassifyPacket(P )
1. for each field i
2. ti ← LPM(P.fi)
3. for each subsetj
4. for each field i
5. if (ti.u[j] 6= NULL) r.vi = ti.u[j]
6. elsebreak
7. {match, {Id}} ← HashTableLookupj(r)

Thus, even after splitting the rule set into multiple subsets, only one LPM is required for each field
(line 1-2). Hence we maintain a similar performance as the naive crossproduct algorithm as far as LPM is
concerned. After the LPM phase, individual rule subset tables are probed one by one with the keys formed
from the longest matching prefixes within that subset (line 3-7). However a probe is not required for a subset
if there is no sub-prefix corresponding to at least one field within that subset. In this case, we simply move to
the next subset (line 5-6). Hence, the number of rule subset tables probed can be less than the actual number
of subsets, depending on the actual prefix values in the rule set. However, for the purpose of analysis, we
will stick to a conservative assumption that all the fields have some sub-prefix available for each subset and
hence all theg subsets need to be probed.

We will now explain how we can avoid probing all these subsetsby using Bloom filters. If a packet can
match at the mostp rules and if all these rules reside in distinct hash tables then onlyp of theseg hash table
probes will be successful and return a matching rule. Other memory accesses are unnecessary, which can be
filtered out using on-chip Bloom filters. We maintain one Bloom filter in the on-chip memory corresponding
to each off-chip rule subset hash table. We first query the Bloom filters with the keys to be looked up in the
subsets. If the filter shows a match, we look up the key in the off-chip hash table. The flow of our algorithm
is illustrated in the Figure 3.

From equation [4], the average number of hash table accessesti for the LPM on fieldi, with lengthWi

is ti = 1 +
∑Wi−1

j=1 fj, wherefj is the false positive probability of Bloom filterj. If we tune the Bloom
filters to exhibit the same false positive probability,f , by allocating the appropriate amount of memory and
the number of hash functions then the average hash table accesses on fieldi can be expressed as:

ti = 1 + (Wi − 1)f (1)

For IPv4, we need to perform LPM on the source and destinationIP address (32 bits each) and the source
and destination ports (16 bits each). The protocol field can be looked up in a 256 entry direct lookup array
kept in the on-chip registers. We don’t need memory accessesfor protocol field lookup. We can use a set of
32 Bloom filters to store the source and destination IP address prefixes of different lengths. While storing
a prefix, we tag it with its type to create a unique key (for instance, source IP type = 1, destination IP type
= 2 etc.). While querying a Bloom filter with a prefix, we createthe key by combining the prefix with its
type. Similarly the same set of Bloom filters can be used to store the source and destination port prefixes as
well. The Bloom filters 1 to 16 can be used to store the source port prefixes and 17 to 32 can be used for
destination port prefixes. Hence the total number of hash table accesses required for LPM on all of these
four fields can be expressed as
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Figure 3: Illustration of the flow of algorithm. First, LPM is performe d on each field. The result is used to
form a set ofg tuples, each of which indicates how many prefix bits to use forconstructing keys corresponding
to that subset. The keys are looked up in Bloom filters first. Only the keys matched in Bloom filters are used to
query the corresponding rule subset hash table kept in the off-chip memory.

Tlpm = (1 + 31f) + (1 + 31f) + (1 + 15f) + (1 + 15f)

= 4 + 92f (2)

We needg more Bloom filters for storing the rules of each subset. During the rule lookup phase, when
we query the Bloom filters of all theg subsets, we will have up top true matches and the remainingg − p
Bloom filters can show a match, each with false positive probability of f . Hence the hash probes required
in the rule matching are

Tg = p + (g − p)f (3)

The total number of hash table probes required in the entire process of packet classification is

T = Tg + Tlpm = 4 + p + (92 + g − p)f = 4 + p + ǫ (4)

whereǫ = (92+g−p)f . By keeping the value off small (e.g. 0.0005), theǫ can be made negligibly small,
giving us the total accesses equal to≈ 4+ p. It should be noted that so far we have dealt with the number of
hash table accesses and not the memory accesses. A carefullyconstructed hash table requires close to one
memory access for a single hash table lookup.
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Secondly, our algorithm is a “multi-match” algorithm as opposed to the priority rule match. For our
algorithm, priorities associated with all the matching rules need to be explicitly compared to pick the highest
priority match.

As the equation 4 shows, the efficiency of the algorithm depends on how smallg andf are. In the next
section, we explore the trade-off involved in minimizing the values of these two system parameters.

5 Intelligent Grouping

Note that the number of subsetsg and the false positive probabilityf of the Bloom filters are related. If
we try to create fewer subsets with a given rule set then it is possible that within each subset there is still a
significant number of crossproducts. Hence more rules need to be inserted in the set, which will consume
more memory in the Bloom filter in order to maintain the same false positive probability. Hence, decreasing
g can increasef if our memory budget is fixed. On the other hand, we do not want avery large number of
subsets because it will need a large number of Bloom filters requiring more hardware resources. Hence we
would like to limit g to a moderately small value. The key to reducing overhead of pseudo-rules is to divide
the rule set into subsets intelligently to minimize the crossproducts. The following questions arise. How
can we reduce the number of subsets as well as the pseudo-rules? These appear to be conflicting goals. The
pseudo-rules are required only when there are overlapping prefixes of different rules. So, is there an overlap-
free decomposition into subsets such that we don’t need to insert any pseudo-rules at all? Alternatively, we
would also like to know: given a fixed number of subsets, how can we create them with minimum number
of pseudo-rules? We address these questions in this section.

5.1 A Problem Formulation

The problem of constructing subsets of overlap-free rules from a given rule set can be modeled as graph
coloring problem. We represent the rule set with a graphG = (V,E) in which each vertex inV represents
a rule. We add an edge between two vertices if the two rules overlap in at least one dimension, i.e. the
two rules create extra crossproduct rules if they are kept inthe same subset. Now, we want to color all the
vertices with minimum number of colors such that no two vertices connected by an edge have the same
color. A color is equivalent to a subset. Graph coloring is known to be an NP-complete problem.

With the graph theoretic problem formulation and heuristicsolutions, potentially a tight bound can be
found on the number of such subsets. However, we avoid the graph theoretic solutions and seek a simpler
heuristic solution that is specific to this problem. Our heuristic of forming subsets is based on the concept
of Nested Level Tuple (NLT) explained in the next section. Our solution is simple and provides a loose yet
practical upper bound on the number of subsets. Moreover, itrequires very little computation. In fact, it
turns out to be a highly optimized variant of the Tuple Space Search algorithm. We will discuss the relevance
of this in the next section.

Although obtaining subsets of overlap-free rules is our objective, potentially such a partitioning can
result in a large number of subsets. Instead, we fix a particular number of subsets and try to partition the
rules in them such that the overall pseudo-rules are minimized. How can we create such subsets? We provide
an approximate model of this problem by extending the graph model described above. We create a graph
G = (V,E) as described above and assign weights to each edge, where theweight equals the number of
crossproduct rules due to the overlap of the two rules corresponding to the vertices connected by the edge
(i.e. pairwise crossproduct rules). Given this weighted graph, we wish to color the vertices withg colors
such that the sum of the weights on the edges connecting vertices of the same color is minimum. Since the
rules with the same color go in the same subset, we wish to minimize the sum of pairwise crossproduct rules
between all of them, hence the sum of the weights should be minimum. This problem is a standard MIN
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K-PARTITION problem which is also NP-complete.
This is an approximate model of the problem because in the context of our problem, the total number

of crossproduct rules can be less than the sum of the pairwisecrossproduct rules. This is because, some of
the crossproduct rules can be common to multiple sets of pairwise crossproduct rules and thus redundant.
However, the sum of the pairwise crossproduct rules is an upper bound on the amount of expansion within
a subset. Hence, the approximation is quite close to the accurate model.

Again, although a graph theoretic solution is possible for this problem, we avoid this approach and seek
a simpler solution by taking advantage of the nature of the problem. We describe a simple heuristic solution
in Section 5.3.1 which modifies the NLT based solution for thefirst problem. Specifically, we use the first
heuristic to produce an overlap-free grouping. Given a fixednumber of subsets (colors), we pick as many
most populated subsets and merge the remaining subsets to them with the objective of reducing the overall
crossproduct rules generated by merging.

5.2 Overlap-free Grouping

A loose bound on the number of overlap-free subsets is the number of prefix length tuples. We now describe
the Tuple Space Search (TSS) algorithm. While TSS provides one loose bound, we seek a much tighter
bound by modifying TSS using a simple technique. We describeour modifications at the end of this section.

5.2.1 Tuple Space Search (TSS)

A Prefix Length Tuple (PLT) is the combination of prefix lengths of different fields. For instance, the PLT
[32, 24, 16, 7, 0] implies that the source IP prefix length is 32, the destination IP prefix length is 24, the
source port prefix length is 16, the destination port prefix length is 7 and the protocol prefix length is 0
(wild-card). Each rule is contained within a tuple. For IPv45-tuple packet classification, the PLT space
consists of33 × 33 × 17 × 17 × 2 = 629442 PLTs. In the worst case, each rule can represent a unique
tuple and hence the number of PLTs will be the number of rules.For instance, the tuples associated with the
rules in our example rule set are [1, 0], [1, 2], [2, 3], [3, 3],[3, 2], and [2, 0] each containing a single rule.
However, in reality, the number of PLTs is smaller than the number of rules.

The TSS algorithm maintains all the rules belonging to a PLT in an independent hash table. Upon re-
ceiving a packet, it simply looks up all the hash tables by probing them with the keys formed by considering
the appropriate number of bits of each field corresponding tothat PLT. This naive approach requires several
hash lookups. However, they can be significantly reduced by the tuple pruning technique. The TSS algo-
rithm first gets the longest matching prefix of each field. Witheach longest matching prefix of a given field,
a list of PLTs corresponding to the given prefix as well as any shorter prefix is maintained. After reading
the list of PLTs associated with the longest matching prefix of each field, only the PLTs in the intersection
of these lists need to be looked up. We can illustrate the process with our example rule set. The algorithm
is illustrated in Figure 4 which uses our example rule set. Asthe figure shows, each LPM table contains
prefix entries and a list of PLTs that the prefix as well as its sub-prefixes are associated with. For instance,
the prefix 1* of the first field is associated with rulesr1 = [1∗, ∗] andr2 = [1∗, 00∗] which are contained in
the PLTs [1, 0] and [1, 2] respectively. Hence, the LPM entry 1* of the first field contains these two PLTs
in the list. Likewise, the prefix 101* of the first field is associated with PLTs [3, 2] and [3, 3]. Since, 1* is
a sub-prefix of 101*, the PLTs [1, 0] and [1, 2] are also contained in the list associated with 101*.

If the matching prefixes of the two fields were 101* and 100* then the common PLT list will contain
[3, 3] and [1, 0]. Hence, it implies that it is likely that the rules{101*, 100*} and{1*, * } are contained in
the table. These keys are used to probe the respective hash tables and matching entries are found.

Before we elaborate on the relevance of this algorithm to ouralgorithm, it is important to mention that the
actual TSS algorithm as proposed in [10] does not perform a LPM for source and destination port. Instead, a
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different technique based onRange IDis used. The authors observed that when the port ranges are converted
into prefixes, the resulting expansion could be large. To avoid this expansion, a unique ID is assigned to each
range. LPM is performed only on source and destination addresses. The hash key is constructed by taking
the appropriate bits from these addresses and combining therange IDs associated with source and destination
ports. Range ID can be obtained from the port number using different techniques, including a search tree
or a direct lookup. While the search tree based lookup requires more memory accesses, the direct lookup
array requires more memory, potentially two arrays containing 64K entries each. Secondly, for assigning a
unique ID to a given range, all the ranges must be non-overlapping. If they are overlapping then the overlap
must be removed by breaking a single range into multiple smaller ranges which are mutually exclusive. This
division of overlapping rangs into smaller non-overlapping ranges essentially means geometric intersection
on for each port which results in some rule expansion.

Instead of using the range ID approach, we will use the range to prefix conversion approach for our
algorithm. This will allow us to use the Bloom filter based LPMtechnique for port matching as opposed to
the search tree based technique for Range ID matching. Moreover, potentially it will consume less memory
compared to the direct lookup array for Range ID matching. Finally, it will not restrict us to using non-
overlapping ranges and allow flexible specification of ranges. Cosnidering these factors, we will use the
version of TSS algorithm that deals with the prefix representation of port ranges and performs LPM for each
field.

Create Keys

101* [3,2] [3,3] [1,0] [1,2] 100* [2,3] [3,3] [1,0] [2,0]
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Figure 4:Illustration of the Tuple Space Search algorithm

We can now draw a parallel between TSS and our algorithm. Notethat the rules contained in the same
PLT share the same prefix lengths of each field. Therefore, among any two prefixes of the same prefix
length, none is the ancestor of the other. Due to this property, the rules contained within the same PLT do
not need crossproducts. Indeed, the number of distinct PLTsin the rule set is essentially one loose upper
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bound on the number of overlap-free subsets. In fact, when weuse the PLTs as the subsets, our algorithm is
the same as TSS except for a few differences in arranging the data structures. With each prefix in the LPM
tables, TSS maintains a list of PLTs. Instead, we maintain anarray with the number of entries equal to the
total number of PLTs, each entry containing the length of theprefix within that PLT. This is illustrated with
the Figure 5. For instance, consider the prefix 101* of the first field. There are six entries next to it, each
corresponding to a subset (or a PLT). The PLTs are ordered andindexed. As the figure shows, PLT [1,0] is
first, [1,2] is second and so on. The first entry among the six is1 which implies that the given prefix has
a sub-prefix which corresponds to a rule contained in the firstPLT (which is [1,0]) and the length of this
sub-prefix is 1. Likewise, the fifth entry, which is 3 implies that the given prefix has a sub-prefix which
corresponds to a rule contained in the fifth PLT (which is [3,2]) and the length of this sub-prefix is 3. When
the entry is ‘-’, it means that there is no sub-prefix of the given prefix belonging to any rule in that PLT. In
other words, the prefix and its sub-prefixes have nothing to dowith that PLT. When we perform LPM on
each field and read the array, the intersection becomes easy.We need to consider only those PLTs for which
the prefix length in each field is specified. If at least one prefix has ‘-’ for a given PLT then it can be ignored.
As the figure shows, after LPM on 1011 and 1001 respectively, the only remaining PLTs are the first and the
sixth. The prefix lengths of the individual fields are [1,0] and [3,3]. Now the appropriate number of bits can
be considered to construct the keys and the PLT rule sets can be queried.
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Figure 5:Illustration of the Tuple Space Search algorithm with an alternative LPM table structure. It equiva-
lent to our algorithm with overlap-free rule subsets.

Note that there is a bit of redundancy in the LPM data structure which can be used to simplify it further,
as proposed in original TSS algorithm. Instead of maintaining the prefix length in each entry, we can simply
set a bit to indicate that the given prefix or its sub prefix belongs to that PLT. Thus, the array can be replaced
by a bit map with the number of bits equal to the number of PLTs.To take the intersection, we just perform
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a bit-wise AND. Finally, for all the remaining PLTs after intersection, we just lookup a table to get the
associated prefix lengths for each field and after having obtained those, we can construct the keys as before
to probe the appropriate PLT rule tables. This is illustrated in Figure 6. Note that this optimization is possible
only because we know that there is a unique prefix length of each field associated with a PLT. In the context
of a generic crossproduct, it is not true that a given subset of rules contains prefixes of a specific length for
each field; there can be multiple prefixes with different lengths within the same subset. Hence this bit-map
data structure can be used only in this special case.
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Figure 6:The LPM table can be compressed further by using a bit map.

After having discussed the original TSS algorithm, we now discuss the differences between our approach
and TSS.

• The original TSS algorithm used conventional trie based techniques for LPM. In our case, we use the
Bloom filter based LPM algorithm which is fast.

• The original TSS algorithm probes all the PLTs obtained after pruning whereas we use one more stage
of filtering using on-chip Bloom filters. Thus all the PLT queries after pruning can be passed through
Bloom filters so that only the potentially successful ones (approximately ‘p’) will be executed.

By using Bloom filters for memory access filtering, the algorithm performance can be accelerated sig-
nificantly. However, one important drawback of the system combining Bloom filters and TSS is that the
number of PLTs and hence the number of Bloom filters can be veryhigh. We experimented with our rule
sets and found that the number of PLTs can be as high as 11,000 for just 25,000 rules as indicated by the Ta-
ble 1. It is impractical to support such a large number of Bloom filters. However, this problem can possibly
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be mitigated by using the same set ofphysicalBloom filters to host a large set ofvirtual Bloom filters. When
we store an item in a Bloom filter, we can combine thetypeof the item along with the actual item in order
to create a unique key, as discussed before. Thus items of different types can reside in the same physical
Bloom filter. When we query the filter with an item, we can combine the type with the key. Therefore, only
the item belonging to the correct type will match. This is equivalent to having as many Bloom filters as key
types, superimposed on the same physical substrate Bloom filter. Hence we call them virtual Bloom filters.
In this fashion, if we haveb physical Bloom filters to supportB PLTs, we can design a mapping such that
each physical Bloom filter will get to host≤ ⌈B/b⌉ PLTs. We can time multiplex the probing of all the PLT
Bloom filters by probingb of them at a time and thus covering all theB probes in⌈B/b⌉ iterations (or clock
cycles). Moreover, after pruning the PLTs, only a few remainto be checked and hence the actual number of
probes can be much less than the worst case ofB. In spite of that, the number of PLTs to be checked can
still be high and variable.

Secondly, it is impractical to maintain an array with each prefix having 11,000 entries. Neither the
bit-map technique is practical for the same reason. Hence, we must use the original TSS technique which
maintains a list of PLTs along with each prefixes entry. Unfortunately, this will make the process of taking
the intersection of the PLT lists associated with the matching prefixes of all the fields very difficult. The
problem can be formulated as follows. We are givent sets of numbersS1,..,St, seti containingni numbers.
Each number is taken from a large universeU . How can we take the intersection of all the setsSi in
hardware? Note that the intersection would have been very easy if the universeU was small. In that case,
we could maintain a bit-map of|U | bits for each setSi and set the bits indexed by the numbers present in
that set. Intersection is just the bit-wise AND.

In the light of the drawbacks mentioned above, we now illustrate a technique to reduce the number of
subsets substantially. In other words, we proved a tighter upper bound on the number of overlap-free rule
subsets a rule set can be partitioned into. When the number ofsubsets is substantially reduced, the bit-map
technique can be used which in turn makes the intersection process easier. This reduction in the number of
subsets is based on the concept of Nested Level Tuple which isexplained below.

5.2.2 Nested Level Tuple Space Search (NLTSS) Algorithm

We begin by constructing an independent binary prefix-trie with the prefixes of each field in the given rule
set just as shown in Figure 1(B). We will use some formal definitions given below.

Nested Level:The nested level of a marked node in a binary trie is the numberof proper ancestors of this
node which are also marked. We treat the root node as if it weremarked.For example, the nested level of
nodem2 andm3 is 1 and the nested level of nodem4 is 2.

Nested Level Tree:Given a binary trie with marked nodes, we construct a Nested Level tree by removing
the unmarked nodes and connecting each marked node to its nearest ancestor.Figure 7 illustrates a nested
level tree for fieldf1 in our example rule set.

Nested Level = 2

m3

m1

m4

m2
m2 m1m3

m4

Nested Level = 0

Nested Level = 1

Figure 7:Illustration of Nested Level Tree
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Nested Level Tuple (NLT): For each field involved in the rule set, we create a Nested Level Tree
(See Figure 8). The Nested Level Tuple (NLT) associated witha rule r is the tuple of nested levels as-
sociated with each field prefix of that rule.For instance, in Figure 8, the NLT forr6 is [1,0] and forr4 is [2,1].
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Figure 8:Overlap free grouping of rules

From the definition of the nested level, it is clear that amongthe nodes at the same nested level, no one
is the ancestor of the other. Therefore, the prefixes represented by the nodes at the same nested level in a
tree do not overlap with each other.Since there is no overlap between the prefixes contained in the same
nested level of the tree, the set of rules contained in the same Nested Level Tuple do not create any
crossproduct. This is illustrated in Figure 8. This gives us one bound on thenumber of subsets such that
each subset contains overlap-free rules.

We experimented with our rule sets to obtain the number of NLTs in each of them. The numbers are
presented in the Table 1. While a consistent relationship can not be derived between the number of rules and
the number of NLTs from the observations of the rule sets, it is clear that even a large rule set containing
several thousand rules can map to less than 200 NLTs. The maximum NLTs were found to be 151 for about
25,000 rules. Given that there are very few NLTs compared to the PLTs, it becomes feasible to use the bit-
map to indicate the subsets a prefix belongs to. Therefore, italso becomes feasible to take an intersection of
the bit-maps associated with the longest matching prefix of each field for pruning the rule subsets to lookup.

However, given an NLT, we just know the nested level associated with each prefix. We don’t know
the exact prefix length to use to form our query key for that NLTrule set. Therefore, we need to maintain
another bit map with each prefix which gives a prefix length to nested level mapping. We call this bit-map
a PL/NL bit-map. For instance, for an IP address prefix, we would maintain PL/NL bit-map of 32 bits
in which a bit set at a position indicates that the prefix of thecorresponding length is present in the
rule set. Given a particular bit that is set in the PL/NL bit-map, we can calculate the nested level of
the corresponding prefix just by summing up all the number of bits set before the given bit. Let’s illus-
trate this with an example. Consider an 8 bit IP address and the PL/NL bit-map associated with it as follows:

IP address : 10110110
PL/NL bit-map : 10010101

Thus, the prefixes of this IP address available in the rule setare: 1* (nested level 1), 1011* (nested level
2), 101101* (nested level 3) and 10110110 (nested level 4). To get the nested level of the prefix 101101*
we just need to sum up all he bits set in the bit map up to the bit corresponding to this prefix. If we are
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interested in knowing the prefix length at a particular nested level then we can keep adding the bits in the
PL/NL bit-map until it matches the specified nested level andreturn the bit position of the set bit as the prefix
length. Thus, we can construct the PLT from a NLT using the PL/NL bit-maps associated with the involved
prefixes. The PLT tell us which bits to use to construct the keywhile probing the associated rule set (or
Bloom filter). The modified data structures and the flow of the algorithm is shown in Figure 9. As the figure
shows, each prefix entry in the LPM tables has a PL/NL bit-map and a NLT bit-map. For instance, prefix
101* of field 1 has a PL/NL bit map of 1010 which indicates that the sub-prefixes associated with the prefix
are of length 1 (i.e. prefix 1*) and 3 (i.e. prefix 101* itself).Therefore, the nested level associated with the
prefix 1* is 1 and with 101* is 2. Another bit-map, NLT bit-map,contains as many bits as the number of
NLTs. The bits corresponding to the NLTs to which the prefix and sub-prefixes belong are set. Thus 101*
belongs to all the three NLTs whereas 1* belongs to NLT 1 and 2.After the longest matching prefixes are
read out, the associated NLT bit-maps are intersected to findthe common set of NLTs that all the prefixes
belong to. As the figure shows, since the prefixes belong to allthe NLTs, the intersection contains all the
NLTs. From this intersection bit-map we obtain the indices of the NLTs to check. From the NLT table,
we obtain the actual NLTs. Combining the knowledge from the PL/NL bit maps of each field, we convert
the nested level to the prefix length and obtain the list of PLTs. This list tells us how many bits to consider
to form the probe key. The probe is first filtered through the on-chip Bloom filters and only the successful
ones are used to query the off-chip rule tables. As the example shows, the key〈1, 100〉 gets filtered out and
doesn’t need the off-chip memory access.

Note that the bit-map technique can be used instead of the prefix length array only because there is a
unique nested level or prefix length associated with a subsetfor a particular field. For a generic multi-subset
crossproduct, we can use the bit-map technique since there can be multiple sub-prefixes of the same prefix
associated with the same sub-set. Therefore, we need to listthe individual prefix lengths, just as shown in
Figure 5 or 3.

5.3 Limiting the Number of Subsets

While the NLT based grouping works fine in practice, we might ask, is there still room for improvement?
Can the number of subsets be reduced further? This brings us back to our second question: how can we limit
the number of subsets to a desired value? While the NLT technique gives us crossproduct-free subsets of
rules, we can still improve upon the it by merging some of the NLTs and applying the crossproduct technique
to them in order to limit the number of subsets. Fewer subsetsalso means fewer Bloom filters and hence
a more resource efficient architecture. In the next subsection, we describe our NLT merging technique and
the results after applying the crossproduct algorithm.

5.3.1 NLT Merging and Crossproduct (NLTMC) Algorithm

In order to reduce the subsets to a given threshold, we need tofind the NLTs that can be merged. We exploit
an observation that holds across all the rule sets we analyzed: the distribution of rules across NLTs is highly
skewed. Most of the rules are contained within just a few NLTs. Figure 10 shows the plot of the cumulative
distribution of rules across the number of NLTs.

This indicates that we can take care of a large fraction of rules with just a few subsets. Hence what we
need is an NLT merging algorithm whereby we start with the overlap-free NLT set, retain the most dense
NLTs equal to the specified subset limit and then merge the rules in the remaining NLTs to these fixed
subsets with the objective of minimizing the pseudo-rule overhead. It is possible to devise clever heuristics
to meet this objective. Here, we provide a simple heuristic that proved very effective in our experiments.
Our NLT merging algorithm works as follows.

• Sort the NLTs according to the number of rules in them.
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Figure 9: Using NLT based grouping to form the subsets. Each prefix entry in LPM table needs a NL/PL
bit-map and another bit-map indicating the NLTs to which the prefix or its sub-prefixes belong.

• Pick the most denseg NLTs whereg is the given limit on the number of subsets. Merge the remaining
NLTs to theseg NLTs.

• While any of the remaining NLTs can be merged with any one among the fixedg NLTs, a blind
merging will not be effective. To optimize the merging process, we choose the most appropriate NLT
to merge with as follows. Take the “distance” between the NLTi and each of the fixedg NLTs.
We merge the NLTi with an NLT having minimum distance. In case of a tie, choose the NLT
with minimum rules to merge with. We define the distance between the two NLTs to be the sum of
differences between individual field nested levels. For instance, the NLT [4, 3, 1, 2, 1] and [4, 1, 0, 2,
1] have a distance of|3− 1|+ |1− 0| = 3. The intuition behind the concept of distance is that when
the distance between the NLTs is large, it is likely that one NLT will have several descendant nodes
corresponding to the nodes in another NLTs thereby potentially creating a large crossproduct. Shorter
distance will potentially generate fewer crossproducts.

• Although, merging helps us reduce the number of NLTs, it can still result in a large number of
crossproducts. At this point, while merging a NLT with another, we try to insert a rule and see
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Figure 10:Cumulative distribution of the rules across NLTs. More than 90% rules are contained within just
40 NLTs.

how many pseudo-rules it generates. If the number exceeds a threshold then we don’t insert it. We
consider it to be a “spoiler”. We denote byt this threshold on pseudo-rules to consider a rule spoiler.
All the spoilers can be taken care of by some other efficient technique such as a tiny on-chip TCAM.
We emphasize that such an architecture will be significantlycheaper and power efficient compared to
using a TCAM for all the rules. As we will see, our experimentsshow that the spoilers are typically
less than 1% to 2% and hence the required TCAM is not a significant overhead.

In summary, given a fixed number of subsets, we begin by formation of NLTs. If the the NLTs are greater
than the subset limit, we pick the most dense NLTs equal to thenumber of subsets and merge the remaining
NLTs to these fixed NLTs. While merging, we isolate the spoilers. This proves to be an effective technique
to meet the objective of containing the tuples as well as reducing the spoilers, as indicated by the results
presented in Table 1. We denote byα the ratio of the size of the new rule set after executing our algorithm,
to the size of the original rule set (after range to prefix expansion). We experimented with different values
of g, i.e. the desired limit on NLTs. The pseudo-rule threshold was arbitrarily fixed tot = 20.

From the results it is clear that even with the number of subsets as small as 16, the rule set can be
partitioned without much expansion overhead. The average expansion factor forg = 16 is just 1.43. Among
the 20 rule sets considered above, the maximum expansion wasobserved to be almost four times (acl3s)
for 16 subsets. For all the other rule sets, the expansion is less than two times. Furthermore, it can also be
observed that as we increase the number of subsets, the expansion decreases as expected. However this trend
has an exception for fw3s where bothg = 24 andg = 32 show larger expansion compared tog = 16. This
is because theg = 16 configuration throws out more spoilers compared tog = 24 andg = 32. Thus, our
algorithm in this particular case trades off more spoilers for less expansion. Overall, it can also be observed
that the spoilers are very few, on an averageβ < 2%. As we increase the number of subsets, the spoilers
are reduced significantly. Clearly,g = 32 is the most attractive choice for the number of subsets due tothe
small number of spoilers and the small expansion factor.
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g=16 g=24 g=32
rule set rules δ PLT NLT prefixes α β α β α β

acl1 1247 2.4e+4 79 31 610 1.03 0.00 1.03 0.00 1.00 0.00
acl2 1216 7.6e+3 195 57 437 1.93 4.19 1.24 1.40 1.17 0.00
acl3 4405 2.3e+5 367 63 1211 1.29 4.45 1.16 0.75 1.14 0.25
acl4 5358 4.3e+5 397 107 1445 1.74 7.95 1.52 2.24 1.20 0.62
acl5 4668 7.0e+2 69 14 304 1.00 0.00 1.00 0.00 1.00 0.00
acl1s 12507 3.2e+4 1349 45 1524 1.03 0.28 1.00 0.10 1.00 0.00
acl2s 18589 1.0e+3 6131 107 626 1.12 2.32 1.14 0.56 1.14 0.39
acl3s 17395 2.5e+4 4136 81 947 3.99 0.71 2.27 0.54 2.26 0.21
acl4s 16291 4.4e+4 4003 130 1090 1.46 2.22 1.45 0.53 1.42 0.42
acl5s 13545 2.3e+4 1197 31 2401 1.03 0.00 1.00 0.00 1.00 0.00
fw1 914 3.0e+5 221 37 205 1.37 0.11 1.10 0.11 1.03 0.00
fw2 543 7.4e+3 159 21 132 1.06 0.00 1.00 0.00 1.00 0.00
fw3 409 1.6e+4 169 29 147 1.25 0.00 1.03 0.00 1.00 0.00
fw1s 32135 5.7e+6 237 50 337 1.92 0.80 1.15 0.012 1.09 0.006
fw2s 26234 1.5e+3 11016 95 271 1.60 2.81 1.46 1.47 1.46 0.42
fw3s 24990 6.7e+3 11296 151 460 1.53 6.45 2.05 1.45 1.80 0.94
ipc1 2179 1.9e+5 244 83 396 1.73 5.69 2.10 1.19 1.41 0.73
ipc2 134 3.1e+2 8 8 72 1.00 0.00 1.00 0.00 1.00 0.00
ipc1s 12725 6.0e+4 3433 65 519 1.86 1.09 1.12 0.26 1.03 0.09
ipc2s 9529 1.7e+4 782 11 4596 1.00 0.00 1.00 0.00 1.00 0.00

avg 1.43 1.95 1.28 0.70 1.20 0.34

Table 1:Results with different rule sets.δ denotes the expansion factor on the original rule set after naive crossproduct.α denotes the expansion factor on
the original rule set after Multi-subset Crossproduct.β denotes thepercentageof the original rules which are treated as spoilers.
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6 Architecture

In this section we describe the architecture of the entire system and discuss some of the engineering consid-
erations in a hardware implementation of our algorithm.

6.1 Hash Table Architecture

An important issue in any hash table based algorithm is of reducing hash collisions. To reduce the collisions
in the hash table, Song et. al. propose a Fast Hash Table (FHT)architecture [9]. We borrow the example
from [9] and show how FHT functions using Figure 11(A). As thefigures shows, four itemsx, y, z andw
are being inserted in the hash table and the counters of the buckets to which they hash are incremented. After
the hash table is pruned by removing the unnecessary copies of the items, it looks as shown in Figure 11(B).
This hash table significantly reduces the collisions which makes it suitable for our purpose. In fact, all we
need to do is to convert our ordinary Bloom filter into a counting Bloom filter and associate a hash bucket
with it. Each hash bucket keeps the pointer to the list of items hashed to it. As will be explained in the next
subsection, we use the ratio of 16 hash buckets per item. Withthis ratio, using the results from [9], it can
be shown that among 128K items, there are only less than 75 items that collide. This is an acceptably small
number of collisions and the colliding items can be kept in the on-chip memory. Therefore, it is reasonable
to assume that the with FHT, we need only one memory access to read an item from the hash table.

We modify FHT to further reduce the memory consumption by compressing the pointer array.1 Note
that the bucket associated with a non-empty item list is sparse in an FHT. This sparsity can be exploited to
compress the pointer array. Figure 11 explains how exactly we compress the pointer array. LetL be the
number of items stored in am-bucket array whereL < m. We divide the array into smaller segments ofs
buckets. For each bucket we maintain a bit indicating if it isoccupied or not. Then we keep a pointer to the
first item falling in that segment. The first item of all the other lists in that segment are kept in successive
memory locations in the item memory. Each of these items can be accessed with reference to the pointer to
the first item. When an item in a bucket is to be accessed, we check to see if the bucket is occupied or not. If
it is, then we count the number of bits set to 1 within that segment up to the given bucket and add this offset
to the base pointer to get the required item. For instance, consider the bucket number 4 in the figure which
contains the itemz. To access this item, we first see if the bit corresponding to the bucket is set. Then we
count the number of bits set to 1 before the given bit within that segment. There is just one bit set before
the bit corresponding toz. Hence we add the offset 1 to the base pointer associated withthat segment and
access the required item. Here, the base pointer points tox andz is arranged right next to it. Hence we
retrievez.

With this technique, we need just as-bit vector and a pointer to the first item within that segmentas
opposed tos pointers. If the length of a pointer ist bits, it results in a space reduction fromst bits tos + t
bits. The bit-vector and the base pointer can be arranged compactly in the SRAM as shown in the figure
(D). This compression technique using bit-vector is not new. It has been used in various data structures
previously including the encoding of the multibit-trie [5]. However, its application in the context of hash
table compression is new. Any hash table can be compressed with this bit-vector technique. In the next
subsection, we will evaluate the amount of memory required for the counting Bloom filters and the pointer
array to achieve a desired performance.

6.2 Memory Requirement

There are three data structures in our algorithm that consume memory. First is the counting Bloom filter,
second is the pointer array, and the third is the actual item memory.

1This compression scheme was jointly developed by Haoyu Songand Sarang Dharmapurikar.
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Figure 11: Illustration of Fast Hash Table and its compression. The example is borrowed from [9]. (A) The
basic FHT (B) FHT after pruning (C) Compressing pointer array (D) Arranging pointer array compactly in
memory

Item Memory: The item memory consists of two types of items: prefixes for all the four fields and rules.
The prefix entries in the LPM table depend on the algorithm we choose. When we implement the NLTSS
algorithm explained in Section 5.2, the optimized prefix entry shown in Figure 9 contains the 32-bit IP
prefix, 32 bits for the PL/NL bit-map, andg bits for the NLT bitmap for as many NLTs. For a port prefix, we
need 16 bits of prefix and 16 bits of PL/NL bitmap, hence 32 bitsless. However, for the sake of uniformity,
we will use the same amount of space for port prefixes as used for IP address prefixes. Hence a prefix entry
needs 64+g+2 bits, the last 2 bits being used for specifying the particular field out of source/destination IP
and source/destination port. We round it up to the nearest multiple of 36 since SRAM memory is available
with this word size. Thus, a single prefix entry requiresbNLTSS bits given as follows.

bNLTSS = ⌈(66 + g)/36⌉ × 36 (5)

For the NLTMCg algorithm, the LPM data structure is as shown in Figure 2(B),with each prefix, we
maintain a word which contains the prefix length informationof all theg subsets. Each entry in this array
takes a value between 0 toW or NULL whereW is the maximum length of the prefix. Therefore, there are
W + 2 possible values requiring⌈log2(W + 2)⌉ bits per entry, which is 6 bits for the IP addresses and 5
bits for the ports. For an IP prefix, we would need 33 bits to specify a prefix of arbitrary length,g × 6 bits
to maintain the sub-prefix information for theg subsets, and finally 2 more bits to indicate the field that the
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prefix belongs to. Totally, we need6g + 34 bits to store prefix item for this algorithm. Rounding it up tothe
nearest multiple of 36 gives usbNLTMCg

bits per entry given as follows.

bNLTMCg
= ⌈(6g + 34)/36⌉ × 36 (6)

The actual rule can be specified by using 33 bits for each source and destination IP, 17 bits for each
source and destination port, and 9 bits for protocol. If we use 17 bits for the next pointer, a rule item requires
126 bits totally. Again, we round it up to 144.

To compute the average number ofitem bytesper original rule, incorporating all of the above parameters,
we use the following formula:

Mof =
#rules× αg × 144 + #prefixes× b

#rules× 8
(7)

where,b is bNLTSS or bNLTMCg
depending on the algorithm. andαg is 1 for NLTSS and as specified in

Table 1 for the NLTMC withg = 16, 24 and 32 subsets.
Bloom filters and pointer array: Now we compute the memory required for Bloom filters and pointer

array.
We usek = 12 hash functions and set buckets per item to 16 (i.e.m/n = 16) which gives a false positive

probability of 0.00046, low enough for our purpose. Keepingthe ratio ofm/n fixed, we experiment with
different values ofm. Since FHT needs a counting Bloom filter, each bucket of the Bloom filter is a counter
of 2 bits. Moreover, associated with each bucket of the Bloomfilter is a hash table bucket containing
the pointer to the actual items. Therefore, we havem pointers forn items. If we restrict the maximum
number of items in each Bloom filter to 64K, then we can use a 16 bit pointer. We compress the array as
described earlier usings = 16 as the segment length. Thus, for every 16 entries of the array, we have a
16-bit vector and 16-bit pointer. Therefore, the memory consumption per bucket due to the pointer array is
((m/16) × (16 + 16))/m = 2 bits. The total memory consumptionper bucketdue to the pointer array and
the counting Bloom filter together is now2 + 2 = 4 bits. Since there are 16 buckets per item (m/n = 16),
the number of bits per item is4× 16 = 64. The total number of items in the system is simply the number of
rules after expansion (#rules×α) plus the unique prefixes of all the fields. Hence the memory consumption
per original rule inbytesdue to the Bloom filters and the pointer array is

Mon =
64× (αg ×#rules + #prefixes)

#rules× 8
(8)

Again, αg = 1 for the NLTSS algorithm. The average bytes required per original rule is therefore just the
sum of the two components:

M = Mof + Mon (9)

We evaluated this memory requirement for each of our rule sets, and the numbers are shown in Table 2.
As the table shows, the NLTSS algorithm requires fewer bytescompared to all the configurations of the

NLTMC algorithm. This is due to two reasons. First, there is rule set expansion due to crossproducts in
NLTMC which is absent from the NLTSS algorithm. Second, NLTMC requires a wider word for each prefix
entry in the LPM table. As we increase the number of subsets from 16 to 32, some interesting observations
can be made about memory requirement for different rule sets. Consider for instance acl1 rule set. With
increase in the number of subsets, the LPM entry becomes wider and hence requires more off-chip memory
per rule. On the other hand, acl4 shows exactly opposite trend. This is because, with fewer subsets, acl4
shows a higher factor of rule set expansion due to crossproducts. Hence, with fewer subsets, the overall
memory required per rule is larger. A combination of both of these factors can be seen in acl2 where the
memory requirement is highest forg = 16 subsets, lowest forg = 24 subsets and between these two values
for g = 32 configuration. This is because, with 16 subsets, there is toomuch rule set expansion that dwarfs
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rule set NLTSS NLTMC
g = 16 g = 24 g = 32

Memory Throughput Memory Throughput Memory Throughput Memory Throughput
Mon Mof ≤ 4 6 8 Mon Mof ≤ 4 6 8 Mon Mof ≤ 4 6 8 Mon Mof ≤ 4 6 8

acl1 12 25 38 25 19 12 28 38 25 19 12 30 25 25 19 12 34 19 19 19
acl2 11 25 38 25 19 18 42 38 25 19 13 31 25 25 19 12 33 19 19 19
acl3 10 23 38 25 19 12 29 38 25 19 11 28 25 25 19 11 30 19 19 19
acl4 10 25 25 25 19 16 37 38 25 19 14 34 25 25 19 12 31 19 19 19
acl5 8 19 38 25 19 8 20 38 25 19 8 20 25 25 19 8 21 19 19 19
acl1s 9 21 38 25 19 9 21 38 25 19 9 21 25 25 19 9 22 19 19 19
acl2s 8 19 25 25 19 9 21 38 25 19 9 22 25 25 19 9 22 19 19 19
acl3s 8 20 25 25 19 33 73 38 25 19 19 43 25 25 19 19 43 19 19 19
acl4s 8 20 25 25 19 12 28 38 25 19 12 28 25 25 19 12 28 19 19 19
acl5s 9 21 38 25 19 9 22 38 25 19 9 22 25 25 19 9 24 19 19 19
fw1 10 22 38 25 19 13 29 38 25 19 10 25 25 25 19 10 26 19 19 19
fw2 10 22 38 25 19 10 24 38 25 19 10 24 25 25 19 10 26 19 19 19
fw3 11 23 38 25 19 13 29 38 25 19 11 27 25 25 19 11 30 19 19 19
fw1s 8 19 38 25 19 15 35 38 25 19 9 21 25 25 19 9 20 19 19 19
fw2s 8 19 25 25 19 13 29 38 25 19 12 27 25 25 19 12 27 19 19 19
fw3s 8 19 19 19 19 12 28 38 25 19 17 38 25 25 19 15 33 19 19 19
ipc1 9 23 25 25 19 15 35 38 25 19 18 42 25 25 19 13 32 19 19 19
ipc2 12 26 38 25 19 12 28 38 25 19 12 31 25 25 19 12 35 19 19 19
ipc1s 8 19 38 25 19 15 35 38 25 19 9 22 25 25 19 8 20 19 19 19
ipc2s 12 25 38 25 19 12 27 38 25 19 12 29 25 25 19 12 34 19 19 19

avg 10 22 34 25 19 14 31 38 25 19 12 29 25 25 19 12 29 19 19 19

Table 2:The performance of different algorithms with different par ameters.Mon and Mof denote the average on-chip and off-chip memory in bytes per
rule. The throughput is in Million Packets per second. Throughput was computed for different number of matching rules per packets,p ≤ 4, p = 6, p = 8.
When p ≤ 4, LPM is the bottleneck and throughput is decided by how wide the LPM entry is.
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the effect of shorter LPM entry, thereby requiring a larger amount of memory per rule. With 24 subsets, the
expansion gets reduced and its effect dominates the increase in the LPM entry size. With 32 subsets, the
LPM entry becomes wider and hence results in more memory per rule while the effect of reduced expansion
is not much. Thus, different NLTMC configurations are suitable for different rule sets. Although, it is clear
that, NLTSS always beats all the configurations of NLTMC in terms of memory efficiency due to the reasons
mentioned above.

On the other hand, NLTMC requires fewer and fixed number of subsets of rules whereas the NLTSS
requires many more, potentially up to 151 as the results of Table 1 indicate. Fewer subsets also implies
a fewer Bloom filters and hence a more resource efficient architecture. Thus, potentially we can save a
significant amount of logic gates resources required to implement Bloom filters if we choose NLTMC, but
at the cost of more memory.

6.3 Classification Throughput

The speed of the classification depends on multiple parameters, including the implementation choice
(pipelined/non-pipelined), the number of memory chips used for off-chip tables, the memory technology
used, and the number of matching rules per packet (i.e. the value ofp). We will make the following assump-
tions.

Memory technology: We will assume the availability of a 300 MHz DDR SRAM chips with 36-bit
wide data bus which are available commercially. Such SRAM can allow reading two 36-bit words in each
clock cycle of a 300 MHz clock. The smallest burst length is two words (72 bits).

Pipelining: We will use a pipelined implementation of the algorithm. Thefirst stage of pipeline executes
the LPM on all the fields and the second stage executes the rulelookup. In order to pipeline them, we will
need two separate memory chips, the first containing the LPM tables and the second containing rules. Here,
we will also need two separate sets of Bloom filters, the first for LPM and the second for rule lookup. Let
τlpm denote the time to perform a single LPM lookup in the off-chipmemory in terms of the number of
clock cycles of the system clock. Likewise, letτrule be the time required for a single rule lookup. If a
packet matchesp rules in a rule set then, with a pipelined implementation, a packet can be classified in time
max{4τlpm, pτrule}. Typically, p is ≤ 6 as noted in [8] [6]. We will evaluate the throughput for different
values ofp.

Choice of algorithm: As before, we have a choice between NLTSS and NLTMC. It shouldbe recalled
that depending on the algorithm and the configuration used, the width of an LPM entry can be differ-
ent. Therefore, LPM lookup time (τlpm) is different for these two algorithms and different configurations
of NLTMC. Secondly, for the NLTSS, the LPM entry width differs with the rule set under consideration
whereas it is constant with a specific configuration for NLTMC. We evaluate the throughput for each rule
set. Finally, we always need to read the data in the bursts of 72 bits (2 words, 36 bits each) due to which we
might need to read more words than we actually need. This too will affect the throughput. Let,τ(lpm,NLTSS)

andτ(lpm,NLTMCg) denote the time in clock ticks (of 300MHz clock) to read a LPM entry for NLTSS and
NLTMCg respectively. These can be expressed as follows.

τ(lpm,NLTSS) = ⌈bNLTSS/72⌉ (10)

and
τ(lpm,NLTMCg) = ⌈bNLTMCg

/72⌉ (11)

Recall that each rule can fit in 144 bits and needs exactly two clock cycles to read. Henceτrule = 2.
The throughput can be given as

RNLTSS =
300× 106

max{4τ(lpm,NLTSS), 2p}
packets/second (12)
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and

RNLTMCg
=

300× 106

max{4τ(lpm,NLTMCg), 2p}
packets/second (13)

The throughput is shown in the Table 2. Let’s consider the case of NLTSS. Whenp ≤ 4, the
max{4τ(lpm,NLTSS), 2p} = 4τ(lpm,NLTSS) and hence, the LPM phase becomes the bottleneck in the
pipeline hence throughput depends on how wide the LPM entry is. It can be seen that a throughput of
38 million packets per second (Mpps) can be achieved for somerule sets having fewer NLTs and hence
shorter LPM entry. When the matching rules per packet increases, rule matching phase becomes the bottle-
neck and limits the throughput. Withp = 6, the throughput is 25 Mpps and withp = 8, it is 19 Mpps. In
some cases, such as fw3s, the LPM entry is so wide that the LPM phase continues to be the bottleneck and
limits the throughput to 19 Mpps even if the matching rules per packet is 8.

Now, let’s consider the NLTMCg algorithm. As mentioned before, for each value ofg the LPM entry
has a fixed width across all the rule sets. Therefore throughput is constant for all the rule sets. As can be
seen from the table, just like

For g = 16 andp ≤ 4, LPM is bottleneck but since the LPM word is short due to smaller number of
subsets, the throughput can be as high as 38 Mpps. Asp increases, throughput decreases since rule matching
becomes the bottleneck. Likewise, forg = 24, LPM is the bottleneck up top = 6 and throughput is limited
to 25 Mpps. Withp = 8, rule matching is the bottleneck and throughput reduces to 19 Mpps. Forg = 32,
whenp ≤ 4, the throughput is 19 Mpps because LPM is the bottleneck due to wide entry and it continues to
be the bottleneck even ifp = 8.

With NLTMC, it is clear that the configuration with fewer subsets gives better throughput due to shorter
LPM words. On the other hand, it should be recalled that it canalso cause more memory consumption
due to more crossproducts as discussed above. Hence there isa trade-off between throughput and memory
requirement. Another interesting point to note is that in some cases, NLTSS shows a better throughput than
NLTMC16 and in some cases it is the opposite. In case of fw3s, all the NLTMC configurations offer a
consistently high throughput because there are 151 bits in the NLT bit-map of the LPM entries of NLTSS
which slows it down. Hence, in such cases, restricting the number of subsets to a smaller value through
merging and crossproducts makes sense. Overall, it can be seen that the throughput depends on the nature
of the rule set and appropriate configuration can be chosen that suits the requirements.

7 Summary

TCAM is widely used for high-speed packet classification. However, due to the excessive power con-
sumption and the high cost of TCAM devices, algorithmic solutions that are cost-effective, fast and power-
efficient are still of great interest. In this paper, we propose an efficient solution that meets all of the above
criteria to a great extent. Our solution combines Bloom filters implemented in high-speed on-chip memories
with our Multi-Subset Crossproducting Algorithm. Our algorithm can classify a single packet in only4 + p
memory accesses on an average wherep is the number of rules a given packet can match. The classification
reports all thep matching rules. Hence, our solution is naturally a multi-match algorithm. Furthermore, the
pipelined implementation of our algorithm can classify packets inmax{4, p} memory accesses.

Due to its primary reliance on memory, our algorithm is power-efficient. It consumes about an average
30 to 36 bytes per rule of memory (on-chip and off-chip combined). Hence rule sets as large as 128K can
be easily supported in less than 5MB of SRAM. Using two 300MHz36-bit wide SRAM chips, packets can
be classified at OC-192 speed.
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