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ABSTRACT 
In recent years, overlay networks have become an important 
vehicle for delivering Internet applications. Overlay network 
nodes are typically implemented using general purpose servers or 
clusters. We investigate the performance benefits of more inte-
grated architectures, combining general-purpose servers with high 
performance Network Processor (NP) subsystems. We focus on 
PlanetLab as our experimental context and report on the design 
and evaluation of an experimental PlanetLab platform capable of 
much higher levels of performance than typical system configura-
tions. To make it easier for users to port applications, the system 
supports a fast path/slow path application structure that facilitates 
the mapping of the most performance-critical parts of an applica-
tion onto an NP subsystem, while allowing the more complex 
control and exception-handling to be implemented within the 
programmer-friendly environment provided by conventional 
servers. We report on implementations of two sample applica-
tions, an IPv4 router, and a forwarding application for the Internet 
Indirection Infrastructure. We demonstrate an 80× improvement 
in packet processing rates and comparable reductions in latency. 

Keywords. PlanetLab, overlay networks, network processors, 
Global Environment for Network Innovation (GENI) 

1. INTRODUCTION 
Network overlays have become a popular tool for implementing 
Internet applications. While content-delivery networks provide the 

most prominent example of the commercial application of over-
lays [DI02, KO04], systems researchers have developed a variety 
of experimental overlay applications, demonstrating that the 
overlay approach can be an effective method for deploying a 
broad range of innovative systems [BH06, FR04,RH05, ST02]. 
Rising traffic volumes in overlay networks make the performance 
of overlay nodes an issue of growing importance. Currently, 
overlays nodes are constructed using general purpose servers, 
often organized into a cluster with a load-balancing switch acting 
as a front end. This paper explores an alternative approach that 
combines general purpose server blades and high performance 
Network Processor (NP) subsystems into an integrated architec-
ture designed to support multiple applications concurrently. 

To provide a concrete target for the research, and to facilitate 
the system’s deployment and use by others, we have chosen to 
focus on the design of a high performance node for the PlanetLab 
overlay network testbed [CH03, PE02]. In the roughly five years 
since its inception, PlanetLab has become a popular experimental 
platform and deployment vehicle for systems researchers in net-
working and distributed systems. PlanetLab nodes are imple-
mented using conventional PCs, running a modified version of 
Linux. This provides a familiar implementation environment and 
is inexpensive and easy to deploy. At the same time, it does have 
significant performance limitations that have become increasingly 
apparent as the usage of PlanetLab has grown, and as researchers 
have sought to deploy long-running services that carry significant 
volumes of traffic. Because PlanetLab applications run as user-
space processes, their packet forwarding rates are typically limited ________________________________ 
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to under 50K packets per second, which translates to less than 100 
Mb/s for average packet lengths of 250 bytes. Applications that do 
significant processing of packets (rather than simply forwarding 
them) can have substantially smaller packet forwarding rates. In 
addition, applications running in PlanetLab are subject to high 
latencies (tens of milliseconds per hop), high delay jitter and poor 
performance isolation. These characteristics are caused by the 
coarse-grained time-slicing provided by the operating system, and 
the failure to properly account for OS-level processing on behalf 
of different application processes. 

To address these issues, we have developed an experimental 
system that can serve as a high performance PlanetLab node. Our 
Supercharged PlanetLab Platform (SPP) integrates general pur-
pose server blades with performance-optimized NP subsystems, 
into a platform that delivers the flexibility and ease-of-use of a 
conventional PlanetLab implementation, while delivering much 
higher levels of performance. By supporting a simple and familiar 
fast-path/slow-path application structure, we make it straight-
forward for researchers to map the high volume part of their 
applications (which is typically fairly small) onto the NP re-
sources, while enabling them to implement the more complex 
parts in the programmer-friendly environment offered by a gen-
eral-purpose server. We report on the implementation of two 
applications running in this environment, that demonstrate packet 
forwarding rates of 4.8 million packets per second for a single NP 
subsystem; this is sufficient for throughputs of 5 Gb/s for average 
packet lengths of just 130 bytes. We also report latencies that are 
consistently less than 200 μs. It should be noted that while we 
focus on PlanetLab as the implementation context for this work, 
our broader objective is to understand the design of such plat-
forms for more general contexts, such as future commercial over-
lay hosting services that are likely to be far less resource-
constrained than PlanetLab. So, while some aspects of the archi-
tecture exceed current requirements for PlanetLab, they can be 
important in other settings.  

Section 2 of the paper provides an overview of the system, 
setting the context for the more detailed presentation in later 
sections. Section 3, provides some background on network proc-
essors generally, and the IXP 2850, in particular. Section 4 de-
scribes the software framework that enables the fast path 
processing of multiple PlanetLab slices to co-exist within a single 
network processor. Section 5 briefly discusses our strategy for 
improving the performance of the general purpose processor 
blades. Section 6 describes the overall control architecture of the 
system and explains how it fits within the PlanetLab framework. 
The results of our evaluation are presented in Section 7, where we 
report on experiments with both an IPv4 router application and an 
implementation of a router for the Internet Indirection Infrastruc-
ture [ST02]. We finish with a short discussion of related work in 
Section 8, some alternative approaches in Section 9 and closing 
remarks in Section 10. 

2. SYSTEM OVERVIEW 
2.1. Objectives 
Our principal objective for the SPP is to enable PlanetLab applica-
tions to achieve substantially higher levels of both IO perform-
ance and processing performance, while making it reasonably 
straightforward for PlanetLab users to take advantage of the capa-
bilities offered by high performance components, such as network 
processor subsystems. We also require that legacy PlanetLab 
applications run on the system without change. While unmodified 
applications will experience limited performance gains, the ability 
to support existing implementations can make it easier to migrate 
to higher performance implementations that take advantage of the 
network processor resources. 

To enable multiple PlanetLab applications to use the network 
processor resources concurrently, the system supports both multi-
ple NP subsystems and sharing of individual subsystems. Since 
modern NPs are not designed to be shared, this creates some 
challenges. To accommodate the limitations of the NP environ-
ment and to simplify the porting of applications to the NP, we 
have chosen to provide support for the generic application struc-
ture shown in Figure 1. In this structure, applications are divided 
into a Fast Path (FP) that runs on an NP and a slow path for 
control and exception processing that is handled by a separate 
Slice Manager (SM), running within a vServer [VS06] on a gen-
eral purpose compute server. The SM can control the fast path 
through a generic control interface. A remote user can control the 
application by logging into the vServer hosting the SM. Slices can 
forward control messages “in-band” by sending them to the fast 
path, which inserts them in the appropriate outgoing queue, or 
they can send them “out-of-band”. 

2.2. Node Abstraction 
The abstraction provided by the node seeks to mimic the Planet-
Lab node abstraction as closely as possible, while providing some 
additional features. The PlanetLab node abstraction seeks to give 
each vServer the illusion that it is running on a dedicated machine. 
The illusion is imperfect, because practical limits on IP address 
availability force the different vServers to share the same IP ad-
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Figure 1. Generic application structure showing fast path 
(implemented on a network processor) and slow 
path on a general purpose server. 
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dress, which in turn means that they must share common sets of 
TCP and UDP port numbers. PlanetLab also does not support any 
explicit “virtual link” concept. While slices may obtain a reserved 
allocation of network bandwidth, this allocation simply applies to 
the network interface bandwidth and does not imply any reserved 
capacity from node to node. Typically, PlanetLab nodes have a 
single network interface, so the bandwidth reservation simply 
gives the node the illusion of a dedicated network interface with a 
specified capacity. 

SPP nodes must operate under the same constraints and pro-
vide the same abstraction as a conventional PlanetLab node. 
However, since an SPP node can support multiple physical inter-
faces, we allow slices to reserve a share of each of the available 
interfaces. We also allow slices to associate multiple queues with 
each interface, and to divide their share of the interface bandwidth 
among their different queues. Through the fast path control inter-
face, an application may install filters that map packets to specific 
queues and output interfaces. The control interface also allows the 
application to specify each queue’s share of the outgoing interface 
and its capacity. 

As mentioned above, PlanetLab slices running in the same 
node share the same set of TCP and UDP port numbers. To enable 
remote users to send packets to a PlanetLab slice, users need to 
know which port number to use to get the packet to the correct 
slice. Since nodes are shared, slices cannot count on a specific 
port number being available on a particular node and Planetlab 
applications must be prepared to cope with this. Of course, this 
issue also arises in the SPP, but it is further complicated by the 

fact that an SPP node includes within it, multiple general purpose 
and NP subsystems. While the SPP node will often have multiple 
IP addresses (one for each of its physical interfaces), the number 
of IP addresses need not match the number of internal subsystems, 
so there can be no direct mapping. This means that not only must 
externally visible port numbers be shared among vServers within 
a given physical server, but they must also be shared among 
vServers in different physical servers and NP subsystems. We will 
elaborate on the implications of this in Section 6. 

2.3. System Components 
Figure 2 shows the main components of an SPP node. All input 
and output occurs through the Line Card (LC), which is an NP-
based subsystem with one or more physical interfaces (our current 
development platform has 10 gigabit Ethernet interfaces, as 
shown in the diagram). The LC forwards each arriving packet to 
the system component configured to process it, and queues outgo-
ing packets for transmission, ensuring that each slice gets the 
appropriate share of the network interface bandwidth. The archi-
tecture can support multiple LCs, but since the deployment con-
texts for PlanetLab nodes generally constrains the available 
bandwidth, PlanetLab provides little motivation for systems with 
multiple LCs. The General Purpose Processing Engines (GPE) 
are conventional dual processor server blades running the Planet-
Lab OS (currently Linux 2.6, with PlanetLab-specific extensions) 
and hosting vServers that serve application slices.  The Network 
Processing Engines (NPE) are NP subsystems comprising an Intel 
IXP 2850 NP, with 17 internal processor cores, 3 banks of 
SDRAM, 3 banks of QDR SRAM and a Ternary Content Ad-
dressable Memory (TCAM). The NPEs support fast path process-
ing for slices that elect to use this capability and each provides up 
to 5 Gb/s of IO bandwidth. There are two NPE subsystems on 
each physical NP blade. The Control Processor (CP) is another 
conventional server blade that hosts the software that coordinates 
the operation of the system as a whole. It can also host vServers 
serving application slices. The switch block is actually two sepa-
rate switches, a 10 Gigabit Ethernet switch for data, and a separate 
1 GE control switch. 

Figure 2 also includes a photograph of the current develop-
ment platform for the system. This configuration includes a switch 
plus two NP blades; one implements the Line Card functions (the 
IO interfaces are at the rear of the chassis) and the other imple-
ments two NPEs. The configuration also includes two server 
blades, (one CP and one GPE). The system architecture is de-
signed to support larger configurations. In particular, these same 
components can be used in a 14 slot chassis, allowing for up to 12 
conventional server blades or NP subsystems in a single Planet-
Lab node. Multi-chassis configurations are also possible. 

3. NETWORK PROCESSOR ISSUES 
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To appreciate some of the NPE design issues it’s helpful to under-
stand a little bit about Network Processors and the Intel IXP 2850, 
in particular [IXP]. First, NP products have been developed for 
use in conventional routers, as replacements for the Application 
Specific Integrated Circuits (ASIC) that have typically been used 
to provide high throughput packet processing. Products, like 
Cisco’s CRS-1 use proprietary NPs to perform all the line card 
packet processing functions [CI06], and the IXP family of net-
work processors is used in a wide variety of products made by 
multiple system vendors. Because NPs are programmable, they 
enable more rapid development and more rapid correction of 
design errors.   

To enable consistently high performance, the IXP 2850 is 
equipped with 16 multi-threaded Micro-Engines (ME) that do the 
bulk of the packet processing, plus several high bandwidth mem-
ory interfaces (see Figure 3). In typical applications DRAM is 
used primarily for packet buffers, while SRAM is used for im-
plementing lookup tables and linked list queues. There are also 
special-purpose on-chip memory resources, both within the MEs 
and shared across the MEs. An xScale Management Processor 
(MP) is provided for overall system control. The MP typically 
runs a general-purpose OS like Linux, and has direct access to all 
of system memory and direct control over the MEs. 

As with any modern processor, the primary challenge to 
achieving high performance is coping with the large proces-
sor/memory latency gap. Retrieving data from off-chip memory 
can take 50-100 ns (or more), meaning that in the time it takes to 
retrieve a piece of data from memory, a processor can potentially 
execute over 100 instructions. The challenge for system designers 
is to try to ensure that the processor stays busy, in spite of this. 
Conventional processors cope with the memory latency gap pri-
marily using caches. However for caches to be effective, applica-
tions must exhibit locality of reference, and unfortunately, 
networking applications typically exhibit very limited locality of 
reference, with respect to their data. 

Since caches are relatively ineffective for networking work-
loads, the IXP provides a different mechanism for coping with the 
memory latency gap, hardware multithreading. Each of the MEs 

has eight separate sets of processor registers (including Program 
Counter), which form the MEs hardware thread contexts. An ME 
can switch from one context to another in 2 clock cycles, allowing 
it to stay busy doing useful work, even when several of its hard-
ware threads are suspended, waiting for data to be retrieved from 
external memory. Multi-threading can be used in a variety of 
ways, but there some common usage patterns that are well-
supported by hardware mechanisms. Perhaps the most commonly 
used (and simplest) such pattern involves a group of threads that 
operate in a round-robin fashion, using hardware signals to pass 
control explicitly from one thread to the next, as illustrated below. 

In this example, the first thread starts by reading a data item (e.g. 
a packet pointer) from a shared input queue, then issues a read 
request before passing control to the second thread, which then 
reads the next data item from the shared queue, issues its own 
read request and passes control to the third thread. By the time the 
third thread issues its read request, the first thread is ready to 
continue. Notice how this allows the processor to stay busy, in 
spite of the long memory latency. Also, note that the round robin 
processing ensures that data items are processed in order. This 
technique works well when the variation in processing times from 
one item to the next is bounded (which is commonly the case in 
packet processing contexts), and is straightforward to implement. 

There are two other aspects of the MEs that are important to 
understand. First, each has a small (8K), dedicated program store, 
from which it executes. This limits the number of different func-
tions that can be implemented by a single ME, favoring programs 
that are divided into smaller pieces and organized as a pipeline. 
The MEs support such pipeline processing by providing dedicated 
FIFOs between consecutive pairs of MEs (Next Neighbor Rings). 
A pipelined program structure also makes it easy to use the proc-
essing power of the MEs effectively, since the parallel compo-
nents of the system are largely decoupled from one another. 

4. SHARING THE NPE 
To support the generic application structure in Figure 1, we have 
developed software for the NPE that allows it to be shared by the 
fast path segments of many different slices. The organization of 
the software and its mapping onto MEs is shown in Figure 4. 
Packets received from the switch are copied to DRAM buffers by 
the Receive (Rx) block on arrival, which also passes a pointer to 
the packet buffer through the main packet processing pipeline. 
Information contained in the packet header can be retrieved from 
DRAM by subsequent blocks as needed, but no explicit copying 
of the packet takes place in the processing pipeline. At the end of 
the pipeline, the Transmit (Tx) block forwards the packet to the 
output. Packet pointers (and other information) are passed along 
the pipeline primarily using FIFOs linking adjacent MEs. Pipeline 
elements typically process 8 packets concurrently using the hard-
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Figure 3. IXP 2850 block diagram showing the 16 Micro-
Engines (ME) and the Management Processor (MP) 
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ware thread contexts. The performance of individual pipeline 
stages can be further increased by distributing the processing 
across multiple MEs. The Substrate Decapsulation block deter-
mines which slice the packet belongs to, by doing a lookup in a 
table stored in one of the SRAMs. It also effectively strips the 
outer header from the packet by adjusting the packet pointer 
before passing it along the pipeline.  

The Parse block includes slice-specific program segments. 
More precisely, Parse includes program segments that define a 
preconfigured set of Code Options. Slices are configured to use 
one of the available code options and each slice has a block of 
memory in SRAM that it can use for slice-specific data. Currently, 
code options have been implemented for IPv4 forwarding and for 
the Internet Indirection Infrastructure (I3) [ST02]. New code 
options are fairly easy to add, but this does require familiarity 
with the NP programming environment and must be done with 
care to ensure that new code options do not interfere with the 
operation of the other components. The primary role of Parse, is 
to examine the slice-specific header and use it and other informa-
tion to form a lookup key, which is passed to the Lookup block. 

The Lookup block provides a generic lookup capability, using 
the TCAM. It treats the lookup key provided by Parse as an 
opaque bit string with 112 bits. It augments this bit string with a 
slice identifier before performing the TCAM lookup. The slice’s 
control software can insert packet filters into the TCAM. These 
filters can include up to 112 bits for the lookup key and 112 bits 
of mask information. Software in the Management Processor 
augments the slice-defined filters with the appropriate slice id 
before inserting them into the TCAM. This gives each slice the 
illusion of a dedicated TCAM. The position of filter entries in the 
TCAM determines their lookup priority, so the data associated 
with the first filter in the TCAM matching a given lookup key is 
returned. The number of entries assigned to different slices is 
entirely flexible, but the total number of entries is 128K. 

The Header Formatter which follows Lookup makes any nec-
essary changes to the slice-specific packet header, based on the 
result of the lookup and the semantics of the slice. It also formats 
the required outer packet header used to forward the packet to 
either the next PlanetLab node, or to its ultimate destination. 

The Queue Manager (QM) implements a configurable collec-
tion of queues. More specifically, it provides ten distinct packet 
schedulers, each with a configurable output rate, and each with an 
associated set of queues. Separate schedulers are needed for each 
external interface supported by Line Cards. The number of dis-
tinct schedulers that can be supported by each ME is limited by 
the need to reserve some of the ME’s local memory for each. 
Each scheduler implements the weighted deficit round robin 
scheduling policy, allowing different shares to be assigned to 
different queues. When multiple NPEs have schedulers configured 
to send to the same Line Card physical interface, the sum of their 
output rates is configured to be no larger than the physical inter-
face rate. The rates used by the different schedulers can be stati-
cally configured or can be dynamically adjusted by distributed 
scheduling processes (this borrows ideas from [PA03]). Each slice 
has an associated set of queues that it can map packets to. When a 
slice’s control software inserts a new filter, it specifies a slice-
specific queue id. The filter insertion software remaps this to a 
physical queue id, which is added, as a hidden field, to the filter 
result. Slices can configure which scheduler to associate with a 
specific queue, the effective length of each queue and its share of 
the scheduler bandwidth. 

The Statistics module maintains a variety of counts on behalf 
of slices. These can be accessed by slices through the Manage-
ment Processor, to enable computation of performance statistics. 
The counting function is separated from the main processing 
pipeline to keep the associated memory accesses from slowing 
down the forwarding of packets, and to facilitate optimizations 
designed to overcome the effects of memory latency. The counts 
maintained by the Statistics module are kept in one of the external 
SRAMs and can be  directly read by the MP. 

5. ENHANCING GPE PERFORMANCE 
While our main focus is on boosting application performance 
using the NPEs, the system also provides opportunities to boost 
performance of applications that run only on the GPEs. The GPEs 
can improve throughput over typical PlanetLab nodes in two 
ways. First, they use higher performance hardware configurations 
than is usual for PlanetLab. In particular, our current GPEs are 
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Intel NetStructure MPCBL0040 server blades with a pair of 2 
GHz Xeon dual-core processor chips, four gigabit Ethernet inter-
faces and an on-board disk.  

In addition to improving throughput, we would like to im-
prove the latency of PlanetLab applications. Because PlanetLab is 
built on top of a conventional operating system (Linux), it inherits 
the basic coarse-grained scheduling paradigm that characterizes 
such systems. The newer versions of the PlanetLab OS actually 
make significant modifications to the standard Linux scheduling, 
but the default scheduling parameters still produce coarse-grained 
time slices, resulting in latencies that can be unacceptably high for 
some applications. The PlanetLab scheduler is token-based, with 
each token representing 1 ms of computation. Each vServer is 
supplied with tokens at some specified rate (32 tokens/second, by 
default) and has a specified maximum number of tokens it can 
hold (100). In addition, before a vServer can be scheduled, it must 
have a specified minimum number of tokens (50). This leads to 
time slices of 50-100 ms, so in a system where N vServers are 
competing for the CPU, a vServer can be pre-empted for as long 
as 100(N–1) ms at a time, meaning that a packet arriving for a 
suspended vServer can wait a very long time before being proc-
essed. This issue is acknowledged in [BA06] where the authors 
address it by artificially changing the process priority of a particu-
lar slice of interest, but this is clearly not a general solution.  

To gain some insight into the scheduler behavior, we ran a 
simple experiment in which eight identical vServers ran a simple 
compute-bound program, competing for a single processor core. 
Each vServer continuously checked the system time to detect 
periods when it was pre-empted and we recorded the distribution 
of pre-emption times. We then estimated the “cycle time” (the 
time required for all eight vServers to complete one scheduling 
round) as 8/7 times the pre-emption time and plotted the resulting 
cumulative distribution function, shown in Figure 5. The default 
PlanetLab scheduling parameters produce cycle times ranging up 
to 500 ms with very high variability. For the other cases shown, 
each vServer was allocated tokens at a rate of 120 per second 

(slightly less than one-eighth of the processor) and the minimum 
and maximum token allocations were set to the same value, with 
this value being varied from 2 to 16. We note that by making the 
minimum and maximum token values equal, we get much more 
consistent scheduling behavior and we note that the median cycle 
times are roughly equal to the product of the number of vServers 
and the number of tokens, which is what one would expect based 
on an idealized analysis. 

6. CONTROL ARCHITECTURE 
Figure 6 is a block diagram of the system, showing the control 
components of the architecture. First, note that the system pro-
vides a control network that is independent of the switch that 
carries data traffic (the control net is actually implemented on the 
same switch blade as the main data switch, but the control traffic 
is logically and physically separate). The control network is ac-
cessible only to the control elements of the architecture. In par-
ticular, vServers hosting user slices have no direct access to it. 

The system’s Control Processor (CP) obtains slice configura-
tion data using the standard PlanetLab mechanism of periodically 
polling the PlanetLab Central database (PLC). Slices that are 
configured to use the system are assigned to one of the GPEs by 
the Global Node Manager (GNM) and a corresponding entry is 
made in a local copy of the Planet Lab database (myPLC). The 
Local Node Managers (LNM) on each of the GPEs periodically 
poll myPLC to obtain new slice configurations. 

Once a vServer has been assigned to a slice, a user of that 
slice may login to it, in order to set up the application on the 
vServer. To applications that don’t use the NPEs, this process 
works much like it would on a conventional PlanetLab node. 
However, there are some configuration steps that must be imple-
mented under the covers, to make this as seamless as possible.  

To allow slices to reserve externally visible port numbers, we 
provide an interface to the LRM that relays the reservation re-
quests to the GRM. The GRM keeps track of all externally visible 
port numbers that have been assigned, and if the requested port 
number is available, it makes the appropriate assignment and 
configures the Line Card so that when packets are received with 
the specified port number, they will be forwarded to the right 
GPE. To make this process transparent to the slices, the interface 
to the LRM is hidden inside library routines that are used in place 
of the standard IO libraries. Users do need to link their applica-
tions against these libraries, but are otherwise unaffected. 

To allow outgoing TCP connections to be handled correctly, 
the system must implement Network Address Translation (NAT). 
This is handled by the Management Processor in the Line Card 
which intercepts outgoing TCP control packets and maps the 
source port number to an available value from a pre-allocated 
range. It then configures tables in the Line Card so that IP ad-
dresses and port numbers are appropriately re-mapped for all 
subsequent data packets. NAT processing is also performed for 
other protocols that require it (e.g. ICMP echo packets). 

A slice that elects to use an NPE for its fast path must request 
an NP slice from the Local Resource Manager (LRM), which 
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forwards the request to the GRM. The request specifies the NPE 
required code option and various resource parameters, including 
the number of required filter table entries, queues and packet 
buffers, the amount of SRAM space it needs, and the total re-
served bandwidth it requires. The GRM selects the most appropri-
ate NPE to host the slice and returns its id to the LRM. The LRM 
then interacts with the MP to complete the initial configuration. 

Once the initial setup is complete, the application running in 
its vServer can perform additional configuration steps. In particu-
lar, it can request that UDP ports on any of the system’s external 
interfaces be configured to forward packets between the external 
interface and its NPE fast path. As part of this process it may 
request a specified share of the external interface bandwidth (both 
incoming and outgoing). Once a slice has a configured UDP port 
on a physical interface it can associate one or more of its fast path 
queues to a packet scheduler for that interface (in the NPE queue 
manager). It can also configure the lengths of individual queues 
and their individual shares of the interface bandwidth, as well as 
filters in the lookup table. In addition, it can write whatever slice-
specific configuration data is appropriate in its SRAM memory 
space. This is accomplished through a generic memory read/write 
mechanism provided by the NPE’s MP. All these control interac-
tions take place through the LRM, which serves as an intermedi-
ary between the vServers running on the GPE and the NPEs. 

As mentioned above, users login to their vServers to configure 
their application, in much the same way that they do on PlanetLab 
today. However, this is complicated by the fact that there are 
multiple GPEs and each user’s session must be directed to the 
appropriate GPE. In an ordinary PlanetLab node, the remote client 
opens a connection to the node’s SSH server, which goes through 
the authentication process, and if that succeeds, forks a process 

running in the appropriate vServer, which transparently acquires 
the connection, along with its associated TCP kernel state. 

In order to emulate this process, without requiring major 
changes to the PlanetLab OS kernel, we redirect all incoming SSH 
connections to the CP (using filters in the Line Card), which does 
the login authentication. The ideal solution at this point would be 
to fork a process, and then migrate that process to the GPE host-
ing the correct vServer. However, in the absence of a general 
process migration mechanism, we have chosen instead to use a 
relay process that runs in the CP on behalf of the slice. This relay 
process opens a second SSH connection to the SSH server on the 
selected GPE and forwards traffic at the application level. 

We recognize the obvious performance drawbacks of this ap-
proach, but consider them acceptable given the relatively limited 
amount of traffic that must be relayed on behalf of users’ login 
sessions. While there are alternative approaches that avoid appli-
cation level forwarding, they are not transparent to users, and we 
consider user transparency the more important consideration here. 

7. EVALUATION 
To evaluate the system, we implemented two different applica-
tions and studied their performance, relative to conventional 
PlanetLab implementations. The first is an IPv4 router that we 
developed from scratch. The second is a port of the Internet Indi-
rection Infrastructure (I3). In this case, we restructured the system 
into fast path and slow path sections and mapped the fast path 
onto an NPE.   

7.1. IPv4 router 
Our IPv4 router uses the NPE to implement normal packet for-
warding and uses a vServer running on one of the GPEs to im-
plement control functions and exception handling. The TCAM in 
the NPE allows us to implement both conventional IP routing and 
general packet filtering, allowing arbitrary subsets of packets to be 
mapped to different queues. We compare the performance of the 
NPE-based forwarder to a forwarder using Click [KO00], running 
in a vServer. 

For the experiments reported here, the IPv4 router is config-
ured with five externally visible UDP ports, which are mapped to 
five different physical interfaces on the LC. The LC demultiplexes 
received packets based on their UDP port numbers and forwards 
packets for the router to the NPE. The NPE’s packet schedulers 
are rate controlled to limit their sending rate to 800 Mb/s. Figure 7 
shows the results from a basic operational test that demonstrates 
the operation of all the major subsystems and verifies the fair 
queueing mechanisms. Each of the five inputs sends traffic into 
the router at times that are offset from one another. All the traffic 
is destined for the same output, and the traffic from each input is 
mapped to a different queue at that output, with each queue get-
ting a different share of the output bandwidth (the shares are 30%, 
25%, 20%, 15% and 10%). The top chart shows the rates from 
each input as solid lines and the output rates from each queue in 
incremental form as dashed lines (the incremental form means 
that the top dashed line represents the sum of the rates coming 
from all the inputs). The bottom chart shows the lengths of the 
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queues. Since the scheduler is work-conserving, the output rates 
change as new inputs turn on and as queues drain. These charts 
are real-time performance measurements obtained by polling the 
statistics counters maintained in the LC and NPE and accessed 
through the MP.  

Figure 8 shows a somewhat more complex scenario involving 
traffic to all five outputs. The five traffic sources send the same 
mix of traffic at all times. In each phase, one of the outputs re-
ceives 1.6 Gb/s of traffic, one receives no traffic and the remain-
ing three receive 800 Mb/s of traffic (with each output receiving 
an equal amount of traffic from each of the five inputs). Each 
output accumulates a backlog during the period that its input rate 
is 1.6 Gb/s, and this backlog is cleared when the input traffic to 
that output turns off. The chart shows the input rates (in incre-
mental form) as solid lines. The output rates (also in incremental 
form) are shown as dashed lines. Note that for a short period after 
the second and third input rate transitions, the output rate briefly 
rises to 4 Gb/s as the previously accumulated backlog for the 
newly idle output is forwarded, along with the traffic to the other 
four outputs. These periods show up as brief blips on the display, 
which is sampling the traffic counters every 200 ms. 

Figure 9 shows the results from a large collection of through-
put measurements on both the NPE-based router and the Click 
router. Both routers are configured with five externally visible 
UDP ports mapped to five different physical interfaces, and input 
traffic is distributed uniformly across the five ports. The numbers 
labeling the curves are the sizes of the payloads carried by the 
packets. The lengths of the frames carried on the external link are 
98 bytes longer (this includes two UDP/IP headers and Ethernet 
overhead, including preamble, VLAN tag and inter-packet gap). 
The bandwidths are the actual link bandwidths, including all 

overheads. Note that the chart uses a log-log scale. We observe 
that for 0 byte payloads, the maximum throughput that the Click 
router is able to achieve is under 50 Mb/s and that its performance 
deteriorates dramatically as loads increase beyond its maximum 
capacity. The NPE-based router is able to keep up with the input 
up to a rate of 3.7 Gb/s. For larger payload sizes, the NPE router 
can sustain the full 5 Gb/s. For Click, the maximum packet proc-
essing rate is about 59 Kp/s, while for the NPE router, it ap-
proaches 4,800 Kp/s, an 80 times improvement. The highest 
throughput for the Click router is 540 Mb/s.  

Most of the Click results are for a single processor core, even 
though the server blade has two dual-core processors. We also 
show results for 400 byte packets using all four cores, with traffic 
being distributed across four vServers, each running its own Click 
router. While one might expect this configuration to achieve four 
times the throughput of the single core, in fact it only achieves 
roughly twice the throughput of the single core. There are several 
possible explanations for this deficiency. We think that the most 
likely explanation is that at high loads, a large share of the proc-
essing capacity is being used by the operating system, and there is 
insufficient parallelism in the OS to take full advantage of all four 
cores. Note that since the NP blade contains two independent 
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NPEs, it can achieve a maximum packet processing rate of 9,600 
Kp/s, while the server blade has a maximum packet processing 
rate of about 120 Kp/s, when using all four cores to process 
minimum size packets. 

Figure 10 shows the results of a series of latency measure-
ments. We are particularly interested in understanding how the 
sharing of a component (GPE or NPE) among multiple PlanetLab 
slices affects the latency. Consequently, we configured eight 
instances of the router application on an NPE and compared this 
with the eight Click routers running in separate vServers on a 
GPE. For each data point in Figure 10, the routers were supplied 
with a background traffic load with the total input rate and pay-
load sizes shown in the chart (with each of the eight routers re-
ceiving one eighth of the input traffic). We then sent ping packets 
through the loaded routers using separate logical interfaces (so the 
ping packets were not subjected to queueing delays in the routers). 
Each data point on the solid curves is the average of 2000 meas-
urements. We show results for 400 and 1400 byte payloads, and 
for the Click router, we show results using just a single core and 
using all four cores for the case of 400 byte payloads. For the 400 
byte case with a single core, we also show the mean plus 3 times 
the standard deviation of the delay, in order to show the variability 
of the delay. These data indicate that there is a non-negligible 
fraction of the traffic that experiences delays that are as much as 5 
times the mean delay. For the NPE-based routers, the average 
round-trip ping delays never exceeded 0.2 ms and the standard 
deviation was generally a small fraction of the mean. In the NPE 
case, the ping traffic shares queues with the background traffic 
within the fast path. This is why we observe larger delays when 
the background traffic has 1400 byte payloads. For the Click 
routers, the average ping delays remain small until the input rate 
starts to approach the maximum rate that can be sustained. It then 
rises sharply, with average delays well above 10 ms. We note that 
while four cores does lead to better throughput, it does little to 
limit the latency, once the throughput limit has been reached. 

The data in Figure 10 use the standard PlanetLab scheduling 
parameters. We also experimented with different choices, expect-
ing that as we reduced the number of tokens allocated to each 
vServer, the latency would drop as the cycle time of the scheduler 
dropped. We found, to our surprise, that the scheduling parame-
ters had a negligible effect on latency (or throughput), under the 
traffic conditions used in this experiment. While we have not been 
able to confirm it, it appears that when the system enters overload, 
the Click router is not appropriately balancing the time devoted to 
input processing with the time devoted to output processing. In 
addition, a significant fraction of the processing time is being 
taken up by the IP stack in the operating system, which must 
move arriving data from the network device driver queues into the 
socket buffers used by the vServers. Since ping packets can get 
delayed behind the packets that make up the background load in 
the device driver queues, they are directly affected by the back-
ground load, even though they have separate socket buffers and 
pass through separate queues within the Click routers. 

7.2. Internet Indirection Infrastructure 
The Internet Indirection Infrastructure (I3) [ST02] is a novel 
network architecture that explores the use of indirection as an 
underlying mechanism for giving users greater control over the 
traffic they receive. Instead of traffic being sent directly to a 
destination address, it is sent to a user-defined identifier, called a 
trigger. Triggers are defined within a flat identifier space, and the 
responsibility for handling packets labeled by different triggers is 
distributed over the I3 routers. The I3 routers use Chord-style 
forwarding [ST01] to deliver each packet to the node responsible 
for its trigger. In the simplest (and presumably most common) 
case, when a packet reaches the router responsible for its trigger it 
finds a single filter matching its trigger value, which specifies the 
address of the destination to receive the packet. By having their 
packets sent indirectly through triggers, users can more easily 
shield themselves from unwanted traffic and can shield their 
communicating peers from changes in their actual address, mak-
ing support for mobility very straightforward. I3 also allows 
packets to match multiple filters, facilitating multicast; it also 
supports more complex trigger processing, including packets with 
“stacks” of triggers and user-defined “remapping” of trigger 
identifiers. 

I3 has been implemented on PlanetLab and we used the pub-
licly available I3 implementation as the basis for the results re-
ported here. We first installed, configured and verified the 
operation of the standard I3 implementation on our GPE, and took 
a set of baseline performance measurements of this configuration 
for comparison purposes. We then created a hybrid implementa-
tion, with the I3 fast path running on the NPE, and the slow path 
on the GPE. The fast path does all the Chord-level forwarding. So, 
if a router receives a packet with a trigger that lies outside the 
range of values that the router is responsible for, the router does a 
lookup in the fast path’s Chord finger table to forward it to the 
next I3 router. The fast path also handles simple trigger process-
ing. So, if a router receives a packet with a trigger that is within 
the range of values it is responsible for, and the fast path has a 
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single matching filter in its TCAM, the packet is forwarded di-
rectly by the NPE. In our current implementation, all other pack-
ets are handled by the GPE. In particular, packets matching 
multiple triggers or requiring more complex trigger processing are 
forwarded to the GPE for processing. Some of these more com-
plex cases could also be shifted to the fast path, but in this initial 
set of experiments, we chose to limit the NPE’s role to only what 
we expect to be the most common cases. 

For these experiments, we have focused on the datapath, so 
only minimal changes to the supplied I3 code were needed (about 
350 lines were added to deal with the interaction with the NPE). A 
complete system would also require the control mechanisms 
needed to allow the GPE to configure the Chord forwarding tables 
in the fast path and insert filters to match triggers. For the experi-
ments described here, both of these were manually configured. 

We started by performing a set of baseline throughput and la-
tency tests similar those we did for the IPv4 application. The 
results are qualitatively similar, although the version of the I3 
router that runs on the GPE achieves throughput that is generally 
30-40% higher than the Click router. We next did a test to verify 
the operation of the NPE when hosting both the IPv4 and I3 appli-
cations. For these tests, we held the total input traffic at 5 Gb/s 
and varied the fraction of traffic for the I3 application. The results 
are shown in Figure 11. There are 3 sets of curves, one for I3 
payload lengths of 0 bytes, one for 40 byte payloads and one for 
80 byte payloads. The IPv4 packets had slightly larger payload 
lengths, in order to match the overall packet length of the I3 pack-
ets (the I3 header is 7 bytes longer than the IPv4 header). For each 
set, we show the output packet rate for the I3 application, the IPv4 
application and the sum of the two. Each of the “sum” curves is 
labeled with the percentage of the input rate that is achieved in 
each case. For 0 byte payloads, we can keep up with 81% of the 
input rate when all the traffic is IPv4. For 40 byte payloads, we 
can keep up with the full input rate in all cases and for 80 byte 
payloads, we are handling 90% of the input rate. This last result is 
somewhat anomalous and further study is needed to explain it. 

Figure 12 shows results of a set of experiments to evaluate the 
latency in the I3 case. These experiments were structured differ-
ently from the earlier ones for IPv4. Specifically, we used a com-
pletely separate instance of the I3 application to handle the ping 
traffic (for both GPE and NPE), in order to isolate the ping traffic 
from the background traffic as much as possible. The background 
traffic consisted of packets with 400 byte payloads and was dis-
tributed across two instances of the I3 application. In the GPE 
case, we used a single processor core (as noted earlier, using all 
four cores improves throughput, but has little effect on latency). 

The most striking difference between these results and the 
IPv4 results presented earlier is that the delays are substantially 
smaller for both the GPE and the NPE. This appears to be largely 
due to the isolation of the ping traffic. For the NPE, the average 
delay is essentially constant at just under 50 μs. For the GPE, the 
default PlanetLab scheduling parameters result in average delays 
of 15-30 ms when the input rate exceeds 300 Mb/s. Reducing the 
PlanetLab scheduling parameters (minToken, maxToken) to 2 
reduces the delay by more than a factor of 10. Allowing it to rise 
to 8 gives a delay of 6-8 ms. We found that reducing the schedul-
ing parameters had just a modest impact on throughput, reducing 
the maximum forwarding rate by less than 10%. Note that as the 
number of background instances of I3 is scaled up, the delays in 
the GPE case can be expected to scale up in direct proportion. 

8. RELATED WORK 
There are two main categories of previous work that are most 
closely related to this research. The first concerns high perform-
ance implementations of overlay networks and the second con-
cerns high performance, programmable routers, particularly those 
based on network processors. In the overlay network space, com-
mercial organizations have led the way in developing high per-
formance implementations, but relatively few published 
descriptions are available. Reference [KO04] describes Akamai’s 
system for delivering streaming audio and video, which includes a 
description of its cluster-based architecture for the overlay nodes. 
These systems use general purpose servers linked by an Ethernet 
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LAN, which is used to multicast streams from the servers han-
dling input processing to the servers forwarding packets to next 
hops and/or end-users. 

In the programmable router space  [KA02, SP01] describe an 
extensible router that uses an IXP 1200 for the fast path process-
ing and reference [CH02] describes a system that places a general 
purpose plugin processor at each port of a gigabit hardware router. 
There is a much larger body of work relating to active networking 
and extensible routers generally, but the vast majority of this work 
is primarily concerned with other issues than achieving high 
performance. A more recent piece of related work is [TU06], 
which describes a proposed design of a backbone router for NSF’s 
GENI initiative [GE06]. 

9. ALTERNATE APPROACHES 
It’s natural to ask what other approaches might be available to 
improve the performance of overlay networks. PlanetLab is al-
ready shifting to higher performance servers with dual processor 
chips and two cores per chip. Four core processor chips are now 
available and eight core chips are expected soon. As we have 
seen, while multi-core processors can boost throughput, the in-
crease is not necessarily proportional to the number of processors. 
Memory and network bandwidth must also be scaled up, and  
even with appropriate hardware scaling, limited locality-of-
reference in networking workloads may lead to poor cache per-
formance, limiting the gains. In addition, the parallelism in the 
workload must at least match the number of cores, if linear 
speedup is to be achieved. A PlanetLab node hosting many slices 
that each require just a small fraction of the system capacity, can 
potentially achieve such parallelism. However, if the workload 
places substantial demands on the OS, then the OS must also be 
highly parallel. In particular, the network stack must take advan-
tage of the multiple cores to avoid becoming a bottleneck. Simi-
larly, slices that require a larger share of the system capacity will 
have to be written to take advantage of multiple cores if they are 
to benefit from their presence.  

Of course, even if multi-core systems are properly engineered 
and operating system and application code is structured for paral-
lel execution, there remains the issue of user-space overhead for 
IO-intensive applications. Such overheads contribute significantly 
to the limited performance of typical overlay platforms. The most 
promising approach to overcoming such overheads is to decom-
pose applications into separate fast path and slow path segments, 
and push the fast path down into the OS kernel or even the net-
work device driver. This can be highly effective, but does trade-
off protection and ease of software development for performance. 
We have chosen to accept that trade-off to take advantage of NPs, 
and argue that a similar choice must be made to get the most out 
of multi-core server blades. To ensure safe operation in this envi-
ronment one must be prepared to place limits on how the fast path 
is programmed, possibly through the use of specialized languages 
such as PLAN [HI98]. 

We should also note that a multi-core server blade, even with 
8 or 16 processor cores does not provide a scalable solution to the 

general challenge of high performance overlay network platforms 
(although it may suffice for PlanetLab in the near term). A scal-
able solution requires an architecture that supports systems with 
tens or even hundreds of server blades. One way to approach this 
is to use a scalable, shared memory multiprocessor. Such architec-
tures are common in supercomputers designed for scientific com-
puting, but these systems are typically not engineered for the IO-
intensive workloads that characterize overlay networks (although 
they certainly could be). 

Another approach is to use a cluster of general purpose server 
blades, connected by a high bandwidth switch. Low cost 10 giga-
bit Ethernet switches are now available [FO07] and server blades 
will soon be routinely equipped with such 10 GbE interfaces. This 
approach is quite similar to the architecture developed here. While 
we have chosen a more integrated approach using ATCA compo-
nents, this difference is mainly a matter of physical implementa-
tion, rather than architecture. The more significant difference 
between the two approaches is our emphasis on the use of net-
work processors for the fast path processing. While we argue that 
at the moment, NPs offer significant performance advantages for 
the fast path processing, future improvements in general purpose 
server blades and operating systems could close the gap. 

10. CLOSING REMARKS 
This work demonstrates that overlay network platforms with 
substantially higher levels of performance can be implemented 
using an integrated architecture that combines general purpose 
servers with modern network processors. NP systems can out-
perform general purpose servers by a surprisingly large margin. 
This is partly due to the richer hardware resources available in the 
NP, but a large part of the difference comes from the operating 
systems used on general purpose servers, which were developed 
and optimized for much less IO-intensive workloads than are 
found in both network routers and in most overlay network con-
texts. As the number of processor cores in general purpose sys-
tems increases to over the next few years, it’s likely that general 
purpose chips will be able to compete more effectively with NPs. 
However, reaping the full benefits of such systems in overlay 
network settings will almost certainly require operating systems 
that are more IO-oriented and will require that applications be 
programmed to exploit the parallelism provided by the hardware. 

Our experience implementing the IPv4 and I3 routers using 
the fast path/slow path application structure was very encourag-
ing. In particular, we found it very straightforward to restructure 
the I3 code to conform to this pattern and we expect that many 
other PlanetLab applications can be similarly modified. The 
framework provided by the NPE made it straightforward to add 
the I3 code option. The C source files required to implement the 
fast path total less than 2,000 lines, and it took two graduate stu-
dents less than one week to write the code and verify its operation. 
While we have not implemented the control software to allow the 
GPE-resident software to configure the Chord routing tables and 
insert filters to match triggers, we expect these additions to be 
fairly routine, since they mainly require the addition of code 
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modules to the xScale, which provides a reasonably friendly 
Linux-based programming environment. 

It’s worth noting that one of the key factors that made the re-
targeting of I3 so straightforward was that we had a well-
engineered existing implementation as our point-of-departure. Our 
experience suggests that before attempting to build an application 
for the NPE environment, it is wise to develop a fully functional 
version for the GPE environment. This can serve as a reference 
point guiding the decisions for exactly what functions to shift to 
the fast path. It also facilitates an incremental development strat-
egy with small, easy to manage steps, producing intermediate 
versions of a system that can be useful on their own. 

It’s natural to ask how suitable our approach is for applica-
tions that are different from the two we have considered here. We 
believe that while it is likely to be  more useful for some applica-
tions than others, the approach is widely applicable, since many 
applications lend themselves to decomposition into a simple, high 
traffic volume fast path and a more complex subsystem to handle 
exceptions and control. For applications such as content-delivery 
networks, the need for disk storage places limits on the role the 
NPEs can play, but even here, packets may be forwarded across 
multiple hops before reaching the location storing the information 
of interest. It seems likely that the associative lookup mechanism 
provided by the TCAM can be a powerful tool for making the 
required routing decisions. For network measurement applica-
tions, the ability of the NPE platform to eliminate the large and 
highly variable delays found in general-purpose servers promises 
more accurate measurements with lower computational effort. 

We plan to make the SPP system available as a node in the 
public PlanetLab infrastructure, once we complete our implemen-
tation of the control software. Some additional refinements to the 
software for the LC and NPE need to be implemented before the 
public release, but the core functionality is now complete and we 
expect to have the system available for general use by late 2007. 
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