
Teaching Experiences With a Virtual Network Laboratory*

Ken Wong, Tilman Wolf †, Sergey Gorinsky and Jonathan Turner

Applied Research Laboratory
Washington University in St. Louis

St. Louis, MO 63130
{kenw,gorinsky,jst}@arl.wustl.edu

Department of Electrical and Computer Engineering†

University of Massachusetts
Amherst, MA 01003
wolf@ecs.umass.edu

ABSTRACT
The Open Network Laboratory (ONL) is an Internet-accessible
virtual laboratory facility that can deliver a high quality laboratory
experience in advanced networking [3,7]. Our experience with
ONL indicates that it has potential to improve student
understanding of fundamental networking concepts and increase
enthusiasm for experimentation with complex technology.
Furthermore, these benefits can be delivered with less effort from
the instructor than using a traditional approach of socket
programming and ns-2 simulation exercises. The system is built
around a set of high-performance, extendible routers which
connect personal computers acting as end systems. Users
configure their virtual network through the Remote Laboratory
Interface (RLI), an intuitive graphical interface. The RLI’s real-
time charts and user data facility make it easy to directly view the
effect of system parameters on traffic behavior. These features
can enhance learning by providing users with multiple
representations of network phenomena. We describe how the
ONL facilities have improved our ability to meet instructional
objectives and discuss some approaches to improving the
laboratory experience.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education, C.2.6 [Internetworking]: Routers

General Terms
Experimentation, Human Factors, Measurement

Keywords
Experimental Computer Science, Education, Laboratory

1. INTRODUCTION
High quality advanced technical education is essential for

attracting and retaining qualified students, and producing well-
educated graduates who can contribute to the development of new

* This work was supported by the National Science Foundation (ANI
023826, CNS 0551651, REC 0632580, REC 0632586).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE'07, March 7–11, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003...$5.00.

generations of technology. Laboratory experiences play a central
role in an advanced technical education. They allow students to
see how concepts can be put into practice, enabling them to
appreciate the real-world implications of what can seem at first
very abstract. They also have the potential for increasing the
synergy between research and education.

Although the importance of laboratory work is taken as an
article of faith by university faculty, the quality of laboratory
experiences is highly variable. Several factors contribute to this
variability:
• Designing effective exercises is very demanding.
• Maintaining high-quality facilities is expensive and time-

consuming.
• Laboratory exercises are prepared with little attention paid

to learning research or systematic sharing of experiences.
The Open Network Laboratory (ONL) is an Internet-accessible,
virtual laboratory facility for advanced networking that can help
to address the issues listed above. First, it can reduce the high
expense of a dedicated facility through resource sharing, making it
unnecessary for multiple institutions to each have their own staff
and facilities. Second, its intuitive user interface can reduce the
obstacles that students must overcome to meet educational
objectives. Third, faculty at different institutions can share their
experiences with their colleagues through the virtual laboratory’s
common experimental environment. Laboratory facilities such
as ONL will play a larger role in the future as student diversity
increases and attention spans shorten.

Section 2 describes how to meet the objectives of a modern
networking laboratory course. It discusses how exercises can be
constructed that gradually expose the student to higher levels of
cognitive demands and how multiple system views can be used to
enhance learning. Section 3 describes how guided exercises have
been used to reinforce fundamental computer networking
concepts. Section 4 describes how multiple perspectives improves
student understanding of analytical formulae. Section 5 discusses
some areas for improvement. Finally, Section 6 concludes with a
discussion of future work.

2. A NETWORKING LAB COURSE
The fundamental instructional objectives of a networking

laboratory are essentially the same as those proposed by Ernst [4]
over 20 years ago in the context of general engineering education.
When restated in the networking context, they are:
• Deepen student understanding of networking concepts
• Develop experimental computer science skills
• Increase experience with advanced networking technology

But what can be done to achieve these objectives in a meaningful
manner? What makes a good computer networking exercise?
This section examines these objectives and presents some
thoughts on achieving them. The following two sections present
our early experiences with using ONL in four networking courses
at two universities which are committed to excellence in both
research and education.

Some of the benefits of using ONL can be explained by
examining the cognitive capabilities that can be exercised by
networking laboratory assignments. Bloom’s taxonomy [1]
defines six domains of increasing levels of cognitive capability:
knowledge, comprehension, application, analysis, synthesis, and
evaluation. For example, the knowledge category might involve
merely recalling information whereas the evaluation category
might involve assessing competing theories.

Unfortunately, many students employ a trial-and-error, most-
recent-concept approach to problem solving. Also, their
repository of relevant facts is nearly empty, and they have not
developed confidence in dealing with new technology. The
organization and conduct of a good laboratory course needs to be
sensitive to this situation.

ONL allows students to conduct network experiments starting
with a small amount of information and then building their
repository of network facts and relationships through exercises
that are paced to require an increasing volume of information and
levels of cognition.

ONL is built around a set of real networking hardware
components (extensible routers), which connect a number of end
systems in the users’ experimental network [3]. Users interact
with their network through the Remote Laboratory Interface
(RLI), an intuitive graphical user interface that provides a wide
range of configuration variables and measurement points,
allowing a user to control system operation and observe the
effects of system parameters on traffic. Measurements can be
displayed on real-time charts, allowing users to see what’s
happening “under the covers.”

In order to start with a small cognitive load for students, the
instructor can provide the class with a preplanned configuration
and monitoring file that sets up the network and opens up
monitoring charts; and then ask students to observe the effect of
route changes to simple network traffic supplied by the ping
command. Figure 1 shows the main RLI window and one of the
route tables from using such a preplanned experiment file. The
large circle with the numbers along the periphery is a single NSP

(Network Services Platform) router with its eight ports. Seven
hosts are attached to the router, three through a Gigabit Ethernet
switch. Although there are hundreds of control knobs and
observation points, the student only needs to know about very
basic routing, link capacity, and basic monitoring to see the
effects of route table changes that the students can make
themselves.

Figure 2 shows an example of the traffic bandwidth going
through output port 2 to host n1p2 during a period when students
delete the route table entry used to forward traffic. The
description of the bandwidth chart is part of the experiment file
given to the student and specifies the parameters and the format of
the display. The students can generate traffic by logging into an
attached host and running a traffic command like ping. Students
first observe that traffic appears on the bandwidth chart once per
second (the default packet transmission interval of ping). Part of
the exercise also asks students to predict the appearance of the
chart from theory and to observe the bandwidth at other places
along the intended packet path. This approach emphasizes the
benefits to learning from reconciling inconsistencies between
different representations and the need to view redundant data as a
further verification of the observations.

Eventually, students are asked to construct their own
configuration file which includes routing tables for a particular
routing topology, thus exercising their understanding of IP
addressing and the longest-prefix-match routing algorithm. This
gradual approach to exercises allows the student to start quickly
but places increasing demands on their understanding of basic
concepts and cognitive abilities. Misunderstandings can be
quickly resolved if the student is given strategies for recognizing
and resolving mistakes, thus increasing their confidence in solving
problems.

Finding the connections between different representations of
the same phenomenon is an important cognitive ability [2]. The
availability of distinct but related types of measurements (queue
length, delay, packet loss rate) in ONL allows students to
understand system behavior from multiple perspectives. Users
can select from a wide range of different metrics (or can create
their own metrics using plugins and/or applications running on the
end systems) and can display these metrics directly on real-time
charts.

Figure 3 shows the length of the bottleneck queue when
constant rate UDP traffic is sent through the 8 Mbps bottleneck
link at port 7 in Figure 1 at a rate slightly higher than its capacity.
In this example, the student is asked to generate traffic at a rate
that is about 1.87% faster than the capacity of the link at port 7 for

Figure 1. Route Table at Port 2.

route
deleted
route

deleted

Figure 2. Ping Reply Traffic At Output Port 2.

five seconds. Students are asked to verify that the slope of the
queue length curve agrees with a rough calculation.

Moreover, students can directly observe the queueing delay
experienced by a packet sharing the bottleneck queue using the
ping command. If students send ping packets through the same
bottleneck link during the 5 second data transfer, they will
discover that each ping packet experiences an ever increasing
delay (e.g., 0, 39, 78, 117, 146 msec) before returning to 0 msec
when the UDP traffic source stops. Students are asked to explain
this apparent regularity based on theory.

In addition, advanced students can develop, experiment with,
and evaluate new network services by adding router functionality
through software plugins. This activity requires the highest
degree and levels of cognition. We have used this approach in
one of our advanced networking courses where students
implemented a packet priority service in one exercise and used
plugins in their final course project.

Laboratory experiences are also valuable for their potential to
strengthen competence in the design and conduct of experiments,
the analysis of data, and the selection of exploration trajectories.
Improving student understanding of the operation of complex,
dynamic systems also helps students to understand probabilistic
rather than strictly deterministic system behavior. The ability to
directly observe the effects of various parameters on system
behavior, allows students to solidify their understanding of the
underlying principles and can help them appreciate the difference
between analytical predictions and measurements of real systems.

3. GUIDED LABORATORY EXERCISES
One of the co-authors taught a graduate networking course

where conventional laboratory assignments that used socket
programming and ns-2 simulations [8] were replaced with ONL
exercises. This change made the laboratory portion of this course
much more accessible to students with non-networking
backgrounds because the amount of prior knowledge and skills
required to start using ONL is much less than required in
conventional laboratory assignments. This aspect of ONL was
particularly important for this course because it is required for all
doctoral students in the computer engineering program with no
prerequisite networking course. Typically, more than one-half of
the 20 students had no prior experience with networking.

The course is structured to briefly introduce the basic
networking protocol stack at the beginning of the semester and
then expand into more advanced topics. The course takes a
systems view of networking starting with individual links, then
routers, and finally the entire network. The detailed topics that are
covered in the course are:

• Introduction and the Internet protocol stack (5 lectures)
• Queuing systems (2 lectures)
• Router design and routing protocols (3 lectures)
• Router implementation issues (route lookups, packet

classification, scheduling algorithms) (4 lectures)
• Network-level issues (congestion control, Internet topology,

network measurement) (5 lectures)
• Other topics (security, multimedia, wireless) (5 lectures)

We use the Kurose and Ross textbook [5] augmented by a few
seminal papers from high-quality networking journals and
conferences.

The assignments for this course should ideally follow the
same sequence of topics. However, since laboratory experiments
use a real system, it is difficult to start at a very fundamental level.
For example, it would be desirable to experiment with a single
link and queue during the early part of the course when queuing
systems are studied. But it is impossible without using end-
systems and a small network to interconnect them. Therefore, it is
not possible to have a perfect one-to-one mapping of topics
covered in the lecture with topics covered in the lab. But ONL
does allow us to hide many of the complexities by using default
features.

In the Spring 2005 version of the course that did not use ONL,
the laboratory assignments were:
• Lab 1: Implement an HTTP proxy. Evaluate system in terms

of functionality and performance.
• Lab 2: Implement a reliable transport protocol on a channel.

Evaluate functionality and performance for a range of
reliability scenarios.

• Lab 3: Explore ns-2 simulator. Observe TCP and UDP
congestion collapse.

• Lab 4: Analyse network trace. Extract packet-level flow-
level statistics.

Labs 1 and 2 required students to program in C or JAVA using
socket abstractions. Lab 3 required an understanding of the ns-2
software package. Lab 4 required the use of the pcap package in a
custom C program.

Each assignment posed a significant challenge to students
because, in effect, each exercise required students to construct a
new laboratory tool (a program) using a large number of
programming details before they could begin to explore the
fundamental concepts of interest. This is in marked contrast to
our recent use of ONL which allowed us to quickly setup simple
exercises that would guide the students through incrementally
more challenging problems.

In Spring 2006, we replaced the first three laboratory
assignments with ones using ONL and kept the last one. The three
new assignments were:
• Lab 1: Configure different network scenarios. Measure

simple statistics to track functionality and performance.
• Lab 2: Analyse queueing effects. Explore queueing behavior

during TCP transfer. Analyse relationship between queue
length and delay.

• Lab 3: Analyse TCP behavior. Explore competition between
TCP and UDP flows. Compare results from ONL with those
from ns-2 simulation. Analysis of TCP congestion control
behavior for different buffer sizes.

Figure 3. Queue Length (Port 7 Bottleneck).

Two of the differences reflected in the first three exercises in this
new approach is the focus on more fundamental concepts such as
routing and queueing and on incrementally developing facility in
constructing knowledge relationships through actual and thought
experiments.

Some of the benefits of using ONL can be explained by
comparing the two approaches with respect to the six cognitive
objectives in Bloom’s taxonomy. Table 1 shows the main
cognitive skill () and related skills () employed in the above
exercises for both approaches. By using ONL, students can start
in application (Ap) and analysis (An) modes before moving on to
synthesis (Sy) and evaluation (Ev), thus providing better pacing of
cognitive requirements.

Anecdotal evidence from informal student surveys indicated a
high level of enthusiasm because of the hands-on experience and
the connection between theory and practice. A surprising result
was the citation of ease-of-use since the students got all of their
information on ONL through the Web tutorial pages. In an
advanced networking course, a special FAQ was maintained by
ONL developers to assist students with router plugin projects.

4. MULTIPLE REPRESENTATIONS
Research in learning has demonstrated the importance of

predicting experimental outcomes and checking that results from
multiple representations such as graphs, tables, formulae are
consistent. ONL already has charting facilities that often allow
students to view behavior from multiple perspectives. This
section demonstrates how ONL charting and data facilities aid in
the understanding of pipelined file transfer.

Kurose and Ross [5] advocate an analytical approach to
teaching computer networks where the performance of designs is
expressed in terms of packet transmission, propagation delay, and
queueing delays. Most students understand that the end-to-end
delivery time of one packet of length L over an empty path with n
links is given by:

])(/)([)1(
1
∑
=

+=
n

i
icLidT

where d(i) is the propagation delay, and c(i) is the capacity of link
i. On the other hand, many students struggle to derive correct
analytic expressions for more complex settings (e.g., the sender

transmits w packets back-to-back and there is sufficient network
buffering to avoid packet drops). A common mistake is to express
the end-to-end delivery time of w packets as wT(1). They miss
the main point that the packets form a pipeline bottlenecked at the
lowest capacity link. The correct expression that accounts for the
pipelining effect is:

(min)/)1()1()(cLwTwT −+=

where c(min) is the capacity of the slowest link. This form
captures the idea that the first packet takes T(1) to travel from the
sender to the receiver, and then each of the remaining (w–1)
packets arrives at the receiver L/c(min) after the preceding packet.

The effect of pipelining can be easily explored using ONL
using a setup similar to the one shown in Figure 1. Packets from
host n1p2 enter port 2 where they are forwarded to port 7 and then
out the bottleneck link to port 6 where they are forwarded to port
3 and then out to host n1p3. The bottleneck link at port 7 is still 8
Mbps. But the capacity of queue 300 is increased to 10 MB,
enough to handle a single file transfer of 10 MB. A 50 msec
delay plugin is inserted at input port 2, and the return path is
configured with negligible delay.

The effects of pipelining can be demonstrated by running two
experiments where we send 6,805 packets each containing 1,470
bytes of data:

• Non-Pipelined: A packet is sent only after the preceding
packet reaches the receiver (n1p3).

• Pipelined: All packets are sent back-to-back at a rate
substantially higher than the bottleneck link capacity of 8
Mbps.

Students observe the queue length at and the output bandwidth of
the bottleneck in both cases and are asked to explain the different
results including the slope and peak value of the queue length
plots and the peak value and duration of the bandwidth plots.

Figure 4 shows the beginning period of the bandwidth coming
out of the bottleneck link. The bandwidth is about 240 Kbps,
substantially lower than the 8 Mbps capacity of the link and lasts
for a little over 340 seconds. The queue length chart (not shown),
indicates no packet backlog. The bandwidth and queue length
observations can be explained by realizing that only about 20
packets per second can be delivered through a 50 msec delay path
with no pipelining and that each packet travels between the sender
and the receiver alone. A rough calculation assuming 12,000-bit
packets (1,500 bytes) leads to an estimate of 240 Kbps.
Furthermore, this 20 packet per second rate can be directly
observed at a number of different points in the network through
ONL’s extensive set of measurement points.

Cognitive Objective
Course Lab

Kn Co Ap An Sy Ev

1

2

3
Pre-ONL

4

1

2

3
ONL

4

Table 1. Traditional Versus ONL Exercises.

Figure 4. Port 7 Output Bandwidth (Non-Pipelined).

Figure 5 shows the size of the backlog at the bottleneck queue
when the UDP traffic is sent at 80 Mbps. The queue length chart
shows that the queue is backlogged for about 10 seconds which is
the time required to transmit 80 Mbits at 8 Mbps. Furthermore,
this 10 seconds is also the delivery time T(w=6,805) when the
delivery time is dominated by the transmission term wL/c(min).
The bandwidth chart (not shown) verifies this transmission time
period which is substantially less than the 340 seconds in the non-
pipelined case.

This simple exercise can be extended in a number of ways. An
even greater understanding of the effect of pipelining can be
gained by viewing together multiple representations such as charts
of analytic formulae, data transfer progress, and space-time event
chart (i.e., when a packet is sent, received, and acknowledged)
and checking for consistency among the different views. Pre-
written basic UDP programs that allow the user to vary the
window size w of packets that can be concurrently in flight can be
instrumented to collect packet arrival and departure event times at
the millisecond time scale. This data can then be replayed to
generate a space-time diagram showing the concurrency occurring
in the pipelining case. A more advanced form of this exercise is
to have students extend the pre-written UDP programs to include
logic for detecting and responding to packet drops which can be
emulated through an ONL-supplied plugin that both delays and
probabilistically drops packets.

5. IMPROVEMENTS
Four networking courses (undergraduate and graduate) have

used ONL exercises over the past year. Student surveys and
instructor interviews lead us to the following observations:

• Engineering students (even non-networking ones) are
enthusiastic and remain so if exercises are properly paced
and integrated with the course material.

• Students find the system easy-to-use but consult the on-line
tutorial pages only when encountering problems.

• Instructors can develop their own exercises with little effort
by using the growing on-line repository of exercises at the
ONL website.

But to be successful, particular attention still needs to be paid to
course conduct: pacing, organization, and insuring student
confusion is addressed promptly. A tool that recorded laboratory
sessions for asynchronous review by a tutor or automated analysis
might help in identifying conceptual misunderstandings.

To have a broader impact on laboratory courses in general, a
better approach to assessment is needed. Assessment, here, refers
to collecting data that measures student learning and the
effectiveness of particular pedagogies. We need to measure the
extent to which students can recognize relationships through the
interpretation of data provided through real-time charts. We need
to identify how students form, reinforce and/or modify their
“mental models” of the underlying system and determine the
extent to which this allows them to improve their ability to predict
system behavior under conditions that they have not
experimentally explored. Tools such as agar [6] that collect data
on student solutions might provide raw data that could begin to be
used in addressing learning research questions.

6. CONCLUSIONS
We have described how a virtual network laboratory can meet

the objectives of a modern networking laboratory course. We
have discussed how exercises can be constructed to provide a
good learning experience through a structured exposure to
networking concepts using the multiple perspectives provided by
ONL. This is in contrast to a more traditional approach where
socket programming is used. Although we have identified some
useful approaches, much work remains in understanding and
documenting the learning experience.

There are plans to include Network Processor platforms that
will provide both programming flexibility and high performance.
This will include the implementation of the high-speed forwarding
part of a complete IP router with support for packet classification,
per flow queueing, flexible statistics collection and a plugin
subsystem for user-specific services. Furthermore, the source
code will be made available to students thus allowing them to
make custom modifications to the new routers. The above
enhancements will improve the educational experience by giving
students an even higher degree of experimental control.

7. REFERENCES
[1] Benjamin S. Bloom, et. al. (Ed.), “Taxonomy of Educational

Objectives,” New York: David McKay Company Inc, c1956-
1964.

[2] J. Confrey and A. Maloney (in press), “A Theory of
Mathematical Modeling in Technological Settings,” in
Applications and Modeling in Mathematics Education, edited
by W. Blum and H. Henn, Springer, 2006.

[3] John D. DeHart, et. al., “The Open Network Laboratory,”
Proc. SIGCSE, March 2006.

[4] E. W. Ernst, “A New Role for the Undergraduate
Engineering Laboratory,” IEEE Trans. On Education, Vol.
E-26, No. 2, May 1983, pp. 49-51.

[5] James F. Kurose and Keith W. Ross, Computer Networking:
A Top-Down Approach Featuring the Internet (3rd Ed.),
Addison Wesley, 2004.

[6] Titus Winters and Tom Payne, What Do Students Know?,
Proc. First Intl. Computing Education Research Workshop
(ICER05), 2005.

[7] Open Network Laboratory, http://www.arl.wustl.edu.
[8] The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/

Figure 5. Bottleneck Queue Length (Pipelined).

