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ABSTRACT 

The importance of network security has grown tremendously and 

a collection of devices have been introduced, which can improve 

the security of a network. Network intrusion detection systems 

(NIDS) are among the most widely deployed such system; popular 

NIDS use a collection of signatures of known security threats and 

viruses, which are used to scan each packet’s payload. Today, 

signatures are often specified as regular expressions; thus the core 

of the NIDS comprises of a regular expressions parser, such 

parsers are traditionally implemented as finite automata. 

Deterministic Finite Automata (DFA) are fast, therefore they are 

often desirable at high network link rates. DFA for the signatures, 

which are used in the current security devices, however require 

prohibitive amounts of memory, which limits their practical use. 

In this paper, we argue that the traditional DFA based NIDS has 

three main limitations: first they fail to exploit the fact that normal 

data streams rarely match any virus signature; second, DFAs are 

extremely inefficient in following multiple partially matching 

signatures and explodes in size, and third finite automaton are 

incapable of efficiently keeping track of counts. We propose 

mechanisms to solve each of these drawbacks and demonstrate 

that our solutions can implement a NIDS much more securely and 

economically, and at the same time substantially improve the 

packet throughput. 

1. INTRODUCTION 
Network security has recently received an enormous attention due 

to the mounting security concerns in today’s networks. A wide 

variety of algorithms have been proposed which can detect and 

combat with these security threats. Among all these proposals, 

signature based Network Intrusion Detection Systems (NIDS) 

have been a commercial success and have seen a widespread 

adoption. While, these systems already generate several hundreds 

of million dollars in revenue, it is projected to rise to more than 2 

billion dollars by 2010. 

A signature based NIDS maintains a collection of signatures, each 

of which characterizes the profile of a known security threat (e.g. 

a virus, or a DoS attack). These signatures are used to parse the 

data streams of various flows traversing through the network link; 

when a flow matches a signature, appropriate action is taken (e.g. 

block the flow or rate limit it). Traditionally, security signatures 

have been specified as string based exact match, however regular 

expressions are now replacing them due to their superior 

expressive power and flexibility. Today, regular expression is the 

language of choice in NIDS from 3Com, TippingPoint [20] and 

Cisco [21], as well as open source NIDS Snort [5], and Bro [4]. 

When regular expressions are used to specify the signatures in a 

NIDS, then finite automaton are typically employed to implement 

them. There are two types of finite automaton: Nondeterministic 

Finite Automaton (NFA) and Deterministic Finite Automaton 

(DFA) [2]. Unlike NFA, DFA requires only one state traversal per 

character therefore yields higher parsing rates. Additionally, DFA 

maintains a single state of execution at any point, thus they reduce 

the “per flow” parse state, which has to be maintained due to the 

packet multiplexing in network links. Consequently, DFA is the 

preferred method for regular expression matching in NIDS. 

DFAs are fast, however for the current signature sets comprising 

of hundreds of regular expressions, they require prohibitive 

amounts of memory. Current solutions often divide a signature set 

into multiple subsets, and construct a DFA for each of them. 

However, multiple DFAs require multiple state traversals which 

reduce the throughput. It also increases the “per flow” parse state; 

with millions of flows in a high speed network link, such increase 

is undesirable. Besides, large “per flow” parse state may create a 

performance bottleneck because the parse state may have be 

loaded and stored for every packet due to the packet multiplexing. 

The problems associated with the traditional DFA based regular 

expressions implementation stems from three prime factors. First, 

traditional approach takes no interest in exploiting the fact that 

normal data streams rarely match more than first few symbols of 

any signature. In such situations, if one constructs a DFA for the 

entire signatures, then most portions of the DFA will be unvisited, 

thus the approach of keeping the entire automaton active appears 

wasteful; we call this deficiency insomnia. Second, a DFA usually 

maintains a single state of execution, due to which it is unable to 

efficiently follow the progress of multiple partial matches. They 

employ a separate state for each such combination of partial 

match, thus the number of states can explode combinatorially. It 

appears that if one equips an automaton with a small auxiliary 

memory which it will use to register the events of partial matches, 

then a combinatorial explosion can be avoided; we refer to this 

drawback of a DFA as amnesia. Third, DFA is inefficient in 

counting; for example a DFA will require 4 billion states to 

implement a 32-bit counter. We call this deficiency acalulia. 

In this paper, we propose solutions to tackle each of these three 

drawbacks. We propose mechanisms to split signatures such that, 

only one portion needs to remain active, while the remaining 

portions can be put to sleep under normal conditions. We also 

propose a cure to amnesia, by introducing a new machine, which 

is as fast as DFA, but requires much fewer number of states. Our 

final cure to acalulia extends this machine, so that it can handle 

events of counting much more efficiently. 



Our three cures are orthogonal to each other and can be applied in 

unison. Hence, we propose a packet processing ASIC architecture, 

which implements current signatures very economically; the entire 

parser requires a few thousand states. It also requires a single state 

traversal per character during normal conditions, thus enabling 

high parsing rates. There are special protection mechanisms in 

place to cope up with the anomalous conditions and DoS attacks. 

Additionally, our architecture also ensures that the “per flow” 

state, which has to be loaded and stored for every packet, is small; 

thus, it can provide very high speed packet processing rates. 

The remainder of the paper is organized as follows. Background 

on NIDS and regular expressions are present in Section 2. Section 

3 explains about the drawbacks of traditional regular expressions 

implementations. Our cure to insomnia is presented in Section 4. 

Section 5 presents the cure to amnesia, while section 6 presents 

the cure to acalulia. Section 7 presents the experimental results 

and the paper ends with concluding remarks in Section 8. 

2. BACKGROUND AND RELATED WORK 
NIDS are now a popular method to employ security mechanisms 

within the network. Several commercial network equipments 

devices, including Cisco and 3Com have supplied their own NIDS 

and a number of smaller players have introduced pattern matching 

ASICs which goes inside these NIDS. In fact, many had argue that 

“Deep packet inspection will happen in the ASICs, and that 

ASICs need to be modified” [19]. 

Network intrusion detection and prevention systems (NIDS/NIPS) 

generally scan the packet header and payload in order to identify a 

given set of signatures of well known security threats. Layer 7 

firewalls which provide content-based filtering also employ 

signature based packet parsing to detect malicious packets. Deep 

packet inspection forms the core of these security devices, which 

parses the packet payload against the signatures. 

In deep packet inspection, every byte of the packet payload is 

scanned to identify a match against a set of signatures which are 

essentially predefined patterns. Traditionally, the signatures in the 

NIDS systems have been specified as exact match strings which 

comprise of the known patterns of interest. Naturally, due to their 

wide adoption and importance, several algorithms have been 

proposed, which can economically perform string matching at 

high speeds. Some standard string matching algorithms are Aho-

Corasick [7] Commentz-Walter [8], and Wu-Manber [9]; these 

algorithms use a preprocessed data-structure, which are optimized 

to parse the input data at high speeds. Recent research literatures 

have primarily focused on enhancing these algorithms and fine 

tune them for the networking applications. In [11], Tuck et al. 

have presented a technique to enhance the worst-case performance 

of Aho-Corasick algorithm. The algorithm was guided by the 

analogy between string matching and IP lookup and applies 

bitmap and path compression to optimize the data-structure. They 

were able to reduce the memory required for the string sets used 

in NIDS by up to a factor of 50 while also improving the 

performance by more than 30%. 

Many researchers have come up with high-speed pattern matching 

hardware architectures. In [12] Tan et al. presents an efficient 

algorithm to convert an Aho-Corasick automaton into multiple 

binary state machines, thereby reducing the memory requirements. 

In [13], the authors present an FPGA-based architecture which 

uses character pre-decoding coupled with CAM-based pattern 

matching. In [14], Yusuf et al. have used hardware sharing at the 

bit level to exploit logic design optimizations, thereby reducing 

the die size by a further 30%. Other work [23, 24, 25, 26, 27] 

presents several alternate string matching architectures; their 

performance and space efficiency are summarized in [14]. 

In [1], Sommer and Paxson note that regular expressions can be 

fundamentally more efficient and flexible as compared to exact-

match strings in specifying attack signatures. The flexibility of 

regular expressions arise due to the high degree of expressiveness 

achieved by using character classes, union, optional elements, and 

closures, while the efficiency is due to the effective schemes to 

perform pattern matching. Open source NIDS systems, such as 

Snort and Bro, already use regular expressions to specify rules. 

Regular expressions are also the language of choice in several 

commercial security products, including TippingPoint X505 [20] 

from 3Com and a family of security appliances from Cisco 

Systems [21]. Although some specialized parsers such as RegEx 

from Tarari [22] report packet scan rates up to 4 Gbps, the 

throughput of most such devices remains limited to sub-gigabit 

rates. There is great interest in and incentive for achieving multi-

gigabit performance on regular expressions based rules. 

Consequently, several researchers have recently shown interest in 

specialized hardware-based architectures which implement finite 

automata using fast on-chip logic. Sindhu et al. [15] and Clark et 

al. [16] have implemented NFAs on FPGA devices to perform 

regular expression matching and were able to achieve very good 

space efficiency. Implementing regular expressions in custom 

hardware was first explored by Floyd and Ullman [18], who 

showed that an NFA can be efficiently implemented with a 

programmable logic array. Moscola et al. [17] have used DFAs 

instead of NFAs and demonstrated significant improvement in 

throughput although their datasets were limited in terms of the 

total number of expressions. 

While an ASIC architecture appears promising in meeting the 

demands of networking applications, ASICs necessitates memory 

reduction techniques. In this context, Yu et al. [10] have proposed 

an efficient algorithm to partition a large set of regular 

expressions into multiple groups, such that overall space needed 

by the automata is reduced dramatically. They also propose 

architectures to implement the grouped regular expressions on 

both general-purpose processor and multi-core processor systems, 

and demonstrate an improvement in throughput of up to 4 times. 

The recently proposed delayed input DFA (D2FA) [34] enables a 

high degree of memory compression and uses a collection of 

embedded memories to achieve high parsing rate. However, these 

mechanisms require large “per flow” parse state. 

While the ASIC architectures appear to accommodate current 

regular expressions, it is not clear, how they will scale in future. 

This concern arises due to the fact that the size of a DFA may 

increase exponentially with the number and complexity of rules. 

Therefore, it is important to propose solutions, which are more 

scalable and efficient in implementing regular expressions. 

3. Regular Expressions in Networking 
Any implementation of regular expressions in networking has to 

deal with several complications. The first complication arises due 

to multiplexing of packets in the network links. Since packets 

belonging to different flows can arrive interspersed with each 

other, any pattern matcher has to de-multiplex these packets and 



reassemble the data stream of various flows before parsing them. 

As a consequence, the architecture must maintain the parse state 

after parsing any packet. Upon a switch from a flow x to a flow y, 

the machine will first store the parse state of the current flow x 

and load the parse state of the last packet of the flow y. 

Consequently, it is critical to limit the parse state associated with 

the pattern matcher because at high speed backbone links, the 

number of flows can reach up to a million. NFAs are therefore not 

desirable in spite of being compact, because they can have a large 

number of active states. With several active states, the space and 

bandwidth needed to load and store the “per flow parse state” may 

become a performance bottleneck. On the other hand, in a DFA 

based machine, a single state is active at any point in time; thus 

the amount of parse state remains small. 

The second complication arises due to the high network link rates. 

In a 10 Gbps network link, a payload byte usually arrives every 

nano-second. Thus, a parser running at 1GHz clock rate will have 

a single clock cycle to process each input byte. NFAs are unlikely 

to maintain such parsing speeds because they often require 

multiple state traversals for an input byte; thus DFAs appear to be 

the only resort. Due to these complications, one can conclude that 

a pattern matching machine for networking applications must 

satisfy these dual objectives i) fast parsing rates or few transitions 

per input byte, and ii) less “per flow” state. 

Although, DFAs appear to meet both of these goals, they often 

suffer from state explosion, i.e. the total number of states in a 

DFA can be exponential in the length of the regular expression. In 

fact, typical sets of regular expressions containing hundreds of 

patterns for use in networking yield a DFA with hundreds of 

thousands of states, limiting their practical use. For complex rules 

used in current intrusion detection systems (e.g. Snort), a DFA 

may require several millions of states and the construction of such 

DFA is generally difficult. Consequently, it is important to 

develop methods to represent regular expressions which are fast 

as well as compact. Before we attempt to develop these methods, 

we must understand what properties of the regular expressions 

signatures lead to the state explosion in the resulting DFA. 

3.1 Current Regular Expressions 
In order to better understand the properties of the regular 

expressions used in current systems, we evaluate the signatures 

used in the Cisco’s NIDS, and Snort/Bro NIDS. While our prime 

focus remains NIDS signatures, we also consider rules used in 

Linux layer-7 application protocol classifier [28] and Extensible 

Markup Language (XML) filtering applications. We find that the 

XML applications use simple regular expressions (without many 

closures and character classes), while rest of the systems use 

moderately complex regular expressions. Below, we summarize 

the key differences in these regular expressions sets. 

• In contrast to the signatures used in Snort/Bro, the signatures 

used in Cisco comprise of a large number of character 

classes. This is primarily because the Cisco patterns are case-

insensitive. Note that character classes alone do not lead to 

state explosion; they only increase the number of transitions. 

• Snort/Bro signatures contain length restrictions on several 

characters classes. These length restrictions not only lead to a 

state blowup in a DFA, but also lead to a large number of 

states in a NFA. In contrast, the XML and Cisco IPS patterns 

contain very few length restrictions. 

• A large fraction of signatures in the Snort/Bro, Linux L7 and 

XML filter begins with “^” as opposed to the Cisco 

signatures. Signatures which do not begin with a “^” 

implicitly contain a “.*” in the beginning, and only such 

patterns are likely to incurs extreme state explosions. 

For the signatures containing multiple closures, a composite DFA 

often undergoes severe state explosion. We identify three main 

factors which causes these state explosions. 

3.2 Three Key Problems of Finite Automata 
In this section, we introduce the three deficiencies of traditional 

finite automata based regular expressions approach: 

1. Traditional regular expressions implementations often employ 

the complete signatures to parse the input data. However, in NIDS 

applications, the likelihood that a normal data stream completely 

matches a signature is low. Traditional approach therefore appears 

wasteful; rather, the tail portions of the signatures can be isolated 

from the automaton, and put to sleep during normal traffic and 

woken up only when they are needed. We call this inability of the 

traditional approach Insomnia. The number of states in a machine 

suffering from insomnia may unnecessarily bloat up; the problem 

becomes more severe when the tail portion is relatively complex 

and long. We present an effective cure to insomnia in section 4. 

2. The second deficiency, which is specific to DFAs, can be 

classified as Amnesia. In amnesia, a DFA has limited memory; 

thus it only remembers a single state of parsing and ignores 

everything about the earlier parse and the associated partial 

matches. Due to this tendency, DFAs may require a large number 

of states so that it can track the progress of both the current match 

as well as any previous partial match. In spite of the fact that 

amnesia keeps the per flow state maintained during the parsing 

small, it often causes an explosion in the number of states, 

because a separate state is required to indicate every possible 

combination of partial match. Intuitively, a machine which has a 

few bytes of memory in addition to its current state of execution 

can utilize this memory to track multiple matches more efficiently 

and avoid state explosions. We propose such a machine in section 

5, which efficiently cures DFAs from amnesia. 

3. The third deficiency of the finite automata can be tagged with 

the label Acalulia, due to which finite automata (both NFA and 

DFA) are unable to efficiently count the occurrences of certain 

sub-expressions in the input stream. Thus, whenever a regular 

expression contains a length restriction of k on a sub-expression, 

the number of states required by the sub-expression gets 

multiplied by k. With length restrictions, the number of states in a 

NFA increases linearly, while in a DFA, it may increase 

exponentially. It is desirable to construct a machine which, unlike 

a finite automaton, is capable of counting certain key events, and 

uses this capability to avoid the state explosion. We propose such 

machines in section 6. 

We now proceed with our cures to these three deficiencies. Our 

first solution, attempts to cure finite automaton from insomnia. 

4. Curing DFA from Insomnia 
Traditional approach of pattern matching constructs an automaton 

for the entire regular expression (reg-ex) signature, which is used 

to parse the input data. However, in NIDS applications, normal 

flows rarely match more than first few symbols of any signature. 



Thus, the traditional approach appears wasteful; the automaton 

unnecessarily bloats up in size as it attempts to represent the entire 

signature even though the tail portions are rarely visited. Rather, 

the tail portions can be isolated from the automaton, and put to 

sleep during normal traffic conditions and woken up only when 

they are needed. Since the traditional approach is unable to 

perform such selective sleeping and keeps the automaton awake 

for the entire signature, we call this deficiency insomnia. 

In other words, insomnia can be viewed as the inability of the 

traditional pattern matchers to isolate frequently visited portions 

of a signature from the infrequent ones. Insomnia is dangerous 

due to two reasons i) the infrequently visited tail portions of the 

reg-exes are generally complex (contains closures, unions, and 

length restrictions) and long (more than 80% of the signature), 

and ii) the size of fast representations of reg-exes (e.g. DFA) 

usually increases exponentially with the length and complexity of 

an expression. Thus, without a cure from insomnia, a DFA of 

hundreds of reg-exes may become infeasible or will require 

enormous amounts of memory. 

An obvious cure to insomnia will essentially require an isolation 

of the frequently visited portions of the signatures from the 

infrequent ones. Clearly, frequently visited portions must be 

implemented with a fast representation like a DFA and stored in a 

fast memory in order to maintain high parsing rates. Moreover, 

since fast memories are less dense and limited in size, and fast 

representations like DFA usually suffer from state blowup, it is 

vital to keep such fast representations compact and simple. 

Fortunately, practical signatures can be cleanly split into simple 

prefixes and suffixes, such that the prefixes comprise of the entire 

frequently visited portions of the signature. Therefore, with such a 

clean separation in place, only the automaton representing the 

prefixes need to remain active at all times; thereby, curing the 

traditional approach from insomnia by keeping the suffix 

automaton in a sleep state most of the times. 

There is an important tradeoff involved in such a prefix and suffix 

based pattern matching architecture. The general objective is to 

keep the prefixes small, so that the automaton which is awake all 

the time remains compact and fast. At the same time, if the 

prefixes are too small then normal data streams will match them 

very often, thereby waking up the suffixes more frequently than 

desired. Notice that, during anomalous conditions the automaton 

representing the suffixes will be triggered more often; however, 

we discuss such scenarios later. Under normal conditions, the 

architecture must therefore balance the tradeoff between the 

simplicity of the fast automaton and the dormancy of the slow 

automaton. 

We refer to the automaton which represents the prefixes as the 

fast path and the other automata as the slow path. Fast path 

remains awake all the time and parses the entire input data stream, 

and activates the slow path once it finds a matching prefix. There 

are two expectations. First, the slow path should be triggered 

rarely. Second, the slow path should process a small fraction of 

the input data; hence it can use a slow memory technology and a 

compact representation like a NFA, even if it is relatively slow. In 

order to meet these expectations, we must ensure that the normal 

data streams either do not match the prefixes of the signatures or 

match them rarely. Additionally, even after a prefix match, the 

slow path processing should not continue for a long time. The 

likelihood that these two expectations will be met during normal 

traffic conditions will depend directly upon the signatures and the 

positions where they are split into prefixes and suffixes. Thus, it is 

critically important to decide these split positions and we describe 

our procedure to compute these in the next section. 

4.1 Splitting the regular expressions 
The dual objectives of the splitting procedure are that the prefixes 

remain as small as possible, and at the same time, the likelihood 

that normal data matches these prefixes is low. The probability of 

matching a prefix depends upon its length and the distribution of 

various symbols in the input data. In this context, it may not be 

acceptable to assume a uniform random distribution of the input 

symbols (i.e. every symbol appears with a probability of 1/256) 

because some words appear much more often than the others (e.g. 

“HELO” in an ICMP packet). Therefore, one needs to consider a 

trace driven probability distribution of various input symbols [6]. 

With these traces, one can compute the matching probability of 

prefixes of different lengths under normal and attack or 

anomalous traffic. This probability will establish the rate at which 

slow path will be triggered. 

In addition to the “matching probabilities”, it is important to 

consider the probabilities of making transitions between any two 

states of the automaton. This probability will determine how long 

the slow path will continue processing once it is triggered. These 

transition probabilities are likely to be dependent upon the 

previous stream of input symbols, because there is a strong 

correlation between the occurrences of various symbols, i.e. when 

and where they occur with respect to each other. The transition 

probabilities as well as the matching probabilities can be assigned 

by constructing an NFA of the regular expressions signatures and 

parsing the same against normal and anomalous traffic. 

More systematically, given the NFA of each regular expression, 

we determine the probability with which each state of the NFA 

becomes active and the probability that the NFA takes its different 

transitions. Once these probabilities are computed, we determine a 

cut in the NFA graph, so that i) there are as few nodes as possible 

on the left hand side of the cut, and ii) the probability that states 

on the right hand side of the cut is active is sufficiently small. This 

will ensure that the fast path remains compact and the slow path is 

triggered only occasionally. While determining the cut, we also 

need to ensure that the probability of those transitions which 

leaves some NFA node on the right hand side and enters some 

other node on the same side of the cut remains small. This will 

ensure that, once the slow path is triggered, it will stop after 

processing a few input symbols. Clearly, the cut computed from 

the normal traffic traces and from the attack traffic are likely to be 

different, thus the corresponding prefixes will also be different. 

We adopt the policy of taking the longer prefix. Below, we 

formalize the procedure to determine cuts in the NFA graphs. 

Let ps : Q → [0, 1] denote the probability with which the NFA 

states are active. Let the cut divides the NFA states into a fast and 

a slow region. Initially, we keep all states in the slow region; thus 

the slow path probability p is ∑ sp . Afterwards, we begin 

moving states from the slow region to the fast region. The 

movements are performed in a breadth first order beginning at the 

start state of the NFA, and those states are moved first, whose 

probabilities of being active are higher. After a state s is moved to 

the fast region, ps[s] is reduced from the slow path probability p. 

We continue these movements, until the slow path probability, p 



becomes smaller than ε, the slow processing capacity threshold. 

This method gives us the first order estimate of the cut between 

the fast and the slow path. Such a cut will ensure that the slow 

path processes only ε fraction of the total bytes in the input 

stream. The procedure is pseudo-code form described below. 

For a large majority of the signatures which are used in the current 

systems, this method will cleanly split the regular expressions into 

prefix and suffix portions. However, for certain types of regular 

expressions, the above method will not result into a clean split. 

For instance an expression ab(cd|ef)gh. may be cut at the 

states which corresponds to the locations of the prefix abc and 

abe. We propose to split such types of expressions by extending 

the prefixes until a clean split of the expression is possible. Thus, 

in the above example, we will extend the cut to the states which 

corresponds to the prefix abcd and abef; thus the prefix portion 

will become ab(cd|ef) and the suffix will be gh. 

procedure find-cut(nfa M(Q, q0, δn, A, Σ), map ps : state→[0,1]); 

(1) heap h; 

(2) map mark: state→bit; 

(3) set state fast; 

(4) float p = ∑ sp ; 

(5) h.insert(q0, ps(q0)); 

(6) do h ≠ [ ] and p > ε  ⇒ 

(7)  state s := h.findmax(); h.remove(t); 

(8)  mark[s] = 1; fast = fast U s;  p = p – ps(s); 

(9)  for char c ∈ Σ ⇒ 

(10)   for state t ∈ δn(s, c) ⇒ 

(11)    if not mark[t] ⇒ h.insert(t, ps(t)); fi 

(12)   rof 

(13)  rof 

(14) od 

end; 

The above splitting procedure would provide a method to split the 

reg-ex signatures into a fast path and a slow path. The method 

first attempts to keep the combined probability of the states in the 

fast path very high compared to that of the slow path. At the same 

time, during the fast path construction, it selects only those states 

that have high activation probabilities compared to others. Thus 

both of our objectives are fulfilled: the slow path is triggered 

rarely and it remains active only for a short duration. 

4.2 The bifurcated pattern matching 
With the mechanism to split the regular expressions into prefixes 

and suffixes in place, we are now ready to proceed with the 

description of our bifurcated pattern matching architecture. The 

architecture (shown in Figure 1) consists of two components: fast 

path and slow path. The fast path parses every byte of each flow 

and matches them against the prefixes of all reg-exes. The slow 

path parses only those flows which have found a match in the fast 

path, and matches them only against those suffixes, whose 

corresponding prefixes are matched. 

Notice that, the parsing of input data is performed on a per flow 

basis. In order to keep parsing of each flow discrete, the “per flow 

parse state” has to be stored. With millions of active flows, parse 

states have to be stored in an off-chip memory, which may create 

a performance bottleneck because upon any flow switch we will 

have to store and load this information. With the minimum IP 

packet size being 40 bytes, we may have to perform this load and 

store operation every 40 ns at 10 Gbps link rates. Thus, it is 

important to minimize the “per flow parse states”. Specifically, 

this minimization is critical in the fast path because all flows are 

processed by the fast path. It does not pose a similar threat to the 

slow path simply because it processes a fraction of the payload of 

a small number of flows. 

Consequently, the fast path automaton has two objectives: 1) it 

must require small per flow parse state, and 2) it must be able to 

perform parsing at high speed, in order to meet the link rates. One 

obvious solution which will satisfy this dual objective is to 

construct a single composite DFA of all prefixes. A composite 

DFA will have only one active state per flow and will also require 

only one state traversal for an input character. Thus, if there are C 

flows in total, we will need C × statef memory, where statef is the 

bits needed to represent a DFA state. At this point in discussion 

we will proceed with a composite DFA in the fast path, later in 

section 5, we will propose an alternative to a composite DFA 

which is more space efficient and yet satisfies our dual objectives. 

Slow path on the other hand handles, say ε fraction of the total 

number of bytes processed by the fast path. Therefore, it will need 

to store the parse state of εC flows on an average. If we keep ε 
small, then unlike the fast path, we neither have to worry about 

minimizing the “per flow parse state” nor do we have to use a fast 

representation, to keep up with the link rates. Thus, a NFA may 

suffice to represent the slow path. Nevertheless the slow path 

offers another key advantage, i.e. we do not have to construct a 

composite automaton for all suffixes because we need to parse the 

flows against only those suffixes whose prefixes have been 

matched. Thus, we can keep separate automaton for each suffix, 

which will alleviate the state explosion problems to a large extent 

and we can easily construct a separate DFA for each suffix. 

However, there is a complication in the slow path. Slow path can 

be triggered multiple times for the same flow, thus there can be 

multiple instances of per flow active parse states even though we 

may be using a DFA. Consider a simple example of an expression 

ababcda, which is split into ab prefix and abcda suffix, and a 

packet payload ”xyababcdpq”. The slow path will be triggered 

twice by this packet, and there will be two instances of active 

parse states in the slow path. In general it is possible that i) a 

single packet triggers the slow path several times, in which case 

signaling between the fast and slow path may become a bottleneck 

and ii) there are multiple active states in the slow path, which will 

require complicated data-structures to store the parse states. 

These problems will exacerbate when the slow path will process 

packets much slower than the fast path and will handle its triggers 
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Figure 1: Fast path and slow path processing in a 

bifurcated packet processing architecture. 



sequentially. For instance, with the above packet, the slow path 

will be triggered first after the fast path parses ”xyababcdpq” 

and second after ”xyababcdpq”. Upon first trigger, the slow 

path will parse the packet payload ”xyababcdpq” and stop 

after it sees p. Upon second trigger, it will parse the packet 

payload ”xyababcdpq”, thus effectively repeating the previous 

parse. Due to these complications, we propose a packetized 

version of the bifurcated packet processing architecture. 

4.3 Packetized bifurcated pattern matching 
The objective of the packetized bifurcated packet processing is to 

minimize the signaling between the fast path and the slow path. 

More specifically if we ensure that the fast path triggers the slow 

path at most once for every packet, then the slow path will not 

repeat the parsing of the same packet payload. This objective can 

be satisfied by slightly modifying the slow path automaton, so that 

it parses the packets against the entire signature, and not just the 

suffixes. With the slow path representing the entire signature, the 

subsequent triggers for this signature will be captured within the 

slow path, since the corresponding prefix states of the signature 

will also be present in the slow path automaton. Hence, all 

subsequent triggers for this packet and this signature can be 

ignored. Notice that having entire signatures represented by the 

slow path is not likely to lead to state space explosion, because 

slow path maintains separate DFA for different signatures, and 

need not maintain a composite DFA. 

In order to better understand how the slow path is constructed and 

how it is triggered, let us consider a simple example. Let there be 

three signatures: 

r1 = .*[gh]d[^ij]*[ij]e 

r2 = .*fag[^i]*i[^j]*j 

r3 = .*a[gh]i[^l]*[ae]c 

The NFA for these signatures are shown in figure 2 (a composite 

DFA for these signatures will contain 92 states). In the figure, the 

probabilities with which various NFA states are activated are also 

highlighted. A cut between the fast and slow path is also shown 

which divides the states so that the cumulative probability of the 

slow path states is less than 5%. 

With this cut, the prefixes will be p1 = [gh]d[^ij]*[ij]; p2 = 

f; and p3 = j[gh] and the corresponding suffixes will be s1 = e; 

s2 = ag[^i]*i[^j]*j; and s3 = i[^l]*[ae]c. As highlighted 

in the same figure, fast path consists of a composite DFA of the 

three prefixes p1, p2, and p3, which will have only 14 states, while 

the slow path comprises of three separate DFAs, one for each 

signature r1, r2, and r3, rather than just the suffixes s1, s2, and s3. 

Whenever the fast path will find a matching prefix, say pi in a 

packet, it will trigger the corresponding slow path automaton 

representing the signature ri. Once this automaton is triggered, all 

subsequent triggers corresponding to the prefix pi for the signature 

ri can be ignored because during the process of matching ri in the 

slow path, such triggers will also be detected. Thus, for any given 

packet processed in the fast path, the state of the slow path “active 

or asleep” associated with each signature is maintained, so that the 

subsequent triggers for any given signature can be masked out. 

However, we have to be careful in initiating the of triggering the 

slow path automaton representing any signature ri. Specifically, 

we have to ensure that the slow path automaton begins at a state 

which indicates that the prefix pi of the signature ri has already 

been detected. Consider the DFA for the first signature (r1) of the 

above slow path, shown in Figure 3. Instead of beginning at the 

usual start state, 0 of this DFA, we begin its parsing at the state 

(0,1,3), which indicates that the prefix p1 has just been detected; 

the parsing continues from this point onwards in the slow path. 

In general case, the start state of the slow path automaton will 

depend upon the fast path DFA state which triggers the slow path. 

More specifically, the slow path start state will be the minimal one 

which encompasses all partial matches in the fast path. 

The above procedure describes how we initiate the slow path 

automaton for a prefix match in any given packet. The decision 

that the slow path should remain active for the subsequent packets 

of the flow depends on the state of the slow path automaton at 

which the packet leaves it. If this final DFA state comprises any of 

the states of the slow path NFA, then the implication is that the 

slow path processing will continue; else the slow path will be put 

to sleep. For example, in the Figure 3, unless the final state upon a 

packet parsing is either (0,1,3) or (0,5), the subsequent packets of 

the flow will not be parsed by this automaton; in other words this 

automaton will no longer remain active. 

Let us now consider the parsing of a packet payload ”gdgdgh”. 

The fast path state traversal is illustrated below; the slow path will 

be triggered twice, but the second trigger will be ignored. 
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Upon the first trigger, the slow path DFA (shown in Figure 3) for 

the signature r1 will begin its execution at the state (0,1,3) and 

will parse the remaining packet payload ”dgh”. The parsing will 

finish at the DFA state (0, 1). Since this state does not contain any 

of the states of the slow path NFA, this slow path automaton will 

be put to sleep. On the other hand if the remaining packet payload 

were ”dge”, the packet would leave the slow path in the state 

(0,5). Thus, in this case, the slow path processing will remain 

active for the subsequent packets of the flow. 

1 2 5d g

^g

0 g-h

*

3 e

6 7 10a g

^i

f 8 j9i

11 12 15g-h ia 13 c14a-e

^l

^j1.0

0.25
0.2 0.01 0.001

0.1 0.01 0.008 0.006 0.0006

0.1 0.02 0.016 0.008 0.0008

CUT

0

1.0

0

1.0

*

*

slow path automatafast path automaton

 

Figure 2: NFA and the cut between prefix and suffix 
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In contrast with the previous byte based pattern matching 

architecture, the proposed packetized architecture has a drawback 

that it keeps the slow path automaton active until the packet is 

completely parsed in the slow path. Thus, the slow path may end 

up processing many more bytes, unlike in the byte level 

architecture. This drawback arises due to the difference in the 

processing granularity; the byte based pattern matcher will halt 

the slow path as soon as the next input character leads to a suffix 

mismatch, whereas the packetized pattern matcher will retain the 

slow path active till the last byte of the packet is parsed. 

Nevertheless, the packetized architecture maintains the triggering 

probability at a much lower value, since the recurrent signaling of 

prefixes belonging to the same signature is suppressed. 

Let us experimentally evaluate the performance of the packetized 

pattern matching architecture against the byte level architecture. 

Both architectures are likely to operate well when the input traffic 

is benign and the slow path is triggered with very low probability, 

say 0.01%. Therefore, we consider an extreme situation where the 

1% of the contents of the input data stream consists of the entire 

signatures. Thus, the triggering probability of the slow path will 

be around 1%. We use 36 Cisco signatures whose average length 

is 33 characters, and assume that packets are 200 bytes long. In 

Figure 4, we plot a snapshot of the timeline of the triggering 

events, and the time intervals during which the slow path is active. 

It is apparent that slow path in the packetized architecture remains 

active for relatively longer durations. Consequently, the signatures 

have to be split accordingly in the packetized architecture, so that 

the slow path will handle such loads. 

4.4 Protection against DoS attacks 
In bifurcated packet processing architecture, a small fraction of 

packets from the normal flows might be diverted to the slow path, 

even though a normal data stream is not likely to match any 

signature. The slow path processing is provisioned in a way that it 

can sustain the rate at which such false packet diversions from 

normal flows occur. Therefore, it is highly unlikely, that these 

packets from the normal flows will overload the slow path. 

However, there may exist flows whose profile will be different 

from the typical normal traffic. In other words, these data streams 

may frequently match the prefixes, but not the corresponding 

suffix. Such flows are likely to overload the slow path by 

triggering it more often than desired. Additionally, there can be 

malicious flows, which will match the entire signature. These 

flows are also likely to trigger the slow path very frequently. 

The key inference here is that, an attacker can mimic either of 

these two classes of flows, and send large volumes of data, which 

the slow path might not be provisioned to handle. This opens up a 

possibility to overload the slow path, and deny service to those 

normal flows, which accidentally divert some packets to the slow 

path. Such denial of service scenarios will also appear under 

anomalous traffic conditions, like worm/virus outbreak, wherein a 

large number of packets may again be diverted to the slow path. 

A denial of service attack, in fact is much more threatening to the 

end-to-end data transfer. Consider a packet from a normal flow 

getting diverted to the slow path. If the slow path is overloaded, 

then this packet will either get discarded or encounter enormous 

processing delays. If the sending application retransmits this 

packet, it will further exacerbate the overload condition in the 

slow path. The implication on the end-to-end data transfer is that 

it may never be able to deliver this packet, and complete the data 

transmission. This clearly signals a need to protect these normal 

flows from such repeated packet discards. To accomplish this 

objective, we need some mechanism in the slow path to 

distinguish such packets of normal flows from the packets of the 

anomalous or attack flows, which are overloading the slow path. 

We now propose a lightweight algorithm which performs such 

classification at very high speed and with high accuracy. 

Our algorithm is based upon statistical sampling of packets from 

each flow. For each flow, we compute an anomaly index which is 

a “moving average” of the number of its packets which matches 

one of the prefixes in the fast path. The moving average can either 

be a “simple moving average (SMA)” or an “exponential moving 

average (EMA)”. For simplicity we only consider the SMA, 

wherein we compute the average number of packets which 

matches some prefix over a window of n previous packets. We 

call a flow well-behaving, if less than ε fraction of its packets 

finds a match, simply because such a flow will not overload the 

slow path. Flows which find more matches are referred to as 

anomalous. If the sampling window n is sufficiently large, then 

the anomaly indices of the well-behaving flows are expected to be 

much smaller than those of the anomalous/attack flows. However, 

longer sampling windows will require more bits per flow to 

compute the anomaly index. Consequently there is a trade-off 

between the accuracy of the anomaly indices and the “per flow” 

memory needed to maintain them. We attempt to strike a balance 

between this accuracy and the cost of implementation. 

Let us say that we are given with at most k-bits for every flow to 

represent its anomaly index. Since a flow is declared anomalous 

as soon as its anomaly index exceeds ε, we set ε as the upper 

bound of the anomaly index. Thus, when all k-bits are set, it 

represents an anomaly index of ε. Consequently, the per flow 

sampling window, n comprises of 2k/ε packets; for every packet 

which matches a prefix, the k-bit counter is incremented by 1/ε 
and for other packets it is decremented by 1 (note that a flow is a 

threat only if more than ε fraction of its packets are diverted to the 

slow path, or the mean distance between packets which are 

diverted is smaller than 1/ε packets). Thus, the probability that a 

1 101 201 301 401 501 601 1 101 201 301 401 501 601

packetized architecture byte-based architecture
slow path triggering

slow path being active

 

Figure 4: Fast path and slow path processing in a bifurcated packet and byte based processing architectures. 



flow which indeed is anomalous is not detected will be O(e–n). If ε 
is 0.01, then 8-bit anomaly counter will result in a false detection 

probability of well below 10–6. This analysis assumes that the 

events of packet diverts to the slow path is uniformly distributed. 

In case of any other distribution, the accuracy of the detection of 

anomalous flows is likely to improve while the probability that a 

normal flow is falsely detected as anomalous may also increase. 

The anomaly counters in fact, indicates the degree to which a flow 

loads the slow path. Consequently, they can be used to classify 

not just the anomalous flows but also the well behaving flows. 

The flows can be prioritized in the slow path according to the 

degree of their anomaly; the implication being that the slow path 

will first process the flows with smaller anomaly indices. The 

slow path thus consists of multiple queues which will store the 

requests from various flows according to their anomaly indices. 

Queues associated with smaller anomaly indices are serviced with 

higher priority. Hence, even if a well behaving flow accidentally 

diverts its packets to the slow path, it will be serviced quickly in 

spite of the presence of large volumes of anomalous packets. 

4.5 Binding things together 
Having described the procedure to split the reg-ex signatures into 

simple prefixes and relatively complex suffixes as well as 

mechanisms needed to put the suffix portions to sleep, we are now 

ready to discuss some further issues. In these pattern matching 

architectures, the first issue is that it often becomes critical to 

prevent a receiver from receiving a complete signature. This has 

an interesting implication on the bifurcated architecture. 

Whenever a packet is diverted to the slow path, no subsequent 

packets of the same flow can be forwarded in the fast path, until 

the slow path packet is completely processed. If this policy is not 

adhered to, then signatures that span across multiple packets 

might not be detected. This indicates that in any flow, if a packet 

is accidentally diverted to the slow path, subsequent packets of the 

flow can create a head of line (HoL) blocking in the fast path. 

Thus, in order to avoid such HoL blockings, a HoL buffer is 

maintained (shown in Figure 5), which stores the packets that can 

not be processed currently. 

The above discussion again bolsters the premise that the normal 

flows must be guarded against anomalous/attack flows which may 

overload the slow path. Without such protection, whenever a 

diverted packet of a normal flow gets either delayed or discarded 

in the heavily loaded slow path, subsequent packets of the flow 

cannot be forwarded; thus the flow will essentially become dead. 

In case of TCP, the discarded packet will get retransmitted after 

the time-out; nevertheless, it will again get diverted to the slow 

path, and congestion will ensue. 

Since DoS protection is so crucial, we have performed a thorough 

evaluation of our DoS protection mechanism, and found that it is 

indeed effective in guarding normal flows against attacks from 

anomalous traffic. In Figure 6, we summarize the results from a 

simulation consisting of 50 flows parsed by a packetized engine 

running at 500 Mbps. The simulation begins with none of the 

flows exhibiting an anomalous behavior; afterwards 10 flows turn 
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Figure 5: Fast path and slow path processing in a 

bifurcated packet processing architecture. 
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Figure 6: Simulation results illustrating the effect of DoS protection mechanism on the throughput of four normal flows. 



anomalous and send enough traffic to increase the load to the 

slow path’s ε threshold (0.01), thereby saturating it. Eventually, 

25 flows become anomalous, completely overwhelming the slow 

path. As shown in Figure 6(b), due to such flooding, normal flows 

experience packet losses which disrupts their data transfers. In the 

next set of experiments, we repeated the simulations with our DoS 

protection mechanism enabled. The results highlighted in Figure 

6(c) illustrates the effectiveness of the DoS protection; normal 

flows experience no packet losses and are able to seamlessly 

transfer data even in the presence of heavy anomalous traffic. 

Our cure from Insomnia appears attractive since it ensures high 

average parsing rates, and also guarantees accurate diversion of 

anomalous flows to the slow path; thereby, preventing them from 

posing a threat to the service received by the well behaving flows. 

Additionally, splitting reg-exes into suffix and prefix portions 

avoids the state explosions to a large extent. However, since the 

prefix portions are compiled into a composite DFA, if a 

moderately large number of prefixes contain Kleene closures, then 

there may still be a state explosion. As a matter of fact, a few tens 

of closures are sufficient to make a composite DFA construction 

impractical. These state explosions occur due to Amnesia; 

therefore we now proceed with an effective cure to Amnesia. 

5. H-FA: Curing DFAs from Amnesia 
DFA state explosion occurs primarily due amnesia, or the 

incompetence of the DFA to follow multiple partial matches with 

a single state of execution. Before proceeding with the cure to 

amnesia, we re-examine the connection between amnesia and the 

state explosion. As suggested previously, DFA state explosions 

usually occur due to those signatures which comprise of simple 

patterns followed by closures over characters classes (e.g. .* or [a-

z]*). The simple pattern in these signatures can be matched with a 

stream of suitable characters and the subsequent characters can be 

consumed without moving away from the closure. These 

characters can begin to match either the same or some other reg-

ex, and such situations of multiple partial matches have to be 

followed. In fact, every permutation of multiple partial matches 

has to be followed. A DFA represents each such permutation with 

a separate state due to its inability to remember anything other 

than its current state (amnesia). With multiple closures, the 

number of permutations of the partial matches can be exponential, 

thus the number of DFA states can also explode exponentially. 

An intuitive solution to avoid such exponential explosions is to 

construct a machine, which can remember more information than 

just a single state of execution. NFAs fall in this genre; they are 

able to remember multiple execution states, thus they avoid state 

explosion. NFAs, however, are slow; they may require O(n2) state 

traversals to consume a character. In order to preserve the fast 

execution, we would like to ensure that the machine maintains a 

single state of execution. One way to enable single execution state 

and yet avoid state explosion is to equip the machine with a small 

and fast cache, which will act as a history buffer and register key 

events which may occur during the parse, such as encountering a 

closure. Recall that the state explosion occurs because the parsing 

get stuck at a single or multiple closures; thus if the history buffer 

will register these events then the automaton may avoid using 

several states. We call this class of machines History based Finite 

Automaton (H-FA). 

The execution of the H-FA is augmented with the history buffer. 

Its automaton is similar to a traditional DFA and consists of a set 

of states and transitions. However, multiple transitions on a single 

character may leave from a state (like in a NFA). Nevertheless, 

only one of these transitions is taken during the execution, which 

is determined after examining the contents of the history buffer; 

thus certain transitions have an associated condition. The contents 

of the history buffer are updated during the machine execution. 

The size of the H-FA automaton (number of states and transitions) 

depends upon those partial matches, which are registered in the 

history buffer; if we judiciously choose these partial matches then 

the H-FA can be kept extremely compact. The next obvious 

questions are: i) how to determine these partial matches? ii) 

Having determined these partial matches, how to construct the 

automaton? iii) How to execute the automaton and update the 

history buffer? We now proceed with comprehensive discussion 

of H-FA which attempts to answer these questions. 

5.1 Motivating example 
We introduce the construction and executing of H-FA with a 

simple example. Consider two reg-ex patterns listed below: 

r1 = .*ab[^a]*c;  r2 = .*def; 

These patterns create a NFA with 7 states, which is shown below: 
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Let us examine the corresponding DFA, which is shown below 

(some transitions are omitted to keep the figure readable): 

0

0,4

d

0,1

a

0,2b

a

a
d

0,5e

0,2,4

d

a

e

0, 3c

d 0,2,5 f 0,2,6

0, 6f

a

d
d

^[ad]
c c c

 

The DFA has 10 states; each DFA state corresponds to a subset of 

NFA states, as shown above. There is a small blowup in the 

number of states, which occurs due to the presence of the Kleene 

closure [^a]* in the expression r1. Once the parsing reaches the 

Kleene closure (NFA state 2), subsequent input characters can 

begin to match the expression r2, hence the DFA requires three 

additional states (0,2,4), (0,2,5) and (0,2,6) to follow this multiple 

match. There is a subtle difference between these states and the 

states (0,4), (0,5) and (0,6), which corresponds to the matching of 

the reg-ex r2 alone: DFA states (0,2,4), (0,2,5) and (0,2,6) 

comprise of the same subset of the NFA states as the DFA states 

(0,4), (0,5) and (0,6) plus they also contain the NFA state 2. 

In general, those NFA states which represent a Kleene closure 

appear in several DFA states. The situation becomes more serious 

when there are multiple reg-exes containing closures. If a NFA 

consists of n states, of which k states represents closures, then 

during the parsing of the NFA, several permutations of these 

closure states can become active; 2k permutations are possible in 



the worst case. Thus the corresponding DFA, each of whose states 

will be a set of the active NFA states, may require total n2k states. 

These DFA state set will comprise of one of the n NFA states plus 

one of the 2k possible permutations of the k closure states. Such an 

exponential explosion clearly occurs due to amnesia, as the DFA 

is unable to remember that it has reached these closure NFA states 

during the parsing. Intuitively, the simplest way to avoid the 

explosion is to enable the DFA to remember all closures which 

has been reached during the parsing. In the above example, if the 

machine can maintain an additional flag which will indicate if the 

NFA state 2 has been reached or not, then the total number of 

DFA states can be reduced. One such machine is shown below: 
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This machine makes transitions like a DFA; besides it maintains a 

flag, which is either set or reset (indicated by <=1, and <=0 in the 

figure) when certain transitions are taken. For instance transition 

on character a from state (0) to state (0,1) resets the flag, while 

transition on character b from state (0,1) to state (0) sets the flag. 

Some transitions also have an associated condition (flag is set or 

reset); these transitions are taken only when the condition is met. 

For instance the transition on character c from state (0) leads to 

state (0,3) if the flag is set, else it leads to state (0). This machine 

will accept the same language which is accepted by our original 

NFA, however unlike the NFA, this machine will make only one 

state traversal for an input character. Consider the parse of the 

string “cdabc” starting at state (0), and with the flag reset. 

( ) ( ) ( ) ( ) ( ) ( )

                    flagset     flagreset                                           
                                                           

3,001,04,000

     

set is flag because                                                                                                                                reset      is flag because        

↑↑
→→→→→ cbadc

 

In the beginning the flag is reset; consequently the machine makes 

a move from state (0) to state (0) on the input character c. On the 

other hand, when the last input character c arrives, the machine 

makes a move from state (0) to state (0,3) because the flag is set 

this time. Since the state (0,3) is an accepting state, the string is 

accepted by the machine. 

Such a machine can be easily extended so that it will maintain 

multiple flags, each indicating a Kleene closure. The transitions 

will be made depending upon the state of all flags and the flags 

will also be updated during certain transitions. As illustrated by 

the above example, augmenting an automaton with these flags can 

avoid state explosion. However, we need a more systematic way 

to construct these H-FAs, which we propose now. 

5.2 Formal Description of H-FA 
History based Finite Automata (H-FA) comprises of an automaton 

and a set called history buffer. The transition of the automaton has 

i) an accompanied condition which turns out to be either true or 

false depending upon the state of the history, and ii) an associated 

action which are inserts into the history set, or removes from set, 

or both. H-FA can thus be represented as a 6-tuple M = (Q, q0, Σ, 

A, δ, H), where Q is the set of states, q0 is the start state, Σ is the 

alphabet, A is the set of accepting states, δ is the transition 

function, and H is the history set. The transition function δ takes 
in a character, a state, and a history state as its input and returns a 

new state and a new history state. 

δ : Q × Σ × H  → Q × H 

H-FAs can be synthesized either directly from a NFA or from a 

DFA. For clarity, we explain the construction from a combination 

of NFA and DFA. To illustrate the construction, we consider our 

previous example of the two reg-exes. First, we determine those 

NFA states of the reg-exes, which are registered in the history 

buffer (generally these are the closure NFA states). The first reg-

ex, r1 contains a closure represented by the NFA state 2; hence we 

keep a single flag in the history for this state. Afterwards, we 

identify those DFA states, which comprise of these closure NFA 

states, in this instance the NFA state 2. We call these DFA states 

(which are also highlight below) fading states: 

0

0,4

d

0,1

a

0,2b

a

a
d

0,5e

0,2,4

d

a

e

0, 3c

d 0,2,5 f 0,2,6

0, 6f

a

d

d

 

In the next step, we attempt to remove the NFA state 2 from the 

fading DFA states. Notice that, if we will make a note that the 

NFA state 2 has been reached by setting the history flag, then we 

can remove the NFA state 2 from the fading states subset. The 

consequence of removing the NFA state 2 from the fading states is 

that these fading states may overlap with some DFA states in the 

non-fading region, thus they can be removed. Transitions which 

originated from a non-fading state and led to a fading state and 

vice-versa will now set and reset the history flag, respectively. 

Furthermore, all transitions that remain in the fading region will 

have an associated condition that the flag is set. Let us illustrate 

the removal of the NFA state 2 from the fading state (0, 2). After 

removal, this state will overlap with the DFA state (0); the 

resulting conditional transitions are shown below: 
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Here a transition with “|s” means that the transition is taken when 

history flag for the state s is set; “+s” implies that, when this 

transition is taken, the flag for s is set, and “-s” implies that, with 

this transition, the flag for s is reset. Notice that all outgoing 

transitions of the fading state (0,2) now originates from the state 

(0) and has the associated condition that the flag is set. Also those 

transitions which led to a non-fading state resets the flag and 

incoming transitions into state (0,2) originating from a non-fading 

state now has an action to set the flag. Once we remove all states 

in the fading region, we will have the following H-FA: 
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Notice that several transitions in this machine can be pruned. For 

example the transitions on character d from state (0) to state (0,4) 

can be reduced to a single unconditional transition (the pruning 

process is later described in greater detail). Once we completely 

prune the transitions, the H-FA will have a total of 4 conditional 

transitions; remaining transitions will be unconditional. When 

there are multiple closures, then multiple flags can be employed in 

the history buffer and the above procedure can be repeatedly 

applied to synthesize an H-FA. 

The above example demonstrates a general method of the H-FA 

construction from a DFA. In order to achieve the maximum space 

reduction, the algorithm should only register those NFA states in 

the history buffer which appears the maximum number of times in 

the DFA states. Thus, if the history buffer has room for say 16 

flags, then those 16 NFA states should be identified which appear 

most of the times in the DFA states. Afterwards, the above 

procedure can be repeatedly applied. With multiple flags in the 

history buffer, some transitions may have conditions that multiple 

history flags are set. Moreover, some transitions may either set or 

reset multiple flags. If there are n flags in the history buffer and h 

represents this k-bit vector, then a condition C will be a k-bit 

vector, which becomes true whenever all those bits of h are set 

whose corresponding bits in C are also set. 

The representation of conditions as vectors eases out the pruning 

process, which is carried out immediately after the construction. 

The pruning process eliminates any transition with condition C1, 

if another transition on condition C2 exists between the same pair 

of states, over the same character such that the condition C1 is a 

subset of the condition C2 (i.e. C2 is true whenever C1 is true) and 

the actions associated with both the transitions are the same. In 

general, pruning process eliminates a large number of transitions, 

and it is essential in reducing the memory requirements of H-FAs. 

However, even after pruning, there can be a blowup in the number 

of transitions. In the worst-case, if we eliminate k NFA states from 

the DFA by employing k history flags then there can be up to 2k 

additional conditional transitions in the resulting H-FA, thus there 

will be little memory reduction. However, such worst-cases are 

rare; normally there is only a small blowup in the number of 

transitions. We now present a brief analysis of these blowups. 

5.3 Analysis of the transition blowup 
Consider a set k of regular expressions each containing a closure. 

Let the ith expression is denoted by 
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101 ][ , where r1c0 

and c2r2 are prefix and suffix parts of the expression; here the 

closure is over set of characters denoted by c1, c0 denotes the set 

of character preceding the closure and c2 denotes the set of 

characters following the closure. For such expression, if c1 

contains a large number of characters, then there is likely to be a 

state blowup in the DFA. On the other hand, if we construct an H-

FA, and allow each of the k closures to be represented by flags in 

the history buffer, then the blowup in the number of conditional 

transitions will depend directly upon c2. 

First, if none of the  c2’s overlaps with each other, then there will 

be at most one conditional transition per character per state and in 

total there will be up to k conditional transitions per state. On the 

other hand, when there c2’s are overlapping then there may be an 

exponential blowup in the number of conditional transitions. 

To better understand the nature of the transition blowup, let us 

consider the transitions leaving DFA state (i,j,k), which comprises 

of three NFA states. We assume that the NFA states i corresponds 

to a closure and needs to be represented by a history flag. Let the 

closure is over a character set c1, and the character set which 

progresses the parsing ahead of the closure is c2. If we remove the 

NFA state i from all DFA states then the state (i,j,k) may be 

merged with a pre-existing DFA state (j,k). Let the transition on 

character c from state (i,j,k) leads to state (p,q,r). For c ∈ c1, p 
must be i; p may differ from i only when c ∈ c2 or c ∉ c1. Hence, 

after i is removed from the DFA states, the newly added 

conditional transitions from the state (i,j) over characters c ∈ c1 
will be identical to the original transitions from state (i,j); hence 

they will be removed during the pruning process. Only those 

conditional transitions will remain, which are over the characters 

c ∈ c2 or c ∉ c1. In situations when there are multiple closures, 

and character sets 
ic2 , over which parsing progresses ahead of the 

closure are overlapping, then we may have to consider multiple 

permutations of the conditional transitions. For instance, if each 
ic2  is {a} then there can be up to 2k conditional transitions over 

the character a, and the conditions will be the status of each 

possible combination of the k closure flags in the history buffer. 

The actions (insert/remove from history) associated with the 

conditional transitions will depend upon the characteristics of c0 

and c1. Flags will be set by the transitions over character c0, while 

they will be reset by transitions on characters not from the set c1. 

Thus, if c0 and c1 are small, then only a few transitions will have 

an associated action. If we examine the regular expressions used 

in practical signatures, the sets c0 and c2 are usually small, thus 

the H-FA will be extremely effective is reducing the number of 

state. On the other hand, the set c1 is large; hence, there will be 

minimal blowup in the number of conditional transitions. We 

present detailed results of the nature of H-FA constructed from 

current reg-ex signatures in section 7; here we resume with the 

discussion of certain concerns with the hardware implementations 

of H-FA’s history buffer and conditional transitions. 

5.4 Implementing history buffer and 

conditional transitions 
We have seen that, if there is no overlap between the sets of the 

characters for which the parsing progresses ahead of the closure, 

then a state will have at most two transitions on any character, one 

unconditional, and another conditional. When certain characters 

of these sets are overlapping, say t-times then there may be up to 

2t conditional transitions per state over that character. In most of 

our experiments, t remains smaller than 3. Thus, there are at most 

8 conditional transitions per state. In rare situations, where t is 

greater than 3, we split the reg-ex sets into multiple sets, so that t 

becomes smaller than 3, thus keeping the number of conditional 

transitions at 8. 



With up to 8 transitions per state per character per state, they can 

be stored at contiguous memory locations, and can be fetched in a 

single memory access. For 16K states, 16-bits will represent a 

transition, and for 16-bit history buffer, conditions and actions 

can be represented with 32-bits, thus 6-bytes will represent a 

conditional transition, and 48-byte wide logical memory will be 

sufficient. With multiple embedded memories available in FPGA 

devices, such logical bus widths can be easily achieved. In an 

ASIC system, where memory bus width can be custom tailored, 

such bus widths can be achieved effortlessly. 

Once the conditional transitions are fetched from the memory, the 

next step involves the selection of the appropriate transition. This 

selection will depend upon the contents of the history buffer. First 

those transitions are filtered out whose condition do not satisfy (a 

condition is false if some flag bits which are set in the condition, 

are not set in the history); notice that the unconditional transition 

are never filtered. Afterwards, from among remaining transitions, 

the one which has the maximum number of flags set, is selected. 

Note that there will never be a tie (multiple conditional transitions 

with equal number of flags set). In terms of the hardware cost, the 

logic to compute if the conditions are met or not will require k 

gates per condition, and the logic to decide among the chosen 

transitions will require k adders, log2k priority encoders, and a few 

gates to glue them together. In total, the circuitry will require less 

than 1000 gates for a 16-bit history buffer; thus it will be able to 

make decisions in a few nano-seconds (there will be roughly 

2log2k+3 gates in the critical path). 

5.5 Summarizing H-FAs 
H-FAs appear to efficiently cure a DFA from amnesia so that the 

state explosion can be avoided. In one way, H-FAs are similar to a 

NFA, in that the total complexity of the machine is O(k), where k 

is the maximum number Kleene closures. However, there is no 

straightforward way to partition a NFA into two components such 

that the processing complexity of the first component is O(1) but 

requires a moderately large space (hence stored in memory), while 

the second component has a processing complexity of O(k) but 

can be stored more compactly (hence stored in on-chip logic). H-

FA achieves this objective and efficiently partitions the problem 

into two such components: the automaton requires a single state 

traversal per character, while the history buffer is extremely 

compact (up to a few bytes). Additionally, H-FA also avoids state 

explosions in the automaton; hence the entire machine can be 

stored on-chip, which may yield very high parsing rates. While 

the benefits of H-FA appear convincing, we will now show that, a 

slightly modified version of the H-FA also cures the traditional 

finite automata based reg-exes implementations from acalulia. 

6. H-cFA: Curing DFAs from Acalulia 
We now propose “History based counting finite Automata” or H-

cFA, which efficiently cures traditional FA from acalulia, due to 

which a FA is unable to efficiently count the occurrences of 

certain sub-expressions. We again introduce H-cFA with an 

example; we consider the same set of two reg-exes with the 

closure in the first reg-ex replaced with a length restriction of 4, as 

shown below: 

r1 = .*ab[^a]4c;  r2 = .*def; 

A DFA for these two reg-exes will require 20 states. The blowup 

in the number of states in the presence of the length restriction 

occurs due to acalulia or the inability of the DFA to keep track of 

the length restriction. Let us now construct an H-cFA for these 

reg-exes. The first step in this construction replaces the length 

restriction with a closure, and constructs the H-FA, with the 

closure represented by a flag in the history buffer. Subsequently 

with every flag in the history buffer, a counter is appended. The 

counter is set to the length restriction value by those conditional 

transitions which set the flag, while it is reset by those transitions 

which reset the flag. Furthermore, those transitions whose 

condition is a set flag are attached with an additional condition 

that the counter value is 0. During the executing of the machine, 

all positive counters are decremented for every input character. 

The resulting H-cFA is shown below: 
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Consider the parse of the string “abdefdc” by this machine 

starting at the state (0), and with the flag and counter reset. 
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As the parsing reaches the state (0,1), and makes transition to the 

state (0), the flag is set, and the counter is set to 4. Subsequent 

transitions decrements the counter. Once the last character c of the 

input string arrives, the machine makes a transition from state 

(0,5) to state (0,3), because the flag is set and counter is 0; thus 

the string is accepted. This example illustrates the straightforward 

method to construct H-cFAs from H-FAs. Several kinds of length 

restrictions including “greater than i”, “less than i” and “between i 

and j” can be implemented. Each of these conditions will require 

an appropriate condition with the transition. For example, “less 

than i” length restriction will require that the conditional 

transition becomes true when the history counter is greater than 0. 

From the hardware implementation perspective, a greater than or 

less than condition requires approximately equal number of gates 

needed by an equality condition, hence different kinds of length 

restrictions are likely to have identical implementation cost. In 

fact, a reprogrammable logic can be devised equally efficiently, 

which can check each of these conditions. Thus, the architecture 

will remain flexible in face of the frequent signature updates. This 

simple cure to acalulia is extremely effective is reducing the 

number of states, specifically in the presence of long length 

restrictions. Snort signatures comprises of several long length 

restrictions, hence H-cFA is extremely valuable in implementing 

these signatures. We now present our detailed experimental 

results, where we highlight the effectiveness of our cures to the 

three reg-ex problems. 

7. Experimental Evaluation 
We have carried out a comprehensive set of experiments in order 

to evaluate the effectiveness of our proposed cure to the three 

problems, insomnia, amnesia, and acalulia. Our primary signature 

sets are the regular expressions used in the security appliances 



from Cisco Systems [33]. These rule sets comprise of more than 

750 moderately complex regular expressions. Cisco often uses 

DFAs to implements these rules; consequently, due to the state 

explosion, they employ more than a gigabyte of memory; still the 

parsing rates remains sub-gigabits/s. We also considered the reg-

ex signatures used in the open source Snort and Bro NIDS, and in 

the Linux layer-7 application protocol classifier. Linux layer-7 

protocol classifier comprises of 70 rules, while Snort rules 

consists of more than a thousand and half reg-exes. In Snort, these 

reg-exes need not be matched simultaneously, because before a 

packet is parsed, it is classified, and based upon the classification, 

only a subset of the reg-exes are considered. Therefore, we only 

group those Snort signatures which correspond to the overlapping 

header rules, i.e. those header rules which a single packet can 

match (we present results of three such groups). For the Bro 

NIDS, we present results for the HTTP signatures, which contain 

648 reg-exes. 

Since Cisco rules comprise of a large number of patterns, our first 

step in implementing them involves grouping these rules into two 

sets: one consisting of all those signatures which do not contain a 

closure, while the second containing all signatures with at least 

one closure. Clearly, the first set can be compiled into a composite 

DFA without any difficulty. It is the second set of reg-exes, which 

are problematic and requires our cure mechanisms; therefore all 

our results are over these signatures. First we present the result of 

our splitting algorithm, which cures the rg-ex implementations 

from insomnia. 

7.1 Reg-ex splitting results 
For reg-ex splitting, our representative experiment sets the slow 

path packet diversion probability at 1%, and computes the cut in 

the reg-exes. Our normal traffic traces were derived from the MIT 

DARPA Intrusion Detection Data Sets [29], while the anomalous 

traffic traces were provided to us by Cisco Systems. We have also 

created synthetic anomalous traces, by inserting some signatures 

into the normal traffic trace. With these traces, we have split the 

reg-exes into prefixes and suffixes. Afterwards the prefixes are 

extended by one or two more characters to ensure that slow path 

remains substantially less loaded. We summarize the result of the 

splitting process on the reg-exes in Table 1. 

In this table, we first list the properties of the original reg-exes 

and the memory needed to implement them. Notice that most of 

these reg-ex sets are sub-divided into multiple sets. Each set is 

compiled into a separate DFA, because it is difficult to compile all 

reg-exes into as a single composite DFA (due to state explosion). 

The implication of this sub-division is that since each DFA is 

executed simultaneously, the parsing rate for a given memory 

bandwidth will reduce. In the same table, on the right hand side, 

we list the properties of the prefixes after the splitting. Notice that 

these prefixes can be compiled into fewer DFAs, which will yield 

higher parsing rates and less per flow state. Additionally, these 

DFAs are relatively compact however their memory requirements 

are still much higher compared to the current embedded memory 

densities. The prime reason is that the prefixes still contain a small 

number of closures which lead to a moderate state explosion. We 

now present the results of our cure to amnesia, which avoids such 

state explosion in the prefix automaton. 

7.2 H-FA and H-cFA construction results 
For the prefixes of the reg-exes, we construct H-FAs, which 

dramatically reduces the total memory requirement. Snort rules 

comprise of several long length restrictions therefore we construct 

H-cFAs for these prefixes. We find that H-cFA is extremely 

effective in keeping the memory small; without employing the 

counting capability of H-cFA, the composite automaton for Snort 

prefixes explodes in size. In Table 2, we present the results from 

our representative set of experiments. Here, we explicitly 

highlight the number of flags and counters that we employ in the 

history buffer. For Cisco rules, we also show how varying the 

number of flags affects the H-FA size. In general, with more 

history flags, the H-FA is much more compact. Notice that the 

traditional DFA compression techniques including the D2FA [34] 

can also be applied to H-FA, thereby further reducing the 

memory. The results also show that H-FAs always requires a 

single composite automaton as opposed to the DFA approach, 

which may require multiple automaton. This not only improves 

the parsing speed of H-FA, but also reduces the “per flow state”. 

Table 1. Splitting results: Left columns show the properties of complete reg-ex, while right columns show the properties of prefixes 

Regular expressions implementation before split Regular expressions prefix features after split Source # of rules 

Avg. 

ASCII 

length 

# of 

closures 

# of length 

restrictions 

Number 

of DFA 

Total 

memory 

Avg. 

ASCII 

length 

# of 

closures 

# of length 

restrictions 

Number of 

DFA 

Total 

memory 

Cisco 68 44.1 70 15 6 973 MB 19.8 19 1 1 152 MB 

Linux 70 67.2 31 0 4 30.7 MB 21.4 11 0 2 15.8 MB 

Bro 648 23.64 0 0 1 3.77 MB 16.1 0 0 1 1.23 MB 

Snort rule 1 22 59.4 9 11 5 114.6 MB 36.9 6 6 3 32.1 MB 

Snort rule 2 10 43.72 11 10 2 64.2 MB 16 1 2 1 6.5 MB 

Snort rule 3 19 30.72 8 6 N/A N/A 13.8 5 1 2 2.42 MB 

 



The table also highlights an important result: the blowup in the 

number of conditional transitions in the H-FA generally remains 

very small. In a DFA there are 256 outgoing transitions, while in 

most of the H-FAs there are less than 500. Thus, there is less than 

2x blowup in the number of transitions; on the other hand 

reduction in the number of states is generally a few orders of 

magnitude, thus the net effect is significant memory reduction. 

Due to space restrictions, we are currently unable to present 

further details of the H-FA and H-cFA construction. 

8. CONCLUDING REMARKS 
In this paper, we have proposed several mechanisms to enhance 

the performance of regular expressions parsers. First we have 

identified three key limitations of the traditional finite automata 

based approach, which have been categorized as insomnia, 

amnesia and acalulia. Afterwards, we have proposed solutions to 

cure each of these limitations. Our solutions are orthogonal with 

respect to each other; hence they can be employed in unison. 

Based upon experiments which were carried out on real signatures 

drawn from a collection of widely used networking systems, we 

have shown that our solutions are indeed very effective. More 

specifically, our solutions can reduce the memory requirements of 

today’s state-of-the-art regular expressions implementations by up 

to 100 times, while simultaneously enabling a two to three fold 

increase in the packet throughput. To conclude, we have paid 

adequate attention to several complications which appears in real 

networking systems and links. We believe that our proposed 

bifurcated architecture with DoS protection can implement 

network intrusion detection and prevention systems much more 

securely and economically and improve throughput and scalability 

in the number of signatures. 
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