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Abstract—Packet classification is an enabling technology for
next generation network services and often a performance bottle-
neck in high-performance routers. The performance and capacity
of many classification algorithms and devices, including TCAMs,
depend upon properties of filter sets and query patterns. Despite
the pressing need, no standard performance evaluation tools or
filter sets are publicly available. In response to this problem, we
present ClassBench, a suite of tools for benchmarking packet
classification algorithms and devices. ClassBench includes a Filter
Set Generator that produces synthetic filter sets that accurately
model the characteristics of real filter sets. Along with varying
the size of the filter sets, we provide high-level control over the
composition of the filters in the resulting filter set. The tool suite
also includes a Trace Generator that produces a sequence of
packet headers to exercise packet classification algorithms with
respect to a given filter set. Along with specifying the relative
size of the trace, we provide a simple mechanism for controlling
locality of reference. While we have already found ClassBench
to be very useful in our own research, we seek to eliminate the
significant access barriers to realistic test vectors for researchers
and initiate a broader discussion to guide the refinement of the
tools and codification of a formal benchmarking methodology.
(The ClassBench tools are publicly available at the following site:
http://www.arl.wustl.edu/~det3/ClassBench/.)

Index Terms—Communication systems, computer network per-
formance, packet switching, packet classification.

I. INTRODUCTION

DEPLOYMENT of next generation network services hinges
on the ability of Internet infrastructure to perform packet

classification at physical link speeds. A packet classifier must
compare header fields of every incoming packet against a set
of filters in order to assign a flow identifier that is used to apply
security policies, application processing, and quality-of-service
guarantees. Typical packet classification filter sets have fewer
than a thousand filters and reside in enterprise firewalls or edge
routers. As network services continue to migrate into the net-
work core, it is anticipated that filter sets could swell to tens of
thousands of filters or more. The most common type of packet
classification examines the packet header fields comprising
the standard IP 5-tuple. A packet classifier searches for the
highest priority filter or set of filters matching the packet where
each filter specifies a prefix of the IP source and destination
addresses, an exact match or wildcard for the transport protocol
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Fig. 1. Block diagram of the ClassBench tool suite. The synthetic Filter Set
Generator has size, smoothing, and scope adjustments which provide high-
level, systematic mechanisms for altering the size and composition of synthetic
filter sets. The set of benchmark parameter files model real filter sets and may
be refined over time. The Trace Generator provides adjustments for trace size
and locality of reference.

number, and ranges for the source and destination port numbers
for TCP and UDP packets.

As reported in Section III, it has been observed that real filter
sets exhibit a considerable amount of structure. In response, sev-
eral algorithmic techniques have been developed which exploit
filter set structure to accelerate search time or reduce storage
requirements [1]. Consequently, the performance of these ap-
proaches are subject to the structure of filter sets. Likewise, the
capacity and efficiency of the most prominent packet classifica-
tion solution, ternary content addressable memory (TCAM), is
also subject to the characteristics of filter sets [1]. Despite the
influence of filter set composition on the performance of packet
classification search techniques and devices, no publicly avail-
able benchmarking tools or filter sets exist for standardized per-
formance evaluation. Due to security and confidentiality issues,
access to large, real filter sets has been limited to a small subset
of the research community. Some researchers in academia have
gained access to filter sets through confidentiality agreements,
but are unable to distribute those filter sets. Furthermore, per-
formance evaluations using real filter sets are restricted by the
size and structure of the sample filter sets.

In order to facilitate future research and provide a foundation
for a meaningful benchmark, we present ClassBench, a publicly
available suite of tools for benchmarking packet classification
algorithms and devices. As shown in Fig. 1, ClassBench con-
sists of three tools: a Filter Set Analyzer, Filter Set Generator,
and Trace Generator. The general approach of ClassBench is to
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construct a set of benchmark parameter files that specify the rel-
evant characteristics of real filter sets, generate a synthetic filter
set from a chosen parameter file and a small set of high-level
inputs, and generate a sequence of packet headers to probe the
synthetic filter set using the Trace Generator. Parameter files
contain various statistics and probability distributions that guide
the generation of synthetic filter sets. The Filter Set Analyzer
tool extracts the relevant statistics and probability distributions
from a seed filter set and generates a parameter file. This pro-
vides the capability to generate large synthetic filter sets which
model the structure of a seed filter set. In Section IV, we dis-
cuss the statistics and probability distributions contained in the
parameter files that drive the synthetic filter generation process.

The Filter Set Generator takes as input a parameter file and
a few high-level parameters. In addition the filter set size pa-
rameter, the smoothing and parameters provide high-level
control over the composition of the filter set, abstracting the user
from the low-level statistics and distributions contained in the
parameter files. The smoothing adjustment provides a structured
mechanism for introducing new address aggregates which is
useful for modeling filter sets significantly larger than the filter
set used to generate the parameter file. The scope adjustment
provides a biasing mechanism to favor more or less specific fil-
ters during the generation process. These adjustments and their
affects on the resulting filter sets are discussed in Section V.
Finally, the Trace Generator tool examines the synthetic filter
set, then generates a sequence of packet headers to exercise the
filter set. Like the Filter Set Generator, the trace generator pro-
vides adjustments for scaling the size of the trace as well as the
locality of reference of headers in the trace. These adjustments
are described in detail in Section VI.

We highlight previous performance evaluation efforts by the
research community as well as related benchmarking activity
of the IETF in Section II. It is our hope that this work initiates
a broader discussion which will lead to refinement of the tools,
compilation of a standard set of parameter files, and codification
of a formal benchmarking methodology. Its value will depend
on its perceived clarity and usefulness to the interested commu-
nity.

• Researchers seeking to evaluate new classification algo-
rithms relative to alternative approaches and commercial
products.

• Classification product vendors seeking to market their
products with convincing performance claims over com-
peting products.

• Classification product customers seeking to verify and
compare classification product performance on a uniform
scale.1

II. RELATED WORK

Extensive work has been done in developing benchmarks for
many applications and data processing devices. Benchmarks are
used extensively in the field of computer architecture to evaluate
microprocessor performance. In the field of computer commu-
nications, the Internet Engineering Task Force (IETF) has sev-

1In order to facilitate broader discussion, we make the ClassBench tools and
12 parameter files publicly available at the following site: http://www.arl.wustl.
edu/~det3/ClassBench/.

eral working groups exploring network performance measure-
ment. Specifically, the IP Performance Metrics (IPPM) working
group was formed with the purpose of developing standard met-
rics for Internet data delivery [2]. The Benchmarking Method-
ology Working Group (BMWG) seeks to make measurement
recommendations for various internetworking technologies [3].
These recommendations address metrics and performance char-
acteristics as well as collection methodologies.

The BMWG specifically attacked the problem of measuring
the performance of forwarding information base (FIB) routers
[4] and also produced a methodology for benchmarking fire-
walls [5]. The methodology contains broad specifications such
as: the firewall should contain at least one rule for each host,
tests should be run with various filter set sizes, and test traffic
should correspond to rules at the “end” of the filter set. Class-
Bench complements efforts by the IETF by providing the nec-
essary tools for generating test vectors with high-level control
over filter set and input trace composition. The Network Pro-
cessor Forum (NPF) has also initiated a benchmarking effort [6].
Currently, the NPF has produced benchmarks for switch fabrics
and route lookup engines. To our knowledge, there are no cur-
rent efforts by the IETF or the NPF to provide a benchmark for
multiple field packet classification.

In the absence of publicly available packet filter sets, re-
searchers have exerted much effort in order to generate realistic
performance tests for new algorithms. Several research groups
obtained access to real filter sets through confidentiality agree-
ments. Gupta and McKeown obtained access to 40 real filter
sets and extracted a number of useful statistics which have
been widely cited [7]. Feldmann and Muthukrishnan composed
filter sets based on NetFlow packet traces from commercial
networks [8]. Several groups have generated synthetic 2-D
filter sets consisting of source-destination address prefix pairs
by randomly selecting address prefixes from publicly available
route tables [8]–[10]. Baboescu and Varghese also generated
synthetic 2-D filter sets by randomly selecting prefixes from
publicly available route tables, but added refinements for
controlling the number of zero-length prefixes (wildcards) and
prefix nesting [11], [12]. A simple technique for appending
randomly selected port ranges and protocols from real filter
sets in order to generate synthetic five-dimensional filter sets
is also described [11]. Baboescu and Varghese also introduced
a scheme for using a sample filter set to generate a larger syn-
thetic five-dimensional filter set [13]. This technique replicates
filters by changing the IP prefixes while keeping the other fields
unchanged. While these techniques address some aspects of
scaling filter sets in size, they lack high-level mechanisms for
adjusting filter set composition which is crucial for evaluating
algorithms that exploit filter set characteristics.

Woo provided strong motivation for a packet classification
benchmark and initiated the effort by providing an overview
of filter characteristics for different environments (ISP Peering
Router, ISP Core Router, Enterprise Edge Router, etc.) [14].
Based on high-level characteristics, Woo generated large syn-
thetic filter sets, but provided few details about how the filter
sets were constructed. The technique also does not provide con-
trols for varying the composition of filters within the filter set.
Nonetheless, his efforts provide a good starting point for con-
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structing a benchmark capable of modeling various application
environments for packet classification. Sahasranaman and Bud-
dhikot used the characteristics compiled by Woo in a compara-
tive evaluation of a few packet classification techniques [15].

Stanford’s Packet Lookup and Classification Simulator
(PALAC) [16] tools provide a framework for comparative
performance evaluation of various IP lookup and packet clas-
sification algorithms. The Classifier Description Language
(CDL) module of PALAC gerenates a synthetic route table
or filter set based on input parameters controlling the number
of filters and the number of fields per filter. Alternatively,
PALAC allows IPMA table snapshots to be used for algorithm
evaluation. PALAC also includes traffic generation, statistics
collection, and classifier update modules. The ClassBench tool
suite may be used in conjunction with frameworks such as
PALAC to explore the effects of filter set size and composition
on packet classifier performance.

III. ANALYSIS OF REAL FILTER SETS

Recent efforts to identify better packet classification tech-
niques have focused on leveraging the characteristics of real
filter sets for faster searches. While lower bounds for the general
multi-field searching problem have been established, observa-
tions made in recent packet classification work offer enticing
new possibilities to provide significantly better performance.
The focus of this section is to identify and understand the im-
petus for the observed structure of filter sets and to develop met-
rics and characterizations of filter set structure that aid in gener-
ating synthetic filter sets. We performed a battery of analyses on
12 real filter sets provided by Internet Service Providers (ISPs),
a network equipment vendor, and other researchers working in
the field. The filter sets range in size from 68 to 4557 entries and
utilize one of the following formats: access control list (ACL),
firewall (FW), and IP chain (IPC). Due to confidentiality con-
cerns, the filter sets were provided without supporting informa-
tion regarding the types of systems and environments in which
they are used. We are unable to comment on “where” in the net-
work architecture the filter sets are used. Nonetheless, the fol-
lowing analysis provide useful insight into the structure of real
filter sets. We observe that various useful properties hold regard-
less of filter set size or format. Due to space constraints, we are
unable to fully elaborate on our analysis, but a more complete
discussion of this work is available in technical report form [17].

A. Understanding Filter Composition

Many of the observed characteristics of filter sets arise due
to the administrative policies that drive their construction. The
most complex packet filters typically appear in firewall and edge
router filter sets due to the heterogeneous set of applications sup-
ported in these environments. Firewalls and edge routers typi-
cally implement security filters and network address translation
(NAT), and they may support additional applications such as
virtual private networks (VPNs) and resource reservation. Typ-
ically, these filter sets are created manually by a system admin-
istrator using a standard management tool such as CiscoWorks
VPN/Security Management Solution (VMS) [18] and Lucent
Security Management Server (LSMS) [19]. Such tools conform

TABLE I
DISTRIBUTION OF FILTERS OVER THE FIVE PORT CLASSES FOR SOURCE

AND DESTINATION PORT RANGE SPECIFICATIONS; VALUES GIVEN AS

PERCENTAGE (%) OF FILTERS IN THE FILTER SET

to a model of filter construction which views a filter as speci-
fying the communicating subnets and the application or set of
applications. Hence, we can view each filter as having two major
components: an address prefix pair and an application specifica-
tion. The address prefix pair identifies the communicating sub-
nets by specifying a source address prefix and a destination ad-
dress prefix. The application specification identifies a specific
application session by specifying the transport protocol, source
port number, and destination port number. A set of applications
may be identified by specifying ranges for the source and desti-
nation port numbers.

B. Application Specifications

We analyzed the application specifications in the 12 filter sets
in order to corroborate previous observations as well as extract
new, potentially useful characteristics.

1) Protocol: For each of the filter sets, we examined the
unique protocol specifications and the distribution of filters over
the set of unique values. Filters specified one of nine protocols
or the wildcard. The most common protocol specification was
TCP (49%), followed by UDP (27%), the wildcard (13%), and
ICMP (10%). The following protocols were specified by less
than 1% of the filters: General Routing Encapsulation (GRE),
Open Shortest Path First (OSPF) Interior Gateway Protocol
(IGP), Enhanced Interior Gateway Routing Protocol (EIGRP),
IP Encapsulating Security Payload (ESP) for IPv6, IP Authenti-
cation Header (AH) for IPv6, IP Encapsulation within IP (IPE).

2) Port Ranges: Next, we examined the port ranges specified
by filters in the filter sets and the distribution of filters over the
unique values. In order to observe trends among the various filter
sets, we define five classes of port ranges:

• WC: wildcard;
• HI: ephemeral user port range [1024:65535];
• LO: well-known system port range [0:1023];
• AR: arbitrary range;
• EM: exact match.

Motivated by the allocation of port numbers, the first three
classes represent common specifications for a port range. The
last two classes may be viewed as partitioning the remaining
specifications based on whether or not an exact port number
is specified. We computed the distribution of filters over the
five classes for both source and destination ports for each filter
set. Table I shows the combined distribution for all filter sets.
We observe some interesting trends in the raw data. With rare
exception, the filters in the ACL filter sets specify the wildcard
for the source port. A majority of filters in the ACL filters
specify an exact port number for the destination port. Source
port specifications in the other filter sets are also dominated by
the wildcard, but a considerable portion of the filters specify
an exact port number. Destination port specifications in the
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Fig. 2. Port Pair Class Matrix for TCP, filter set fw4.

other filter sets share the same trend, however the distribution
between the wildcard and exact match is a bit more even. Only
one filter set contained filters specifying the LO port class for
either the source or destination port range.

3) Port Pair Class: As previously discussed, the structure of
source and destination port range pairs is a key point of interest
for both modeling real filter sets and designing efficient search
algorithms. We can characterize this structure by defining a Port
Pair Class (PPC) for every combination of source and destina-
tion port class. For example, WC-WC if both source and des-
tination port ranges specify the wildcard, AR-LO if the source
port range specifies an arbitrary range and the destination port
range specifies the set of well-known system ports. As shown in
Fig. 2, a convenient way to visualize the structure of Port Pair
Classes is to define a Port Pair Class Matrix where rows share
the same source port class and columns share the same destina-
tion port class. For each filter set, we examined the PPC Matrix
defined by filters specifying the same protocol. For all protocols
except TCP and UDP, the PPC Matrix is trivial—a single spike
at WC/WC. Fig. 2 shows the PPC Matrix defined by filters spec-
ifying the TCP protocol in filter set fw4.

C. Address Prefix Pairs

A filter identifies communicating hosts or subnets by speci-
fying a source and destination address prefix, or address prefix
pair. The speed and efficiency of several longest prefix matching
and packet classification algorithms depend upon the number of
unique prefix lengths and the distribution of filters across those
unique values. We find that a majority of the filter sets specify
fewer than 15 unique prefix lengths for either source or desti-
nation address prefixes. The number of unique source/destina-
tion prefix pair lengths is typically less than 32, which is small
relative to the filter set size and the number of possible combi-
nations, 1024. For example, the largest filter set contained 4557
filters, 11 unique source address prefix lengths, 3 unique desti-
nation address lengths, and 31 unique source/destination prefix
pair lengths.

Fig. 3. Prefix length distribution for address prefix pairs in filter set ipc1.

Next, we examine the distribution of filters over the unique
address prefix pair lengths. Note that this study is unique in that
previous studies and models of filter sets utilized independent
distributions for source and destination address prefixes. Real
filter sets have unique prefix pair distributions that reflect the
types of filters contained in the filter set. For example, fully spec-
ified source and destination addresses dominate the distribution
for filter set ipc1 shown in Fig. 3. There are very few filters spec-
ifying a 24-bit prefix for either the source or destination address,
a notable difference from backbone route tables which are dom-
inated by class C address prefixes (24-bit network address) and
their aggregates. Finally, we observe that while the distributions
for different filter sets are sufficiently different from each other a
majority of the filters in the filter sets specify prefix pair lengths
around the “edges” of the distribution. This implies that, typi-
cally, one of the address prefixes is either fully specified or wild-
carded.

By considering the prefix pair distribution, we characterize
the size of the communicating subnets specified by filters in
the filter set. Next, we would like to characterize the relation-
ships among address prefixes and the amount of address space
covered by the prefixes in the filter set. Consider a binary tree
constructed from the IP source address prefixes of all filters in
the filter set. From this tree, we could completely characterize
the data structure by determining a conditional branching proba-
bility for each node. For example, assume that an address prefix
is generated by traversing the tree starting at the root node. At
each node, the decision to take to the 0 path or the 1 path exiting
the node depends upon the branching probability at the node.
As shown in Fig. 4, is the probability that the 0 path
is chosen at level 2 given that the 1 path was chosen at level 0
and the 1 path was chosen at level 1. Such a characterization
is overly complex, hence we employ suitable metrics that cap-
ture the important characteristics while providing a more con-
cise representation.

We begin by constructing two binary tries from the source
and destination prefixes in the filter set. Note that there is one
level in the tree for each possible prefix length 0 through 32
for a total of 33 levels. For each level in the tree, we compute
the probability that a node has one child or two children. Nodes
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Fig. 4. Example of complete statistical characterization of address prefixes.

Fig. 5. Example of skew computation for the first four levels of an address trie.
Shaded nodes denote a prefix specified by a single filter. Subtrees denoted by
triangles with associated weight.

with no children are excluded from the calculation. We refer to
this distribution as the Branching Probability. For nodes with
two children, we compute skew, which is a relative measure of
the “weights” of the left and right subtrees of the node. Subtree
weight is defined to be the number of filters specifying prefixes
in the subtree, not the number of prefixes in the subtree. This
definition of weight accounts for popular prefixes that occur in
many filters. Let heavy be the subtree with the largest weight
and let light be the subtree with equal or less weight, thus

skew
weight(light)

weight(heavy)
(1)

Consider the following example: given a node with two chil-
dren at level , assume that 10 filters specify prefixes in the
1-subtree of node (the subtree visited if the next bit of the ad-
dress is 1) and 25 filters specify prefixes in the 0-subtree of node

. The 1-subtree is the light subtree, the 0-subtree is the heavy
subtree, and the skew at node is 0.6. We compute the average
skew for all nodes with two children at level , record it in the
distribution, and move on to level . We provide and ex-
ample of computing skew for the first four levels of an address
trie in Fig. 5.

The result of this analysis is two distributions for each address
trie, a branching probability distribution and a skew distribu-
tion. We plot these distributions for the source address prefixes
in filter set acl5 in Fig. 6. In Fig. 6(a), note that a significant por-
tion of the nodes in levels zero through five have two children,
but the amount generally decreases as we move down the trie.
The increase at level 16 and 17 is a notable exception. This im-
plies that there is a considerable amount of branching near the

Fig. 6. Source address branching probability and skew for filter set acl5. (a)
Source address branching probability; average per level. (b) Source address
skew; average per level for nodes with two children.

“top” of the trie, but the paths generally remain contained as we
move down the trie. In Fig. 6(b), we observe that skew for nodes
with two children hovers around 0.5, thus the one subtree tends
to contain prefixes specified by twice as many filters as the other
subtree. Note that skew is not defined at levels where all nodes
have one child. Also note that levels containing nodes with two
children may have an average skew of zero (completely bal-
anced subtrees), but this is rare. Finally, this definition of skew
provides an anonymous measure of address prefix structure, as
it does not preserve address prefix values.

Branching probability and skew characterize the structure of
the individual source and destination address prefixes; however,
it does not capture their interdependence. It is possible that some
filters in a filter set match flows contained within a single subnet,
while others match flows between different subnets. In order to
capture this characteristic of a seed filter set, we measure the
“correlation” of source and destination prefixes. In this context,
we define correlation to be the probability that the source and
destination address prefixes continue to be the same for a given
prefix length. This measure is only valid within the range of ad-
dress bits specified by both address prefixes. Additional details
regarding the “correlation” metric and results from real filter sets
may be found in [17].

D. Scope

Next we seek to characterize the specificity of the filters in
the filter set. Filters that are more specific cover a small set of
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possible packet headers while filters that are less specific cover
a large set of possible packet headers. The number of possible
packet headers covered by a filter is characterized by its tuple
specification. To be specific, we consider the standard 5-tuple
as a vector containing the following fields:

• : source address prefix length ;
• : destination address prefix length ;
• : source port range width, the number of port numbers

covered by the range ;
• : destination port range width, the number of port num-

bers covered by the range ;
• : protocol specification, Boolean value denoting

whether or not a protocol is specified [0, 1].
We define a new metric, scope, to be the logarithmic measure
of the number of possible packet headers covered by the filter.
Using the definition above, we define a filter’s 5-tuple scope as
follows:

scope

(2)

Thus, scope is a measure of filter specificity on a scale from 0
to 104. The average 5-tuple scope for our 12 filter sets ranges
from 56 to 24. We note that filters in the ACL filter sets tend to
have narrower scope, while filters in the FW filter sets tend to
have wider scope.

E. Additional Fields

An examination of real filter sets reveals that additional fields
beyond the standard 5-tuple are relevant. In 10 of the 12 filter
sets that we studied, filters contain matches on TCP flags or
ICMP type numbers. In most filter sets, a small percentage of
the filters specify a nonwildcard value for the flags, typically
less then two percent. There are notable exceptions, as approxi-
mately half the filters in filter set ipc1 contain nonwildcard flags.
We argue that new services and administrative policies will de-
mand that packet classification techniques scale to support ad-
ditional fields beyond the standard 5-tuple. Matches on ICMP
type number and other higher-level header fields are likely to be
exact matches. There may be other types of matches that more
naturally suit the application, such as arbitrary bit masks on TCP
flags.

IV. PARAMETER FILES

Given a real filter set, the Filter Set Analyzer generates a pa-
rameter file that contains statistics and probability distributions
that allow the Filter Set Generator to produce a synthetic filter
set that retains the relevant characteristics of the original filter
set. We chose the statistics and distributions to include in the pa-
rameter file based on thorough analysis of 12 real filter sets and
several iterations of the Filter Set Generator design. Note that
parameter files also provide complete anonymity of addresses
in the original filter set. By reducing confidentiality concerns,

we seek to remove the significant access barriers to realistic test
vectors for researchers and promote the development of a bench-
mark set of parameter files. There still exists a need for a large
sample space of real filter sets from various application environ-
ments. We have generated a set of 12 parameter files which are
publicly available along with the ClassBench tool suite.

Parameter files include the following entries.2

• Protocol specifications and the distribution of filters over
those values.

• Port Pair Class Matrix for each unique protocol specifica-
tion in the filter set

• Flags specifications for each protocol and a distribution of
filters over those values.

• Arbitrary port range specifications and a distribution of
filters over those values for both the source and destination
port fields.

• Exact port number specifications and a distribution of fil-
ters over those values for both the source and destination
port fields.

• Prefix pair length distribution for each Port Pair Class Ma-
trix.

• Address prefix branching and skew distributions for both
source and destination address prefixes.

• Address prefix correlation distribution.
• Prefix nesting thresholds for both source and destination

address prefixes.
Parameter files represent prefix pair length distributions using

a combination of a total prefix length distribution and source
prefix length distributions for each specified total length3 as
shown in Fig. 7. The total prefix length is simply the sum of
the prefix lengths for the source and destination address pre-
fixes. As we will demonstrate in Section V-B, modeling the total
prefix length distribution allows us to easily bias the generation
of more or less specific filters based on the scope input param-
eter. The source prefix length distributions associated with each
specified total length allow us to model the prefix pair length
distribution, as the destination prefix length is simply the differ-
ence of the total length and the source length.

The number of unique address prefixes that match a given
packet is an important property of real filter sets and is often
referred to as prefix nesting. We found that if the Filter Set Gen-
erator is ignorant of this property, it is likely to create filter sets
with significantly higher prefix nesting, especially when the syn-
thetic filter set is larger than the filter set used to generate the
parameter file. Given that prefix nesting remains relatively con-
stant for filter sets of various sizes, we place a limit on the prefix
nesting during the filter generation process. The Filter Set Ana-
lyzer computes the maximum prefix nesting for both the source
and destination address prefixes in the filter set and records these
statistics in the parameter file. The Filter Set Generator retains
these prefix nesting properties in the synthetic filter set, regard-
less of size. We discuss the process of generating address pre-
fixes and retaining prefix nesting properties in Section V.

2We avoid an exhaustive discussion of parameter file contents and format de-
tails; interested readers and potential users of ClassBench may find a discussion
of parameter file format in the documentation provided with the tools.

3We do not need to store a source prefix distribution for total prefix lengths
that are not specified by filters in the filter set.
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Fig. 7. Parameter files represent prefix pair length distributions using a combination of a total prefix length distribution and source prefix length distributions for
each nonzero total length.

V. SYNTHETIC FILTER SET GENERATION

The Filter Set Generator is the cornerstone of the ClassBench
tool suite. Perhaps the most succinct way to describe the syn-
thetic filter set generation process is to walk through the pseu-
docode shown in Fig. 8. The first step in the filter generation
process is to read the statistics and distributions from the pa-
rameter file. Next, we get the four high-level input parameters:

• size: target size for the synthetic filter set;
• smoothing: controls the number of new address aggregates

(prefix lengths);
• port scope: biases the tool to generate more or less specific

port range pairs;
• address scope: biases the tool to generate more or less spe-

cific address prefix pairs.
We refer to the size parameter as a “target” size because the gen-
erated filter set may have fewer filters. This is due to the fact that
it is possible for the Filter Set Generator to produce a filter set
containing redundant filters, thus the final step in the process
removes the redundant filters. The generation of redundant fil-
ters stems from the way the tool assigns source and destination
address prefixes that preserve the properties specified in the pa-
rameter file. This process will be described in more detail in a
moment.

Before we begin the generation process, we apply the
smoothing adjustment to the prefix pair length distributions4

(lines 6–10). In order to apply the smoothing adjustment, we
must iterate over all Port Pair Classes (line 7), apply the adjust-
ment to each total prefix length distribution (line 8) and iterate
over all total prefix lengths (line 9), and apply the adjustment
to each source prefix length distribution associated with the
total prefix length (line 10). We discuss this adjustment and its
effects on the generated filter set in Section V-A.

The next set of steps (lines 12–27) generate a partial filter
for each entry in the Filters array. Essentially, we assign all
filter fields except the address prefix values. Note that the prefix

4Note that the scope adjustments do not add any new prefix lengths to the
distributions. It only changes the likelihood that longer or shorter prefix lengths
in the distribution are chosen.

lengths for both source and destination address are assigned.
The reason for this approach will become clear when we dis-
cuss the assignment of address prefix values in a moment. The
first step in generating a partial filter is to select a protocol from
the Protocols distribution (line 14) using a uniform random
variable, (line 13). We chose to select the protocol first be-
cause we found that the protocol specification dictates the struc-
ture of the other filter fields. Next, we select the protocol flags5

from the Flags distribution associated with the chosen pro-
tocol (line 16).

After choosing the protocol and flags, we select a Port Pair
Class, , from the Port Pair Class Matrix, PPCMatrix, as-
sociated with the chosen protocol (line 18). Note that the se-
lection of the is performed with a random variable that is
biased by the port scope parameter (line 17). This adjustment al-
lows the user to bias the Filter Set Generator to produce a filter
set with more or less specific s, where WC-WC (both port
ranges wildcarded) is the least specific and EM-EM (both port
ranges specify an exact match port number) is the most specific.
We discuss this adjustment and its effects on the generated filter
set in Section V-B. Given the , we can select the source and
destination port ranges from their respective port range distri-
butions associated with each port class (lines 20 and 22). Note
that the distributions for port classes WC, HI, and LO are trivial
as they define single ranges.

Selecting the address prefix pair lengths is the last step in
generating a partial filter. We select a total prefix pair length
from the distribution associated with the chosen (line 24)
using a random variable biased by the address scope parameter
(line 23). We select a source prefix length from the distribution
associated with the chosen and total length (line 26) using
a uniform random variable (line 25). Finally, we calculate the
destination address prefix length using the chosen total length
and source address prefix length (line 27).

After we generate all the partial filters, we must assign the
source and destination address prefix values. The AssignSA

5Note that the protocol flags field is typically the wildcard unless the chosen
protocol is TCP or ICMP.
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Fig. 8. Pseudocode for Small Filter Set Generator.

routine recursively constructs a binary trie using the set of
source address prefix lengths in Filters and the source
address branching probability and skew distributions specified
by the parameter file (line 28). The recursive process first
examines all of the entries in FilterList. If an entry has a
source prefix length equal to the level of the node, it assigns
the node’s address to the entry and removes the entry from
FilterList. The process then distributes the remaining
filters to child nodes according to the branching probability and

skew for the node’s level. Note that we also keep track of the
number of prefixes that have been assigned along a path and
ensure that the prefix nesting threshold is not exceeded.

Assigning destination address prefix values is symmetric to
the process for source address prefixes with one extension. In
order to preserve the relationship between source and destina-
tion address prefixes in each filter, the AssignDA process (line
29) also considers the correlation distribution specified in the
parameter file. In order to preserve the correlation, AssignDA
employs a two-phase process of constructing the destination ad-
dress trie. The first phase recursively distributes filters according
to the correlation distribution. When the address prefixes of a
particular filter cease to be correlated, it stores the filter in a tem-
porary StubList associated with the current tree node. The
second phase recursively walks down the tree and completes
the assignment process in the same manner as the AssignSA
process, with the exception that the StubList is appended to
the FilterList passed to the AssignDA process prior to
processing. Additional details regarding the address prefix as-
signment process are included in [17].

Note that we do not explicitly prevent the Filter Set Generator
from generating redundant filters. Identical partial filters may be
assigned the same source and destination address prefix values
by the AssignSA and AssignDA functions. In essence, this
preserves the characteristics specified by the parameter file be-
cause the number of unique filter field values allowed by the
various distributions is inherently limited. Consider the example
of attempting to generate a large filter set using a parameter file
from a small filter set. If we are forced to generate the number of
filters specified by the size parameter, we face two unfavorable
results: 1) the resulting filter set may not model the parameter
file because we are repeatedly forced to choose values from the
tails of the distributions in order to create unique filters or 2) the
Filter Set Generator never terminates because it has exhausted
the distributions and cannot create any more unique filters. With
the current design of the Filter Set Generator, a user can produce
a larger filter set by simply increasing the size target beyond
the desired size. While this does introduce some variability in
the size of the synthetic filter set, we believe this is a tolerable
trade-off to make for maintaining the characteristics in the pa-
rameter file and achieving reasonable execution times for the
Filter Set Generator.

Thus, after generating a list of size synthetic filters, we re-
move any redundant filters from the list via the RemoveRe-
dundantFilters function (line 30). A naïve implementa-
tion of this function would require time, where is
equal to . We discuss an efficient mechanism for removing
redundant filters from the set in Section V-C. After removing
redundant filters from the filter set, we sort the filters in order
of increasing scope (line 31). This allows the filter set to be
searched using a simple linear search technique, as nested filters
will be searched in order of decreasing specificity. An efficient
technique for performing this sorting step is also discussed in
Section V-C.

A. Smoothing Adjustment

As filter sets scale in size, we anticipate that new address
prefix pair lengths will emerge due to subnet aggregation and
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segregation. In order to model this behavior, we provide for
the introduction of new prefix lengths in a structured manner.
Injecting purely random address prefix pair lengths during the
generation process neglects the structure of the filter set used to
generate the parameter file. Using scope as a measure of dis-
tance, subnet aggregation and segregation results in new prefix
lengths that are “near” to the original prefix length. Consider
the address prefix pair length distribution where all filters in
the filter set have 16-bit source and destination address prefixes;
thus, the distribution is a single “spike.” In order to model aggre-
gation and splitting of subnets, new prefix pair lengths should
be clustered around the existing spike in the distribution. This
structured approach translates “spikes” in the distribution into
smoother “hills;” hence, we refer to the process as smoothing.

In order to control the injection of new prefix lengths, we de-
fine a smoothing parameter which limits the maximum radius
of deviation from the original prefix pair length, where radius is
measured in the number of bits specified by the prefix pair. Ge-
ometrically, this measurement may be viewed as the Manhattan
distance from one prefix pair length to another. For convenience,
let the smoothing parameter be equal to . We chose to model
the clustering using a symmetric binomial distribution. Given
the parameter , a symmetric binomial distribution is defined
on the range , and the probability at each point in the
range is given by

(3)

Note that is the median point in the range with probability
, and may assume values in the range [0:64]. Once we gen-

erate the symmetric binomial distribution from the smoothing
parameter, we apply this distribution to each specified prefix pair
length. The smoothing process involves scaling each “spike” in
the distribution according to the median probability , and bi-
nomially distributing the residue to the prefix pair lengths within
the -bit radius. When prefix lengths are at the “edges” of the
distribution, we simply truncate the binomial distribution. This
requires us to normalize the prefix pair length distribution as the
last step in the smoothing process.

In order to demonstrate this process, Fig. 9 shows the prefix
pair length distribution for a synthetic filter set generated with a
parameter file specifying 16-bit prefix lengths for all addresses
and a smoothing parameter . In practice, we expect that
the smoothing parameter will be limited to at most 8. In order to
demonstrate the effect of smoothing on a real filter set, Fig. 10
shows the prefix pair length distribution for a synthetic filter
set of 64 000 filters generated using the ipc1 parameter file and
smoothing parameter . Note that this synthetic filter set
retains the structure of the original filter set shown in Fig. 3
while modeling a realistic amount of address prefix aggregation
and segregation.

B. Scope Adjustment

As filter sets scale in size and new applications emerge, it is
likely that the average scope of the filter set will change. As the
number of flow-specific filters in a filter sets increases, the av-
erage scope decreases. If the number of explicitly blocked ports

Fig. 9. Prefix pair length distributions for a synthetic filter set of 64 000 filters
generated with a Parameter File specifying 16-bit prefix lengths for all addresses
and smoothing parameter r = 8.

Fig. 10. Prefix pair length distribution for a synthetic filter set of 64 000 filters
generated with the ipc1 Parameter File with smoothing parameter r = 4.

for all packets in a firewall filter set increases, then the average
scope may increase.6 In order to explore the performance effects
of filter scope, we provide high-level adjustments of the average
scope of the synthetic filter set. Two input parameters, address
scope and port scope, allow the user to bias the Filter Set Gener-
ator to create more or less specific address prefix pairs and port
pairs, respectively.

In order to sample from a cumulative distribution, we typ-
ically choose a random number uniformly distributed between
zero and one, , then chooses the value covering in the
cumulative distribution. Graphically, this amounts to projecting
a horizontal line from the random number on the axis. The
chosen value is the coordinate of the intersection of the cumu-
lative distribution and the projection of the random number.

6We are assuming a common practice of specifying an exact match on the
blocked port number and wildcards for all other filter fields
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Fig. 11. Example of sampling from a cumulative distribution using a uniform
random variable, and a biased random variable. Distribution is for the total prefix
pair length associated with the WC-WC port pair class of the acl2 filter set.

In Fig. 11, we shown an example of sampling from a cumu-
lative total prefix pair length distribution with to
choose the total prefix pair length of 44. The scope adjustments
bias the sampling process to select more or less specific Port
Pair Classes and prefix pair lengths. We can realize this in two
ways: 1) apply the adjustment to the cumulative distribution or
2) bias the random variable used to sample from the cumulative
distribution. Consider the case of selecting prefix pair lengths.
The first option requires that we recompute the cumulative dis-
tribution to make longer or shorter total prefix lengths more or
less probable, as dictated by the address scope parameter. The
second option provides a conceptually simpler alternative. Re-
turning to the example in Fig. 11, if we want to bias the Filter Set
Generator to produce more specific address prefix pairs, then
we want the random variable used to sample from the distribu-
tion to be biased to values closer to 1. The reverse is true if we
want less specific address prefix pairs. Thus, in order to apply
the scope adjustment we simply use a random number generator
to choose a uniformly distributed random variable , apply
a biasing function to generate a biased random variable
and sample from the cumulative distribution using .

While there are many possible biasing functions, we limit
ourselves to a particularly simple class of functions. Our chosen
biasing function may be viewed as applying a slope to the
uniform distribution as shown in Fig. 12(a). When the slope

, the distribution is uniform. The biased random variable
corresponding to a uniform random variable on the axis is
equal to the area of the rectangle defined by the value and a
line intersecting the axis at one with a slope of zero. Thus, the
biased random variable is equal to the uniform random variable.
We can bias the random variable by altering the slope of the line.
In order for the biasing function to have a range of [0:1] for
random variables in the range [0:1], the slope adjustment must
be in the range [ 2:2]. For convenience, we define the scope
adjustments to be in the range [ 1:1], thus the slope is equal
to two times the scope adjustment. For nonzero slope values,
the biased random variable corresponding to a uniform random
variable on the axis is equal to the area of the trapezoid defined
by the value and a line intersecting the point (0.5,1) with a slope

Fig. 12. Scope applies a biasing function to a uniform random variable. (a)
Biased random variable is defined by area under line with slope s = 2�scope.
(b) Plot of scope biasing function.

of . The expression for the biased random variable given
a uniform random variable and a scope parameter in the
range [ 1:1] is

scope scope (4)

Fig. 12(b) shows a plot of the biasing function for scope values
of 0, 1 and 1, as well as an example of computing the biased
random variable given a uniform random variable of 0.5 and a

parameter of 1. In this case the is 0.25. Let us return
to the example of choosing the total address prefix length from
the cumulative distribution. In Fig. 11, we also show an example
of sampling the distribution using the biased random variable,

, resulting from applying the biasing function with
. The biasing results in the selection of a less specific

address prefix pair, a total length of 35 as opposed to 44.
Positive values of address scope bias the Filter Set Gener-

ator to choose less specific address prefix pairs, thus increasing
the average scope of the filter set. Likewise, negative values of
address scope bias the Filter Set Generator to choose more spe-
cific address prefix pairs, thus decreasing the average scope of
the filter set. The same effects are realized by the port scope ad-
justment by biasing the Filter Set Generator to select more or
less specific Port Pair Classes.

Finally, we show the results of tests assessing the effects of the
address scope and port scope parameters on the synthetic filter
sets generated by the Filter Set Generator in Fig. 13. Each data
point in the plot is from a synthetic filter set containing 16 000
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Fig. 13. Average scope of synthetic filter sets consisting of 16 000 filters gen-
erated with parameter files extracted from filter sets acl3, fw5, and ipc1, and
various values of the scope parameters.

filters generated from a parameter file from filter sets acl3, fw5,
or ipc1. For these tests, both scope parameters were set to the
same value. Over their range of values, the scope parameters
alter the average filter scope by 6– 7.5. We also measured
the individual effects of the address scope and port scope pa-
rameters. Over its range of values, the address scope alters the
average address pair scope by 4– 6. Over its range of values,
the port scope alters the average port pair scope by 1.5– 2.5.
These scope adjustments provide a convenient high-level mech-
anism for exploring the effects of filter specificity on the perfor-
mance of packet classification algorithms and devices.

C. Filter Redundancy and Priority

The final steps in synthetic filter set generation are removing
redundant filters and ordering the remaining filters in order of
increasing scope. The removal of redundant filters may be re-
alized by simply comparing each filter against all other filters
in the set; however, this naïve implementation requires
time. Such an approach makes execution times of the Filter Set
Generator prohibitively long for filter sets with more than a few
thousand filters. In order to accelerate this process, we first sort
the filters into sets according to their tuple specification. We per-
form this sorting efficiently by constructing a binary search tree
of tuple set pointers, using the scope of the tuple as the key for
the node. When adding a filter to a tuple set, we search the set for
redundant filters. If no redundant filters exist in the set, then we
add the filter to the set. If a redundant filter exists in the set, we
discard the filter. The time complexity of this search technique
depends on the number of tuples created by filters in the filter
set and the distribution of filters across the tuples. In practice,
we find that this technique provides acceptable performance.

In order to support the traditional linear search technique,
filter priority is often inferred by placement in an ordered list.
In such cases, the first matching filter is the best matching filter.
This arrangement could obviate a filter if a less specific filter

occupies a higher position in the list. To prevent this,
we order the filters in the synthetic filter set according to scope,

Fig. 14. Pseudocode for Trace Generator.

where filters with minimum scope occur first. The binary search
tree of tuple set pointers makes this ordering task simple. Recall
that we use scope as the node key. Thus, we simply perform an
in-order walk of the binary search tree, appending the filters in
each tuple set to the output list of filters.

VI. TRACE GENERATION

When benchmarking a particular packet classification algo-
rithm or device, many of the metrics of interest such as storage
efficiency and maximum decision tree depth may be garnered
using the synthetic filter sets generated by the Filter Set Gen-
erator. In order to evaluate the throughput of techniques em-
ploying caching or the power consumption of various devices
under load, we must exercise the algorithm or device using a se-
quence of synthetic packet headers. The Trace Generator pro-
duces a list of synthetic packet headers that probe filters in a
given filter set. Note that we do not want to generate random
packet headers. Rather, we want to ensure that a packet header
is covered by at least one filter in the FilterSet in order to ex-
ercise the packet classifier and avoid default filter matches. We
experimented with a number of techniques to generate synthetic
headers. One possibility is to compute all the -dimensional
polyhedra defined by the intersections of the filters in the filter
set, then choose a point in the -dimensional space covered
by the polyhedra. The point defines a packet header. The best-
matching filter for the packet header is simply the highest pri-
ority filter associated with the polyhedra. If we generate at least
one header corresponding to each polyhedra, we fully exercise
the filter set. The number of polyhedra defined by filter inter-
sections grows exponentially, and thus fully exercising the filter
set quickly becomes intractable. As a result, we chose a method
that partially exercises the filter set and allows the user to vary
the size and composition of the headers in the trace using high-
level input parameters. These parameters control the scale of
the header trace relative to the filter set, as well as the locality of
reference in the sequence of headers. As we did with the Filter
Set Generator, we discuss the Trace Generator using the pseu-
docode shown in Fig. 14.
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We begin by reading the FilterSet (line 1) and getting the
input parameters scale, ParetoA, and ParetoB (lines 2–4). The
scale parameter is used to set a threshold for the size of the list
of headers relative to the size of the FilterSet (line 5). In this
context, scale specifies the ratio of the number of headers in the
trace to the number of filters in the filter set. The next set of
steps continue to generate synthetic headers as long as the size
of Headers does not exceed the Threshold defined by the
product of scale and the number filters in FilterSet.

Each iteration of the header generation loop begins by se-
lecting a random filter in the FilterSet (line 8). Next, we must
choose a packet header covered by the filter. In the interest of
exercising priority resolution mechanisms and providing con-
servative performance estimates for algorithms relying on filter
overlap properties, we would like to choose headers matching a
large number of filters. In the course of our analyses, we found
the number of overlapping filters is large for packet headers
representing the “corners” of filters. Each field of a filter covers
a range of values. Choosing a packet header corresponding
to a “corner” translates to choosing a value for each header
field from one of the extrema of the range specified by each
filter field. The RandomCorner function chooses a random
“corner” of the filter identified by RandFilt and stores the
header in NewHeader.

The last steps in the header generation loop append a variable
number of copies of NewHeader to the trace. The number of
copies, Copies, is chosen by sampling from a Pareto distri-
bution controlled by the input parameters, ParetoA and ParetoB
(line 10). In doing so, we provide a simple control point for the
locality of reference in the header trace. The Pareto distribu-
tion7 is one of the heavy-tailed distributions commonly used to
model the burst size of Internet traffic flows as well as the file
size distribution for traffic using the TCP protocol [20]. For con-
venience, let ParetoA and ParetoB. The probability den-
sity function for the Pareto distribution may be expressed as

(5)

where the cumulative distribution is

(6)

The Pareto distribution has a mean of

(7)

Expressed in this way, is typically called the shape parameter
and is typically called the scale parameter, as the distribution
is defined on values in the interval . The following are
some examples of how the Pareto parameters are used to control
locality of reference.

• Low locality of reference, short tail: ( , ) most
headers will be inserted once.

• Low locality of reference, long tail: ( , ) many
headers will be inserted once, but some could be inserted
over 20 times.

7The Pareto distribution, a power law distribution named after the Italian
economist Vilfredo Pareto, is also known as the Bradford distribution.

• High locality of reference, short tail: ( , ) most
headers will be inserted four times.

Once the size of the trace exceeds the threshold, the header gen-
eration loop terminates. Note that a large burst near the end of
the process will cause the trace to be larger than Threshold.
After generating the list of headers, we write the trace to an
output file (line 13).

VII. DISCUSSION

We have already found ClassBench to be tremendously valu-
able in our own research [21]–[23]. The ClassBench tools have
also been used in a graduate level computer architecture course.
Student groups used the tools to evaluate the performance of
various packet classification algorithms [7], [21], [25], [26] im-
plemented on an Intel IXP network processor [24].8
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