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Abstract—Optical burst switching (OBS) is an emerging tech-
nology that allows variable size data bursts to be transported di-
rectly over dense wavelength division multiplexing links. In order
to make OBS a viable solution, the burst-scheduling algorithms
need to be able to utilize the available wavelengths efficiently,
while being able to operate fast enough to keep up with the
burst incoming rate. For example, for a 16-port OBS router with
64 wavelengths per link, each operating at 10 Gb/s, we need to
process one burst request every 78 ns in order to support an
average burst length of 100 kB. When implemented in hardware,
the well-known horizon scheduler has O(1) runtime for a practical
number of wavelengths. Unfortunately, horizon scheduling cannot
utilize the voids created by previously scheduled bursts, resulting
in low bandwidth utilization. To date, minimum starting void is
the fastest scheduling algorithm that can schedule wavelengths
efficiently. However, while its complexity is O(log m), it requires
10 log m memory accesses to schedule a single burst. This means
that it can take up to several microseconds for each burst request,
which is still too slow to make it a practical solution for OBS
deployment. In this paper, we propose an optimal burst scheduler
using constant time burst resequencing (CTBR), which has O(1)
runtime. The proposed CTBR scheduler is able to produce op-
timal burst schedules while having processing speed comparable
to the horizon scheduler. The algorithm is well suited to high-
performance hardware implementation.

Index Terms—Algorithm, optical burst switching (OBS), optical
packet switching, scheduling, wavelength division multiplexing
(WDM), wavelength routing.

I. INTRODUCTION

ADVANCES in dense wavelength division multiplexing
(DWDM) technology allow tens or hundreds of DWDM

channels to be carried over a single optical fiber at 10 Gb/s
per channel. This means that a router has to be able to process
data rates up to 10 Tb/s (terabits per second) per port, which
is beyond the capability of the electronic routers. It is conceiv-
able that optical switching technologies will eventually replace
electronic switching technologies, in order to take advantage of
the enormous amount of bandwidth made possible by DWDM
technologies.

Optical burst switching (OBS) [1]–[5] has emerged as a
promising candidate for future all optical Internet. In OBS
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networks, variable-size optical data bursts can be transported
directly over DWDM without converting back to electronic
form. A burst header is sent on a separate control channel
shortly before the transmission of the data burst. Burst headers
set up lightpaths on-the-fly, allowing data bursts to remain
in the optical domain and pass through OBS routers without
encountering optical–electrical–optical (O/E/O) conversion.

One of the key design issues in OBS networks is WDM
channel scheduling. In order to make OBS a practical solution,
we need to solve the following two problems at the same time:
1) how to design channel-scheduling algorithms that can utilize
the available wavelengths efficiently and 2) how to make the
algorithm fast enough so that the scheduler can keep up with
the burst incoming rate. For example, for a 16-port OBS router
with 64 wavelengths per link, each operating at 10 Gb/s, we
need to process a burst request every 78 ns in order to support
an average burst size of 100 kB.

Several scheduling algorithms have been proposed for OBS
routers [1], [3], [5]–[9]. Horizon scheduling [1], [3] provides
fast burst scheduling and can achieve O(1) operation in hard-
ware. However, it can cause excessive burst discard since it
cannot utilize the voids created by previously scheduled bursts.
Latest available unused channel with void filling (LAUC-VF)
[5] can produce efficient channel schedules, but it takes O(m)
time to schedule a burst, where m is the number of voids per
channel. The minimum starting void (Min-SV) algorithm [6],
[7] can produce efficient burst schedules as LAUC-VF. The
complexity of Min-SV is O(log m), which is a significant
improvement over LAUC-VF. However, Min-SV still requires
10 log(m) memory accesses for each burst request. It is not
unusual that a system will have to keep track of 100 k to
1 million voids. This means that Min-SV can take up to a few
microseconds to schedule a single burst, which is still too slow
to meet the stringent burst-scheduling requirement.

In this paper, we propose a novel hardware-based scheduling
algorithm that combines the horizon scheduler with O(1) run-
time constant time burst resequencing (CTBR). The resulting
CTBR scheduler is able to produce optimal burst schedules
while being able to operate at speed comparable to the hori-
zon scheduler. The proposed solution runs much faster than
Min-SV and is significantly simpler than Min-SV in terms of
implementation.

The rest of this paper is organized as follows. Section II
gives an overview of optical switching technologies. Section III
describes the OBS network architecture. Existing scheduling
algorithms are discussed in Section IV. The optimal-burst-
scheduling algorithm is proposed in Section V. We conclude
this paper in Section VI.
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II. OPTICAL SWITCHING TECHNOLOGIES

A. Wavelength Routing

In wavelength routing (optical circuit switching), an optical
circuit (lightpath) is set up before data are transmitted. The
lightpath will be held for the entire duration of the transmission.
The selected wavelength is considered occupied, even if there
are no data transmitted over the link. Therefore, it will result
in poor wavelength utilization in facing the bursty nature of the
Internet traffic.

In addition, since data transmission can only begin after an
end-to-end lightpath is set up, wavelength routing encounters at
least one round-trip time delay. Although wavelength routing
plays a major role in current generation optical networks,
it is not considered the most appropriate technology for the
emerging optical Internet.

B. Optical Packet Switching

Optical packet switching [10]–[16] allows optical packets
from different sources to share the wavelengths, achieving
statistical multiplexing performance. However, optical packet
switching technology is not mature enough to provide a viable
solution. The major barriers are as follows: 1) synchronization
and 2) lack of optical random access memory (RAM).

For example, because of the extremely limited capability of
optical packet header processing, in optical packet switching,
the packet header is usually tapped off and processed electroni-
cally at the routers. After the header is processed, it needs to be
converted back to optical signal and combined with the optical
payload. Synchronizing the header and the payload presents a
technical challenge.

Moreover, packet switched networks are store and forward
networks, where packets are stored in the switches before
forwarding due to output contention. This technique is widely
used in electronic routers where electronic RAM is abundant
and cheap. Unfortunately, there is no equivalent optical RAM.
Therefore, optical packet switching can only utilize fiber delay
lines (FDLs) to provide a limited amount of fixed time delay,
which degrades the performance of optical packet switching
networks.

C. Optical Burst Switching (OBS)

In OBS networks, bursts from different sources can be dy-
namically multiplexed onto the same wavelength, providing
statistical multiplexing performance without encountering the
technical barriers faced by optical packet switching.

In OBS networks, burst headers and data bursts are sent on
separate DWDM channels. At an OBS router, only the burst
headers on the control channel are converted back to electronic
signal and processed electronically. Based on the information
carried in the burst header, which arrives ahead of its associated
data burst, the OBS router dynamically sets up a lightpath
right before the arrival of the data burst and tears down the
lightpath after the data burst passes through. Data bursts can
stay in the optical domain and passes through the OBS router
transparently.

Fig. 1. OBS router architecture.

Due to the separation of burst headers and data bursts, OBS
does not require tight synchronization between the header and
the data burst. In addition, since a lightpath is set up before the
arrival of the data burst, there is no need for optical buffers in
OBS networks.

III. OBS NETWORK ARCHITECTURE

Fig. 1 illustrates the basic concept for an OBS network.
The network consists of a set of OBS routers connected by
DWDM links. The transmission links in the system carry tens
or hundreds of DWDM channels, any one of which can be
dynamically assigned to a user data burst. One (or possibly
more than one) channel on each link is used as a control channel
to control the dynamic assignment of the remaining channels to
data bursts.

There are two ways to send data through an OBS network.
The first option is through electronic edge routers. Edge routers
provide legacy interfaces (e.g., IP, Gigabit Ethernet, SONET)
and burst assembly/disassembly functionality. The second op-
tion is to have end systems interface directly with OBS routers
through network interface cards. The format of data carried in
bursts is not constrained by the OBS systems. Data bursts may
be IP packets, Ethernet packets, or raw bit streams.

An OBS network works as follows. Shortly before the trans-
mission of a data burst on a data channel, a burst header, which
we call burst header cell (BHC), is sent on the control channel,
specifying the channel on which the burst is being transmitted
and the destination of the burst. The BHC also carries an offset
field and a length field. The offset field defines the time between
the transmission of the first bit of the BHC and the first bit
of the data burst. The length field specifies the time duration
of the burst. The offset and the length fields are used by the
OBS routers to schedule the setup and release of optical data
paths. Fig. 2 shows an example of BHCs sharing the same
control channel, while the corresponding data bursts are sent
on separate data channels.

An OBS router, on receiving a BHC, selects an idle channel
on the outgoing link leading toward the desired destination.
Shortly before the arrival of the data burst, the OBS router
establishes a lightpath between the incoming channel, on which
the burst is arriving, and the outgoing channel selected to carry
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Fig. 2. Bursts and BHCs.

Fig. 3. OBS router architecture.

the burst. The data burst can stay in the optical domain and flow
through the OBS router to the proper outgoing channel.

The OBS router forwards the BHC on the control channel of
the outgoing link after modifying the channel field to specify
the selected outgoing channel. By modifying the offset field
appropriately, the OBS routers can account for variable delays,
which the BHC experiences within the control subsystem. This
process is repeated at every OBS router along the path to the
destination.

Fig. 3 shows the key components of an OBS router. The ar-
chitecture consists of two parts: an optical datapath and an elec-
tronic control path. The datapath has optical interconnects with
wavelength conversion capability. The control path includes
O/E/O conversion, a cell switch, and a set of burst processors
(BPs). Each BP is responsible for making channel-scheduling
decisions for a single outgoing link. The cell switch routes the
BHCs received on the control channels of the incoming DWDM
links to the corresponding BP according to the destination of
the data burst. The BP selects an outgoing channel for the burst
and configures the optical switching matrix such that the bursts
arriving on incoming data channels can pass through to the
desired outgoing channels directly without buffering.

We use the term BHCs to denote burst headers for conve-
nience purposes. In practice, burst headers can take any format
that is supported by the electronic control path in an OBS router.
For example, the burst header can be an IP packet, in which
case, the cell switch in Fig. 3 will be replaced with an IP router.

IV. BACKGROUND ON SCHEDULING ALGORITHMS

Switching matrix scheduling algorithms have been exten-
sively studied for electronic switches [17]–[19]. However, they
are similar to the burst-scheduling algorithms in the OBS
routers only in a sense that the goals of the both types of
scheduling algorithms are to obtain the switching matrix config-
urations such that input traffic can be efficiently sent to the de-
sired outputs. There are two fundamental differences between
the switching algorithms designed for electronic switches and
the ones needed for OBS routers.

First, all scheduling algorithms designed for electronic
switches rely on RAMs to buffer data waiting to be scheduled.
One property of electronic RAMs is that once the data are stored
in the RAM, it can stay there until it is retrieved. Unfortunately,
RAM is not available in the optical domain. Although FDLs can
provide a limited time delay, the amount of delay is determined
by the length of the FDL. In OBS systems that do not have
FDLs, data have to be discarded if they cannot be forwarded to
the desired output at the time of arrival.

Second, most of the switching matrix scheduling algorithms
developed for electronic switches can only handle a small
number of switching ports (32 for example). However, for an
OBS router, each port can carry tens or hundreds of channels.
Letting d be the number of ports in an OBS router and h be
the number of DWDM channels per port, the effective size of
the switching matrix is dh × dh. For example, if d = 32 and
h = 64, the effective size of the switching matrix is 2048 ×
2048, which exceeds the capability of almost all scheduling
algorithms proposed for electronic switches.

Therefore, existing scheduling algorithms designed for elec-
tronic switches cannot be applied to OBS routers. New schedul-
ing algorithms have to be invented in order to handle the large
number of DWDM channels in OBS networks.

To date several algorithms have been proposed to solve
the wavelength scheduling problem in the OBS networks The
major results concerning practical implementations are summa-
rized below.

A. Horizon Scheduling

Horizon scheduling is a practical scheduling algorithm pro-
posed for OBS networks [1], [3]. The horizon for a channel
is defined as the latest time at which the channel is currently
scheduled to be in use. Given this information, the horizon
scheduler simply selects the channel with the latest horizon
from a set of channels whose scheduling horizons are smaller
than the burst’s arrival time. Once a channel has been selected,
the scheduler updates the scheduling horizon to be equal to the
time when the burst is due to be completed (determined by
the offset and length fields in the BHC). If no channels have
horizons that are smaller than the arrival time of the burst, then
the burst is discarded.

Theoretically, horizon scheduling takes O(log h) time to
schedule a burst, where h is the number of DWDM channels
per link. However, when implemented in hardware, a horizon
scheduler can find a burst schedule in O(1) time for prac-
tical values of h. The hardware implementation of horizon
scheduling with O(1) runtime is explained in detail in
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Section V-F. A pipelined horizon scheduler design that can
schedule a burst every two clock cycles, regardless of the
number of channels per link can be found in [20].

However, since horizon scheduling only keeps track of a
single state for each channel, it cannot utilize the voids created
by previously scheduled bursts. Therefore, horizon scheduling
can cause excessive burst discards when the variation of the
offset between the BHCs and the bursts is large.

B. Latest Available Unused Channel
With Void Filling (LAUC-VF)

LAUC-VF was proposed in [5]. LAUC-VF keeps track of all
voids on the channels and tries to schedule a burst in one of
the voids whenever possible. If more than one void can fit a
burst, the one with the latest beginning time is assigned to the
burst. Since LAUC-VF can use the voids created by previously
scheduled bursts, link utilization of LAUC-VF is higher than
that of horizon scheduling.

However, LAUC-VF takes much longer to schedule a burst
compared to horizon scheduling. The complexity of LAUC-VF
is O(m), where m is the number of voids. It is common that
a system needs to keep track of 100 k to 1 million voids. In
general, LAUC-VF is too slow to be practical.

C. Minimum Starting Void (Min-SV)

Min-SV [6], [7] uses a geometric approach and organizes
the voids into a balanced binary search tree. Min-SV algo-
rithm finds a void that minimizes the distance between the
starting time of the void and the starting time of the burst.
The Min-SV algorithm takes O(log m) time to finish, which
is a significant improvement over LAUC-VF. To date, it is the
fastest scheduling algorithm that can produce an efficient burst
schedule.

However, in order to schedule a burst, Min-SV needs to per-
formance 10 log m memory accesses for each burst-scheduling
request, which means that it can take up to a few microseconds
to schedule a single burst. Therefore, Min-SV is still too slow
to provide a practical solution to the problem.

V. OPTIMAL WAVELENGTH SCHEDULING

A. Constant Time Burst Resequencing (CTBR)

In this section, we propose an optimal wavelength scheduler
that can produce optimal burst schedules in O(1) runtime.

We use the idea that rather than processing bursts as soon as
BHCs arrive, one can delay the scheduling of the bursts and,
then, process them on the order of the expected burst arrival
time [3]. In other words, BHCs are processed on the order of
burst arrival times, not on the order of the arrival times of the
BHCs. This can be achieved by passing BHCs through a burst
resequencing buffer and holding them there for ∆ time units
before the expected burst arrival time. For example, if a burst is
expected to arrive at time t, the BHC stays in the resequencer
until time t − ∆. Once BHCs are resequenced, it is processed
by a horizon scheduler.

Fig. 4. Burst resequencing flow chart.

Fig. 5. CTBR data structure.

We need two components to achieve optimal wavelength
scheduling in O(1) time, namely, the constant time burst re-
sequencer and the horizon scheduler. The burst resequencer
sorts the BHCs on the order of the burst arrival times and
forwards the BHCs to the scheduler when the time difference
between the current time and the burst start time is equal to or
less than ∆ time units. The horizon scheduler then chooses an
available wavelength to carry the burst based on its schedule.
Such scheduler is denoted as CTBR scheduler. The flow chart
of the operations is shown in Fig. 4.

Data structure described in [21] can be adapted to sort BHCs
in O(1) time. The data structure, which is shown in Fig. 5,
consists of a timing wheel and a BHC process list. The timing
wheel has an ordered set of time slots. If the time unit is δ,
time slot i represents the time between (i − 1)δ and iδ. When
a BHC arrives, it is placed in the time slot that corresponds to
the arrival time of the burst. If multiple BHCs go to the same
time slot, they are linked together. The process pointer points to
the time slot corresponding to ∆ time units ahead of the current
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Fig. 6. Scheduling results of horizon scheduler.

time and advances by one time slot every time unit. Once the
process pointer gets to a time slot, the list of BHCs in that time
slot is appended to the BHC process list. The horizon scheduler
then processes BHCs from the head of the BHC process list.

B. Examples

In the following example, we compare the scheduling results
of a basic horizon scheduler and a CTBR scheduler.

Fig. 6 illustrates an example where horizon scheduling fails
to use channels efficiently. In Fig. 6, two BHCs B0 and B1 are
sent on the control channel, while their corresponding bursts b0

and b1 are sent on data channel 0 and 1, respectively. Fig. 6(a)
shows a case where the offset between B0 and b0 is so large
that b0 actually arrives later than burst b1. Fig. 6(b) shows the
channel status before t1. At time t1, b0 is scheduled onto the
channel. Channel 0 is the only channel that can accommodate
the burst. The new horizon is equal to the end time of b0.
However, because of the large offset between B0 and b0, the
large gap (void) between the previous horizon and the arrival
of b0 is wasted. Fig. 6(c) shows the gap that results from
the scheduling event of b0. At time t2, b1 is to be scheduled.
However, the horizons of both channels are larger than the
arrival time of b1. Although there is actually no burst being
sent on channel 0 for the duration of b1, that space is marked
unavailable by the horizon scheduler. Therefore, b1 has to be
discarded. Fig. 6(d) shows that only one burst is scheduled
successfully.

Fig. 7 illustrates the operation of the CTBR scheduler. The
resequencing buffer is not shown. Bursts are scheduled on
channels at ∆ time units before the burst arrival.

Fig. 7(a) is the same as Fig. 6(a). Fig. 7(b) is the channel
status before start. Because b1 arrives before b0, BHC B1 is
processed ahead of B0 by a CTBR scheduler. At t3 − ∆, BHC
B1 is pulled out from the resequencing buffer. Channel 0 is
selected for b1 and the channel horizon is updated as shown
in Fig. 7(c). At time t5 − ∆, BHC B0 is processed, and b0 is
scheduled on channel 0. Fig. 7(d) shows the scheduling result
obtained by a CTBR scheduler. Compared to the results from
a horizon scheduler in Fig. 6, the CTBR scheduler is able to
schedule both bursts successfully on the link. The small gaps

Fig. 7. Scheduling results of CTBR scheduler.

between successive bursts are not utilized because no bursts are
present in the system.

C. Algorithm Description

Define the horizon of channel i to be the earliest time after
which there is no scheduled use of channel i. Define the horizon
list H to be a channel list sorted based on horizons. Let
H(i).chan be the channel listed in the ith entry of the horizon
list. Let H(i).horizon be the horizon of the channel listed in the
ith entry of the horizon list. Assume that each DWDM link has
h data channels.

Let function Enqueue(bhc) be the operation to place a
BHC in the resequencing buffer based on the burst arrival time.

Let function Dequeue(∆) dequeue be the BHC if the time
difference between the burst arrival time and the current time is
equal to or less than ∆.

The algorithm can be implemented using the following
procedures.

Initialize (current_time) {
for (i = 0; i < h; i + +)

H(i).chan = i;
H(i).horizon = current_time; }

At BHC Arrival,
Enqueue(bhc);

Channel_Scheduling {
While ((bhc = Dequeue(∆))! = NULL) {

Selected_Entry = Channel_Select(bhc);
if (Selected_Entry! = −1)

Selected_Channel = Selected_Entry.chan;
Channel_Update(Selected_Entry, bhc);

else Discard bhc; }
Channel_Select(bhc) {

if (H(0).horizon > bhc.arrival_time)
return −1;

else
i = h − 1;

while ((H(i).horizon > bhc.arrival_time)
and (i ≥ 0))

i = i − 1;
return i; }
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Channel Update(Selected_entry, bhc) {
H(Selected_entry).horizon = bhc.arrival_time +

bhc.length;
temp_entry = H(Selected_entry);
j = Selected_entry + 1;
while ((j < h)

and (temp_entry.horizon > H(j).horizon)) {
H(j − 1) = H(j);
j = j + 1; }

H(j − 1) = temp_entry;
return 1; }

D. Algorithm Analysis

In this section, we first analyze the properties of the burst se-
quence and show how horizon scheduling can produce optimal
wavelength schedules under some burst sequence conditions.
We then show that CTBR scheduler is able to produce optimal
burst schedules.

Let b1, . . . , bn be a sequence of bursts, where bi is character-
ized by a triple (ri, ti, li); ri is the time at which the BHC is
received, ti is the arrival time of the burst, and li is the length
(time duration) of the burst. The value of ti in the triple can be
computed by adding the offset field to the BHC arrival time. For
convenience, assume that for i < j, ri < rj ; that is, the bursts
are listed in the order in which the BHCs arrive.

Define the width W (B) of a burst sequence B to be the size
of the largest subset of bursts which all overlap in time with one
another (that is, the earliest burst ending time in the set is later
than the latest burst starting time in the set).
Theorem 1: A sequence of bursts B = {b1 =

(r1, t1, l1), . . . , bn = (rn, tn, ln)} can be scheduled without
delaying or dropping if and only if the number of channels on
the link is at least equal to W (B).

Proof: First, we prove that the sequence B cannot be
scheduled if the number of channels on the link is less than
W (B) using contradiction.

Assume that a sequence of bursts B with width W (B) can
be scheduled on the link with less than W (B) channels.

It is trivial to show that for any two bursts that are scheduled
on the same channel, the end time of the first burst has to be
earlier than the start time of the second burst.

Since the width of the sequence B is W (B), there exist
W (B) bursts in B which overlap in time with each other.
Because there are less than W (B) channels on the link, there
must be at least two bursts in the set that share the same channel.
Call these two bursts b1 and b2. Without loss of generality, let
the start time of b1 be smaller than the start time of b2. Since b1

and b2 are scheduled on the same channel, the end time of b1

has to be earlier than the start time of b2, which contradicts the
definition of width W (B).

Second, we prove that if the width of the sequence B is
W (B), all bursts in the sequence can be scheduled on the link
using W (B) channels.

Assume that the sequence B has to use more than W (B)
channels. The reason to schedule a burst on a new channel
is that the burst duration overlaps with bursts on scheduled
channels. When a burst has to use the (W (B) + 1)th channel,

the duration of the burst overlaps with bursts on all W (B)
channels. This contradicts the definition of width W (B). �

Based on Theorem 1, we would like to have a link scheduling
algorithm that would schedule a sequence of bursts without
delaying or dropping, so long as W (B) is no larger than the
number of available channels.

The following two theorems show that a simple horizon
scheduler can produce optimal wavelength schedules if certain
burst sequence conditions are met.
Theorem 2: If the bursts arrive in the same order as the

BHCs, a horizon scheduler can schedule a burst sequence B =
{b1 = (r1, t1, l1), . . . , bn = (rn, tn, ln)} using no more than
W (B) channels.

Proof: Assume that the horizon scheduler schedules the
sequence B using more than W (B) channels.

The horizon scheduler keeps track of the ending time of
the last burst scheduled on each channel. It only assigns a
burst to a new channel if the ending times of the last burst
on all scheduled channels are later than the start time of the
burst to be scheduled. Therefore, when the horizon schedule
assigns a burst b to the (W (B) + 1)th channel, the end times
of the last burst on all W (B) channels are later than the start
time of b.

Now, we prove that the end time of b is later than the start
times of the last burst on all W (B) channels.

Since the bursts arrive in the same order as the BHCs, the
burst sequence B has the property that t1 ≤ t2 ≤ · · · ≤ tn.
Therefore, the start times of bursts that have been scheduled
on the channels are earlier than the start time of the burst to be
scheduled. The start time of b is later than the start times of the
last burst on all W (B) channels. Therefore, the end time of b is
later than the start times of the last burst on all W (B) channels.

Therefore, burst b overlaps with W (B) bursts, which con-
tradicts the fact that the width of the burst sequence B
is W (B). �

Theorem 2 shows that the horizon scheduler can get optimal
performance if the bursts arrive in the same order as their
BHCs. This condition can be relaxed as follows. We can allow
some misordering of bursts and still achieve this level of
performance.
Theorem 3: The horizon scheduler uses at most

W (B) channels to schedule a burst sequence B = {b1 =
(r1, t1, l1), . . . , bn = (rn, tn, ln)} if for all i < j, ti < tj + lj .

Proof: This can be proved using induction.
When j = 1, it is the first burst to be scheduled, the horizon

scheduler uses one channel to schedule the burst.
Assume for j < k, the horizon scheduler uses at most

W (B) channels to schedule a burst sequence B = {b1 =
(r1, t1, l1), . . . , bk−1 = (rk−1, tk−1, lk−1)} if for all i < j, ti <
tj + lj .

When bk is scheduled, there are two cases.

Case 1) There exist at least one channel whose horizon
(the latest end time of the bursts scheduled on the
channel) is earlier than the start time of bk.

Then, bk is scheduled on the channel with the
latest horizon that is earlier than the start time of
bk. Because, before bk is scheduled, the horizon
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scheduler uses no more than W (B) channels, the
new schedule that includes bk uses no more than
W (B) channels.

Case 2) There is no channel whose horizon is earlier than
the start time of bk. This means that there are at least
W (B) bursts whose end times are later than the start
time of bk.

Because for all i < k, ti < tk + lk, the end time
of bk is later than the start times of these W (B)
bursts. Therefore, bk overlaps with at least W (B)
bursts, which contradicts the fact that the burst
sequence has a width of W (B). Therefore, this case
does not exist.

Therefore, bk can be scheduled using no more than
W (B) channels. By induction, the horizon scheduler uses
at most W (B) channels to schedule a burst sequence
B = {b1 = (r1, t1, l1), . . . , bn = (rn, tn, ln)} if for all i < j,
ti < tj + lj . �

Based on Theorem 3, we get optimal performance if no
burst bi precedes another burst bj (i < j) by more than the
length of bj . Although the theorems are trivial to prove,
the implications from these theorems are nontrivial. The
theorems show that if bursts are scheduled on the order
of their arrival sequence, a simple horizon scheduler can
produce optimal channel schedules. Since CTBR schedule
resequences BHCs according to burst arrival times before
making scheduling decisions, it can produce optimal burst
schedules.

Define the burst span to be the time between the arrival of the
BHC and the end of the corresponding burst.
Theorem 4: Let ∆ be target time for the resequencing buffer

i. If a set of bursts with burst span > ∆ can all be scheduled on
a single channel, then the CTBR scheduler can schedule them
using no more than one channel.

Proof: Let b1, . . . , bn be a sequence of bursts, where bi

is characterized by a triple (ri, ti, li), where ri is the time at
which the BHC arrives, ti is the arrival time of the burst, and
li is the length (time duration) of the burst. Assume that r1 <
r2 < · · · < rn.

The time to schedule burst bi is Ti = max(ri, ti − ∆). Let
us sort the set of bursts in ascending order of Ti and assign new
sequence numbers to the bursts. The resulting new burst se-
quence B′ = {b′1 = (T ′

i , r
′
1, t

′
1, l

′
1), . . . , b

′
n = (T ′

n, r′n, t′n, l′n)},
where T ′

1 < T ′
2 < · · · < T ′

n.
In order to prove that the set of bursts can be scheduled on a

single channel by the scheduler, we first prove that after burst b′i
is scheduled at time T ′

i , no bursts scheduled later than b′i have
a burst finishing time before t′i, that is, to prove t′j + l′j > t′i for
j = i + 1, . . . , n.

Based on the definition of the burst span and the condition
in the statement, we have the condition t′k − r′k + l′k > ∆, for
k = 1, . . . n. Because T ′

i < T ′
j for j = i + 1, . . . , n, we have

max(r′i, t
′
i − ∆) < max(r′j , t

′
j − ∆). This breaks down into

four cases.

Case 1) r′i < r′j , when r′i > t′i − ∆, and r′j > t′j − ∆.
Because t′j−r′j +l′j >∆, we get t′j + l′j > ∆+r′j .

Fig. 8. Performance of CTBR scheduler.

Since r′i < r′j , we can obtain t′j + l′j > ∆ + r′j >
∆ + r′i. From r′i > t′i − ∆; ∆ + r′i > t′i. Therefore,
t′j + l′j > t′i.

Case 2) r′i < t′j − ∆, when r′i > t′i − ∆ and r′j < t′j − ∆.
Because r′i > t′i − ∆, t′i < ∆ + r′i. Since r′i <

t′j − ∆, we get ∆ + r′i < t′j . Therefore, t′i < t′j and
t′i < t′j + l′j .

Case 3) t′i − ∆ < r′j , when r′i < t′i − ∆ and r′j > t′j − ∆.
Since t′j − r′j + l′j > ∆, t′j + l′j > ∆ + r′j . From

t′i − ∆ < r′j , we get t′i < ∆ + r′j . Therefore, t′j +
l′j > ∆ + r′j > t′i. We have t′j + l′j > t′i.

Case 4) t′i−∆ < t′j−∆, when r′i < t′i−∆ and r′j <t′j−∆.
Since t′i − ∆ < t′j − ∆, t′i < t′j . Therefore, t′i <

t′j + l′j .

In all four cases, t′j + l′j > t′i. This means that no unsched-
uled burst will be scheduled in the gap before b′i by an ideal
scheduler. Because all bursts can be scheduled on a single
channel by an ideal scheduler, all unscheduled bursts must have
burst arrival time later than the burst finishing time of b′i, which
is t′i + l′i < t′j for j = i + 1, . . . , n. As a result, the scheduler is
able to schedule burst b′i+1 on the same channel as b′i. This is
true for all i = 1, . . . , n. Therefore, all bursts in the set can be
scheduled on a single channel. �
Theorem 5: If a set of bursts with burst span ≥ ∆ can all

be scheduled on r channels, then the CTBR scheduler can
schedule them using no more than r channels.

Proof: In the proof of Theorem 4, we have already proved
that after burst b′i is scheduled at time T ′

i , no bursts scheduled
later than b′i have a burst finishing time before t′i, that is,
t′j + l′j > t′i for j = i + 1, . . . , n. No unscheduled bursts will
use the unused space before b′i, share the same channel as b′i,
or can be scheduled on another channel within r channels that
produce smaller unused space on the channel. If t′i+1 < t′i + l′i,
there must exist another channel within r channels that can
accommodate b′i+1. This is true for all i = 1, . . . , n. Therefore,
the set of bursts can be scheduled on r channels by the CTBR
scheduler. �

Therefore, the CTBR scheduler is able to produce optimal
wavelength schedules.

We have also performed a simulation study on the CTBR
scheduler. Fig. 8 shows the system performance under the
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Fig. 9. OBS router architecture with input FDLs.

influence of the variability of the offset. The x-axis is the
ratio of the standard deviation of the offset to the average
burst length. The burst length is exponentially distributed. The
offset has a lognormal distribution with an average of 100 µs.
An additional fixed 10-µs offset is added to data bursts at in-
puts. The value of ∆ is 10 µs. Note that based on Theorem 2,
the results produced by horizon scheduling are optimal if there
is no variability in offset. The burst discard probability of
horizon scheduling increases when the ratio increases. The
curves for the CTBR scheduler remain flat. Therefore, the
CTBR scheduler yields optimal performance, regardless of
the variation of the offset values.

E. Discussions

In OBS networks, burst headers have to precede data bursts
by an offset time in order to set up optical paths in the OBS
core router before bursts arrive at the optical switching fabric.
The commonly adopted approach is to set the offset between
the burst header and its corresponding burst to be the prod-
uct of the predetermined hop counts and header processing
time at each OBS node. However, such approach cannot be
used with the optimal burst-scheduling scheme proposed in
this paper since the variable offsets will be equalized by the
first router.

Instead, OBS routers that implement CTBR will use the
router architecture described in [1] to compensate for the burst
header processing time and queueing delays at each router
node. A modified OBS router architecture is shown in Fig. 9. As
shown in the figure, a set of FDLs are installed at the input of the
data channels. Once data bursts reach the OBS router, they enter
the FDLs, while burst headers are processed electronically. The
CTBR algorithm proposed in this paper is implemented in the
BP. In order to prevent the offset from growing as the hop count
increases, the BP may hold the burst headers for an extra time
if the headers are processed early.

The above described architecture has many advantages. For
example, bursts can be launched at the ingress edge router with
minimal or zero offset between burst headers and data bursts.
Since each router nodes provides its own offset to data bursts,
such architecture not only supports CTBR scheduling but also

makes network routing independent of the offset, which pro-
vides intrinsic support to contention resolution schemes such
as deflection routing [22]. Moreover, this architecture facilitates
seamless integration of heterogeneous OBS networks without
forcing service providers to release sensitive information such
as header processing speed.

Although the addition of FDLs in OBS routers may increase
the system cost, note that we only need one FDL per router port.
In an OBS router, the number of DWDM channels usually has
a much higher degree than the number of ports. For example,
each router port can accommodate hundreds of DWDM chan-
nels (i.e., 256), while the number of ports in an OBS router
is usually between four and 32. The length of the FDL is
proportional to the burst header processing time and queueing
delay in a single router node. Typical values range from a few
microseconds to a few tens of microseconds. Therefore, the
increase in system cost is minimal.

The proposed CTBR scheduler can be used as the underlying
channel scheduler to support various high-level algorithms to
achieve additional features such as quality of service (QoS).
However, since the CTBR scheduler removes the variability in
offsets, the offset-based priority scheme proposed in [23] can-
not be supported. In the offset-based priority, bursts with higher
priority are assigned a larger offset time. As a result, high-
priority bursts are scheduled ahead of the low-priority bursts
and have better chance of reserving a wavelength successfully.
The main contribution of the offset-based priority lies in the
fact that it is the first QoS scheme proposed for OBS networks.
Unfortunately, it is well known that the offset-based priority has
undesirable end-to-end delay for the high-priority bursts and it
favors bursts with shorter lengths [24].

Since horizon algorithm [1], [3] and LAUC-VF [5] were
conceived, performance of both algorithms has been under
intense study. It is clear that LAUC-VF can produce more
efficient channel schedules in general. However, as mentioned
earlier, the algorithm complexity of LAUC-VF is high. It
has been shown in [25] that in the worst case, LAUC-VF-
based algorithms take considerably longer time to execute
compared to the horizon algorithm. This is highly undesirable,
despite better channel utilization of LAUC-VF-based algo-
rithms. The ultra high-speed requirement of OBS networks
makes LAUC-VF less practical in terms of OBS deployment.

As a result, considerable effort has been spent to show that
the horizon algorithm may be efficient under certain condi-
tions [25], [26]. The driving force of such effort is due to
the simplicity of horizon algorithm and its ability to operate
at very high speed. Nevertheless, it is well known that the
horizon algorithm can be very inefficient in general operational
conditions, particularly in a multihop environment where the
offset between the burst header and the burst is proportional
to the number of remaining hops that the burst will traverse.
Therefore, the OBS research community is facing a dilemma in
choosing scheduling algorithms with higher channel efficiency
versus faster processing speed. The CTBR algorithm proposed
in this paper provides a solution that can achieve optimal
channel efficiency while being able to operate at the speed com-
parable to the horizon algorithm. In the next section, we discuss
hardware implementation details of the CTBR scheduler.
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Fig. 10. Block diagram of CTBR scheduler.

Fig. 11. Structure of timing wheel memory.

F. Hardware Implementation

The proposed CTBR scheduler can achieve O(1) runtime
when implemented in hardware. This section details the hard-
ware implementation of the CTBR scheduler.

Fig. 10 shows the block diagram of the CTBR scheduler.
The arriving BHC is first placed in the constant time burst
resequencer. The BHC stays in the resequencer until ∆ time
before the burst arrival. The BHC is then removed from the
resequencer and sent to the horizon scheduler. The horizon
scheduler assigns a wavelength to the burst according to its
channel status and then forwards the BHC after modifying the
offset field and the wavelength on which the burst will be sent.

The hardware implementation of the constant time burst
resequencer, which is shown in Fig. 5, is explained as follows.
The timing wheel is implemented as a circular list whose entries
correspond to time slots. Each time slot contains a head and a
tail pointer to the BHC list in that time slot. It also contains a
busy/idle bit to indicate whether there is any BHC list in the
time slot. The last entry in the timing wheel is conceptually
adjacent to the first entry. The memory structure of the timing
wheel is shown in Fig. 11.

Fig. 12 shows the structure of the BHC memory. BHCs are
stored in BHC buffer slots. Each BHC buffer slot has space
to store a BHC (length, offset, wavelength fields, etc.) plus a
next pointer. The free space list is a linked list that contains all
unused BHC buffer slots.

When a BHC arrives, the time difference between the burst
arrival time and the current time determines the time slot
to which to append the BHC. This time difference directly
translates to the memory location in the timing wheel. A free

BHC buffer slot is obtained from the free space list, and the
BHC is written into the BHC buffer slot. If the time slot in
the timing wheel is previously empty, both the head and tail
pointers in the time slot point to the BHC buffer slot where the
BHC is stored. The next pointer in the BHC buffer slot is set
to NULL. If the time slot is not previously empty, the BHC is
inserted from the head of the list. To do this, the head pointer
stored in the selected time slot is written as the next pointer
field in the BHC buffer slot. The BHC buffer slot assigned to
the BHC becomes the new head pointer in that time slot.

The BHC process list contains a list of BHCs whose associ-
ated burst arrival times are equal to or less than ∆ time units
from the current time. The process pointer always points to the
time slot that corresponds to current time plus ∆ time units and
advances by one time slot every time unit. When the process
pointer gets to a time slot, the BHC list in the time slot is
removed from the timing wheel and is appended to the BHC
process list, if any. This can be done by pointing the last BHC
in the BHC process list to the head of the BHC list to be moved.
The head and tail pointers in that timing wheel slot are set to
NULL. The horizon scheduler always processes BHCs from the
head of the BHC process list.

With the timing wheel structure described above, resequenc-
ing BHCs based on the burst arrival times can be done with
constant number of memory operations, where the constant is
small. The number of time slots needed in the timing wheel
depends on the granularity of the time unit and the latest future
time to be supported in the system. Note that the purpose
of resequencing the BHCs on the order of the burst arrival
times is to avoid the inefficiency of the basic horizon scheduler
in dealing with bursts with large offset variations. Based on
Theorem 3, the horizon scheduler produces optimal schedules
as long as no bursts precede another burst by more than the
length of the burst. This means that the scheduler can produce
optimal schedules as long as the time unit for the resequencer
is less than half of the minimum burst duration to handle the
worst-case arrival timing.

The electronic RAM requirements for the timing wheel and
the BHC memory are calculated as follows. Supposing the time
unit is 1 µs, we need 1 k time slots in the timing wheel to
represent a maximum time period of 1 ms. Supposing the head
and tail pointers are 17 bits each, which supports 100 k BHCs,
we need 34 kB of memory for the timing wheel. Supposing each
BHC is 40 B, to support 100 k BHCs in the system, we need
4 MB of memory to implement BHC buffer slots.

The details of hardware implementation of the horizon
scheduler are explained as follows. When the BHC arrives
at the channel scheduler, the control information such as
the offset, the length, the input link, and the wavelength on
which the burst is arriving are extracted. The projected burst
arrival time is calculated. The horizon list is used to decide
which channel is the best selection for the incoming burst. If
there is a channel that can accommodate the incoming burst,
the selected channel is added to the proper field in the burst
request. If there is no channel available, the burst request is
marked “discarded.”

The horizon list contains h entries, where h is the number of
data channels per link. Each entry has two fields: the channel
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Fig. 12. Structure of BHC memory.

Fig. 13. (a) Horizon scheduling channel selection. (b) Horizon scheduling channel updates.

number and the channel horizon. All entries are sorted in
ascending order of the channel horizons. That is, lower num-
bered entries contain channels with smaller channel horizons.
If the current time passes the channel horizon, the channel is
marked “unassigned.”

There are two operations performed on the channel horizon
list: channel selection and channel updates.

During channel selection, the horizon scheduler finds the
latest channel horizon that is earlier than the burst arrival time.
The logic to do the selection is shown in Fig. 13(a). The channel
horizons of entries are compared to the burst arrival time at
the same time using parallel hardware comparators. Because
the channel horizon list is a sorted list, the result from the
comparison has an interesting property. Starting from the lowest
entry, results form a set of consecutive “0”s followed by a set of
consecutive “1”s, where “0” indicates that the channel horizon
is less than or equal to the burst arrival time, and “1” indicates
that the channel horizon is larger than the burst arrival time. The
entry at the “0” to “1” transition is the entry to be selected. In
the example, entry i is the selected entry. The channel number
in the selected entry is the channel on which to send the burst.
Therefore, the best channel can be found in simply two steps.

After a channel is selected, the new channel horizon is set to
the finish time of the new burst. The channel horizon list needs

to be updated. The logic for channel updates is similar to that for
channel selection. However, only the entries with indexes larger
than the selected entry are compared with the new channel
horizon. A “1” signal is generated if the channel horizon of the
entry is less than the new channel horizon. Otherwise, a “0”
signal is generated. Similarly, the comparison generates a set of
consecutive “1”s followed by a set of consecutive “0”s starting
from the entry above the selected entry. The logic is shown in
Fig. 13(b). When the comparison is done, the controller logic
generates a set of SHIFT signals for entries with “1”s, a set of
STAY signals for entries with “0”s, and an INSERT signal for
the entry at the “1” to “0” transition. The selected entry and
all entries below it receive a STAY signal as well. All entries
that receive SHIFT signals move down by one position. The
entry with the INSERT signal loads the selected channel and
the new channel horizon. No operation is needed for the entries
receiving STAY signals. This can be done as a hardware shift
register operation, which can be completed in one clock cycle.
In the example, entry j is the new position for the updated entry.
After this simple operation, the updated channel horizon list
becomes a sorted list again.

As we can see, both components in building a CTBR
scheduler can achieve O(1) runtime in hardware. Therefore,
the CTBR scheduler can achieve optimal burst scheduling in
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Fig. 14. Verilog HDL circuit simulation for constant time burst resequencer.

Fig. 15. Verilog HDL circuit simulation for horizon scheduler.

O(1) runtime. The CTBR scheduler has been implemented in
hardware using Verilog hardware description language (HDL).
The circuit simulation results for the resequencer and a
16-channel horizon scheduler are shown in Figs. 14 and 15,
respectively. The circuit has been synthesized using Quartus II
to Altera Stratix II EP2S15F672C3 field programmable gate
array (FPGA). The clock frequency of the synthesized circuit
can achieve 256 MHz for the constant time burst resequencer
and 242 MHz for the horizon scheduler.

VI. CONCLUSION

In this paper, we have proposed an optimal burst scheduler
using CTBR, which runs in O(1) time. The proposed CTBR
scheduler is able to produce optimal burst schedules while
having comparable processing speed as the well-known horizon
scheduler. We have demonstrated that the algorithm is well-
suited to high-performance hardware implementation.
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