
 - 1 -

Supercharging PlanetLab – a High Performance,
Multi-Application, Overlay Network Platform

Jon Turner

Washington University
+1-314-935-8552

jon.turner@wustl.edu
Patrick Crowley

Washington University
+1-314-935-9186

pcrowley@wustl.edu
John DeHart

Washington University
+1-314-935-7329

jdd@arl.wustl.edu
Amy Freestone

Washington University
+1-314-935-6160

amf4@cec.wustl.edu

Brandon Heller
Washington University

+1-314-935-6160
bdh4@arl.wustl.edu

Fred Kuhns
Washington University

+1-314-935-6598
fredk@arl.wustl.edu

Sailesh Kumar
Washington University

+1-314-935-6160
sailesh@arl.wustl.edu

John Lockwood
Washington University

+1-314-935-4460
lockwood@arl.wustl.edu

Jing Lu
Washington University

+1-314-935-4658
jl1@arl.wustl.edu
Michael Wilson

Washington University
+1-314-935-6160

mlw2@arl.wustl.edu
Charles Wiseman
Washington University

+1-314-935-6160
cgw1@arl.wustl.edu

David Zar
Washington University

+1-314-935-4876
dzar@arl.wustl.edu

ABSTRACT
In recent years, overlay networks have become an important
vehicle for delivering Internet applications. Overlay network
nodes are typically implemented using general purpose servers or
clusters. We investigate the performance benefits of more inte-
grated architectures, combining general-purpose servers with high
performance Network Processor (NP) subsystems. We focus on
PlanetLab as our experimental context and report on the design
and evaluation of an experimental PlanetLab platform capable of
much higher levels of performance than typical system configura-
tions. To make it easier for users to port applications, the system
supports a fast path/slow path application structure that facilitates
the mapping of the most performance-critical parts of an applica-
tion onto an NP subsystem, while allowing the more complex
control and exception-handling to be implemented within the
programmer-friendly environment provided by conventional
servers. We report on implementations of two sample applica-
tions, an IPv4 router, and a forwarding application for the Internet
Indirection Infrastructure. We demonstrate an 80× improvement
in packet processing rates and comparable reductions in latency.

Keywords. PlanetLab, overlay networks, network processors,
Global Environment for Network Innovation (GENI)

1. INTRODUCTION
Network overlays have become a popular tool for implementing
Internet applications. While content-delivery networks provide the

most prominent example of the commercial application of over-
lays [DI02, KO04], systems researchers have developed a variety
of experimental overlay applications, demonstrating that the
overlay approach can be an effective method for deploying a
broad range of innovative systems [BH06, FR04,RH05, ST02].
Rising traffic volumes in overlay networks make the performance
of overlay nodes an issue of growing importance. Currently,
overlays nodes are constructed using general purpose servers,
often organized into a cluster with a load-balancing switch acting
as a front end. This paper explores an alternative approach that
combines general purpose server blades and high performance
Network Processor (NP) subsystems into an integrated architec-
ture designed to support multiple applications concurrently.

To provide a concrete target for the research, and to facilitate
the system’s deployment and use by others, we have chosen to
focus on the design of a high performance node for the PlanetLab
overlay network testbed [CH03, PE02]. In the roughly five years
since its inception, PlanetLab has become a popular experimental
platform and deployment vehicle for systems researchers in net-
working and distributed systems. PlanetLab nodes are imple-
mented using conventional PCs, running a modified version of
Linux. This provides a familiar implementation environment and
is inexpensive and easy to deploy. At the same time, it does have
significant performance limitations that have become increasingly
apparent as the usage of PlanetLab has grown, and as researchers
have sought to deploy long-running services that carry significant
volumes of traffic. Because PlanetLab applications run as user-
space processes, their packet forwarding rates are typically limited ________________________________

This work supported in part by NSF (grants 0520778 and 0626661).

 - 2 -

to under 50K packets per second, which translates to less than 100
Mb/s for average packet lengths of 250 bytes. Applications that do
significant processing of packets (rather than simply forwarding
them) can have substantially smaller packet forwarding rates. In
addition, applications running in PlanetLab are subject to high
latencies (tens of milliseconds per hop), high delay jitter and poor
performance isolation. These characteristics are caused by the
coarse-grained time-slicing provided by the operating system, and
the failure to properly account for OS-level processing on behalf
of different application processes.

To address these issues, we have developed an experimental
system that can serve as a high performance PlanetLab node. Our
Supercharged PlanetLab Platform (SPP) integrates general pur-
pose server blades with performance-optimized NP subsystems,
into a platform that delivers the flexibility and ease-of-use of a
conventional PlanetLab implementation, while delivering much
higher levels of performance. By supporting a simple and familiar
fast-path/slow-path application structure, we make it straight-
forward for researchers to map the high volume part of their
applications (which is typically fairly small) onto the NP re-
sources, while enabling them to implement the more complex
parts in the programmer-friendly environment offered by a gen-
eral-purpose server. We report on the implementation of two
applications running in this environment, that demonstrate packet
forwarding rates of 4.8 million packets per second for a single NP
subsystem; this is sufficient for throughputs of 5 Gb/s for average
packet lengths of just 130 bytes. We also report latencies that are
consistently less than 200 μs. It should be noted that while we
focus on PlanetLab as the implementation context for this work,
our broader objective is to understand the design of such plat-
forms for more general contexts, such as future commercial over-
lay hosting services that are likely to be far less resource-
constrained than PlanetLab. So, while some aspects of the archi-
tecture exceed current requirements for PlanetLab, they can be
important in other settings.

Section 2 of the paper provides an overview of the system,
setting the context for the more detailed presentation in later
sections. Section 3, provides some background on network proc-
essors generally, and the IXP 2850, in particular. Section 4 de-
scribes the software framework that enables the fast path
processing of multiple PlanetLab slices to co-exist within a single
network processor. Section 5 briefly discusses our strategy for
improving the performance of the general purpose processor
blades. Section 6 describes the overall control architecture of the
system and explains how it fits within the PlanetLab framework.
The results of our evaluation are presented in Section 7, where we
report on experiments with both an IPv4 router application and an
implementation of a router for the Internet Indirection Infrastruc-
ture [ST02]. We finish with a short discussion of related work in
Section 8, some alternative approaches in Section 9 and closing
remarks in Section 10.

2. SYSTEM OVERVIEW
2.1. Objectives
Our principal objective for the SPP is to enable PlanetLab applica-
tions to achieve substantially higher levels of both IO perform-
ance and processing performance, while making it reasonably
straightforward for PlanetLab users to take advantage of the capa-
bilities offered by high performance components, such as network
processor subsystems. We also require that legacy PlanetLab
applications run on the system without change. While unmodified
applications will experience limited performance gains, the ability
to support existing implementations can make it easier to migrate
to higher performance implementations that take advantage of the
network processor resources.

To enable multiple PlanetLab applications to use the network
processor resources concurrently, the system supports both multi-
ple NP subsystems and sharing of individual subsystems. Since
modern NPs are not designed to be shared, this creates some
challenges. To accommodate the limitations of the NP environ-
ment and to simplify the porting of applications to the NP, we
have chosen to provide support for the generic application struc-
ture shown in Figure 1. In this structure, applications are divided
into a Fast Path (FP) that runs on an NP and a slow path for
control and exception processing that is handled by a separate
Slice Manager (SM), running within a vServer [VS06] on a gen-
eral purpose compute server. The SM can control the fast path
through a generic control interface. A remote user can control the
application by logging into the vServer hosting the SM. Slices can
forward control messages “in-band” by sending them to the fast
path, which inserts them in the appropriate outgoing queue, or
they can send them “out-of-band”.

2.2. Node Abstraction
The abstraction provided by the node seeks to mimic the Planet-
Lab node abstraction as closely as possible, while providing some
additional features. The PlanetLab node abstraction seeks to give
each vServer the illusion that it is running on a dedicated machine.
The illusion is imperfect, because practical limits on IP address
availability force the different vServers to share the same IP ad-

Parse Lookup

Filters

Control Interface

Hdr
Format

Queue
ManagerFast Path

.
.

.

.
.

.

.
.

.

ou
tp

u
t

in
te

rf
ac

es

in
p
u
t

in
te

rf
ac

es

Slice
Manager

shared
server

Remote Login Interface

ex
ce

p
ti
on

 p
ac

ke
ts

&
 i
n
-b

a
n
d
 c

o
n
tr

o
l

ex
ce

p
ti
o
n
 p

ac
ke

ts
&

 i
n
-b

an
d
 c

o
n
tr

ol

out-of-band
control

Parse Lookup

Filters

Control Interface

Hdr
Format

Queue
ManagerFast Path

.
.

.

.
.

.

.
.

.

ou
tp

u
t

in
te

rf
ac

es

in
p
u
t

in
te

rf
ac

es

Slice
Manager

shared
server

Remote Login Interface

ex
ce

p
ti
on

 p
ac

ke
ts

&
 i
n
-b

a
n
d
 c

o
n
tr

o
l

ex
ce

p
ti
o
n
 p

ac
ke

ts
&

 i
n
-b

an
d
 c

o
n
tr

ol

out-of-band
control

Figure 1. Generic application structure showing fast path
(implemented on a network processor) and slow
path on a general purpose server.

 - 3 -

dress, which in turn means that they must share common sets of
TCP and UDP port numbers. PlanetLab also does not support any
explicit “virtual link” concept. While slices may obtain a reserved
allocation of network bandwidth, this allocation simply applies to
the network interface bandwidth and does not imply any reserved
capacity from node to node. Typically, PlanetLab nodes have a
single network interface, so the bandwidth reservation simply
gives the node the illusion of a dedicated network interface with a
specified capacity.

SPP nodes must operate under the same constraints and pro-
vide the same abstraction as a conventional PlanetLab node.
However, since an SPP node can support multiple physical inter-
faces, we allow slices to reserve a share of each of the available
interfaces. We also allow slices to associate multiple queues with
each interface, and to divide their share of the interface bandwidth
among their different queues. Through the fast path control inter-
face, an application may install filters that map packets to specific
queues and output interfaces. The control interface also allows the
application to specify each queue’s share of the outgoing interface
and its capacity.

As mentioned above, PlanetLab slices running in the same
node share the same set of TCP and UDP port numbers. To enable
remote users to send packets to a PlanetLab slice, users need to
know which port number to use to get the packet to the correct
slice. Since nodes are shared, slices cannot count on a specific
port number being available on a particular node and Planetlab
applications must be prepared to cope with this. Of course, this
issue also arises in the SPP, but it is further complicated by the

fact that an SPP node includes within it, multiple general purpose
and NP subsystems. While the SPP node will often have multiple
IP addresses (one for each of its physical interfaces), the number
of IP addresses need not match the number of internal subsystems,
so there can be no direct mapping. This means that not only must
externally visible port numbers be shared among vServers within
a given physical server, but they must also be shared among
vServers in different physical servers and NP subsystems. We will
elaborate on the implications of this in Section 6.

2.3. System Components
Figure 2 shows the main components of an SPP node. All input
and output occurs through the Line Card (LC), which is an NP-
based subsystem with one or more physical interfaces (our current
development platform has 10 gigabit Ethernet interfaces, as
shown in the diagram). The LC forwards each arriving packet to
the system component configured to process it, and queues outgo-
ing packets for transmission, ensuring that each slice gets the
appropriate share of the network interface bandwidth. The archi-
tecture can support multiple LCs, but since the deployment con-
texts for PlanetLab nodes generally constrains the available
bandwidth, PlanetLab provides little motivation for systems with
multiple LCs. The General Purpose Processing Engines (GPE)
are conventional dual processor server blades running the Planet-
Lab OS (currently Linux 2.6, with PlanetLab-specific extensions)
and hosting vServers that serve application slices. The Network
Processing Engines (NPE) are NP subsystems comprising an Intel
IXP 2850 NP, with 17 internal processor cores, 3 banks of
SDRAM, 3 banks of QDR SRAM and a Ternary Content Ad-
dressable Memory (TCAM). The NPEs support fast path process-
ing for slices that elect to use this capability and each provides up
to 5 Gb/s of IO bandwidth. There are two NPE subsystems on
each physical NP blade. The Control Processor (CP) is another
conventional server blade that hosts the software that coordinates
the operation of the system as a whole. It can also host vServers
serving application slices. The switch block is actually two sepa-
rate switches, a 10 Gigabit Ethernet switch for data, and a separate
1 GE control switch.

Figure 2 also includes a photograph of the current develop-
ment platform for the system. This configuration includes a switch
plus two NP blades; one implements the Line Card functions (the
IO interfaces are at the rear of the chassis) and the other imple-
ments two NPEs. The configuration also includes two server
blades, (one CP and one GPE). The system architecture is de-
signed to support larger configurations. In particular, these same
components can be used in a 14 slot chassis, allowing for up to 12
conventional server blades or NP subsystems in a single Planet-
Lab node. Multi-chassis configurations are also possible.

3. NETWORK PROCESSOR ISSUES

GPE

NPE
Li

n
e

C
ar

d S
w

it
ch

CP

...

...

GPE

NPE
Li

n
e

C
ar

d S
w

it
ch

CP

...

...

GPE

NPE
Li

n
e

C
ar

d S
w

it
ch

CP

...

...

Figure 2. System organization showing Control Processor

(CP), General Purpose Processing Engines (GPE)
and Network Processing Engines (NPE); photo of
current development platform

 - 4 -

To appreciate some of the NPE design issues it’s helpful to under-
stand a little bit about Network Processors and the Intel IXP 2850,
in particular [IXP]. First, NP products have been developed for
use in conventional routers, as replacements for the Application
Specific Integrated Circuits (ASIC) that have typically been used
to provide high throughput packet processing. Products, like
Cisco’s CRS-1 use proprietary NPs to perform all the line card
packet processing functions [CI06], and the IXP family of net-
work processors is used in a wide variety of products made by
multiple system vendors. Because NPs are programmable, they
enable more rapid development and more rapid correction of
design errors.

To enable consistently high performance, the IXP 2850 is
equipped with 16 multi-threaded Micro-Engines (ME) that do the
bulk of the packet processing, plus several high bandwidth mem-
ory interfaces (see Figure 3). In typical applications DRAM is
used primarily for packet buffers, while SRAM is used for im-
plementing lookup tables and linked list queues. There are also
special-purpose on-chip memory resources, both within the MEs
and shared across the MEs. An xScale Management Processor
(MP) is provided for overall system control. The MP typically
runs a general-purpose OS like Linux, and has direct access to all
of system memory and direct control over the MEs.

As with any modern processor, the primary challenge to
achieving high performance is coping with the large proces-
sor/memory latency gap. Retrieving data from off-chip memory
can take 50-100 ns (or more), meaning that in the time it takes to
retrieve a piece of data from memory, a processor can potentially
execute over 100 instructions. The challenge for system designers
is to try to ensure that the processor stays busy, in spite of this.
Conventional processors cope with the memory latency gap pri-
marily using caches. However for caches to be effective, applica-
tions must exhibit locality of reference, and unfortunately,
networking applications typically exhibit very limited locality of
reference, with respect to their data.

Since caches are relatively ineffective for networking work-
loads, the IXP provides a different mechanism for coping with the
memory latency gap, hardware multithreading. Each of the MEs

has eight separate sets of processor registers (including Program
Counter), which form the MEs hardware thread contexts. An ME
can switch from one context to another in 2 clock cycles, allowing
it to stay busy doing useful work, even when several of its hard-
ware threads are suspended, waiting for data to be retrieved from
external memory. Multi-threading can be used in a variety of
ways, but there some common usage patterns that are well-
supported by hardware mechanisms. Perhaps the most commonly
used (and simplest) such pattern involves a group of threads that
operate in a round-robin fashion, using hardware signals to pass
control explicitly from one thread to the next, as illustrated below.

In this example, the first thread starts by reading a data item (e.g.
a packet pointer) from a shared input queue, then issues a read
request before passing control to the second thread, which then
reads the next data item from the shared queue, issues its own
read request and passes control to the third thread. By the time the
third thread issues its read request, the first thread is ready to
continue. Notice how this allows the processor to stay busy, in
spite of the long memory latency. Also, note that the round robin
processing ensures that data items are processed in order. This
technique works well when the variation in processing times from
one item to the next is bounded (which is commonly the case in
packet processing contexts), and is straightforward to implement.

There are two other aspects of the MEs that are important to
understand. First, each has a small (8K), dedicated program store,
from which it executes. This limits the number of different func-
tions that can be implemented by a single ME, favoring programs
that are divided into smaller pieces and organized as a pipeline.
The MEs support such pipeline processing by providing dedicated
FIFOs between consecutive pairs of MEs (Next Neighbor Rings).
A pipelined program structure also makes it easy to use the proc-
essing power of the MEs effectively, since the parallel compo-
nents of the system are largely decoupled from one another.

4. SHARING THE NPE
To support the generic application structure in Figure 1, we have
developed software for the NPE that allows it to be shared by the
fast path segments of many different slices. The organization of
the software and its mapping onto MEs is shown in Figure 4.
Packets received from the switch are copied to DRAM buffers by
the Receive (Rx) block on arrival, which also passes a pointer to
the packet buffer through the main packet processing pipeline.
Information contained in the packet header can be retrieved from
DRAM by subsequent blocks as needed, but no explicit copying
of the packet takes place in the processing pipeline. At the end of
the pipeline, the Transmit (Tx) block forwards the packet to the
output. Packet pointers (and other information) are passed along
the pipeline primarily using FIFOs linking adjacent MEs. Pipeline
elements typically process 8 packets concurrently using the hard-

MP
input

. . .M
E

MI

SRAM DRAM

M
E

M
E

output

PCI,GigE

Loc. Mem.

T
C . . .T
C

ALU

th
re

ad
co

n
te

xt
s

MP
input

. . .M
E

M
E

MI

SRAM DRAM

M
E

M
E

M
E

M
E

output

PCI,GigE

Loc. Mem.

T
C . . .T
C

ALU

th
re

ad
co

n
te

xt
s Loc. Mem.

T
C . . .T
C

ALU

th
re

ad
co

n
te

xt
s

Figure 3. IXP 2850 block diagram showing the 16 Micro-
Engines (ME) and the Management Processor (MP)

get read wait

get read wait

get read wait

waitput get read

put get read

putwaitput get readget read waitget read wait

get read waitget read wait

get read waitget read wait

waitput get read waitput get read

put get readput get read

putputwaitput get read waitput get readput get read

 - 5 -

ware thread contexts. The performance of individual pipeline
stages can be further increased by distributing the processing
across multiple MEs. The Substrate Decapsulation block deter-
mines which slice the packet belongs to, by doing a lookup in a
table stored in one of the SRAMs. It also effectively strips the
outer header from the packet by adjusting the packet pointer
before passing it along the pipeline.

The Parse block includes slice-specific program segments.
More precisely, Parse includes program segments that define a
preconfigured set of Code Options. Slices are configured to use
one of the available code options and each slice has a block of
memory in SRAM that it can use for slice-specific data. Currently,
code options have been implemented for IPv4 forwarding and for
the Internet Indirection Infrastructure (I3) [ST02]. New code
options are fairly easy to add, but this does require familiarity
with the NP programming environment and must be done with
care to ensure that new code options do not interfere with the
operation of the other components. The primary role of Parse, is
to examine the slice-specific header and use it and other informa-
tion to form a lookup key, which is passed to the Lookup block.

The Lookup block provides a generic lookup capability, using
the TCAM. It treats the lookup key provided by Parse as an
opaque bit string with 112 bits. It augments this bit string with a
slice identifier before performing the TCAM lookup. The slice’s
control software can insert packet filters into the TCAM. These
filters can include up to 112 bits for the lookup key and 112 bits
of mask information. Software in the Management Processor
augments the slice-defined filters with the appropriate slice id
before inserting them into the TCAM. This gives each slice the
illusion of a dedicated TCAM. The position of filter entries in the
TCAM determines their lookup priority, so the data associated
with the first filter in the TCAM matching a given lookup key is
returned. The number of entries assigned to different slices is
entirely flexible, but the total number of entries is 128K.

The Header Formatter which follows Lookup makes any nec-
essary changes to the slice-specific packet header, based on the
result of the lookup and the semantics of the slice. It also formats
the required outer packet header used to forward the packet to
either the next PlanetLab node, or to its ultimate destination.

The Queue Manager (QM) implements a configurable collec-
tion of queues. More specifically, it provides ten distinct packet
schedulers, each with a configurable output rate, and each with an
associated set of queues. Separate schedulers are needed for each
external interface supported by Line Cards. The number of dis-
tinct schedulers that can be supported by each ME is limited by
the need to reserve some of the ME’s local memory for each.
Each scheduler implements the weighted deficit round robin
scheduling policy, allowing different shares to be assigned to
different queues. When multiple NPEs have schedulers configured
to send to the same Line Card physical interface, the sum of their
output rates is configured to be no larger than the physical inter-
face rate. The rates used by the different schedulers can be stati-
cally configured or can be dynamically adjusted by distributed
scheduling processes (this borrows ideas from [PA03]). Each slice
has an associated set of queues that it can map packets to. When a
slice’s control software inserts a new filter, it specifies a slice-
specific queue id. The filter insertion software remaps this to a
physical queue id, which is added, as a hidden field, to the filter
result. Slices can configure which scheduler to associate with a
specific queue, the effective length of each queue and its share of
the scheduler bandwidth.

The Statistics module maintains a variety of counts on behalf
of slices. These can be accessed by slices through the Manage-
ment Processor, to enable computation of performance statistics.
The counting function is separated from the main processing
pipeline to keep the associated memory accesses from slowing
down the forwarding of packets, and to facilitate optimizations
designed to overcome the effects of memory latency. The counts
maintained by the Statistics module are kept in one of the external
SRAMs and can be directly read by the MP.

5. ENHANCING GPE PERFORMANCE
While our main focus is on boosting application performance
using the NPEs, the system also provides opportunities to boost
performance of applications that run only on the GPEs. The GPEs
can improve throughput over typical PlanetLab nodes in two
ways. First, they use higher performance hardware configurations
than is usual for PlanetLab. In particular, our current GPEs are

SRAM

Lookup
(1 ME)

Tx
(2 ME)

Queue
Manager
(2 ME)

Parse
(1 ME)

Hdr
Format
(1 ME)

TCAM

DRAM
SRAM

Substr.
Decap
(1 ME)

SRAM

Mgmt Processor
(xScale)

Stats
(1 ME)

fr
o
m

 s
w

it
ch

to
 s

w
it
ch

Rx
(2 ME)

SRAM

Lookup
(1 ME)

Tx
(2 ME)

Queue
Manager
(2 ME)

Parse
(1 ME)

Hdr
Format
(1 ME)

TCAM

DRAM
SRAM

Substr.
Decap
(1 ME)

SRAM

Mgmt Processor
(xScale)

Stats
(1 ME)

fr
o
m

 s
w

it
ch

to
 s

w
it
ch

Rx
(2 ME)

Figure 4. NPE software structure showing the use of memory by various software components, and the mapping of components onto

Micro-Engines (ME)

 - 6 -

Intel NetStructure MPCBL0040 server blades with a pair of 2
GHz Xeon dual-core processor chips, four gigabit Ethernet inter-
faces and an on-board disk.

In addition to improving throughput, we would like to im-
prove the latency of PlanetLab applications. Because PlanetLab is
built on top of a conventional operating system (Linux), it inherits
the basic coarse-grained scheduling paradigm that characterizes
such systems. The newer versions of the PlanetLab OS actually
make significant modifications to the standard Linux scheduling,
but the default scheduling parameters still produce coarse-grained
time slices, resulting in latencies that can be unacceptably high for
some applications. The PlanetLab scheduler is token-based, with
each token representing 1 ms of computation. Each vServer is
supplied with tokens at some specified rate (32 tokens/second, by
default) and has a specified maximum number of tokens it can
hold (100). In addition, before a vServer can be scheduled, it must
have a specified minimum number of tokens (50). This leads to
time slices of 50-100 ms, so in a system where N vServers are
competing for the CPU, a vServer can be pre-empted for as long
as 100(N–1) ms at a time, meaning that a packet arriving for a
suspended vServer can wait a very long time before being proc-
essed. This issue is acknowledged in [BA06] where the authors
address it by artificially changing the process priority of a particu-
lar slice of interest, but this is clearly not a general solution.

To gain some insight into the scheduler behavior, we ran a
simple experiment in which eight identical vServers ran a simple
compute-bound program, competing for a single processor core.
Each vServer continuously checked the system time to detect
periods when it was pre-empted and we recorded the distribution
of pre-emption times. We then estimated the “cycle time” (the
time required for all eight vServers to complete one scheduling
round) as 8/7 times the pre-emption time and plotted the resulting
cumulative distribution function, shown in Figure 5. The default
PlanetLab scheduling parameters produce cycle times ranging up
to 500 ms with very high variability. For the other cases shown,
each vServer was allocated tokens at a rate of 120 per second

(slightly less than one-eighth of the processor) and the minimum
and maximum token allocations were set to the same value, with
this value being varied from 2 to 16. We note that by making the
minimum and maximum token values equal, we get much more
consistent scheduling behavior and we note that the median cycle
times are roughly equal to the product of the number of vServers
and the number of tokens, which is what one would expect based
on an idealized analysis.

6. CONTROL ARCHITECTURE
Figure 6 is a block diagram of the system, showing the control
components of the architecture. First, note that the system pro-
vides a control network that is independent of the switch that
carries data traffic (the control net is actually implemented on the
same switch blade as the main data switch, but the control traffic
is logically and physically separate). The control network is ac-
cessible only to the control elements of the architecture. In par-
ticular, vServers hosting user slices have no direct access to it.

The system’s Control Processor (CP) obtains slice configura-
tion data using the standard PlanetLab mechanism of periodically
polling the PlanetLab Central database (PLC). Slices that are
configured to use the system are assigned to one of the GPEs by
the Global Node Manager (GNM) and a corresponding entry is
made in a local copy of the Planet Lab database (myPLC). The
Local Node Managers (LNM) on each of the GPEs periodically
poll myPLC to obtain new slice configurations.

Once a vServer has been assigned to a slice, a user of that
slice may login to it, in order to set up the application on the
vServer. To applications that don’t use the NPEs, this process
works much like it would on a conventional PlanetLab node.
However, there are some configuration steps that must be imple-
mented under the covers, to make this as seamless as possible.

To allow slices to reserve externally visible port numbers, we
provide an interface to the LRM that relays the reservation re-
quests to the GRM. The GRM keeps track of all externally visible
port numbers that have been assigned, and if the requested port
number is available, it makes the appropriate assignment and
configures the Line Card so that when packets are received with
the specified port number, they will be forwarded to the right
GPE. To make this process transparent to the slices, the interface
to the LRM is hidden inside library routines that are used in place
of the standard IO libraries. Users do need to link their applica-
tions against these libraries, but are otherwise unaffected.

To allow outgoing TCP connections to be handled correctly,
the system must implement Network Address Translation (NAT).
This is handled by the Management Processor in the Line Card
which intercepts outgoing TCP control packets and maps the
source port number to an available value from a pre-allocated
range. It then configures tables in the Line Card so that IP ad-
dresses and port numbers are appropriately re-mapped for all
subsequent data packets. NAT processing is also performed for
other protocols that require it (e.g. ICMP echo packets).

A slice that elects to use an NPE for its fast path must request
an NP slice from the Local Resource Manager (LRM), which

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300 400 500

t (cycle time in ms)

Pr
(c

yc
le

 t
im

e
<

t)

default162 4 8

8 vServers
1 processor

Figure 5. PlanetLab scheduler behavior for compute bound task;

chart shows cumulative distribution function of “cycle
time” for various choices of scheduling parameters.

 - 7 -

forwards the request to the GRM. The request specifies the NPE
required code option and various resource parameters, including
the number of required filter table entries, queues and packet
buffers, the amount of SRAM space it needs, and the total re-
served bandwidth it requires. The GRM selects the most appropri-
ate NPE to host the slice and returns its id to the LRM. The LRM
then interacts with the MP to complete the initial configuration.

Once the initial setup is complete, the application running in
its vServer can perform additional configuration steps. In particu-
lar, it can request that UDP ports on any of the system’s external
interfaces be configured to forward packets between the external
interface and its NPE fast path. As part of this process it may
request a specified share of the external interface bandwidth (both
incoming and outgoing). Once a slice has a configured UDP port
on a physical interface it can associate one or more of its fast path
queues to a packet scheduler for that interface (in the NPE queue
manager). It can also configure the lengths of individual queues
and their individual shares of the interface bandwidth, as well as
filters in the lookup table. In addition, it can write whatever slice-
specific configuration data is appropriate in its SRAM memory
space. This is accomplished through a generic memory read/write
mechanism provided by the NPE’s MP. All these control interac-
tions take place through the LRM, which serves as an intermedi-
ary between the vServers running on the GPE and the NPEs.

As mentioned above, users login to their vServers to configure
their application, in much the same way that they do on PlanetLab
today. However, this is complicated by the fact that there are
multiple GPEs and each user’s session must be directed to the
appropriate GPE. In an ordinary PlanetLab node, the remote client
opens a connection to the node’s SSH server, which goes through
the authentication process, and if that succeeds, forks a process

running in the appropriate vServer, which transparently acquires
the connection, along with its associated TCP kernel state.

In order to emulate this process, without requiring major
changes to the PlanetLab OS kernel, we redirect all incoming SSH
connections to the CP (using filters in the Line Card), which does
the login authentication. The ideal solution at this point would be
to fork a process, and then migrate that process to the GPE host-
ing the correct vServer. However, in the absence of a general
process migration mechanism, we have chosen instead to use a
relay process that runs in the CP on behalf of the slice. This relay
process opens a second SSH connection to the SSH server on the
selected GPE and forwards traffic at the application level.

We recognize the obvious performance drawbacks of this ap-
proach, but consider them acceptable given the relatively limited
amount of traffic that must be relayed on behalf of users’ login
sessions. While there are alternative approaches that avoid appli-
cation level forwarding, they are not transparent to users, and we
consider user transparency the more important consideration here.

7. EVALUATION
To evaluate the system, we implemented two different applica-
tions and studied their performance, relative to conventional
PlanetLab implementations. The first is an IPv4 router that we
developed from scratch. The second is a port of the Internet Indi-
rection Infrastructure (I3). In this case, we restructured the system
into fast path and slow path sections and mapped the fast path
onto an NPE.

7.1. IPv4 router
Our IPv4 router uses the NPE to implement normal packet for-
warding and uses a vServer running on one of the GPEs to im-
plement control functions and exception handling. The TCAM in
the NPE allows us to implement both conventional IP routing and
general packet filtering, allowing arbitrary subsets of packets to be
mapped to different queues. We compare the performance of the
NPE-based forwarder to a forwarder using Click [KO00], running
in a vServer.

For the experiments reported here, the IPv4 router is config-
ured with five externally visible UDP ports, which are mapped to
five different physical interfaces on the LC. The LC demultiplexes
received packets based on their UDP port numbers and forwards
packets for the router to the NPE. The NPE’s packet schedulers
are rate controlled to limit their sending rate to 800 Mb/s. Figure 7
shows the results from a basic operational test that demonstrates
the operation of all the major subsystems and verifies the fair
queueing mechanisms. Each of the five inputs sends traffic into
the router at times that are offset from one another. All the traffic
is destined for the same output, and the traffic from each input is
mapped to a different queue at that output, with each queue get-
ting a different share of the output bandwidth (the shares are 30%,
25%, 20%, 15% and 10%). The top chart shows the rates from
each input as solid lines and the output rates from each queue in
incremental form as dashed lines (the incremental form means
that the top dashed line represents the sum of the rates coming
from all the inputs). The bottom chart shows the lengths of the

GPE

NPE

LC

S
w

it
ch

 CP

...

...

PLC

VSVSVS

LRM
GRM

GNM myPLC

MP

SC

MP

LNM

control net

GPE

NPE

LC

S
w

it
ch

 CP

...

...

PLC

VSVSVS

LRM
GRM

GNM myPLC

MP

SC

MP

LNM

control net

Figure 6. Control architecture showing global and local Node

Managers (GNM, RNM) and Resource Managers
(GRM, LRM).

 - 8 -

queues. Since the scheduler is work-conserving, the output rates
change as new inputs turn on and as queues drain. These charts
are real-time performance measurements obtained by polling the
statistics counters maintained in the LC and NPE and accessed
through the MP.

Figure 8 shows a somewhat more complex scenario involving
traffic to all five outputs. The five traffic sources send the same
mix of traffic at all times. In each phase, one of the outputs re-
ceives 1.6 Gb/s of traffic, one receives no traffic and the remain-
ing three receive 800 Mb/s of traffic (with each output receiving
an equal amount of traffic from each of the five inputs). Each
output accumulates a backlog during the period that its input rate
is 1.6 Gb/s, and this backlog is cleared when the input traffic to
that output turns off. The chart shows the input rates (in incre-
mental form) as solid lines. The output rates (also in incremental
form) are shown as dashed lines. Note that for a short period after
the second and third input rate transitions, the output rate briefly
rises to 4 Gb/s as the previously accumulated backlog for the
newly idle output is forwarded, along with the traffic to the other
four outputs. These periods show up as brief blips on the display,
which is sampling the traffic counters every 200 ms.

Figure 9 shows the results from a large collection of through-
put measurements on both the NPE-based router and the Click
router. Both routers are configured with five externally visible
UDP ports mapped to five different physical interfaces, and input
traffic is distributed uniformly across the five ports. The numbers
labeling the curves are the sizes of the payloads carried by the
packets. The lengths of the frames carried on the external link are
98 bytes longer (this includes two UDP/IP headers and Ethernet
overhead, including preamble, VLAN tag and inter-packet gap).
The bandwidths are the actual link bandwidths, including all

overheads. Note that the chart uses a log-log scale. We observe
that for 0 byte payloads, the maximum throughput that the Click
router is able to achieve is under 50 Mb/s and that its performance
deteriorates dramatically as loads increase beyond its maximum
capacity. The NPE-based router is able to keep up with the input
up to a rate of 3.7 Gb/s. For larger payload sizes, the NPE router
can sustain the full 5 Gb/s. For Click, the maximum packet proc-
essing rate is about 59 Kp/s, while for the NPE router, it ap-
proaches 4,800 Kp/s, an 80 times improvement. The highest
throughput for the Click router is 540 Mb/s.

Most of the Click results are for a single processor core, even
though the server blade has two dual-core processors. We also
show results for 400 byte packets using all four cores, with traffic
being distributed across four vServers, each running its own Click
router. While one might expect this configuration to achieve four
times the throughput of the single core, in fact it only achieves
roughly twice the throughput of the single core. There are several
possible explanations for this deficiency. We think that the most
likely explanation is that at high loads, a large share of the proc-
essing capacity is being used by the operating system, and there is
insufficient parallelism in the OS to take full advantage of all four
cores. Note that since the NP blade contains two independent

Figure 7. IPv4 router basic operational test showing bandwidth

used at inputs and outputs (top) and queue lengths

Figure 8. Basic IPv4 router throughput demonstration showing

input rates (solid) and output rates (dashed)

10

100

1,000

10,000

10 100 1,000 10,000

input bandwidth (Mb/s)

ou
tp

u
t

ba
n
dw

id
th

 (
M

b/
s)

Click

NPE

120

400

800

1400

120, 400, 800, 1400

0

0

400/4 cores

Figure 9. Comparison of throughput for various payload sizes
(add 98 bytes to include all overheads); most Click re-
sults are for single core; ones uses 4 cores.

 - 9 -

NPEs, it can achieve a maximum packet processing rate of 9,600
Kp/s, while the server blade has a maximum packet processing
rate of about 120 Kp/s, when using all four cores to process
minimum size packets.

Figure 10 shows the results of a series of latency measure-
ments. We are particularly interested in understanding how the
sharing of a component (GPE or NPE) among multiple PlanetLab
slices affects the latency. Consequently, we configured eight
instances of the router application on an NPE and compared this
with the eight Click routers running in separate vServers on a
GPE. For each data point in Figure 10, the routers were supplied
with a background traffic load with the total input rate and pay-
load sizes shown in the chart (with each of the eight routers re-
ceiving one eighth of the input traffic). We then sent ping packets
through the loaded routers using separate logical interfaces (so the
ping packets were not subjected to queueing delays in the routers).
Each data point on the solid curves is the average of 2000 meas-
urements. We show results for 400 and 1400 byte payloads, and
for the Click router, we show results using just a single core and
using all four cores for the case of 400 byte payloads. For the 400
byte case with a single core, we also show the mean plus 3 times
the standard deviation of the delay, in order to show the variability
of the delay. These data indicate that there is a non-negligible
fraction of the traffic that experiences delays that are as much as 5
times the mean delay. For the NPE-based routers, the average
round-trip ping delays never exceeded 0.2 ms and the standard
deviation was generally a small fraction of the mean. In the NPE
case, the ping traffic shares queues with the background traffic
within the fast path. This is why we observe larger delays when
the background traffic has 1400 byte payloads. For the Click
routers, the average ping delays remain small until the input rate
starts to approach the maximum rate that can be sustained. It then
rises sharply, with average delays well above 10 ms. We note that
while four cores does lead to better throughput, it does little to
limit the latency, once the throughput limit has been reached.

The data in Figure 10 use the standard PlanetLab scheduling
parameters. We also experimented with different choices, expect-
ing that as we reduced the number of tokens allocated to each
vServer, the latency would drop as the cycle time of the scheduler
dropped. We found, to our surprise, that the scheduling parame-
ters had a negligible effect on latency (or throughput), under the
traffic conditions used in this experiment. While we have not been
able to confirm it, it appears that when the system enters overload,
the Click router is not appropriately balancing the time devoted to
input processing with the time devoted to output processing. In
addition, a significant fraction of the processing time is being
taken up by the IP stack in the operating system, which must
move arriving data from the network device driver queues into the
socket buffers used by the vServers. Since ping packets can get
delayed behind the packets that make up the background load in
the device driver queues, they are directly affected by the back-
ground load, even though they have separate socket buffers and
pass through separate queues within the Click routers.

7.2. Internet Indirection Infrastructure
The Internet Indirection Infrastructure (I3) [ST02] is a novel
network architecture that explores the use of indirection as an
underlying mechanism for giving users greater control over the
traffic they receive. Instead of traffic being sent directly to a
destination address, it is sent to a user-defined identifier, called a
trigger. Triggers are defined within a flat identifier space, and the
responsibility for handling packets labeled by different triggers is
distributed over the I3 routers. The I3 routers use Chord-style
forwarding [ST01] to deliver each packet to the node responsible
for its trigger. In the simplest (and presumably most common)
case, when a packet reaches the router responsible for its trigger it
finds a single filter matching its trigger value, which specifies the
address of the destination to receive the packet. By having their
packets sent indirectly through triggers, users can more easily
shield themselves from unwanted traffic and can shield their
communicating peers from changes in their actual address, mak-
ing support for mobility very straightforward. I3 also allows
packets to match multiple filters, facilitating multicast; it also
supports more complex trigger processing, including packets with
“stacks” of triggers and user-defined “remapping” of trigger
identifiers.

I3 has been implemented on PlanetLab and we used the pub-
licly available I3 implementation as the basis for the results re-
ported here. We first installed, configured and verified the
operation of the standard I3 implementation on our GPE, and took
a set of baseline performance measurements of this configuration
for comparison purposes. We then created a hybrid implementa-
tion, with the I3 fast path running on the NPE, and the slow path
on the GPE. The fast path does all the Chord-level forwarding. So,
if a router receives a packet with a trigger that lies outside the
range of values that the router is responsible for, the router does a
lookup in the fast path’s Chord finger table to forward it to the
next I3 router. The fast path also handles simple trigger process-
ing. So, if a router receives a packet with a trigger that is within
the range of values it is responsible for, and the fast path has a

0.1

1

10

100

1000

10 100 1,000 10,000
input bandwidth (Mb/s)

Pi
n
g
 d

e
la

y
s

(m
s)

400/1

1400/1

Click

NPE
400/4

1400
 400

mean+
3(std. dev.)

Figure 10. Comparison of latency for payloads of size 400 and
1400; results for 1 and 4 cores for 400 byte payloads;
mean+3(standard deviation) shown for 400/1

 - 10 -

single matching filter in its TCAM, the packet is forwarded di-
rectly by the NPE. In our current implementation, all other pack-
ets are handled by the GPE. In particular, packets matching
multiple triggers or requiring more complex trigger processing are
forwarded to the GPE for processing. Some of these more com-
plex cases could also be shifted to the fast path, but in this initial
set of experiments, we chose to limit the NPE’s role to only what
we expect to be the most common cases.

For these experiments, we have focused on the datapath, so
only minimal changes to the supplied I3 code were needed (about
350 lines were added to deal with the interaction with the NPE). A
complete system would also require the control mechanisms
needed to allow the GPE to configure the Chord forwarding tables
in the fast path and insert filters to match triggers. For the experi-
ments described here, both of these were manually configured.

We started by performing a set of baseline throughput and la-
tency tests similar those we did for the IPv4 application. The
results are qualitatively similar, although the version of the I3
router that runs on the GPE achieves throughput that is generally
30-40% higher than the Click router. We next did a test to verify
the operation of the NPE when hosting both the IPv4 and I3 appli-
cations. For these tests, we held the total input traffic at 5 Gb/s
and varied the fraction of traffic for the I3 application. The results
are shown in Figure 11. There are 3 sets of curves, one for I3
payload lengths of 0 bytes, one for 40 byte payloads and one for
80 byte payloads. The IPv4 packets had slightly larger payload
lengths, in order to match the overall packet length of the I3 pack-
ets (the I3 header is 7 bytes longer than the IPv4 header). For each
set, we show the output packet rate for the I3 application, the IPv4
application and the sum of the two. Each of the “sum” curves is
labeled with the percentage of the input rate that is achieved in
each case. For 0 byte payloads, we can keep up with 81% of the
input rate when all the traffic is IPv4. For 40 byte payloads, we
can keep up with the full input rate in all cases and for 80 byte
payloads, we are handling 90% of the input rate. This last result is
somewhat anomalous and further study is needed to explain it.

Figure 12 shows results of a set of experiments to evaluate the
latency in the I3 case. These experiments were structured differ-
ently from the earlier ones for IPv4. Specifically, we used a com-
pletely separate instance of the I3 application to handle the ping
traffic (for both GPE and NPE), in order to isolate the ping traffic
from the background traffic as much as possible. The background
traffic consisted of packets with 400 byte payloads and was dis-
tributed across two instances of the I3 application. In the GPE
case, we used a single processor core (as noted earlier, using all
four cores improves throughput, but has little effect on latency).

The most striking difference between these results and the
IPv4 results presented earlier is that the delays are substantially
smaller for both the GPE and the NPE. This appears to be largely
due to the isolation of the ping traffic. For the NPE, the average
delay is essentially constant at just under 50 μs. For the GPE, the
default PlanetLab scheduling parameters result in average delays
of 15-30 ms when the input rate exceeds 300 Mb/s. Reducing the
PlanetLab scheduling parameters (minToken, maxToken) to 2
reduces the delay by more than a factor of 10. Allowing it to rise
to 8 gives a delay of 6-8 ms. We found that reducing the schedul-
ing parameters had just a modest impact on throughput, reducing
the maximum forwarding rate by less than 10%. Note that as the
number of background instances of I3 is scaled up, the delays in
the GPE case can be expected to scale up in direct proportion.

8. RELATED WORK
There are two main categories of previous work that are most
closely related to this research. The first concerns high perform-
ance implementations of overlay networks and the second con-
cerns high performance, programmable routers, particularly those
based on network processors. In the overlay network space, com-
mercial organizations have led the way in developing high per-
formance implementations, but relatively few published
descriptions are available. Reference [KO04] describes Akamai’s
system for delivering streaming audio and video, which includes a
description of its cluster-based architecture for the overlay nodes.
These systems use general purpose servers linked by an Ethernet

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 0.2 0.4 0.6 0.8 1

I3 share

p
ac

k
e
t

ra
te

 (
M

p
/s

)

0B payload for I3

40B

80B

81%
100%

90%

Figure 11. Throughput for combined I3 and I4 traffic with I3
payload lengths of 0, 40 and 80. Input rate held con-
stant at 5 Gb/s, while IPv4 share is varied.

0.01

0.10

1.00

10.00

100.00

10 100 1,000 10,000

input rate (Mb/s)

P
in

g
 d

e
la

y
 (

m
s
)

default

8

2

mean plus
3(std. dev.)

default

NPE

GPE
mean plus

3(std. dev.)

Figure 12. Latency results for I3 using separate instance of I3

application for ping traffic and comparing effect of
scheduling parameters on GPE latency

 - 11 -

LAN, which is used to multicast streams from the servers han-
dling input processing to the servers forwarding packets to next
hops and/or end-users.

In the programmable router space [KA02, SP01] describe an
extensible router that uses an IXP 1200 for the fast path process-
ing and reference [CH02] describes a system that places a general
purpose plugin processor at each port of a gigabit hardware router.
There is a much larger body of work relating to active networking
and extensible routers generally, but the vast majority of this work
is primarily concerned with other issues than achieving high
performance. A more recent piece of related work is [TU06],
which describes a proposed design of a backbone router for NSF’s
GENI initiative [GE06].

9. ALTERNATE APPROACHES
It’s natural to ask what other approaches might be available to
improve the performance of overlay networks. PlanetLab is al-
ready shifting to higher performance servers with dual processor
chips and two cores per chip. Four core processor chips are now
available and eight core chips are expected soon. As we have
seen, while multi-core processors can boost throughput, the in-
crease is not necessarily proportional to the number of processors.
Memory and network bandwidth must also be scaled up, and
even with appropriate hardware scaling, limited locality-of-
reference in networking workloads may lead to poor cache per-
formance, limiting the gains. In addition, the parallelism in the
workload must at least match the number of cores, if linear
speedup is to be achieved. A PlanetLab node hosting many slices
that each require just a small fraction of the system capacity, can
potentially achieve such parallelism. However, if the workload
places substantial demands on the OS, then the OS must also be
highly parallel. In particular, the network stack must take advan-
tage of the multiple cores to avoid becoming a bottleneck. Simi-
larly, slices that require a larger share of the system capacity will
have to be written to take advantage of multiple cores if they are
to benefit from their presence.

Of course, even if multi-core systems are properly engineered
and operating system and application code is structured for paral-
lel execution, there remains the issue of user-space overhead for
IO-intensive applications. Such overheads contribute significantly
to the limited performance of typical overlay platforms. The most
promising approach to overcoming such overheads is to decom-
pose applications into separate fast path and slow path segments,
and push the fast path down into the OS kernel or even the net-
work device driver. This can be highly effective, but does trade-
off protection and ease of software development for performance.
We have chosen to accept that trade-off to take advantage of NPs,
and argue that a similar choice must be made to get the most out
of multi-core server blades. To ensure safe operation in this envi-
ronment one must be prepared to place limits on how the fast path
is programmed, possibly through the use of specialized languages
such as PLAN [HI98].

We should also note that a multi-core server blade, even with
8 or 16 processor cores does not provide a scalable solution to the

general challenge of high performance overlay network platforms
(although it may suffice for PlanetLab in the near term). A scal-
able solution requires an architecture that supports systems with
tens or even hundreds of server blades. One way to approach this
is to use a scalable, shared memory multiprocessor. Such architec-
tures are common in supercomputers designed for scientific com-
puting, but these systems are typically not engineered for the IO-
intensive workloads that characterize overlay networks (although
they certainly could be).

Another approach is to use a cluster of general purpose server
blades, connected by a high bandwidth switch. Low cost 10 giga-
bit Ethernet switches are now available [FO07] and server blades
will soon be routinely equipped with such 10 GbE interfaces. This
approach is quite similar to the architecture developed here. While
we have chosen a more integrated approach using ATCA compo-
nents, this difference is mainly a matter of physical implementa-
tion, rather than architecture. The more significant difference
between the two approaches is our emphasis on the use of net-
work processors for the fast path processing. While we argue that
at the moment, NPs offer significant performance advantages for
the fast path processing, future improvements in general purpose
server blades and operating systems could close the gap.

10. CLOSING REMARKS
This work demonstrates that overlay network platforms with
substantially higher levels of performance can be implemented
using an integrated architecture that combines general purpose
servers with modern network processors. NP systems can out-
perform general purpose servers by a surprisingly large margin.
This is partly due to the richer hardware resources available in the
NP, but a large part of the difference comes from the operating
systems used on general purpose servers, which were developed
and optimized for much less IO-intensive workloads than are
found in both network routers and in most overlay network con-
texts. As the number of processor cores in general purpose sys-
tems increases to over the next few years, it’s likely that general
purpose chips will be able to compete more effectively with NPs.
However, reaping the full benefits of such systems in overlay
network settings will almost certainly require operating systems
that are more IO-oriented and will require that applications be
programmed to exploit the parallelism provided by the hardware.

Our experience implementing the IPv4 and I3 routers using
the fast path/slow path application structure was very encourag-
ing. In particular, we found it very straightforward to restructure
the I3 code to conform to this pattern and we expect that many
other PlanetLab applications can be similarly modified. The
framework provided by the NPE made it straightforward to add
the I3 code option. The C source files required to implement the
fast path total less than 2,000 lines, and it took two graduate stu-
dents less than one week to write the code and verify its operation.
While we have not implemented the control software to allow the
GPE-resident software to configure the Chord routing tables and
insert filters to match triggers, we expect these additions to be
fairly routine, since they mainly require the addition of code

 - 12 -

modules to the xScale, which provides a reasonably friendly
Linux-based programming environment.

It’s worth noting that one of the key factors that made the re-
targeting of I3 so straightforward was that we had a well-
engineered existing implementation as our point-of-departure. Our
experience suggests that before attempting to build an application
for the NPE environment, it is wise to develop a fully functional
version for the GPE environment. This can serve as a reference
point guiding the decisions for exactly what functions to shift to
the fast path. It also facilitates an incremental development strat-
egy with small, easy to manage steps, producing intermediate
versions of a system that can be useful on their own.

It’s natural to ask how suitable our approach is for applica-
tions that are different from the two we have considered here. We
believe that while it is likely to be more useful for some applica-
tions than others, the approach is widely applicable, since many
applications lend themselves to decomposition into a simple, high
traffic volume fast path and a more complex subsystem to handle
exceptions and control. For applications such as content-delivery
networks, the need for disk storage places limits on the role the
NPEs can play, but even here, packets may be forwarded across
multiple hops before reaching the location storing the information
of interest. It seems likely that the associative lookup mechanism
provided by the TCAM can be a powerful tool for making the
required routing decisions. For network measurement applica-
tions, the ability of the NPE platform to eliminate the large and
highly variable delays found in general-purpose servers promises
more accurate measurements with lower computational effort.

We plan to make the SPP system available as a node in the
public PlanetLab infrastructure, once we complete our implemen-
tation of the control software. Some additional refinements to the
software for the LC and NPE need to be implemented before the
public release, but the core functionality is now complete and we
expect to have the system available for general use by late 2007.

REFERENCES
[BA06] Bavier, A., N. Feamster, M. Huang, L. Peterson, J. Rexford. “In

VINI Veritas: Realistic and Controlled Network Experimentation,”
Proc. of ACM SIGCOMM, 2006.

[BH06] Bharambe, A., J. Pang, S. Seshan. “Colyseus: A Distributed Archi-
tecture for Online Multiplayer Games,” In Proc. Symposium on
Networked Systems Design and Implementation (NSDI), 3/06.

[CH02] Choi, S., J. Dehart, R. Keller, F. Kuhns, J. Lockwood, P. Pappu, J.
Parwatikar, W. D. Richard, E. Spitznagel, D. Taylor, J. Turner and
K. Wong. “Design of a High Performance Dynamically Extensible
Router.” In Proceedings of the DARPA Active Networks Conference
and Exposition, 5/02.

[CH03] Chun, B., D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman. “PlanetLab: An Overlay Testbed for
Broad-Coverage Services,” ACM Computer Communications Re-
view, vol. 33, no. 3, 7/03.

[CI06] Cisco Carrier Routing System. At www.cisco.com/en/
US/products/ps5763/, 2006

[DI02] Dilley, J., B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B.
Weihl. “Globally Distributed Content Delivery,” IEEE Internet
Computing, September/October 2002, pp. 50-58.

[FO07] Force 10 Networks. “S2410 Data Center Switch,” http://
www.force10networks.com/products/s2410.asp, 2007

[FR04] Freedman, M., E. Freudenthal and D. Mazières. “Democratizing
Content Publication with Coral,” In Proc. 1st USENIX/ACM Sym-
posium on Networked Systems Design and Implementation, 3/04.

[GE06] Global Environment for Network Innovations. http://www.geni.net/,
2006.

[HI98] Mike Hicks_ Pankaj Kakkar_ Jonathan T_ Moore_ Carl A_
Gunter_ and Scott Nettles. “PLAN, A packet language for active
networks,” In Proceedings of the Third ACM SIGPLAN Interna-
tional Conference on Functional Programming Languages, 1998.

[IXP] Intel IXP 2xxx Product Line of Network Processors. http://www
.intel.com/design/network/products/npfamily/ixp2xxx.htm.

[KA02] Karlin, Scott and Larry Peterson. “VERA: An Extensible Router
Architecture,” In Computer Networks, 2002.

[KO00] Kohler, Eddie, Robert Morris, Benjie Chen, John Jannotti and M.
Frans Kaashoek. “The Click modular router,” ACM Transactions on
Computer Systems, 8/2000.

[KO04] Kontothanassis, L. R. Sitaraman, J. Wein, D. Hong, R. Kleinberg,
B. Mancuso, D. Shaw and D. Stodolsky. “A Transport Layer for
Live Streaming in a Content Delivery Network,” Proc. of the IEEE,
Special Issue on Evolution of Internet Technologies, 9/04.

[PA03] Pappu, P., J. Parwatikar, J. Turner and K. Wong. “Distributed
Queueing in Scalable High Performance Routers.” Proceeding of
IEEE Infocom, 4/03.

[PE02] Peterson, L., T. Anderson, D. Culler and T. Roscoe. “A Blueprint
for Introducing Disruptive Technology into the Internet,” Proceed-
ings of ACM HotNets-I Workshop, 10/02.

[RA05] Radisys Corporation. “Promentum™ ATCA-7010 Data Sheet,”
product brief, available at http://www. radisys.com/files/ATCA-
7010_07-1283-01_0505_datasheet.pdf.

[RH05] Rhea, S., B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.
Shenker, I. Stoica and H. Yu. “OpenDHT: A Public DHT Service
and Its Uses,” Proceedings of ACM SIGCOMM, 9/2005.

[SP01] Spalink, T., S. Karlin, L. Peterson and Y. Gottlieb. “Building a
Robust Software-Based Router Using Network Processors,” In
ACM Symposium on Operating System Principles (SOSP), 2001.

[ST01] Stoica, I., R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan.
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions.” In Proceedings of ACM SIGCOMM, 2001.

[ST02] Stoica, I., D. Adkins, S. Zhuang, S. Shenker, S. Surana, “Internet
Indirection Infrastructure,” Proc. of ACM SIGCOMM, 8/02.

[TU06] Turner, J. “A Proposed Architecture for the GENI Backbone Plat-
form,” In Proceedings of ACM- IEEE Symposium on Architectures
for Networking and Communications Systems (ANCS), 12/2006.

[VS06] Linux vServer. http://linux-vserver.org

