

Sailesh Kumar, Jonathan Turner, Patrick Crowley

Washington University
Computer Science and Engineering

{sailesh, jst, pcrowley}@arl.wustl.edu

Michael Mitzenmacher

Harvard University
Electrical Engineering and Computer Science

michaelm@eecs.harvard.edu

Abstract—Data structures representing directed graphs with

edges labeled by symbols from a finite alphabet are used to

implement packet processing algorithms used in a variety of

network applications. In this paper we present a novel approach

to represent such data structures, which significantly reduces the

amount of memory required. This approach called History-based

Encoding, eXecution and Addressing (HEXA) challenges the

conventional assumption that graph data structures must store

pointers of log2n bits to identify successor nodes. We show how

the data structures can be organized so that implicit information

can be used to locate successors, significantly reducing the

amount of information that must be stored explicitly. We

demonstrate that the binary tries used for IP route lookup can be

implemented using just two bytes per stored prefix (roughly half

the space required by Eatherton’s tree bitmap data structure) and

that string matching can be implemented using 20-30% of the

space required by conventional data representations.

Compact representations are useful, because they allow the

performance-critical part of packet processing algorithms to be

implemented using fast, on-chip memory, eliminating the need to

retrieve information from much slower off-chip memory. This can

yield both substantially higher performance and lower power

utilization. While enabling a compact representation, HEXA does

not add significant complexity to the graph traversal and update,

thus maintaining a high performance.

Index Terms— content inspection, IP lookup, string matching

I. INTRODUCTION

everal common packet processing tasks make use of

directed graph data structures in which edge labels are

used to match symbols from a finite alphabet. Examples

include tries used in IP route lookup and string-matching

automata used to implement deep packet inspection for virus

scanning. In this paper, we develop a novel representation for

such data structures that is significantly more compact than

conventional approaches. This compactness can lead to higher

performance in implementation contexts where we have small

on-chip memories with ample memory bandwidth and larger

off-chip memories with more limited bandwidth. These

characteristics are common to conventional processors,

network processors, ASICs and FPGA implementations.

We observe that the edge-labeled, directed graphs used by

some packet processing tasks have the property that for all

nodes u, all paths of length k leading to u are labeled by the

same string of symbols, for all values of k up to some bound.

For example, tries satisfy this condition trivially, since for each

value of k, there is only one path of length k leading to each

node. The data structure used in the Aho-Corasick string

matching algorithm [2] also satisfies this property, even though

in this case there may be multiple paths leading to each node.

Since the algorithms that traverse the data structure know the

symbols that have been used to reach a node, we can use this

“history” to define the storage location of the node. Since

some nodes may have identical histories, we need to augment

the history with some discriminating information, to ensure

that each node is mapped to a distinct storage location. We

find that in some applications the amount of discriminating

information needed can be remarkably small. For binary tries

for example, two bits of discriminating information is

sufficient. This leads to a binary trie representation that

requires just two bytes per stored prefix for IP routing tables

with more than 100K prefixes. We call the technique used to

construct these compact data representations, History-based

Encoding, eXecution and Addressing (HEXA).

In Section II, we introduce HEXA and apply it to binary

tries. We show that the problem of selecting discriminators

corresponds to finding a perfect matching in a bipartite graph;

we also show how the data structure can be incrementally

modified. In Section III, we describe a variant of HEXA in

which the discriminator specifies the amount of history

information that has to be used to identify the storage location

of a node. We then apply this technique to the data structure

used by the Aho-Corasick string matching algorithm as well as

the bit-split version of the algorithm [6]. In Section IV we

report on the results of our evaluation of HEXA for binary

tries and string matching. Section V covers the related work

and the paper ends with concluding remarks in Section VI.

II. INTRODUCTION TO HEXA

Directed graphs are commonly used to implement various

packet processing algorithms which are used in a variety of

network applications, some of which are listed below:

• Longest prefix match IP lookup: IP routing involves a

longest prefix match, where destination IP address of a

packet is matched against a large but finite set of prefixes

and the longest matching prefix determines the next hop.

HEXA: Compact Data Structures

for Faster Packet Processing

S

Tries, which essentially are a directed graph without any

cycles, are often used to implement such operations.

• Packet classification: Packet classification involves a

multi-dimensional search on packet’s 5-tuple (source/

destination addresses, ports and protocol). Search in each

dimension often consists of a longest prefix match, which is

commonly implemented using tries. These tries usually have

a similar structure as an IP lookup trie.

• String matching: Commercial network security devices

like network intrusion detection systems (NIDS), and

application layer firewalls often use string based pattern

matching to identify malicious packets. String matching is

usually performed with the aid of a finite automaton (e.g.

Aho-Corasick, Wu-Manber etc), which is a directed graph

with labeled edges. Nodes of these graphs usually have

much higher and varying out-degrees.

• Regular expression matching: Modern security systems

specify the patterns of interest using regular expressions.

Regular expressions are also used to enable advanced

network services like content based routing, metering, etc.

Finite automata are usually used to implement regular

expressions, which are again a labeled directed graph.

Complex expressions usually lead to relatively complex

graphs, as compared to a string based automaton.

• There are several other applications, which use directed

graph structures. Some examples are a web indexing and

search engines, an access control list (ACL), or even a file

system. In this paper, we will mostly focus on the first four

applications.

Since such a wide variety of network applications employ

some form of directed graph traversal, a large body of research

literature has focused on improving its performance. For

example, [11] propose a multi-bit trie representation, where

multiple nodes of a binary trie are merged into a single node.

There are also schemes to compactly encode these multi-bit

trie nodes [13]. Another class of directed graphs is finite

automaton; in [5] authors present techniques to improve the

parsing performance of a finite automaton, which is used to

perform string matching. It uses a similar technique, where

multiple states of the automaton are merged into a single state

and represented compactly. In [6], authors propose an

alternative technique to reduce the space by reducing the

number of transitions from every node of the graph.

Most of these solutions are too specialized; fine tuned and

optimized for their respective applications, however a common

link between them is that they reduce the memory by either

reducing the number of transitions in the graph or by reducing

the number of nodes. They also demonstrate that the space

reduction achieved by reducing the number of nodes and/or

transitions may also enhance the parsing performance of the

graph, by utilizing the fast but limited on-chip memory.

With or without the reductions in the number of nodes or

transitions, to our best knowledge, directed graphs are always

implemented in the following conventional manner. Each node

in the n node graph is denoted by a unique log2n bit

identifier, which also determines the memory location of the

node. At this memory location, all transitions of the node

(identifiers of the subsequent “next nodes”) are stored, along

with some auxiliary information. The auxiliary information

may be a flag indicating if the node corresponds to a match in

a string matching automata or a valid prefix in an IP lookup

trie, and an identifier for the string, or the next hop for the

matching prefix. The auxiliary information usually requires

only a few bits and is kept once for every node; on the other

hand, identifiers of the “next node” use log2n bits each and

are required once for every transition. Thus, in large graphs

(say a million nodes) containing multiple transitions per node

(say two), the memory required by the identifiers of the “next

node” (20-bits per identifier, 2 such identifiers per node) can

be much higher than the memory required by the auxiliary

information.

Another complicating factor in the conventional design

approach is that, the transitions or the identifiers of the “next

node” are read for each symbol in the input stream, while the

auxiliary information is read only upon a match. This

necessitates that the “next node” identifiers be stored in a high

speed memory (e.g. SRAM or embedded) in order to enable

high parsing rate. For instance, a high performance lookup trie

may store the set of “next nodes”, for every node, in a fast

memory along with a flag indicating whether the node

corresponds to a prefix. On the other hand, the next hop

information can be kept with a shadow trie, stored in a slow

memory like DRAM. Similarly, in string matching automaton,

in addition to the “next node” identifiers, only a flag per node

is needed in the fast memory, which will indicate whether the

node is a match. The prime motivation of such separation of

fast and slow path is to reduce the high speed memory, which

is often expensive and less dense. The advantages are however

undermined as the identifiers of the “next node” represent a

large fraction of the total memory. While there is a general

interest in reducing the total memory, clearly there are

increased benefits in reducing the memory required to store

these “next node” identifiers.

In this paper, we propose a new method to store directed

graph structures that we dub HEXA (History based Encoding,

eXecution, and Addressing). While conventional methods use

log2n bits to identify each of n nodes in a graph, by taking

advantage of the graph structure, HEXA employs a novel

method that can use a fixed constant number of bits per node

for structured graphs such as tries. Thus, when HEXA based

identifiers are used to denote the transitions of the graph, the

fast memory needed to store these transitions can be

dramatically reduced. The total memory is also reduced

significantly, because auxiliary information often represents a

small fraction of the total memory.

The key to the identification mechanism used by HEXA is

that when nodes are not accessed in a random ad-hoc order but

in an order defined by its transitions, the nodes can be

identified by the way the parsing proceeds in the graph. For

instance, in a trie, if we begin parsing at the root node, we can

reach any given node only by a unique stream of input

symbols. In general, as the parsing proceeds, we need to

remember only the previous symbols needed to uniquely

identify the nodes. To clarify, we consider a simple trie-based

example before formalizing the ideas behind HEXA.

A. Motivating Example

Let us consider a simple directed graph given by an IP

lookup trie. A set of 5 prefixes and the corresponding binary

trie, containing 9 nodes, is shown in Figure 1. We consider

first the standard representation. A node stores the identifier of

its left and right child and a bit indicating if the node

corresponds to a valid prefix. Since there are 9 nodes,

identifiers are 4-bits long, and a node requires total 9-bits in

the fast path. The fast path trie representation is shown below,

where nodes are shown as 3-tuple consisting of the prefix flag

and the left right children (NULL indicates no child):

Here, we assume that the next hops associated with a

matching node are stored in a shadow trie which is stored in a

relatively slow memory. Note that if the next hop trie has a

structure identical to the fast path trie, then the fast path trie

need not contain any additional information. Once the fast path

trie is traversed and the longest matching node is found, we

will read the next hop trie once, at the location corresponding

to the longest matching node.

We now consider storing the fast path of the trie using

HEXA. In HEXA, a node will be identified by the input stream

over which it will be reached. Thus, the HEXA identifier of

the nodes will be:

These identifiers are unique. HEXA requires a hash

function; temporarily, let us assume we have a minimal perfect

hash function f that maps each identifier to a unique number in

[1, 9]. (A minimal perfect hash function is also called a one-to-

one function.) We use this hash function for a hash table of 9

cells; more generally, if there are n nodes in the trie, ni is the

HEXA identifier of the i
th

 node and f is a one-to-one function

mapping ni’s to [1, n], Given such a function, we need to store

only 3 bits worth of information for each node of trie in order

to traverse it: the first bit is set if node corresponds to a valid

prefix, and second and third bits are set if node has a left and

right child. Traversal of the trie is then straightforward. We

start at the first trie node, whose 3-bit tuple will be read from

the array at index f(-). If the match bit is set, we will make a

note of the match, and fetch the next bit from the input stream

to proceed to the next trie node. If the bit is 0 (1) and the left

(right) child bit of the previous node was set, then we will

compute f(ni), where ni is the current sequence of bits (in this

case the first bit of the input stream) and read its 3 bits. We

continue in this manner until we reach a node with no child.

The most recent node with the match bit set will correspond to

the longest matching prefix.

Continuing with the earlier trie of 9 nodes, let the mapping

function f, has the following values for the nine HEXA

identifiers listed above:

With this one-to-one mapping, the fast path memory array

of 3-bits will be programmed as follow; we also list the

corresponding next hops:

 1 2 3 4 5 6 7 8 9

Fast path 1,0,0 1,0,0 1,0,0 0,1,1 0,1,0 1,0,0 0,1,1 0,1,1 1,0,1

Next hop P3 P2 P4 P5 P1

This array and the above mapping function are sufficient to

parse the trie for any given stream of input symbols.

This example suggests that we can dramatically reduce the

memory requirements to represent a trie by practically

eliminating the overheads associated with node identifiers.

However, we require a minimal perfect hash function, which is

hard to devise. In fact, when the trie is frequently updated,

maintaining the one-to-one mapping may become extremely

difficult. We will explain how to enable such one-to-one

mappings with very low cost. We also ensure that our

approach maintains very fast incremental updates; i.e. when

nodes are added or deleted, a new one-to-one mapping can be

computed quickly and with very few changes in the fast path

array.

B. Devising One-to-one Mapping

We have seen that we can compactly represent a directed

trie if we have a minimal perfect hash function for the nodes of

the graph. More generally, we might seek merely a perfect

hash function; that is, we map each identifier to a unique

element of [1, m] for some m ≥ n, mapping the n identifier into

m array cells. For large n, finding perfect hash functions

becomes extremely compute intensive and impractical.

We can simplify the problem dramatically by considering

the fact that HEXA identifier of a node can be modified

without changing its meaning and keeping it unique. For

instance we can allow a node identifier to contain few

additional (say c) bits, which we can alter at our convenience.

We call these c-bits the node’s discriminator. Thus, HEXA

identifier of a node will be the history of labels on which we

will reach the node, plus its c-bit discriminator. We use a

(pseudo)-random hash function to map identifiers plus

1. f(-) = 4

2. f(0) = 7

3. f(1) = 9

4. f(00) = 2

5. f(01) = 8

6. f(11) = 1

7. f(010) = 5

8. f(011) = 3

9. f(0100) = 6

4. 0, 2

1. -
2. 0

3. 1

5. 00

6. 01

7. 11

7. 010

8. 011

9. 0100

1. 0, 2

4. 1, NULL, NULL

5. 0, 7, 8

6. 1, NULL, NULL

6.

1. 0, 2, 3

2. 0, 4, 5

3. 1, NULL, 6

7. 0, 9, NULL

8. 1, NULL, NULL

9. 1, NULL, NULL

10.

0 1

0 1

0

0

1* P1

00* P2

11* P3

011* P4

0100* P5

1

2 3

54

7

9

P2

(a)

(b)

P5

1

6

P31

8

P4

P1

Figure 1: a) routing table, b) corresponding binary trie.

discriminators to possible memory locations. Having these

discriminators and the ability to alter them provides us with

multiple choices of memory locations for a node. Each node

will have 2
c
 choices of HEXA identifiers and hence up to 2

c

memory locations, from which we have to pick just one. The

power of choice in this setting has been studied and used in

multiple-choice hashing [23] and cuckoo hashing [1], and we

use results from these analyses.

Note that when traversing the graph, when trying to access a

node we need to know its discriminator. Hence instead of

storing a single bit for each left and right child, representing

whether it exists or not, we store the discriminator if the child

exists. In practice, we may also optionally reserve the all-0 c-

bit word to represent NULL, giving us only 2
c
-1 memory

locations.

This problem can now be viewed as a bipartite graph

matching problem. The bipartite graph G = (V1+V2, E) consists

of the nodes of the original directed graph as the left set of

vertices, and the memory locations as the right set of vertices.

The edges connecting the left to the right correspond to the

edges determined by the random hash function. Since

discriminators are c-bits long, each left vertex will have up to

2
c
 edges connected to random right vertices. We refer to G as

the memory mapping graph. We need to find a perfect

matching (that is, a matching of size n) in the memory

mapping graph G, to match each node identifier to a unique

memory location.

If we require that m = n, then it suffices that c is log log n +

O(1) to ensure that a perfect matching exists with high

probability. More generally, using results from the analysis of

cuckoo hashing schemes [1], it follows that we can have

constant c if we allow m to be slightly greater than n. For

example, using 2-bit discriminators, giving 4 choices, then m =

1.1n guarantees that a perfect matching exists with high

probability. In fact, not only do these perfect matchings exist,

but they are efficiently updatable, as we describe in Section

II.C.

Continuing with our example of the trie shown in Figure 1,

we now seek to devise a one-to-one mapping using this

method. We consider m = n and assume that c is 2, so a node

can have 4 possible HEXA identifiers, which will enable it to

have up to 4 choices of memory locations. A complication in

computing the hash values may arise because the HEXA

identifiers are not of equal length. We can resolve it by first

appending to a HEXA identifier, its length and then padding

the short identifiers with zeros. Finally we append the

discriminators to them. The resulting choices of identifiers and

the memory mapping graph is shown in Figure 2, where we

assume that the hash function is simply the numerical value of

the identifier modulo 9. In the same figure, we also show a

perfect matching with the matching edges drawn in bold. With

this perfect matching, a node will require only 2-bits to be

uniquely represented (as c = 2).

We now consider incremental updates, and show how a one-

to-one mapping in HEXA can be maintained when a node is

removed and another is added to the trie.

C. Updating a Perfect Matching

In several applications, such as IP lookup, fast incremental

updates are critically important. This implies that HEXA

representations will be practical for the applications only if the

one-to-one nature of the hash function can be maintained in the

face of insertions and deletions. Taking advantage of the

choices available from the discriminator bits, such one-to-one

mappings can be maintained easily.

Indeed, results from the study of cuckoo hashing

immediately yield fast incremental updates. Deletions are of

course easy; we simply remove the relevant node from the

hash table (and update pointers to that node). Insertions are

more difficult; what if we wish to insert a node and its

corresponding hash locations are already taken? In this case,

we need to find an augmenting path in the memory mapping

graph, remapping other nodes to other locations, which is

accomplished by changing their discriminator bits. Finding an

augmenting path will allow the item to be inserted at free

memory location, and increasing the size of the matching in

the memory mapping graph. In fact for tables sized so that a

perfect matching exists in the memory mapping graph,

augmenting paths of size O(log n) exist, so that only O(log n)

nodes need to be re-mapped, and these augmenting paths can

be found via a breadth first search over o(n) nodes [1]. In

practice, a random walk approach, where a node to be inserted

if necessary takes the place of one of its neighbors randomly,

and this replaced node either finds an empty spot in the hash

table or takes the place of one of its other neighbors randomly,

and so on, finds an augmenting path quite quickly [1].

We also note that even when m = n, so that our matching

corresponds to a minimal perfect hash function, using c =

O(log log n) discriminator bits guarantees that if we delete a

node and insert a new node (so that we still have m = n), an

augmenting path of length O(log n/ log log n) exists with high

probability. We omit the straightforward proof.

We will demonstrate in our experiments that the number of

changes needed to maintain a HEXA representation with node

insertions and deletions is quite reasonable in practice. Again,

-

0

1

00

01

11

010

011

0100

00 0, 01 0,
10 0, 11 0

00 1, 01 1,
10 1, 11 1

00 -, 01 -,
10 -, 11 -

00 00, 01 00,
10 00, 11 00

00 01, 01 01,
10 01, 11 01

00 11, 01 11,
10 11, 11 11

00 010, 01 010,
10 010, 11 010

00 011, 01 011,
10 011, 11 011

00 0100, 01 0100,
10 0100, 11 0100

0

1

2

3

4

5

6

7

8

h() = 0, h() = 4
h() = 1, h() = 5

h() = 1, h() = 5
h() = 2, h() = 6

h() = 0, h() = 4
h() = 1, h() = 5

h() = 2, h() = 6
h() = 3, h() = 7

h() = 1, h() = 5
h() = 2, h() = 6

h() = 8, h() = 3
h() = 0, h() = 4

h() = 1, h() = 5
h() = 2, h() = 6

h() = 0, h() = 4
h() = 1, h() = 5

h() = 0, h() = 3
h() = 4, h() = 6

Input labels Four choices of
HEXA identifiers

Choices of
memory locations

Bipartite graph and
a perfect matching

1

2

3

4

5

6

7

8

9

Nodes

Figure 2: Memory mapping graph, bipartite matching.

similar results can be found in the setting of cuckoo hashing.

III. BOUNDED HEXA (BHEXA)

Our current description of HEXA is useful when graph is

acyclic and the total number of input symbols that we parse is

bounded. However, in cyclic graphs, the HEXA identifiers

may become unbounded if we continue traversing a loop and

receiving input symbols. One way to enable bounded HEXA

identifier is to restrict it to say previous k symbols, where k

may be different for different nodes. However, this requires

that all incoming k-long paths into all nodes of the graph have

identical sequence of labels. Clearly, nodes of a general cyclic

graph will not meet this requirement even for k=1 as there may

be multiple incoming transitions into a node labeled with

different symbols. Fortunately, a large number of cyclic graphs

which are used in networking applications do not exhibit this

property, and ensure that all incoming transitions into a node

are labeled with identical symbol. In fact, all incoming k-long

paths into a node are labeled with identical sequence of

symbols, thus potentially creating long unique identifiers;

notice that here k is different for different nodes.

The well known and widely used Aho-Corasick based string

matching automata is one such cyclic graph. All k-long (k>0)

paths leading into any node have identical sequence of labels,

with root node being an exception. Several variants of string

matching automata (e.g. Wu-Manber [4] and Commentz-

Walter [3]), including the recently proposed bit-split version of

Aho-Corasick [6], which is one of the fastest known embedded

implementation, exhibit similar characteristics.

For such graphs, we introduce an extension called bounded

HEXA (bHEXA) which examines a variable but finite number

of symbols in the history to identify a node, instead of

examining the entire history. Since the number of history

symbols that we examine may be different for different nodes,

bHEXA identifiers require additional bits to indicate this

length. While these bits add up to the memory, having variable

length identifiers also opens up another dimension of multiple

choices of identifiers for the nodes, which helps in finding a

one-to-one mapping and reduce the dependence on

discriminator bits or even avoid using them. To clarify, we

consider a simple string-based example.

A. Motivating Example

Let us consider Aho-Corasick automaton for the 3 strings:

abc, cab and abba, defined over the alphabet {a, b, c}. The

automaton (shown in Figure 3) consists of 9 nodes (all

symbols for which a transition is not shown in the figure are

assumed to lead to state 1). A standard implementation of this

automaton will use 4-bit node identifiers. These identifiers will

determine the memory location where the transitions of the

node will be stored. There are three transitions per node (over

symbols a, b and c, respectively) and assuming that a match

flag is required for every node, the fast path memory will store

four entries for each of the nine nodes, as shown below:

Since node identifiers are 4-bits, in this case a node requires

13-bits of fast path memory. We now attempt to use bHEXA

to represent this automaton. Since bHEXA allows identifiers to

contain variable number of input symbols from the history, our

first objective is to identify the legitimate bHEXA identifiers

for the nodes. Clearly, we would like to keep the identifier

unique for each node, irrespective of the path that leads to the

node. The identifier of the root node is “−”, as it is visited

without receiving any input symbol (zero path length). The

identifiers of the nodes which are one transition away from the

root may contain up to one symbol from the history because all

single transition path that will lead to such nodes will be

labeled with identical symbol. As an example, all incoming

edges into node 2 are labeled with a; thus its identifier can

either be − or a. Similarly, the identifier of node 7 can be − or

c. In general, a node which is k transitions away from the root

may have the bHEXA identifier of any length up to k symbols.

For example, both paths 321 →→
ba

 and

3549 →→→
bab

 leads to the node 3, and the last two

symbols in these paths are identical; consequently, its bHEXA

identifier can either be − or b or ab. Choices of bHEXA

identifiers for the remaining nodes are listed below:

Notice that each of the above bHEXA identifier is

legitimate. However, we must ensure that, the ones we choose

are unique, so that no two nodes end up with identical

identifiers. If we employ c-bit discriminators with bHEXA

identifiers then we may allow up to 2
c
 nodes pick identical

identifiers and then use different discriminator values to make

them unique. The memory mapping method that we present in

the next section enforces these constraints and ensures that

bHEXA identifier of each node is unique.

B. Memory Mapping

The next step is to select a bHEXA identifier for every

node, such that they are mapped to unique memory locations.

A large fraction of nodes, being away from the root node, are

likely to have several choices of bHEXA identifiers, which

will improve the probability of a one-to-one mapping. These

choices however come at a cost; if a node has k choices (can

have up to k−1 symbols long bHEXA identifier) then up to

1. −

2. −, a

3. −, b, ab

5. −, b, bb, abb

6. −, a, ba, bba, abba

7. −, c, bc, abc

7. −, c

8. −, a, ca

9. −, b, ab, cab

4. no, 5, 1, 7

5. match, 2, 3, 7

6. match, 8, 1, 7

8.

1. no, 2, 1, 7

2. no, 2, 3, 7

3. no, 2, 4, 6

7. no, 8, 1, 7

8. no, 2, 9, 7

9. match, 2, 4, 6

10.

1

a

2 b

c

7 a 8 b 9

3

b

4 a 5

6
c

c

b

b

a

c

c
c c

c

a
a c

a

a

a

c

Figure 3: Aho-Corasick automaton for the three strings

abc, cab and abba. Gray indicates accepting node

log2k additional bits may be needed to indicate the length of

its identifier. During the graph traversal, these bits will be

required to determine the exact number of history symbols that

forms the bHEXA identifier of the node. In our example

automaton, node 5 has 5 choices; hence 3-bits may be needed

to indicate the length of its bHEXA identifier. We can

however omit the last choice from its set of legitimate

identifiers, thereby keeping the bHEXA identifiers within four

symbols and requiring only 2-bits. For completeness, we also

keep c-bit discriminators (c may be zero, if we do not need

them). Notice that instead of storing the complete bHEXA

identifier, only c+log2k bits worth of information is required

to be stored; this information along with the history of input

symbols are sufficient to re-generate the complete bHEXA

identifier of any given node.

Continuing with our example, we construct a memory

mapping graph (as described in Section II.B), which is shown

in Figure 4. In the graph we use m=10, thus an extra memory

cell is available for the nine nodes. We also limit the bHEXA

identifiers contain up to three history symbols and do not use

discriminators. The edges of the graph are determined by the

hash function h, which is:

() 10mod
1∑ =

×=
k

i i ish ; for the bHEXA identifier s1…sk

In this formula, the input symbols are assumed to take these

numerical values: −=0, a=1, b=2, c=3.

In the same figure, a maximum matching in the memory

mapping graph is highlighted, which assigns a unique memory

location to each node of the automaton. According to this

matching, the bHEXA identifiers of the nodes are chosen as:

Nodes 1 2 3 4 5 6 7 8 9

bHEXA − a ab bb bba bc c ca b

length 0 1 2 2 3 2 1 2 1

Notice again that we only store the length of bHEXA

identifiers in the memory (and discriminators, if they are used).

During the graph traversal, the length and the history of input

symbols are sufficient to reconstruct the complete bHEXA

identifier. Since the length can be encoded with 2-bits in this

case and there are no discriminators, the fast path will require

total 7 bits per node: a match flag and 2-bits each to indicate

the length of the bHEXA identifiers of the three “next nodes”

for the symbols a, b and c, respectively. The resulting

programming of the fast path memory is shown below:

Mem. location node match flag a b c

0 1 0 01 00 01

1 2 0 01 10 01

2 9 1 01 10 01

3 7 0 10 00 01

4 8 0 01 01 01

5 3 0 01 10 10

6 4 0 11 00 01

7

8 6 1 10 00 01

9 5 1 01 10 01

Compared to a standard implementation (13-bits per node),

bHEXA uses about half memory (7-bits per node). There may

however be circumstances when a perfect matching does not

exist in the memory mapping graph. There are two possible

solutions to resolve this problem. The first solution is upward

expansion, in which additional memory cells are allocated;

each new cell improves the likelihood of a larger matching.

The second solution is sideways expansion, in which an extra

bit is added, either to the discriminator of the bHEXA

identifier or to its length, whichever leads to larger matching.

Notice that each such extra bit doubles the number of edges in

the memory mapping graph, which is likely to produce

significantly larger matching. Unfortunately, sideways

expansion also increases the memory rapidly. For example, if

the current bHEXA identifiers require 3-bits, then a single bit

of sideways expansion will increase the total memory by 33%.

A memory efficient way of finding one-to-one mapping

should iterate between two phases. In the first phase, upward

expansion will be applied until the added memory exceeds the

memory needed by a single bit of sideways expansion. If one-

to-one mapping is not yet found then the second phase will

begin, which will reset the previous upward expansion and

perform a bit of sideways expansion. If a one-to-one mapping

is still not found, the first phase is repeated (without resetting

the sideways expansion). This method is expected to find a

one-to-one mapping while also minimizing the memory. In real

bHEXA implementations, however, some new challenges may

also arise, which we discuss in the coming section.

C. Practical Considerations

The challenges that may appear during the implementation

of bHEXA are likely to depend primarily on the characteristics

of the directed graph. The first challenge may arise when the

directed graph contains long paths, all of whose edges have

identical labels. Consider the Aho-Corasick automaton for l

characters long string such as aaaaa… There will be l+1

nodes in the automaton and the legitimate bHEXA identifier

for the i
th

 node will be any such string (aaa…) of length less

than i. In this case, if we attempt to find a one-to-one mapping

without using any discriminator then the bHEXA identifier of

any i
th

 node will be i−1 characters long. Since there are l+1

–, a

–, a, ab

–

–, b, bb, abb

–, a, ba, bba

–, c, bc, abc

–, c

–, a, ca

–, b, ab, cab

0

1

2

3

4

5

6

7

8

h(–) = 0

h(–) = 0
h(a) = 1

h(–) = 0 h(a) = 1
h(ab) = 5

h(–) = 0 h(b) = 2
h(bb) = 6 h(abb) = 1

h(–) = 0 h(a) = 1
h(ba) = 4 h(bba) = 9

h(–) = 0 h(c) = 3
h(bc) = 8 h(abc) = 4

h(–) = 0
h(c) = 3

h(–) = 0 h(a) = 1
h(ca) = 4

h(–) = 0 h(b) = 2
h(ab) = 5 h(cab) = 9

Choices of
bHEXA identifiers

Choices of
memory locations

Bipartite graph and
a maximum matching

1

2

3

4

5

6

7

8

9

Nodes

9
Figure 4: Memory mapping graph, bipartite matching.

nodes, the longest bHEXA identifier will contain l symbols

and log2l bits will be required to store its length. If we

employ c discriminator bits then the longest bHEXA

identifiers can be reduced by a factor of 2
c
, nevertheless the

total number of bits that will be stored per bHEXA identifier

will remain the same. Clearly, large l will undermine the

memory savings achieved by using bHEXA. While such

strings are not common, we would still like to decouple the

performance of bHEXA from the characteristics of the strings

sets.

One way to tackle the problem is to allow the length bits to

indicate superlinear increments in bHEXA identifier length.

For instance, if there are three length bits available then they

may be enabled to represent the bHEXA lengths of 0, 1, 2, 3,

5, 7, 12, and 16, thereby covering a much larger range of

bHEXA lengths. Of course, the exact values that the length

bits will represent will depend upon the strings database.

Second way to tackle the problem is to employ a small on-chip

CAM to store those nodes of the automaton that could not be

mapped to a unique memory location due to the limited

number of length and discriminator bits. In our previous

example, if l is 9, and the bHEXA lengths are represented with

3-bits, then at least 2 nodes of the automaton can not be

mapped to any unique memory location. These nodes can be

stored in the CAM and can be quickly looked at during the

parsing. We refer to the fraction of total nodes that can not be

mapped to unique memory location as the spill fraction. In our

experiments, we find that for real world string sets, the spill

fractions remains low, hence a small CAM will suffice.

D. Challenges with General Finite Automaton

Modern network security appliances use regular expressions

matching and employ finite automata to represent them [xxx].

Since complex regular expressions generally lead to large and

complex automaton, it is important to reduce their memory

footprint to enable an on-chip implementation and high parsing

speed. Therefore, we investigate if it is possible to use some

variant of bHEXA be to represent a general finite automata

and save memory. Unfortunately, our early analysis suggests

that for the finite automaton representation of the regular

expressions used in current systems, it is difficult to save

memory by using bHEXA. The primary reason is the extensive

use of character classes in these regular expressions. We

consider the following simple example to illustrate this.

Consider the simple regular expressions [ab][ca][bc];

such expressions are commonly used. The resulting automaton

is shown below.

1 a,b 2 c,a 3 b,c 4

^c,a
^b,c

*^a,b

In this automaton, none of the nodes have all of its incoming

paths labeled with unique sequence of symbols. Thus, it is

difficult to use bHEXA identifiers to identify them. One may

add new symbols in the alphabet, which will represent those

character classes that are present in the regular expressions,

thereby enabling paths with unique sequences of symbol. This

however is likely to significantly expand the alphabet size,

which will significantly increase the number of outgoing

transitions from every node
1
. For instance, we find that, the

regular expressions sets used in modern security appliance

from Cisco Systems [xxx] have several thousand different

character classes. Other sets [xxx] of regular expressions

exhibit similar characteristics. This is likely to offset any

memory reduction achieved with the bHEXA identifiers.

An orthogonal complication concerns with the performance.

With the expanded alphabet, one may require additional

memory lookups to map any given input symbol into the

alphabet symbol representing the appropriate character class.

Such additional lookups for every input symbol will adversely

affect the parsing performance, and additional memory

bandwidth will be required to maintain a given level of parsing

rate. Memory bandwidth being much pricier than the memory

size [xxx], such trade-offs may not be desirable (assuming that

we were able to save some memory with bHEXA).

To conclude, it appears plausible to employ bHEXA for the

finite automata used to represent regular expressions used in

modern networking equipments, we conclude that it not clear,

if this will lead to significant memory saving. The added

complexity in parsing and symbol resolution to the character

classes will offset the memory saving, if there is any at all.

Nevertheless, we leave further investigation of the issue for the

future research.

IV. EXPERIMENTAL EVALUATION

We have performed a thorough experimental evaluation of

the HEXA and bHEXA representations. First, we consider

HEXA based representation of real world IP lookup tries. The

results demonstrate that, HEXA can dramatically reduce the

memory required by a binary trie; at the same time it can also

reduce the memory in more sophisticated trie implementations

like multi-bit trie and tree bit-map. Second, we employ HEXA

to implement the finite automata, which are used to perform

string matching operations. We consider two flavors of high

performance string matcher, the classic Aho-Corasick

automaton, and the recently proposed bit-split version. We

show that, in both cases, HEXA reduces memory by up to five

times without sacrificing the parsing performance.

A. Results on Tries

BGP tables have grown steadily over the past two decades

from less than 5000 entries in the early 1990s to nearly 75,000

entries in 2000 to 135,000 entries today, and the growth is

expected to continue in the near future. Binary tries are a

standard method to implement these BGP tables and enable

fast lookup. High performance implementations of these

lookup tries consider multiple input bits at a time, thereby

creating multi-bit nodes. The multi-bit nodes can be

represented compactly by using tree bit-map tactics. In our

1 Notice that in a DFA, at any given node, there is an outgoing transition

for every symbol in the alphabet.

experiments, we have employed HEXA to implement both

binary trie as well as multi-bit trie. Unless otherwise specified,

the reported results are based on the prefixes in more than fifty

BGP tables obtained from [19].

1) Binary Tries

In Figure 4, for varying trie sizes, we plot the number of

choices of HEXA identifiers that are needed to ensure that a

perfect matching exists in the memory mapping graph with

more than 90% probability. As expected, more choices of

HEXA identifiers or increased memory over-provisioning

((m−n)/m) improves the chances of a perfect matching. In

compliance with the theoretical analysis, for m=n, the required

number of HEXA identifier choices remains O(log n).

However, when m is slightly greater than n (results for 1, 3 and

10% are reported here), the required number of choices

becomes constant, independent of the trie size. Recall that the

number of HEXA identifier choices determines the number of

discriminator bits that are needed for a node, thus a small

memory over-provisioning is desirable in order to keep the

discriminators constant in size.

From a practical point, we would like to keep the number of

choices of HEXA identifiers a power of two minus one, so that

one discriminator value will be used to indicate a null child

node and all remaining permutations of discriminator values

will be used in finding better matching. Thus, we are interested

in such number of HEXA choices as 1, 3, 7, etc. Therefore, we

fix the number of HEXA choices at these values, and plot the

memory over-provisioning needed to successfully perform a

one-to-one memory mapping (Figure 5). It is clear that that for

3 HEXA identifier choices, the required memory over-

provisioning is 10%. Thus, 2.2 bits are enough to represent

each node identifier.

2) Multi-bit tries

We now extend our evaluation of HEXA to multi-bit tries

where tree bit-maps are used to represent the multi-bit nodes.

Notice that when HEXA is used for such tries, the bit-masks

used for the tree bitmap nodes are not affected; only the

pointers to the child nodes are replaced with the child’s

discriminator. The first design issue in such tries is to

determine a stride which will minimize the total memory. We

accomplish this experimentally by applying different strides to

our datasets and measuring the total fast path memory. The

results are reported in Figure 6. Clearly, strides of 3, 4 and 5

are the most appropriate choices, when HEXA is not used.

When HEXA is employed, large strides no longer remain

effective in reducing the memory. This happens because a uni-

bit HEXA trie requires just 2-bits of discriminator to represent

a node, thus there is little room for further memory reductions

by representing a subset of nodes with a bitmap. In fact, with

increasing stride, the bitmaps grow exponentially and quickly

surpass any memory savings achieved with the tree bitmap

based multi-bit nodes.

Note that smaller strides may not be acceptable in off-chip

memory based implementations. However, in an embedded

implementation such as pipelined trie [26], small stride may

enable higher throughput, as reported in [27]. This happens

because with small stride, one can employ much deeper

pipelines and each pipeline stage can be kept compact and fast.

3) Incremental Updates

We now present the results of incremental updates on tries

0

4

8

12

16

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Number of nodes in the trie

N
u

m
b

e
r

o
f

H
E

X
A

 i
d

e
n

ti
fi

e
r

c
h

o
ic

e
s

no memory over-provisioning
1% memory over-provisioning
3% memory over-provisioning
10% memory over-provisioning

Figure 4: For different memory over-provisioning

values and trie sizes, the number of choices of HEXA

identifier that is needed to successfully perform the

memory mapping

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Stride

F
a

s
t

p
a

th
 t

ri
e

 m
e

m
o

ry
 (

M
B

)

without HEXA

with HEXA

Figure 6: Memory needed to represent the fast path

portion of the trie with and without HEXA. 32 tries are

used, each containing between 100-120k prefixes.

0

0.05

0.1

0.15

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Number of nodes in the trie

M
e
m

o
ry

 o
v
e
r-

p
ro

v
is

io
n

in
g

3 HEXA choices
4 HEXA choices
7 HEXA choices

Figure 5: For different number of choices of HEXA

identifiers and trie sizes, the memory over-provisioning

that is needed to successfully perform the memory

mapping

represented with HEXA. In our experiments, we remove a

node and add another to a HEXA trie, and then attempt to find

a mapping for the newly added node. The general objective of

triggering minimum changes in the existing mapping is

achieved by finding the shortest augmenting path in the

memory mapping graph, between the newly added node and

some free memory location (as described in Section II.C). We

find that the shortest augmenting path indeed remains small,

thus a small number of existing nodes are remapped. In Figure

7, we plot the probability distribution of the number of nodes

that are remapped during an update. It is clear that no update is

likely to take more than 19 memory operations and a large

majority of updates require less than ten memory operations.

Thus, update operations in a HEXA trie can be carried out

quickly, irrespective of the trie shape and update patterns.

B. Results on Strings

In this section, we report the results obtained from the

experiments in which we use bHEXA to implement string

based pattern matchers. We have obtained the string sets from

a collection of sources: peptide protein signatures [25], Bro

signatures [20], and string components of the Cisco security

signatures [21]. We have also used randomly generated

signatures whose lengths were kept comparable to the real

world security signatures. These strings were implemented

with Aho-Corasick automaton; in most experiments we did not

use failure pointers as they reduce the throughput. Without

failure pointers, an automaton has 256 outgoing transitions per

node, and may require large amounts of memory. In order to

cope up with such high fan-out issue, we have considered the

recently proposed bit-split version of Aho-Corasick, wherein

multiple state machines are used, each handling a subset of the

8-bits in each input symbol. For example, one can use eight

binary state machines, with each machine looking at a single

bit of the 8-bit input symbols, thereby reducing the total

number of per node transitions to 16.

First, we report the results on randomly generated sets of

strings consisting of a total 64887 ASCII characters. In Figure

8(a), we plot the spill fraction (number of automaton nodes

that could not be mapped to a memory location) as we vary the

memory over-provisioning. It is clear from the plot that it is

difficult to achieve zero spill without using discriminators.

With a single bit of discriminator and less than 10% memory

over-provisioning, spill fraction becomes zero, even when the

bHEXA lengths are limited to 4. Thus, total 3-bits are needed

in this case, to identify any given node: one for its

discriminator and two to indicate the length of its bHEXA

identifier. This represents more than five fold reduction in the

memory when compared to a standard implementation, which

will require 16-bits to represent a node.

Next we report similar results for real world string sets. In

Figure 8(b), we plot the spill fraction for the set of protein

strings, and the strings extracted from the Bro signatures, and

Cisco security signatures. We only report results of those

bHEXA configurations (number of discriminator bits and

maximum bHEXA length) that keep the spill fraction at an

acceptably low value. For the Bro strings, about 10% memory

over-provisioning is needed in order to keep the spill fraction

below 0.2%. The spill level corresponds to 11 nodes which

remain unmapped in the automaton consisting of total 5853

nodes. The bHEXA configuration in this case does not use any

discriminator and limits the length to 8, thus total of 3-bits are

needed to identify any given node. For the protein patterns,

again a 10% memory over-provisioning is needed in a

configuration that uses 1-bit discriminator and up to 8

characters long bHEXA identifiers. Thus, in this case, 4-bits

are needed to represent a node.

In the Cisco string set containing total 622 strings, there was

one string that consisted of \x04 ASCII symbol repeated 50

times, which creates up to 50 states with identical bHEXA

identifiers. This is precisely the issue that we have described in

Section III.C. With restricted bHEHA length and limited

discriminator bits, it is impossible to uniquely identify each of

the resulting 51 nodes. Consequently, in a configuration where

we employ 4-bits per bHEXA identifier, 35 nodes remain

unmapped even if we arbitrarily increase the memory over-

provisioning (refer to third set of vertical columns in Figure

8(b)). As we remove this string from the database, we were

able to reduce the spill fraction to 0.1% with no memory over-

provisioning and for an identical bHEXA configuration (last

set of vertical columns in Figure 8(b)).

These results suggest that bHEXA based representations

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of memory operations per update

P
ro

b
a
b

il
it

y

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

of memory operations per update

P
ro

b
a
b

il
it

y

Figure 7: PDF of the number of memory operations required to perform a single trie update. Left trie size = 100,000

nodes, Right trie size = 10,000 nodes.

reduces the memory by between 3 to 5 times, when compared

to standard representations. In our final set of experiments, we

attempted to represent bit-split Aho-Corasick automaton with

bHEXA. We have employed four state-machines, each

handling two bits of the 8-bit input character. To our surprise,

we found that bit-split versions were more difficult to map to

the memory, and requires longer discriminators and bHEXA

identifiers, which increases the number of bits per node. In

spite of employing the techniques we have discussed in section

III.C (e.g. using superlinear increase in the bHEXA length),

we generally require 5 bits to represent each node of a bit-split

automaton. This represents approximately 2-3 fold reduction

in memory as compared to a standard implementation. The

results are plotted in Figure 8(c).

To summarize, bHEXA based representations achieve

between 2-5 fold reductions in the memory. Such reductions

will not only aid in reducing the on-chip memory but also yield

higher throughput at lower power dissipation levels.

V. RELATED WORK

Please refer to our technical report. Due to the space

limitations, we are unable to include related work here.

VI. CONCLUDING REMARKS

In this paper, we develop HEXA, a novel representation for

structured graphs such as tries. HEXA uses a unique method to

locate the nodes of the graph in memory, which enables it to

avoid using any “next node” pointer. Since these pointers often

consume most of the memory required by the graph, HEXA

based representations are significantly more compact than the

standard representations. We validate HEXA over two well

known applications, IP lookup and string matching and find

that HEXA indeed reduces the memory by up to five times.

Such reduction levels facilitate the use of embedded memory,

which can dramatically improve the packet throughput and

reduce the power dissipation.

REFERENCES

[1] R. Pagh, F. F. Rodler, Cuckoo Hashing, Proc. 9th Annual European

Symposium on Algorithms, August 28-31, 2001, pp.121-133.

[2] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Comm. of the ACM, 18(6):333–340, 1975.

[3] B. Commentz-Walter, “A string matching algorithm fast on the
average,” Proc. of ICALP, pages 118–132, July 1979.

[4] S. Wu, U. Manber,” A fast algorithm for multi-pattern searching,” Tech.
R. TR-94-17, Dept. of Comp. Science, Univ of Arizona, 1994.

[5] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
IEEE Infocom 2004, pp. 333--340.

[6] L. Tan, and T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection and Prevention,” ISCA 2005.

[7] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for Efficient and
High-Speed NIDS Pattern Matching,” Proc. IEEE Symp. on Field-Prog.
Custom Computing Machines, Apr. 2004, pp. 258–267.

[8] S. Yusuf and W. Luk, “Bitwise Optimised CAM for Network Intrusion
Detection Systems,” IEEE FPL 2005.

[9] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep Packet Inspection using Parallel Bloom Filters,” IEEE Hot
Interconnects 12, August 2003. IEEE Computer Society Press.

[10] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High

Speed IP Routing Lookups,” in Proc. ACM SIGCOMM’97, pp. 25-37.

[11] V. Srinivasan, and G. Varghese., “Fast Address Lookups using

Controlled Prefix Expansion”, in ACM Transactions on Computer

Systems, vol. 17, no. 1, 1999, pp. 1-40.

[12] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S. Sproull, and D. B.

Parlour, "Scalable IP Lookup for Internet Routers," in IEEE Journal on

Selected Areas in Communications, 2003.

[13] W. Eatherton, Z. Dittia, and G. Varghese, “Tree bitmap:

Hardware/software ip lookups with incremental updates”, in ACM

SIGCOMM Computer Communications Review, 34(2), 2004.

[14] A. Basu and G. Narlikar, “Fast Incremental Updates for Pipelined

Forwarding Engines”, in Proceedings of INFOCOM 2003, 2003

[15] J. Hasan and T.N. Vijaykumar, “Dynamic Pipelining: Making IP-

Lookup Truly Scalable”, in Proc. ACM SIGCOMM 2005, pp 205-216.

[16] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental Study of Internet

Stability and Wide-Area Backbone Failures”, Proc. 29th Annual

International Symp. on Fault-Tolerant Computing, Madison, WI, June

1999.

[17] Routing Information Service. http://www.ris.ripe.net

[18] CACTI.www.research.compact.com/wrl/people/jouppi/CACTI.html

[19] BGP Table Data. http://bgp.potaroo.net, April 2006

[20] Bro: A System for Detecting Network Intruders in Real-Time.
http://www.icir.org/vern/bro-info.html

[21] Will Eatherton, John Williams, “An encoded version of reg-ex database
from cisco systems provided for research purposes”.

[22] M. Roesch, “Snort: Lightweight intrusion detection for networks,” In
Proc. 13th Systems Administration Conference (LISA), USENIX
Association, November 1999, pp 229–238.

[23] Adam Kirsch, M. Mitzenmacher, “Simple Summaries for Hashing with
Multiple Choices,” In Proceedings of the Forty-Third Annual Allerton
Conference on Communication, Control, and Computing, 2005.

[24] M. Degermark, A. Brodnik, S. Carlsson and S. Pink, “Small Forwarding

Tables for Fast Routing Lookups”, in Proc. of ACM SIGCOMM 1997.

[25] Comprehensive Peptide Signature Database, Institute of Genomics and
Integrative Biology, http://203.90.127.70/copsv2/

[26] A. Basu and G. Narlikar, “Fast Incremental Updates for Pipelined

Forwarding Engines”, in Proceedings of INFOCOM 2003, 2003

[27] Florin Baboescu, Dean M. Tullsen, Grigore Rosu, Sumeet Singh, “A
Tree Based Router Search Engine Architecture with Single Port
Memories,” in ISCA 2005.

0

0.03

0.06

0.09

0.12

0 0.1 0.2 0.3 0.4 0.5

Memory over-provisioning

S
p

il
l

fr
a
c
ti

o
n

bHEXA length=4, no discriminator

bHEXA length=8, no discriminator

bHEXA length=4; 1-bit discriminator

0

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4 0.5

Memory over-provisioning

S
p

il
l

fr
a
c
ti

o
n

Bro (bHEXA length=8, no discriminator)

Protein (bHEXA length=8; 1-bit discriminator)

Cisco622 (bHEXA length=8, 1-bit discriminator)

Cisco621 (bHEXA length=8, 1-bit discriminator)

0

0.002

0.004

0.006

0.008

0 0.1 0.2 0.3 0.4 0.5

Memory over-provisioning

S
p

il
l

fr
a
c
ti

o
n

Random (bHEXA length=8, 3-bit discriminator)

Protein (bHEXA length=8; 3-bit discriminator)

Bro (bHEXA length=8, 2-bit discriminator)

Cisco621 (bHEXA length=16, 2-bit discriminator)

Figure 8: Plotting spill fraction: a) Aho-Coroasick automaton for random strings sets, b) Aho-Coroasick automaton

for real world string sets, and c) random and real world strings with bit-split version of Aho-Corasick.

