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Abstract—Data structures representing directed graphs with 

edges labeled by symbols from a finite alphabet are used to 

implement packet processing algorithms used in a variety of 

network applications. In this paper we present a novel approach 

to represent such data structures, which significantly reduces the 

amount of memory required. This approach called History-based 

Encoding, eXecution and Addressing (HEXA) challenges the 

conventional assumption that graph data structures must store 

pointers of log2n bits to identify successor nodes. We show how 

the data structures can be organized so that implicit information 

can be used to locate successors, significantly reducing the 

amount of information that must be stored explicitly. We 

demonstrate that the binary tries used for IP route lookup can be 

implemented using just two bytes per stored prefix (roughly half 

the space required by Eatherton’s tree bitmap data structure) and 

that string matching can be implemented using 20-30% of the 

space required by conventional data representations. 

Compact representations are useful, because they allow the 

performance-critical part of packet processing algorithms to be 

implemented using fast, on-chip memory, eliminating the need to 

retrieve information from much slower off-chip memory. This can 

yield both substantially higher performance and lower power 

utilization. While enabling a compact representation, HEXA does 

not add significant complexity to the graph traversal and update, 

thus maintaining a high performance. 

 
Index Terms— content inspection, IP lookup, string matching 

I. INTRODUCTION 

everal common packet processing tasks make use of 

directed graph data structures in which edge labels are 

used to match symbols from a finite alphabet. Examples 

include tries used in IP route lookup and string-matching 

automata used to implement deep packet inspection for virus 

scanning. In this paper, we develop a novel representation for 

such data structures that is significantly more compact than 

conventional approaches. This compactness can lead to higher 

performance in implementation contexts where we have small 

on-chip memories with ample memory bandwidth and larger 

off-chip memories with more limited bandwidth. These 

characteristics are common to conventional processors, 

network processors, ASICs and FPGA implementations. 

We observe that the edge-labeled, directed graphs used by 

some packet processing tasks have the property that for all 

nodes u, all paths of length k leading to u are labeled by the 

same string of symbols, for all values of k up to some bound. 

For example, tries satisfy this condition trivially, since for each 

value of k, there is only one path of length k leading to each 

node. The data structure used in the Aho-Corasick string 

matching algorithm [2] also satisfies this property, even though 

in this case there may be multiple paths leading to each node. 

Since the algorithms that traverse the data structure know the 

symbols that have been used to reach a node, we can use this 

“history” to define the storage location of the node. Since 

some nodes may have identical histories, we need to augment 

the history with some discriminating information, to ensure 

that each node is mapped to a distinct storage location. We 

find that in some applications the amount of discriminating 

information needed can be remarkably small. For binary tries 

for example, two bits of discriminating information is 

sufficient. This leads to a binary trie representation that 

requires just two bytes per stored prefix for IP routing tables 

with more than 100K prefixes. We call the technique used to 

construct these compact data representations, History-based 

Encoding, eXecution and Addressing (HEXA). 

In Section II, we introduce HEXA and apply it to binary 

tries. We show that the problem of selecting discriminators 

corresponds to finding a perfect matching in a bipartite graph; 

we also show how the data structure can be incrementally 

modified. In Section III, we describe a variant of HEXA in 

which the discriminator specifies the amount of history 

information that has to be used to identify the storage location 

of a node. We then apply this technique to the data structure 

used by the Aho-Corasick string matching algorithm as well as 

the bit-split version of the algorithm [6]. In Section IV we 

report on the results of our evaluation of HEXA for binary 

tries and string matching. Section V covers the related work 

and the paper ends with concluding remarks in Section VI. 

II. INTRODUCTION TO HEXA 

Directed graphs are commonly used to implement various 

packet processing algorithms which are used in a variety of 

network applications, some of which are listed below: 

• Longest prefix match IP lookup: IP routing involves a 

longest prefix match, where destination IP address of a 

packet is matched against a large but finite set of prefixes 

and the longest matching prefix determines the next hop. 
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Tries, which essentially are a directed graph without any 

cycles, are often used to implement such operations. 

• Packet classification: Packet classification involves a 

multi-dimensional search on packet’s 5-tuple (source/ 

destination addresses, ports and protocol). Search in each 

dimension often consists of a longest prefix match, which is 

commonly implemented using tries. These tries usually have 

a similar structure as an IP lookup trie. 

• String matching: Commercial network security devices 

like network intrusion detection systems (NIDS), and 

application layer firewalls often use string based pattern 

matching to identify malicious packets. String matching is 

usually performed with the aid of a finite automaton (e.g. 

Aho-Corasick, Wu-Manber etc), which is a directed graph 

with labeled edges. Nodes of these graphs usually have 

much higher and varying out-degrees. 

• Regular expression matching: Modern security systems 

specify the patterns of interest using regular expressions. 

Regular expressions are also used to enable advanced 

network services like content based routing, metering, etc. 

Finite automata are usually used to implement regular 

expressions, which are again a labeled directed graph. 

Complex expressions usually lead to relatively complex 

graphs, as compared to a string based automaton. 

• There are several other applications, which use directed 

graph structures. Some examples are a web indexing and 

search engines, an access control list (ACL), or even a file 

system. In this paper, we will mostly focus on the first four 

applications. 

Since such a wide variety of network applications employ 

some form of directed graph traversal, a large body of research 

literature has focused on improving its performance. For 

example, [11] propose a multi-bit trie representation, where 

multiple nodes of a binary trie are merged into a single node. 

There are also schemes to compactly encode these multi-bit 

trie nodes [13]. Another class of directed graphs is finite 

automaton; in [5] authors present techniques to improve the 

parsing performance of a finite automaton, which is used to 

perform string matching. It uses a similar technique, where 

multiple states of the automaton are merged into a single state 

and represented compactly. In [6], authors propose an 

alternative technique to reduce the space by reducing the 

number of transitions from every node of the graph. 

Most of these solutions are too specialized; fine tuned and 

optimized for their respective applications, however a common 

link between them is that they reduce the memory by either 

reducing the number of transitions in the graph or by reducing 

the number of nodes. They also demonstrate that the space 

reduction achieved by reducing the number of nodes and/or 

transitions may also enhance the parsing performance of the 

graph, by utilizing the fast but limited on-chip memory. 

With or without the reductions in the number of nodes or 

transitions, to our best knowledge, directed graphs are always 

implemented in the following conventional manner. Each node 

in the n node graph is denoted by a unique log2n bit 

identifier, which also determines the memory location of the 

node. At this memory location, all transitions of the node 

(identifiers of the subsequent “next nodes”) are stored, along 

with some auxiliary information. The auxiliary information 

may be a flag indicating if the node corresponds to a match in 

a string matching automata or a valid prefix in an IP lookup 

trie, and an identifier for the string, or the next hop for the 

matching prefix. The auxiliary information usually requires 

only a few bits and is kept once for every node; on the other 

hand, identifiers of the “next node” use log2n bits each and 

are required once for every transition. Thus, in large graphs 

(say a million nodes) containing multiple transitions per node 

(say two), the memory required by the identifiers of the “next 

node” (20-bits per identifier, 2 such identifiers per node) can 

be much higher than the memory required by the auxiliary 

information. 

Another complicating factor in the conventional design 

approach is that, the transitions or the identifiers of the “next 

node” are read for each symbol in the input stream, while the 

auxiliary information is read only upon a match. This 

necessitates that the “next node” identifiers be stored in a high 

speed memory (e.g. SRAM or embedded) in order to enable 

high parsing rate. For instance, a high performance lookup trie 

may store the set of “next nodes”, for every node, in a fast 

memory along with a flag indicating whether the node 

corresponds to a prefix. On the other hand, the next hop 

information can be kept with a shadow trie, stored in a slow 

memory like DRAM. Similarly, in string matching automaton, 

in addition to the “next node” identifiers, only a flag per node 

is needed in the fast memory, which will indicate whether the 

node is a match. The prime motivation of such separation of 

fast and slow path is to reduce the high speed memory, which 

is often expensive and less dense. The advantages are however 

undermined as the identifiers of the “next node” represent a 

large fraction of the total memory. While there is a general 

interest in reducing the total memory, clearly there are 

increased benefits in reducing the memory required to store 

these “next node” identifiers. 

In this paper, we propose a new method to store directed 

graph structures that we dub HEXA (History based Encoding, 

eXecution, and Addressing). While conventional methods use 

log2n bits to identify each of n nodes in a graph, by taking 

advantage of the graph structure, HEXA employs a novel 

method that can use a fixed constant number of bits per node 

for structured graphs such as tries. Thus, when HEXA based 

identifiers are used to denote the transitions of the graph, the 

fast memory needed to store these transitions can be 

dramatically reduced. The total memory is also reduced 

significantly, because auxiliary information often represents a 

small fraction of the total memory. 

The key to the identification mechanism used by HEXA is 

that when nodes are not accessed in a random ad-hoc order but 

in an order defined by its transitions, the nodes can be 

identified by the way the parsing proceeds in the graph. For 

instance, in a trie, if we begin parsing at the root node, we can 



 

reach any given node only by a unique stream of input 

symbols. In general, as the parsing proceeds, we need to 

remember only the previous symbols needed to uniquely 

identify the nodes. To clarify, we consider a simple trie-based 

example before formalizing the ideas behind HEXA. 

A. Motivating Example 

Let us consider a simple directed graph given by an IP 

lookup trie. A set of 5 prefixes and the corresponding binary 

trie, containing 9 nodes, is shown in Figure 1. We consider 

first the standard representation. A node stores the identifier of 

its left and right child and a bit indicating if the node 

corresponds to a valid prefix. Since there are 9 nodes, 

identifiers are 4-bits long, and a node requires total 9-bits in 

the fast path. The fast path trie representation is shown below, 

where nodes are shown as 3-tuple consisting of the prefix flag 

and the left right children (NULL indicates no child): 

 
Here, we assume that the next hops associated with a 

matching node are stored in a shadow trie which is stored in a 

relatively slow memory. Note that if the next hop trie has a 

structure identical to the fast path trie, then the fast path trie 

need not contain any additional information. Once the fast path 

trie is traversed and the longest matching node is found, we 

will read the next hop trie once, at the location corresponding 

to the longest matching node. 

We now consider storing the fast path of the trie using 

HEXA. In HEXA, a node will be identified by the input stream 

over which it will be reached. Thus, the HEXA identifier of 

the nodes will be: 

 
These identifiers are unique. HEXA requires a hash 

function; temporarily, let us assume we have a minimal perfect 

hash function f that maps each identifier to a unique number in 

[1, 9]. (A minimal perfect hash function is also called a one-to-

one function.) We use this hash function for a hash table of 9 

cells; more generally, if there are n nodes in the trie, ni is the 

HEXA identifier of the i
th

 node and f is a one-to-one function 

mapping ni’s to [1, n], Given such a function, we need to store 

only 3 bits worth of information for each node of trie in order 

to traverse it: the first bit is set if node corresponds to a valid 

prefix, and second and third bits are set if node has a left and 

right child. Traversal of the trie is then straightforward. We 

start at the first trie node, whose 3-bit tuple will be read from 

the array at index f(-). If the match bit is set, we will make a 

note of the match, and fetch the next bit from the input stream 

to proceed to the next trie node. If the bit is 0 (1) and the left 

(right) child bit of the previous node was set, then we will 

compute f(ni), where ni is the current sequence of bits (in this 

case the first bit of the input stream) and read its 3 bits. We 

continue in this manner until we reach a node with no child. 

The most recent node with the match bit set will correspond to 

the longest matching prefix. 

Continuing with the earlier trie of 9 nodes, let the mapping 

function f, has the following values for the nine HEXA 

identifiers listed above: 

 
With this one-to-one mapping, the fast path memory array 

of 3-bits will be programmed as follow; we also list the 

corresponding next hops: 

 1 2 3 4 5 6 7 8 9 

Fast path 1,0,0 1,0,0 1,0,0 0,1,1 0,1,0 1,0,0 0,1,1 0,1,1 1,0,1 

Next hop P3 P2 P4   P5   P1 

This array and the above mapping function are sufficient to 

parse the trie for any given stream of input symbols. 

This example suggests that we can dramatically reduce the 

memory requirements to represent a trie by practically 

eliminating the overheads associated with node identifiers. 

However, we require a minimal perfect hash function, which is 

hard to devise. In fact, when the trie is frequently updated, 

maintaining the one-to-one mapping may become extremely 

difficult. We will explain how to enable such one-to-one 

mappings with very low cost. We also ensure that our 

approach maintains very fast incremental updates; i.e. when 

nodes are added or deleted, a new one-to-one mapping can be 

computed quickly and with very few changes in the fast path 

array. 

B. Devising One-to-one Mapping 

We have seen that we can compactly represent a directed 

trie if we have a minimal perfect hash function for the nodes of 

the graph. More generally, we might seek merely a perfect 

hash function; that is, we map each identifier to a unique 

element of [1, m] for some m ≥ n, mapping the n identifier into 

m array cells. For large n, finding perfect hash functions 

becomes extremely compute intensive and impractical. 

We can simplify the problem dramatically by considering 

the fact that HEXA identifier of a node can be modified 

without changing its meaning and keeping it unique. For 

instance we can allow a node identifier to contain few 

additional (say c) bits, which we can alter at our convenience. 

We call these c-bits the node’s discriminator. Thus, HEXA 

identifier of a node will be the history of labels on which we 

will reach the node, plus its c-bit discriminator. We use a 

(pseudo)-random hash function to map identifiers plus 

1. f(-) = 4 

2. f(0) = 7 

3. f(1) = 9 

4. f(00) = 2 

5. f(01) = 8 

6. f(11) = 1 
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9. f(0100) = 6 

4. 0, 2 
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5. 0, 7, 8 

6. 1, NULL, NULL 

6.  

1. 0, 2, 3 

2. 0, 4, 5 

3. 1, NULL, 6 

7. 0, 9, NULL 

8. 1, NULL, NULL 

9. 1, NULL, NULL 
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6

P31

8
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Figure 1: a) routing table, b) corresponding binary trie. 



 

discriminators to possible memory locations. Having these 

discriminators and the ability to alter them provides us with 

multiple choices of memory locations for a node. Each node 

will have 2
c
 choices of HEXA identifiers and hence up to 2

c
 

memory locations, from which we have to pick just one. The 

power of choice in this setting has been studied and used in 

multiple-choice hashing [23] and cuckoo hashing [1], and we 

use results from these analyses. 

Note that when traversing the graph, when trying to access a 

node we need to know its discriminator. Hence instead of 

storing a single bit for each left and right child, representing 

whether it exists or not, we store the discriminator if the child 

exists. In practice, we may also optionally reserve the all-0 c-

bit word to represent NULL, giving us only 2
c
-1 memory 

locations. 

This problem can now be viewed as a bipartite graph 

matching problem. The bipartite graph G = (V1+V2, E) consists 

of the nodes of the original directed graph as the left set of 

vertices, and the memory locations as the right set of vertices. 

The edges connecting the left to the right correspond to the 

edges determined by the random hash function. Since 

discriminators are c-bits long, each left vertex will have up to 

2
c
 edges connected to random right vertices. We refer to G as 

the memory mapping graph. We need to find a perfect 

matching (that is, a matching of size n) in the memory 

mapping graph G, to match each node identifier to a unique 

memory location. 

If we require that m = n, then it suffices that c is log log n + 

O(1) to ensure that a perfect matching exists with high 

probability. More generally, using results from the analysis of 

cuckoo hashing schemes [1], it follows that we can have 

constant c if we allow m to be slightly greater than n. For 

example, using 2-bit discriminators, giving 4 choices, then m = 

1.1n guarantees that a perfect matching exists with high 

probability. In fact, not only do these perfect matchings exist, 

but they are efficiently updatable, as we describe in Section 

II.C. 

Continuing with our example of the trie shown in Figure 1, 

we now seek to devise a one-to-one mapping using this 

method. We consider m = n and assume that c is 2, so a node 

can have 4 possible HEXA identifiers, which will enable it to 

have up to 4 choices of memory locations. A complication in 

computing the hash values may arise because the HEXA 

identifiers are not of equal length. We can resolve it by first 

appending to a HEXA identifier, its length and then padding 

the short identifiers with zeros. Finally we append the 

discriminators to them. The resulting choices of identifiers and 

the memory mapping graph is shown in Figure 2, where we 

assume that the hash function is simply the numerical value of 

the identifier modulo 9. In the same figure, we also show a 

perfect matching with the matching edges drawn in bold. With 

this perfect matching, a node will require only 2-bits to be 

uniquely represented (as c = 2). 

We now consider incremental updates, and show how a one-

to-one mapping in HEXA can be maintained when a node is 

removed and another is added to the trie. 

C. Updating a Perfect Matching 

In several applications, such as IP lookup, fast incremental 

updates are critically important. This implies that HEXA 

representations will be practical for the applications only if the 

one-to-one nature of the hash function can be maintained in the 

face of insertions and deletions. Taking advantage of the 

choices available from the discriminator bits, such one-to-one 

mappings can be maintained easily. 

Indeed, results from the study of cuckoo hashing 

immediately yield fast incremental updates. Deletions are of 

course easy; we simply remove the relevant node from the 

hash table (and update pointers to that node). Insertions are 

more difficult; what if we wish to insert a node and its 

corresponding hash locations are already taken? In this case, 

we need to find an augmenting path in the memory mapping 

graph, remapping other nodes to other locations, which is 

accomplished by changing their discriminator bits. Finding an 

augmenting path will allow the item to be inserted at free 

memory location, and increasing the size of the matching in 

the memory mapping graph. In fact for tables sized so that a 

perfect matching exists in the memory mapping graph, 

augmenting paths of size O(log n) exist, so that only O(log n) 

nodes need to be re-mapped, and these augmenting paths can 

be found via a breadth first search over o(n) nodes [1]. In 

practice, a random walk approach, where a node to be inserted 

if necessary takes the place of one of its neighbors randomly, 

and this replaced node either finds an empty spot in the hash 

table or takes the place of one of its other neighbors randomly, 

and so on, finds an augmenting path quite quickly [1]. 

We also note that even when m = n, so that our matching 

corresponds to a minimal perfect hash function, using c = 

O(log log n) discriminator bits guarantees that if we delete a 

node and insert a new node (so that we still have m = n), an 

augmenting path of length O(log n/ log log n) exists with high 

probability. We omit the straightforward proof. 

We will demonstrate in our experiments that the number of 

changes needed to maintain a HEXA representation with node 

insertions and deletions is quite reasonable in practice. Again, 
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Figure 2: Memory mapping graph, bipartite matching. 



 

similar results can be found in the setting of cuckoo hashing. 

III. BOUNDED HEXA (BHEXA) 

Our current description of HEXA is useful when graph is 

acyclic and the total number of input symbols that we parse is 

bounded. However, in cyclic graphs, the HEXA identifiers 

may become unbounded if we continue traversing a loop and 

receiving input symbols. One way to enable bounded HEXA 

identifier is to restrict it to say previous k symbols, where k 

may be different for different nodes. However, this requires 

that all incoming k-long paths into all nodes of the graph have 

identical sequence of labels. Clearly, nodes of a general cyclic 

graph will not meet this requirement even for k=1 as there may 

be multiple incoming transitions into a node labeled with 

different symbols. Fortunately, a large number of cyclic graphs 

which are used in networking applications do not exhibit this 

property, and ensure that all incoming transitions into a node 

are labeled with identical symbol. In fact, all incoming k-long 

paths into a node are labeled with identical sequence of 

symbols, thus potentially creating long unique identifiers; 

notice that here k is different for different nodes. 

The well known and widely used Aho-Corasick based string 

matching automata is one such cyclic graph. All k-long (k>0) 

paths leading into any node have identical sequence of labels, 

with root node being an exception. Several variants of string 

matching automata (e.g. Wu-Manber [4] and Commentz-

Walter [3]), including the recently proposed bit-split version of 

Aho-Corasick [6], which is one of the fastest known embedded 

implementation, exhibit similar characteristics. 

For such graphs, we introduce an extension called bounded 

HEXA (bHEXA) which examines a variable but finite number 

of symbols in the history to identify a node, instead of 

examining the entire history. Since the number of history 

symbols that we examine may be different for different nodes, 

bHEXA identifiers require additional bits to indicate this 

length. While these bits add up to the memory, having variable 

length identifiers also opens up another dimension of multiple 

choices of identifiers for the nodes, which helps in finding a 

one-to-one mapping and reduce the dependence on 

discriminator bits or even avoid using them. To clarify, we 

consider a simple string-based example. 

A. Motivating Example 

Let us consider Aho-Corasick automaton for the 3 strings: 

abc, cab and abba, defined over the alphabet {a, b, c}. The 

automaton (shown in Figure 3) consists of 9 nodes (all 

symbols for which a transition is not shown in the figure are 

assumed to lead to state 1). A standard implementation of this 

automaton will use 4-bit node identifiers. These identifiers will 

determine the memory location where the transitions of the 

node will be stored. There are three transitions per node (over 

symbols a, b and c, respectively) and assuming that a match 

flag is required for every node, the fast path memory will store 

four entries for each of the nine nodes, as shown below: 

 
Since node identifiers are 4-bits, in this case a node requires 

13-bits of fast path memory. We now attempt to use bHEXA 

to represent this automaton. Since bHEXA allows identifiers to 

contain variable number of input symbols from the history, our 

first objective is to identify the legitimate bHEXA identifiers 

for the nodes. Clearly, we would like to keep the identifier 

unique for each node, irrespective of the path that leads to the 

node. The identifier of the root node is “−”, as it is visited 

without receiving any input symbol (zero path length). The 

identifiers of the nodes which are one transition away from the 

root may contain up to one symbol from the history because all 

single transition path that will lead to such nodes will be 

labeled with identical symbol. As an example, all incoming 

edges into node 2 are labeled with a; thus its identifier can 

either be − or a. Similarly, the identifier of node 7 can be − or 

c. In general, a node which is k transitions away from the root 

may have the bHEXA identifier of any length up to k symbols. 

For example, both paths 321 →→
ba

 and 

3549 →→→
bab

 leads to the node 3, and the last two 

symbols in these paths are identical; consequently, its bHEXA 

identifier can either be − or b or ab. Choices of bHEXA 

identifiers for the remaining nodes are listed below: 

 
Notice that each of the above bHEXA identifier is 

legitimate. However, we must ensure that, the ones we choose 

are unique, so that no two nodes end up with identical 

identifiers. If we employ c-bit discriminators with bHEXA 

identifiers then we may allow up to 2
c
 nodes pick identical 

identifiers and then use different discriminator values to make 

them unique. The memory mapping method that we present in 

the next section enforces these constraints and ensures that 

bHEXA identifier of each node is unique. 

B. Memory Mapping 

The next step is to select a bHEXA identifier for every 

node, such that they are mapped to unique memory locations. 

A large fraction of nodes, being away from the root node, are 

likely to have several choices of bHEXA identifiers, which 

will improve the probability of a one-to-one mapping. These 

choices however come at a cost; if a node has k choices (can 

have up to k−1 symbols long bHEXA identifier) then up to 

1. − 

2. −, a 

3. −, b, ab 

5. −, b, bb, abb 

6. −, a, ba, bba, abba 
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Figure 3: Aho-Corasick automaton for the three strings 

abc, cab and abba. Gray indicates accepting node 



 

log2k additional bits may be needed to indicate the length of 

its identifier. During the graph traversal, these bits will be 

required to determine the exact number of history symbols that 

forms the bHEXA identifier of the node. In our example 

automaton, node 5 has 5 choices; hence 3-bits may be needed 

to indicate the length of its bHEXA identifier. We can 

however omit the last choice from its set of legitimate 

identifiers, thereby keeping the bHEXA identifiers within four 

symbols and requiring only 2-bits. For completeness, we also 

keep c-bit discriminators (c may be zero, if we do not need 

them). Notice that instead of storing the complete bHEXA 

identifier, only c+log2k bits worth of information is required 

to be stored; this information along with the history of input 

symbols are sufficient to re-generate the complete bHEXA 

identifier of any given node. 

Continuing with our example, we construct a memory 

mapping graph (as described in Section II.B), which is shown 

in Figure 4. In the graph we use m=10, thus an extra memory 

cell is available for the nine nodes. We also limit the bHEXA 

identifiers contain up to three history symbols and do not use 

discriminators. The edges of the graph are determined by the 

hash function h, which is: 

( ) 10mod
1∑ =

×=
k

i i ish ;    for the bHEXA identifier s1…sk 

In this formula, the input symbols are assumed to take these 

numerical values: −=0, a=1, b=2, c=3. 

In the same figure, a maximum matching in the memory 

mapping graph is highlighted, which assigns a unique memory 

location to each node of the automaton. According to this 

matching, the bHEXA identifiers of the nodes are chosen as: 

Nodes 1 2 3 4 5 6 7 8 9 

bHEXA − a ab bb bba bc c ca b 

length 0 1 2 2 3 2 1 2 1 

Notice again that we only store the length of bHEXA 

identifiers in the memory (and discriminators, if they are used). 

During the graph traversal, the length and the history of input 

symbols are sufficient to reconstruct the complete bHEXA 

identifier. Since the length can be encoded with 2-bits in this 

case and there are no discriminators, the fast path will require 

total 7 bits per node: a match flag and 2-bits each to indicate 

the length of the bHEXA identifiers of the three “next nodes” 

for the symbols a, b and c, respectively. The resulting 

programming of the fast path memory is shown below: 

Mem. location node match flag a b c 

0 1 0 01 00 01 

1 2 0 01 10 01 

2 9 1 01 10 01 

3 7 0 10 00 01 

4 8 0 01 01 01 

5 3 0 01 10 10 

6 4 0 11 00 01 

7      

8 6 1 10 00 01 

9 5 1 01 10 01 

Compared to a standard implementation (13-bits per node), 

bHEXA uses about half memory (7-bits per node). There may 

however be circumstances when a perfect matching does not 

exist in the memory mapping graph. There are two possible 

solutions to resolve this problem. The first solution is upward 

expansion, in which additional memory cells are allocated; 

each new cell improves the likelihood of a larger matching. 

The second solution is sideways expansion, in which an extra 

bit is added, either to the discriminator of the bHEXA 

identifier or to its length, whichever leads to larger matching. 

Notice that each such extra bit doubles the number of edges in 

the memory mapping graph, which is likely to produce 

significantly larger matching. Unfortunately, sideways 

expansion also increases the memory rapidly. For example, if 

the current bHEXA identifiers require 3-bits, then a single bit 

of sideways expansion will increase the total memory by 33%. 

A memory efficient way of finding one-to-one mapping 

should iterate between two phases. In the first phase, upward 

expansion will be applied until the added memory exceeds the 

memory needed by a single bit of sideways expansion. If one-

to-one mapping is not yet found then the second phase will 

begin, which will reset the previous upward expansion and 

perform a bit of sideways expansion. If a one-to-one mapping 

is still not found, the first phase is repeated (without resetting 

the sideways expansion). This method is expected to find a 

one-to-one mapping while also minimizing the memory. In real 

bHEXA implementations, however, some new challenges may 

also arise, which we discuss in the coming section. 

C. Practical Considerations 

The challenges that may appear during the implementation 

of bHEXA are likely to depend primarily on the characteristics 

of the directed graph. The first challenge may arise when the 

directed graph contains long paths, all of whose edges have 

identical labels. Consider the Aho-Corasick automaton for l 

characters long string such as aaaaa… There will be l+1 

nodes in the automaton and the legitimate bHEXA identifier 

for the i
th

 node will be any such string (aaa…) of length less 

than i. In this case, if we attempt to find a one-to-one mapping 

without using any discriminator then the bHEXA identifier of 

any i
th

 node will be i−1 characters long. Since there are l+1 

–, a

–, a, ab

–

–, b, bb, abb

–, a, ba, bba

–, c, bc, abc

–, c

–, a, ca
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6

7

8

h(–) = 0

h(–) = 0
h(a) = 1

h(–) = 0 h(a) = 1
h(ab) = 5

h(–) = 0 h(b) = 2
h(bb) = 6 h(abb) = 1

h(–) = 0 h(a) = 1
h(ba) = 4 h(bba) = 9

h(–) = 0 h(c) = 3
h(bc) = 8 h(abc) = 4

h(–) = 0
h(c) = 3

h(–) = 0 h(a) = 1
h(ca) = 4

h(–) = 0 h(b) = 2
h(ab) = 5 h(cab) = 9

Choices of
bHEXA identifiers

Choices of
memory locations

Bipartite graph and
a maximum matching

1

2

3

4

5

6

7

8

9

Nodes

9  
Figure 4: Memory mapping graph, bipartite matching. 



 

nodes, the longest bHEXA identifier will contain l symbols 

and log2l bits will be required to store its length. If we 

employ c discriminator bits then the longest bHEXA 

identifiers can be reduced by a factor of 2
c
, nevertheless the 

total number of bits that will be stored per bHEXA identifier 

will remain the same. Clearly, large l will undermine the 

memory savings achieved by using bHEXA. While such 

strings are not common, we would still like to decouple the 

performance of bHEXA from the characteristics of the strings 

sets. 

One way to tackle the problem is to allow the length bits to 

indicate superlinear increments in bHEXA identifier length. 

For instance, if there are three length bits available then they 

may be enabled to represent the bHEXA lengths of 0, 1, 2, 3, 

5, 7, 12, and 16, thereby covering a much larger range of 

bHEXA lengths. Of course, the exact values that the length 

bits will represent will depend upon the strings database. 

Second way to tackle the problem is to employ a small on-chip 

CAM to store those nodes of the automaton that could not be 

mapped to a unique memory location due to the limited 

number of length and discriminator bits. In our previous 

example, if l is 9, and the bHEXA lengths are represented with 

3-bits, then at least 2 nodes of the automaton can not be 

mapped to any unique memory location. These nodes can be 

stored in the CAM and can be quickly looked at during the 

parsing. We refer to the fraction of total nodes that can not be 

mapped to unique memory location as the spill fraction. In our 

experiments, we find that for real world string sets, the spill 

fractions remains low, hence a small CAM will suffice. 

D. Challenges with General Finite Automaton 

Modern network security appliances use regular expressions 

matching and employ finite automata to represent them [xxx]. 

Since complex regular expressions generally lead to large and 

complex automaton, it is important to reduce their memory 

footprint to enable an on-chip implementation and high parsing 

speed. Therefore, we investigate if it is possible to use some 

variant of bHEXA be to represent a general finite automata 

and save memory. Unfortunately, our early analysis suggests 

that for the finite automaton representation of the regular 

expressions used in current systems, it is difficult to save 

memory by using bHEXA. The primary reason is the extensive 

use of character classes in these regular expressions. We 

consider the following simple example to illustrate this. 

Consider the simple regular expressions [ab][ca][bc]; 

such expressions are commonly used. The resulting automaton 

is shown below. 

1 a,b 2 c,a 3 b,c 4

^c,a
^b,c

*^a,b

 
In this automaton, none of the nodes have all of its incoming 

paths labeled with unique sequence of symbols. Thus, it is 

difficult to use bHEXA identifiers to identify them. One may 

add new symbols in the alphabet, which will represent those 

character classes that are present in the regular expressions, 

thereby enabling paths with unique sequences of symbol. This 

however is likely to significantly expand the alphabet size, 

which will significantly increase the number of outgoing 

transitions from every node
1
. For instance, we find that, the 

regular expressions sets used in modern security appliance 

from Cisco Systems [xxx] have several thousand different 

character classes. Other sets [xxx] of regular expressions 

exhibit similar characteristics. This is likely to offset any 

memory reduction achieved with the bHEXA identifiers. 

An orthogonal complication concerns with the performance.  

With the expanded alphabet, one may require additional 

memory lookups to map any given input symbol into the 

alphabet symbol representing the appropriate character class. 

Such additional lookups for every input symbol will adversely 

affect the parsing performance, and additional memory 

bandwidth will be required to maintain a given level of parsing 

rate. Memory bandwidth being much pricier than the memory 

size [xxx], such trade-offs may not be desirable (assuming that 

we were able to save some memory with bHEXA). 

To conclude, it appears plausible to employ bHEXA for the 

finite automata used to represent regular expressions used in 

modern networking equipments, we conclude that it not clear, 

if this will lead to significant memory saving. The added 

complexity in parsing and symbol resolution to the character 

classes will offset the memory saving, if there is any at all. 

Nevertheless, we leave further investigation of the issue for the 

future research. 

IV. EXPERIMENTAL EVALUATION 

We have performed a thorough experimental evaluation of 

the HEXA and bHEXA representations. First, we consider 

HEXA based representation of real world IP lookup tries. The 

results demonstrate that, HEXA can dramatically reduce the 

memory required by a binary trie; at the same time it can also 

reduce the memory in more sophisticated trie implementations 

like multi-bit trie and tree bit-map. Second, we employ HEXA 

to implement the finite automata, which are used to perform 

string matching operations. We consider two flavors of high 

performance string matcher, the classic Aho-Corasick 

automaton, and the recently proposed bit-split version. We 

show that, in both cases, HEXA reduces memory by up to five 

times without sacrificing the parsing performance. 

A. Results on Tries 

BGP tables have grown steadily over the past two decades 

from less than 5000 entries in the early 1990s to nearly 75,000 

entries in 2000 to 135,000 entries today, and the growth is 

expected to continue in the near future. Binary tries are a 

standard method to implement these BGP tables and enable 

fast lookup. High performance implementations of these 

lookup tries consider multiple input bits at a time, thereby 

creating multi-bit nodes. The multi-bit nodes can be 

represented compactly by using tree bit-map tactics. In our 

 
1 Notice that in a DFA, at any given node, there is an outgoing transition 

for every symbol in the alphabet. 



 

experiments, we have employed HEXA to implement both 

binary trie as well as multi-bit trie. Unless otherwise specified, 

the reported results are based on the prefixes in more than fifty 

BGP tables obtained from [19]. 

1) Binary Tries 

In Figure 4, for varying trie sizes, we plot the number of 

choices of HEXA identifiers that are needed to ensure that a 

perfect matching exists in the memory mapping graph with 

more than 90% probability. As expected, more choices of 

HEXA identifiers or increased memory over-provisioning 

((m−n)/m) improves the chances of a perfect matching. In 

compliance with the theoretical analysis, for m=n, the required 

number of HEXA identifier choices remains O(log n). 

However, when m is slightly greater than n (results for 1, 3 and 

10% are reported here), the required number of choices 

becomes constant, independent of the trie size. Recall that the 

number of HEXA identifier choices determines the number of 

discriminator bits that are needed for a node, thus a small 

memory over-provisioning is desirable in order to keep the 

discriminators constant in size. 

From a practical point, we would like to keep the number of 

choices of HEXA identifiers a power of two minus one, so that 

one discriminator value will be used to indicate a null child 

node and all remaining permutations of discriminator values 

will be used in finding better matching. Thus, we are interested 

in such number of HEXA choices as 1, 3, 7, etc. Therefore, we 

fix the number of HEXA choices at these values, and plot the 

memory over-provisioning needed to successfully perform a 

one-to-one memory mapping (Figure 5). It is clear that that for 

3 HEXA identifier choices, the required memory over-

provisioning is 10%. Thus, 2.2 bits are enough to represent 

each node identifier. 

2) Multi-bit tries 

We now extend our evaluation of HEXA to multi-bit tries 

where tree bit-maps are used to represent the multi-bit nodes. 

Notice that when HEXA is used for such tries, the bit-masks 

used for the tree bitmap nodes are not affected; only the 

pointers to the child nodes are replaced with the child’s 

discriminator. The first design issue in such tries is to 

determine a stride which will minimize the total memory. We 

accomplish this experimentally by applying different strides to 

our datasets and measuring the total fast path memory. The 

results are reported in Figure 6. Clearly, strides of 3, 4 and 5 

are the most appropriate choices, when HEXA is not used. 

When HEXA is employed, large strides no longer remain 

effective in reducing the memory. This happens because a uni-

bit HEXA trie requires just 2-bits of discriminator to represent 

a node, thus there is little room for further memory reductions 

by representing a subset of nodes with a bitmap. In fact, with 

increasing stride, the bitmaps grow exponentially and quickly 

surpass any memory savings achieved with the tree bitmap 

based multi-bit nodes. 

Note that smaller strides may not be acceptable in off-chip 

memory based implementations. However, in an embedded 

implementation such as pipelined trie [26], small stride may 

enable higher throughput, as reported in [27]. This happens 

because with small stride, one can employ much deeper 

pipelines and each pipeline stage can be kept compact and fast. 

3) Incremental Updates 

We now present the results of incremental updates on tries 
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represented with HEXA. In our experiments, we remove a 

node and add another to a HEXA trie, and then attempt to find 

a mapping for the newly added node. The general objective of 

triggering minimum changes in the existing mapping is 

achieved by finding the shortest augmenting path in the 

memory mapping graph, between the newly added node and 

some free memory location (as described in Section II.C). We 

find that the shortest augmenting path indeed remains small, 

thus a small number of existing nodes are remapped. In Figure 

7, we plot the probability distribution of the number of nodes 

that are remapped during an update. It is clear that no update is 

likely to take more than 19 memory operations and a large 

majority of updates require less than ten memory operations. 

Thus, update operations in a HEXA trie can be carried out 

quickly, irrespective of the trie shape and update patterns. 

B. Results on Strings 

In this section, we report the results obtained from the 

experiments in which we use bHEXA to implement string 

based pattern matchers. We have obtained the string sets from 

a collection of sources: peptide protein signatures [25], Bro 

signatures [20], and string components of the Cisco security 

signatures [21]. We have also used randomly generated 

signatures whose lengths were kept comparable to the real 

world security signatures. These strings were implemented 

with Aho-Corasick automaton; in most experiments we did not 

use failure pointers as they reduce the throughput. Without 

failure pointers, an automaton has 256 outgoing transitions per 

node, and may require large amounts of memory. In order to 

cope up with such high fan-out issue, we have considered the 

recently proposed bit-split version of Aho-Corasick, wherein 

multiple state machines are used, each handling a subset of the 

8-bits in each input symbol. For example, one can use eight 

binary state machines, with each machine looking at a single 

bit of the 8-bit input symbols, thereby reducing the total 

number of per node transitions to 16. 

First, we report the results on randomly generated sets of 

strings consisting of a total 64887 ASCII characters. In Figure 

8(a), we plot the spill fraction (number of automaton nodes 

that could not be mapped to a memory location) as we vary the 

memory over-provisioning. It is clear from the plot that it is 

difficult to achieve zero spill without using discriminators. 

With a single bit of discriminator and less than 10% memory 

over-provisioning, spill fraction becomes zero, even when the 

bHEXA lengths are limited to 4. Thus, total 3-bits are needed 

in this case, to identify any given node: one for its 

discriminator and two to indicate the length of its bHEXA 

identifier. This represents more than five fold reduction in the 

memory when compared to a standard implementation, which 

will require 16-bits to represent a node. 

Next we report similar results for real world string sets. In 

Figure 8(b), we plot the spill fraction for the set of protein 

strings, and the strings extracted from the Bro signatures, and 

Cisco security signatures. We only report results of those 

bHEXA configurations (number of discriminator bits and 

maximum bHEXA length) that keep the spill fraction at an 

acceptably low value. For the Bro strings, about 10% memory 

over-provisioning is needed in order to keep the spill fraction 

below 0.2%. The spill level corresponds to 11 nodes which 

remain unmapped in the automaton consisting of total 5853 

nodes. The bHEXA configuration in this case does not use any 

discriminator and limits the length to 8, thus total of 3-bits are 

needed to identify any given node. For the protein patterns, 

again a 10% memory over-provisioning is needed in a 

configuration that uses 1-bit discriminator and up to 8 

characters long bHEXA identifiers. Thus, in this case, 4-bits 

are needed to represent a node. 

In the Cisco string set containing total 622 strings, there was 

one string that consisted of \x04 ASCII symbol repeated 50 

times, which creates up to 50 states with identical bHEXA 

identifiers. This is precisely the issue that we have described in 

Section III.C. With restricted bHEHA length and limited 

discriminator bits, it is impossible to uniquely identify each of 

the resulting 51 nodes. Consequently, in a configuration where 

we employ 4-bits per bHEXA identifier, 35 nodes remain 

unmapped even if we arbitrarily increase the memory over-

provisioning (refer to third set of vertical columns in Figure 

8(b)). As we remove this string from the database, we were 

able to reduce the spill fraction to 0.1% with no memory over-

provisioning and for an identical bHEXA configuration (last 

set of vertical columns in Figure 8(b)). 

These results suggest that bHEXA based representations 
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reduces the memory by between 3 to 5 times, when compared 

to standard representations. In our final set of experiments, we 

attempted to represent bit-split Aho-Corasick automaton with 

bHEXA. We have employed four state-machines, each 

handling two bits of the 8-bit input character. To our surprise, 

we found that bit-split versions were more difficult to map to 

the memory, and requires longer discriminators and bHEXA 

identifiers, which increases the number of bits per node. In 

spite of employing the techniques we have discussed in section 

III.C (e.g. using superlinear increase in the bHEXA length), 

we generally require 5 bits to represent each node of a bit-split 

automaton. This represents approximately 2-3 fold reduction 

in memory as compared to a standard implementation. The 

results are plotted in Figure 8(c). 

To summarize, bHEXA based representations achieve 

between 2-5 fold reductions in the memory. Such reductions 

will not only aid in reducing the on-chip memory but also yield 

higher throughput at lower power dissipation levels. 

V. RELATED WORK 

Please refer to our technical report. Due to the space 

limitations, we are unable to include related work here. 

VI. CONCLUDING REMARKS 

In this paper, we develop HEXA, a novel representation for 

structured graphs such as tries. HEXA uses a unique method to 

locate the nodes of the graph in memory, which enables it to 

avoid using any “next node” pointer. Since these pointers often 

consume most of the memory required by the graph, HEXA 

based representations are significantly more compact than the 

standard representations. We validate HEXA over two well 

known applications, IP lookup and string matching and find 

that HEXA indeed reduces the memory by up to five times. 

Such reduction levels facilitate the use of embedded memory, 

which can dramatically improve the packet throughput and 

reduce the power dissipation. 
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Figure 8: Plotting spill fraction: a) Aho-Coroasick automaton for random strings sets, b) Aho-Coroasick automaton 

for real world string sets, and c) random and real world strings with bit-split version of Aho-Corasick. 


