
Department of Computer Science & Engineering

2007-25

Curing Regular Expressions Matching Algorithms from Insomnia,
Amnesia, and Acalulia

Authors: Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner, George Varghese

Corresponding Author: sailesh@arl.wustl.edu

Abstract: The importance of network security has grown tremendously and a collection of devices have been
introduced, which can improve the security of a network. Network intrusion detection systems (NIDS) are among
the most widely deployed such system; popular NIDS use a collection of signatures of known security threats
and viruses, which are used to scan each packet's payload. Today, signatures are often specified as regular
expressions; thus the core of the NIDS comprises of a regular expressions parser, such parsers are traditionally
implemented as finite automata. Deterministic Finite Automata (DFA) are fast, therefore they are often desirable
at high network link rates. DFA for the signatures, which are used in the current security devices, however
require prohibitive amounts of memory, which limits their practical use.
In this paper, we argue that the traditional DFA based NIDS has three main limitations: first they fail to exploit
the fact that normal data streams rarely match any virus signature; second, DFAs are extremely inefficient in
following multiple partially matching signatures and explodes in size, and third finite automaton are incapable of
efficiently keeping track of counts. We propose mechanisms to solve each of these drawbacks and demonstrate
that our solutions can implement a NIDS much more securely and economically, and at the same time
substantially improve the packet throughput.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Curing Regular Expressions Matching Algorithms from

Insomnia, Amnesia, and Acalulia

Sailesh Kumar, Balakrishnan Chandrasekaran, Jonathan Turner
Washington University in St. Louis

{sailesh, balakrishnan, jst}@arl.wustl.edu

George Varghese
University of California, San Diego

varghese@cs.ucsd.edu

ABSTRACT

The importance of network security has grown tremendously and

a collection of devices have been introduced, which can improve

the security of a network. Network intrusion detection systems

(NIDS) are among the most widely deployed such system; popular

NIDS use a collection of signatures of known security threats and

viruses, which are used to scan each packet’s payload. Today,

signatures are often specified as regular expressions; thus the core

of the NIDS comprises of a regular expressions parser, such

parsers are traditionally implemented as finite automata.

Deterministic Finite Automata (DFA) are fast, therefore they are

often desirable at high network link rates. DFA for the signatures,

which are used in the current security devices, however require

prohibitive amounts of memory, which limits their practical use.

In this paper, we argue that the traditional DFA based NIDS has

three main limitations: first they fail to exploit the fact that normal

data streams rarely match any virus signature; second, DFAs are

extremely inefficient in following multiple partially matching

signatures and explodes in size, and third finite automaton are

incapable of efficiently keeping track of counts. We propose

mechanisms to solve each of these drawbacks and demonstrate

that our solutions can implement a NIDS much more securely and

economically, and at the same time substantially improve the

packet throughput.

1. INTRODUCTION
Network security has recently received an enormous attention due

to the mounting security concerns in today’s networks. A wide

variety of algorithms have been proposed which can detect and

combat with these security threats. Among all these proposals,

signature based Network Intrusion Detection Systems (NIDS)

have been a commercial success and have seen a widespread

adoption. While, these systems already generate several hundreds

of million dollars in revenue, it is projected to rise to more than 2

billion dollars by 2010.

A signature based NIDS maintains a collection of signatures, each

of which characterizes the profile of a known security threat (e.g.

a virus, or a DoS attack). These signatures are used to parse the

data streams of various flows traversing through the network link;

when a flow matches a signature, appropriate action is taken (e.g.

block the flow or rate limit it). Traditionally, security signatures

have been specified as string based exact match, however regular

expressions are now replacing them due to their superior

expressive power and flexibility. Today, regular expression is the

language of choice in NIDS from 3Com, TippingPoint [20] and

Cisco [21], as well as open source NIDS Snort [5], and Bro [4].

When regular expressions are used to specify the signatures in a

NIDS, then finite automaton are typically employed to implement

them. There are two types of finite automaton: Nondeterministic

Finite Automaton (NFA) and Deterministic Finite Automaton

(DFA) [2]. Unlike NFA, DFA requires only one state traversal per

character therefore yields higher parsing rates. Additionally, DFA

maintains a single state of execution at any point, thus they reduce

the “per flow” parse state, which has to be maintained due to the

packet multiplexing in network links. Consequently, DFA is the

preferred method for regular expression matching in NIDS.

DFAs are fast, however for the current signature sets comprising

of hundreds of regular expressions, they require prohibitive

amounts of memory. Current solutions often divide a signature set

into multiple subsets, and construct a DFA for each of them.

However, multiple DFAs require multiple state traversals which

reduce the throughput. It also increases the “per flow” parse state;

with millions of flows in a high speed network link, such increase

is undesirable. Besides, large “per flow” parse state may create a

performance bottleneck because the parse state may have be

loaded and stored for every packet due to the packet multiplexing.

The problems associated with the traditional DFA based regular

expressions implementation stems from three prime factors. First,

traditional approach takes no interest in exploiting the fact that

normal data streams rarely match more than first few symbols of

any signature. In such situations, if one constructs a DFA for the

entire signatures, then most portions of the DFA will be unvisited,

thus the approach of keeping the entire automaton active appears

wasteful; we call this deficiency insomnia. Second, a DFA usually

maintains a single state of execution, due to which it is unable to

efficiently follow the progress of multiple partial matches. They

employ a separate state for each such combination of partial

match, thus the number of states can explode combinatorially. It

appears that if one equips an automaton with a small auxiliary

memory which it will use to register the events of partial matches,

then a combinatorial explosion can be avoided; we refer to this

drawback of a DFA as amnesia. Third, DFA is inefficient in

counting; for example a DFA will require 4 billion states to

implement a 32-bit counter. We call this deficiency acalulia.

In this paper, we propose solutions to tackle each of these three

drawbacks. We propose mechanisms to split signatures such that,

only one portion needs to remain active, while the remaining

portions can be put to sleep under normal conditions. We also

propose a cure to amnesia, by introducing a new machine, which

is as fast as DFA, but requires much fewer number of states. Our

final cure to acalulia extends this machine, so that it can handle

events of counting much more efficiently.

Our three cures are orthogonal to each other and can be applied in

unison. Hence, we propose a packet processing ASIC architecture,

which implements current signatures very economically; the entire

parser requires a few thousand states. It also requires a single state

traversal per character during normal conditions, thus enabling

high parsing rates. There are special protection mechanisms in

place to cope up with the anomalous conditions and DoS attacks.

Additionally, our architecture also ensures that the “per flow”

state, which has to be loaded and stored for every packet, is small;

thus, it can provide very high speed packet processing rates.

The remainder of the paper is organized as follows. Background

on NIDS and regular expressions are present in Section 2. Section

3 explains about the drawbacks of traditional regular expressions

implementations. Our cure to insomnia is presented in Section 4.

Section 5 presents the cure to amnesia, while section 6 presents

the cure to acalulia. Section 7 presents the experimental results

and the paper ends with concluding remarks in Section 8.

2. BACKGROUND AND RELATED WORK
NIDS are now a popular method to employ security mechanisms

within the network. Several commercial network equipments

devices, including Cisco and 3Com have supplied their own NIDS

and a number of smaller players have introduced pattern matching

ASICs which goes inside these NIDS. In fact, many had argue that

“Deep packet inspection will happen in the ASICs, and that

ASICs need to be modified” [19].

Network intrusion detection and prevention systems (NIDS/NIPS)

generally scan the packet header and payload in order to identify a

given set of signatures of well known security threats. Layer 7

firewalls which provide content-based filtering also employ

signature based packet parsing to detect malicious packets. Deep

packet inspection forms the core of these security devices, which

parses the packet payload against the signatures.

In deep packet inspection, every byte of the packet payload is

scanned to identify a match against a set of signatures which are

essentially predefined patterns. Traditionally, the signatures in the

NIDS systems have been specified as exact match strings which

comprise of the known patterns of interest. Naturally, due to their

wide adoption and importance, several algorithms have been

proposed, which can economically perform string matching at

high speeds. Some standard string matching algorithms are Aho-

Corasick [7] Commentz-Walter [8], and Wu-Manber [9]; these

algorithms use a preprocessed data-structure, which are optimized

to parse the input data at high speeds. Recent research literatures

have primarily focused on enhancing these algorithms and fine

tune them for the networking applications. In [11], Tuck et al.

have presented a technique to enhance the worst-case performance

of Aho-Corasick algorithm. The algorithm was guided by the

analogy between string matching and IP lookup and applies

bitmap and path compression to optimize the data-structure. They

were able to reduce the memory required for the string sets used

in NIDS by up to a factor of 50 while also improving the

performance by more than 30%.

Many researchers have come up with high-speed pattern matching

hardware architectures. In [12] Tan et al. presents an efficient

algorithm to convert an Aho-Corasick automaton into multiple

binary state machines, thereby reducing the memory requirements.

In [13], the authors present an FPGA-based architecture which

uses character pre-decoding coupled with CAM-based pattern

matching. In [14], Yusuf et al. have used hardware sharing at the

bit level to exploit logic design optimizations, thereby reducing

the die size by a further 30%. Other work [23, 24, 25, 26, 27]

presents several alternate string matching architectures; their

performance and space efficiency are summarized in [14].

In [1], Sommer and Paxson note that regular expressions can be

fundamentally more efficient and flexible as compared to exact-

match strings in specifying attack signatures. The flexibility of

regular expressions arise due to the high degree of expressiveness

achieved by using character classes, union, optional elements, and

closures, while the efficiency is due to the effective schemes to

perform pattern matching. Open source NIDS systems, such as

Snort and Bro, already use regular expressions to specify rules.

Regular expressions are also the language of choice in several

commercial security products, including TippingPoint X505 [20]

from 3Com and a family of security appliances from Cisco

Systems [21]. Although some specialized parsers such as RegEx

from Tarari [22] report packet scan rates up to 4 Gbps, the

throughput of most such devices remains limited to sub-gigabit

rates. There is great interest in and incentive for achieving multi-

gigabit performance on regular expressions based rules.

Consequently, several researchers have recently shown interest in

specialized hardware-based architectures which implement finite

automata using fast on-chip logic. Sindhu et al. [15] and Clark et

al. [16] have implemented NFAs on FPGA devices to perform

regular expression matching and were able to achieve very good

space efficiency. Implementing regular expressions in custom

hardware was first explored by Floyd and Ullman [18], who

showed that an NFA can be efficiently implemented with a

programmable logic array. Moscola et al. [17] have used DFAs

instead of NFAs and demonstrated significant improvement in

throughput although their datasets were limited in terms of the

total number of expressions.

While an ASIC architecture appears promising in meeting the

demands of networking applications, ASICs necessitates memory

reduction techniques. In this context, Yu et al. [10] have proposed

an efficient algorithm to partition a large set of regular

expressions into multiple groups, such that overall space needed

by the automata is reduced dramatically. They also propose

architectures to implement the grouped regular expressions on

both general-purpose processor and multi-core processor systems,

and demonstrate an improvement in throughput of up to 4 times.

The recently proposed delayed input DFA (D2FA) [34] enables a

high degree of memory compression and uses a collection of

embedded memories to achieve high parsing rate. However, these

mechanisms require large “per flow” parse state.

While the ASIC architectures appear to accommodate current

regular expressions, it is not clear, how they will scale in future.

This concern arises due to the fact that the size of a DFA may

increase exponentially with the number and complexity of rules.

Therefore, it is important to propose solutions, which are more

scalable and efficient in implementing regular expressions.

3. Regular Expressions in Networking
Any implementation of regular expressions in networking has to

deal with several complications. The first complication arises due

to multiplexing of packets in the network links. Since packets

belonging to different flows can arrive interspersed with each

other, any pattern matcher has to de-multiplex these packets and

reassemble the data stream of various flows before parsing them.

As a consequence, the architecture must maintain the parse state

after parsing any packet. Upon a switch from a flow x to a flow y,

the machine will first store the parse state of the current flow x

and load the parse state of the last packet of the flow y.

Consequently, it is critical to limit the parse state associated with

the pattern matcher because at high speed backbone links, the

number of flows can reach up to a million. NFAs are therefore not

desirable in spite of being compact, because they can have a large

number of active states. With several active states, the space and

bandwidth needed to load and store the “per flow parse state” may

become a performance bottleneck. On the other hand, in a DFA

based machine, a single state is active at any point in time; thus

the amount of parse state remains small.

The second complication arises due to the high network link rates.

In a 10 Gbps network link, a payload byte usually arrives every

nano-second. Thus, a parser running at 1GHz clock rate will have

a single clock cycle to process each input byte. NFAs are unlikely

to maintain such parsing speeds because they often require

multiple state traversals for an input byte; thus DFAs appear to be

the only resort. Due to these complications, one can conclude that

a pattern matching machine for networking applications must

satisfy these dual objectives i) fast parsing rates or few transitions

per input byte, and ii) less “per flow” state.

Although, DFAs appear to meet both of these goals, they often

suffer from state explosion, i.e. the total number of states in a

DFA can be exponential in the length of the regular expression. In

fact, typical sets of regular expressions containing hundreds of

patterns for use in networking yield a DFA with hundreds of

thousands of states, limiting their practical use. For complex rules

used in current intrusion detection systems (e.g. Snort), a DFA

may require several millions of states and the construction of such

DFA is generally difficult. Consequently, it is important to

develop methods to represent regular expressions which are fast

as well as compact. Before we attempt to develop these methods,

we must understand what properties of the regular expressions

signatures lead to the state explosion in the resulting DFA.

3.1 Current Regular Expressions
In order to better understand the properties of the regular

expressions used in current systems, we evaluate the signatures

used in the Cisco’s NIDS, and Snort/Bro NIDS. While our prime

focus remains NIDS signatures, we also consider rules used in

Linux layer-7 application protocol classifier [28] and Extensible

Markup Language (XML) filtering applications. We find that the

XML applications use simple regular expressions (without many

closures and character classes), while rest of the systems use

moderately complex regular expressions. Below, we summarize

the key differences in these regular expressions sets.

• In contrast to the signatures used in Snort/Bro, the signatures

used in Cisco comprise of a large number of character

classes. This is primarily because the Cisco patterns are case-

insensitive. Note that character classes alone do not lead to

state explosion; they only increase the number of transitions.

• Snort/Bro signatures contain length restrictions on several

characters classes. These length restrictions not only lead to a

state blowup in a DFA, but also lead to a large number of

states in a NFA. In contrast, the XML and Cisco IPS patterns

contain very few length restrictions.

• A large fraction of signatures in the Snort/Bro, Linux L7 and

XML filter begins with “^” as opposed to the Cisco

signatures. Signatures which do not begin with a “^”

implicitly contain a “.*” in the beginning, and only such

patterns are likely to incurs extreme state explosions.

For the signatures containing multiple closures, a composite DFA

often undergoes severe state explosion. We identify three main

factors which causes these state explosions.

3.2 Three Key Problems of Finite Automata
In this section, we introduce the three deficiencies of traditional

finite automata based regular expressions approach:

1. Traditional regular expressions implementations often employ

the complete signatures to parse the input data. However, in NIDS

applications, the likelihood that a normal data stream completely

matches a signature is low. Traditional approach therefore appears

wasteful; rather, the tail portions of the signatures can be isolated

from the automaton, and put to sleep during normal traffic and

woken up only when they are needed. We call this inability of the

traditional approach Insomnia. The number of states in a machine

suffering from insomnia may unnecessarily bloat up; the problem

becomes more severe when the tail portion is relatively complex

and long. We present an effective cure to insomnia in section 4.

2. The second deficiency, which is specific to DFAs, can be

classified as Amnesia. In amnesia, a DFA has limited memory;

thus it only remembers a single state of parsing and ignores

everything about the earlier parse and the associated partial

matches. Due to this tendency, DFAs may require a large number

of states so that it can track the progress of both the current match

as well as any previous partial match. In spite of the fact that

amnesia keeps the per flow state maintained during the parsing

small, it often causes an explosion in the number of states,

because a separate state is required to indicate every possible

combination of partial match. Intuitively, a machine which has a

few bytes of memory in addition to its current state of execution

can utilize this memory to track multiple matches more efficiently

and avoid state explosions. We propose such a machine in section

5, which efficiently cures DFAs from amnesia.

3. The third deficiency of the finite automata can be tagged with

the label Acalulia, due to which finite automata (both NFA and

DFA) are unable to efficiently count the occurrences of certain

sub-expressions in the input stream. Thus, whenever a regular

expression contains a length restriction of k on a sub-expression,

the number of states required by the sub-expression gets

multiplied by k. With length restrictions, the number of states in a

NFA increases linearly, while in a DFA, it may increase

exponentially. It is desirable to construct a machine which, unlike

a finite automaton, is capable of counting certain key events, and

uses this capability to avoid the state explosion. We propose such

machines in section 6.

We now proceed with our cures to these three deficiencies. Our

first solution, attempts to cure finite automaton from insomnia.

4. Curing DFA from Insomnia
Traditional approach of pattern matching constructs an automaton

for the entire regular expression (reg-ex) signature, which is used

to parse the input data. However, in NIDS applications, normal

flows rarely match more than first few symbols of any signature.

Thus, the traditional approach appears wasteful; the automaton

unnecessarily bloats up in size as it attempts to represent the entire

signature even though the tail portions are rarely visited. Rather,

the tail portions can be isolated from the automaton, and put to

sleep during normal traffic conditions and woken up only when

they are needed. Since the traditional approach is unable to

perform such selective sleeping and keeps the automaton awake

for the entire signature, we call this deficiency insomnia.

In other words, insomnia can be viewed as the inability of the

traditional pattern matchers to isolate frequently visited portions

of a signature from the infrequent ones. Insomnia is dangerous

due to two reasons i) the infrequently visited tail portions of the

reg-exes are generally complex (contains closures, unions, and

length restrictions) and long (more than 80% of the signature),

and ii) the size of fast representations of reg-exes (e.g. DFA)

usually increases exponentially with the length and complexity of

an expression. Thus, without a cure from insomnia, a DFA of

hundreds of reg-exes may become infeasible or will require

enormous amounts of memory.

An obvious cure to insomnia will essentially require an isolation

of the frequently visited portions of the signatures from the

infrequent ones. Clearly, frequently visited portions must be

implemented with a fast representation like a DFA and stored in a

fast memory in order to maintain high parsing rates. Moreover,

since fast memories are less dense and limited in size, and fast

representations like DFA usually suffer from state blowup, it is

vital to keep such fast representations compact and simple.

Fortunately, practical signatures can be cleanly split into simple

prefixes and suffixes, such that the prefixes comprise of the entire

frequently visited portions of the signature. Therefore, with such a

clean separation in place, only the automaton representing the

prefixes need to remain active at all times; thereby, curing the

traditional approach from insomnia by keeping the suffix

automaton in a sleep state most of the times.

There is an important tradeoff involved in such a prefix and suffix

based pattern matching architecture. The general objective is to

keep the prefixes small, so that the automaton which is awake all

the time remains compact and fast. At the same time, if the

prefixes are too small then normal data streams will match them

very often, thereby waking up the suffixes more frequently than

desired. Notice that, during anomalous conditions the automaton

representing the suffixes will be triggered more often; however,

we discuss such scenarios later. Under normal conditions, the

architecture must therefore balance the tradeoff between the

simplicity of the fast automaton and the dormancy of the slow

automaton.

We refer to the automaton which represents the prefixes as the

fast path and the other automata as the slow path. Fast path

remains awake all the time and parses the entire input data stream,

and activates the slow path once it finds a matching prefix. There

are two expectations. First, the slow path should be triggered

rarely. Second, the slow path should process a small fraction of

the input data; hence it can use a slow memory technology and a

compact representation like a NFA, even if it is relatively slow. In

order to meet these expectations, we must ensure that the normal

data streams either do not match the prefixes of the signatures or

match them rarely. Additionally, even after a prefix match, the

slow path processing should not continue for a long time. The

likelihood that these two expectations will be met during normal

traffic conditions will depend directly upon the signatures and the

positions where they are split into prefixes and suffixes. Thus, it is

critically important to decide these split positions and we describe

our procedure to compute these in the next section.

4.1 Splitting the regular expressions
The dual objectives of the splitting procedure are that the prefixes

remain as small as possible, and at the same time, the likelihood

that normal data matches these prefixes is low. The probability of

matching a prefix depends upon its length and the distribution of

various symbols in the input data. In this context, it may not be

acceptable to assume a uniform random distribution of the input

symbols (i.e. every symbol appears with a probability of 1/256)

because some words appear much more often than the others (e.g.

“HELO” in an ICMP packet). Therefore, one needs to consider a

trace driven probability distribution of various input symbols [6].

With these traces, one can compute the matching probability of

prefixes of different lengths under normal and attack or

anomalous traffic. This probability will establish the rate at which

slow path will be triggered.

In addition to the “matching probabilities”, it is important to

consider the probabilities of making transitions between any two

states of the automaton. This probability will determine how long

the slow path will continue processing once it is triggered. These

transition probabilities are likely to be dependent upon the

previous stream of input symbols, because there is a strong

correlation between the occurrences of various symbols, i.e. when

and where they occur with respect to each other. The transition

probabilities as well as the matching probabilities can be assigned

by constructing an NFA of the regular expressions signatures and

parsing the same against normal and anomalous traffic.

More systematically, given the NFA of each regular expression,

we determine the probability with which each state of the NFA

becomes active and the probability that the NFA takes its different

transitions. Once these probabilities are computed, we determine a

cut in the NFA graph, so that i) there are as few nodes as possible

on the left hand side of the cut, and ii) the probability that states

on the right hand side of the cut is active is sufficiently small. This

will ensure that the fast path remains compact and the slow path is

triggered only occasionally. While determining the cut, we also

need to ensure that the probability of those transitions which

leaves some NFA node on the right hand side and enters some

other node on the same side of the cut remains small. This will

ensure that, once the slow path is triggered, it will stop after

processing a few input symbols. Clearly, the cut computed from

the normal traffic traces and from the attack traffic are likely to be

different, thus the corresponding prefixes will also be different.

We adopt the policy of taking the longer prefix. Below, we

formalize the procedure to determine cuts in the NFA graphs.

Let ps : Q → [0, 1] denote the probability with which the NFA

states are active. Let the cut divides the NFA states into a fast and

a slow region. Initially, we keep all states in the slow region; thus

the slow path probability p is ∑ sp . Afterwards, we begin

moving states from the slow region to the fast region. The

movements are performed in a breadth first order beginning at the

start state of the NFA, and those states are moved first, whose

probabilities of being active are higher. After a state s is moved to

the fast region, ps[s] is reduced from the slow path probability p.

We continue these movements, until the slow path probability, p

becomes smaller than ε, the slow processing capacity threshold.

This method gives us the first order estimate of the cut between

the fast and the slow path. Such a cut will ensure that the slow

path processes only ε fraction of the total bytes in the input

stream. The procedure is pseudo-code form described below.

For a large majority of the signatures which are used in the current

systems, this method will cleanly split the regular expressions into

prefix and suffix portions. However, for certain types of regular

expressions, the above method will not result into a clean split.

For instance an expression ab(cd|ef)gh. may be cut at the

states which corresponds to the locations of the prefix abc and

abe. We propose to split such types of expressions by extending

the prefixes until a clean split of the expression is possible. Thus,

in the above example, we will extend the cut to the states which

corresponds to the prefix abcd and abef; thus the prefix portion

will become ab(cd|ef) and the suffix will be gh.

procedure find-cut(nfa M(Q, q0, δn, A, Σ), map ps : state→[0,1]);

(1) heap h;

(2) map mark: state→bit;

(3) set state fast;

(4) float p = ∑ sp ;

(5) h.insert(q0, ps(q0));

(6) do h ≠ [] and p > ε ⇒

(7) state s := h.findmax(); h.remove(t);

(8) mark[s] = 1; fast = fast U s; p = p – ps(s);

(9) for char c ∈ Σ ⇒

(10) for state t ∈ δn(s, c) ⇒

(11) if not mark[t] ⇒ h.insert(t, ps(t)); fi

(12) rof

(13) rof

(14) od

end;

The above splitting procedure would provide a method to split the

reg-ex signatures into a fast path and a slow path. The method

first attempts to keep the combined probability of the states in the

fast path very high compared to that of the slow path. At the same

time, during the fast path construction, it selects only those states

that have high activation probabilities compared to others. Thus

both of our objectives are fulfilled: the slow path is triggered

rarely and it remains active only for a short duration.

4.2 The bifurcated pattern matching
With the mechanism to split the regular expressions into prefixes

and suffixes in place, we are now ready to proceed with the

description of our bifurcated pattern matching architecture. The

architecture (shown in Figure 1) consists of two components: fast

path and slow path. The fast path parses every byte of each flow

and matches them against the prefixes of all reg-exes. The slow

path parses only those flows which have found a match in the fast

path, and matches them only against those suffixes, whose

corresponding prefixes are matched.

Notice that, the parsing of input data is performed on a per flow

basis. In order to keep parsing of each flow discrete, the “per flow

parse state” has to be stored. With millions of active flows, parse

states have to be stored in an off-chip memory, which may create

a performance bottleneck because upon any flow switch we will

have to store and load this information. With the minimum IP

packet size being 40 bytes, we may have to perform this load and

store operation every 40 ns at 10 Gbps link rates. Thus, it is

important to minimize the “per flow parse states”. Specifically,

this minimization is critical in the fast path because all flows are

processed by the fast path. It does not pose a similar threat to the

slow path simply because it processes a fraction of the payload of

a small number of flows.

Consequently, the fast path automaton has two objectives: 1) it

must require small per flow parse state, and 2) it must be able to

perform parsing at high speed, in order to meet the link rates. One

obvious solution which will satisfy this dual objective is to

construct a single composite DFA of all prefixes. A composite

DFA will have only one active state per flow and will also require

only one state traversal for an input character. Thus, if there are C

flows in total, we will need C × statef memory, where statef is the

bits needed to represent a DFA state. At this point in discussion

we will proceed with a composite DFA in the fast path, later in

section 5, we will propose an alternative to a composite DFA

which is more space efficient and yet satisfies our dual objectives.

Slow path on the other hand handles, say ε fraction of the total

number of bytes processed by the fast path. Therefore, it will need

to store the parse state of εC flows on an average. If we keep ε
small, then unlike the fast path, we neither have to worry about

minimizing the “per flow parse state” nor do we have to use a fast

representation, to keep up with the link rates. Thus, a NFA may

suffice to represent the slow path. Nevertheless the slow path

offers another key advantage, i.e. we do not have to construct a

composite automaton for all suffixes because we need to parse the

flows against only those suffixes whose prefixes have been

matched. Thus, we can keep separate automaton for each suffix,

which will alleviate the state explosion problems to a large extent

and we can easily construct a separate DFA for each suffix.

However, there is a complication in the slow path. Slow path can

be triggered multiple times for the same flow, thus there can be

multiple instances of per flow active parse states even though we

may be using a DFA. Consider a simple example of an expression

ababcda, which is split into ab prefix and abcda suffix, and a

packet payload ”xyababcdpq”. The slow path will be triggered

twice by this packet, and there will be two instances of active

parse states in the slow path. In general it is possible that i) a

single packet triggers the slow path several times, in which case

signaling between the fast and slow path may become a bottleneck

and ii) there are multiple active states in the slow path, which will

require complicated data-structures to store the parse states.

These problems will exacerbate when the slow path will process

packets much slower than the fast path and will handle its triggers

Fast path

automaton

Fast path

state

memory

B bits/sec

Slow path

automata

Slow path memory

C

statef

εC

states

εB bits/sec

Figure 1: Fast path and slow path processing in a

bifurcated packet processing architecture.

sequentially. For instance, with the above packet, the slow path

will be triggered first after the fast path parses ”xyababcdpq”

and second after ”xyababcdpq”. Upon first trigger, the slow

path will parse the packet payload ”xyababcdpq” and stop

after it sees p. Upon second trigger, it will parse the packet

payload ”xyababcdpq”, thus effectively repeating the previous

parse. Due to these complications, we propose a packetized

version of the bifurcated packet processing architecture.

4.3 Packetized bifurcated pattern matching
The objective of the packetized bifurcated packet processing is to

minimize the signaling between the fast path and the slow path.

More specifically if we ensure that the fast path triggers the slow

path at most once for every packet, then the slow path will not

repeat the parsing of the same packet payload. This objective can

be satisfied by slightly modifying the slow path automaton, so that

it parses the packets against the entire signature, and not just the

suffixes. With the slow path representing the entire signature, the

subsequent triggers for this signature will be captured within the

slow path, since the corresponding prefix states of the signature

will also be present in the slow path automaton. Hence, all

subsequent triggers for this packet and this signature can be

ignored. Notice that having entire signatures represented by the

slow path is not likely to lead to state space explosion, because

slow path maintains separate DFA for different signatures, and

need not maintain a composite DFA.

In order to better understand how the slow path is constructed and

how it is triggered, let us consider a simple example. Let there be

three signatures:

r1 = .*[gh]d[^ij]*[ij]e

r2 = .*fag[^i]*i[^j]*j

r3 = .*a[gh]i[^l]*[ae]c

The NFA for these signatures are shown in figure 2 (a composite

DFA for these signatures will contain 92 states). In the figure, the

probabilities with which various NFA states are activated are also

highlighted. A cut between the fast and slow path is also shown

which divides the states so that the cumulative probability of the

slow path states is less than 5%.

With this cut, the prefixes will be p1 = [gh]d[^ij]*[ij]; p2 =

f; and p3 = j[gh] and the corresponding suffixes will be s1 = e;

s2 = ag[^i]*i[^j]*j; and s3 = i[^l]*[ae]c. As highlighted

in the same figure, fast path consists of a composite DFA of the

three prefixes p1, p2, and p3, which will have only 14 states, while

the slow path comprises of three separate DFAs, one for each

signature r1, r2, and r3, rather than just the suffixes s1, s2, and s3.

Whenever the fast path will find a matching prefix, say pi in a

packet, it will trigger the corresponding slow path automaton

representing the signature ri. Once this automaton is triggered, all

subsequent triggers corresponding to the prefix pi for the signature

ri can be ignored because during the process of matching ri in the

slow path, such triggers will also be detected. Thus, for any given

packet processed in the fast path, the state of the slow path “active

or asleep” associated with each signature is maintained, so that the

subsequent triggers for any given signature can be masked out.

However, we have to be careful in initiating the of triggering the

slow path automaton representing any signature ri. Specifically,

we have to ensure that the slow path automaton begins at a state

which indicates that the prefix pi of the signature ri has already

been detected. Consider the DFA for the first signature (r1) of the

above slow path, shown in Figure 3. Instead of beginning at the

usual start state, 0 of this DFA, we begin its parsing at the state

(0,1,3), which indicates that the prefix p1 has just been detected;

the parsing continues from this point onwards in the slow path.

In general case, the start state of the slow path automaton will

depend upon the fast path DFA state which triggers the slow path.

More specifically, the slow path start state will be the minimal one

which encompasses all partial matches in the fast path.

The above procedure describes how we initiate the slow path

automaton for a prefix match in any given packet. The decision

that the slow path should remain active for the subsequent packets

of the flow depends on the state of the slow path automaton at

which the packet leaves it. If this final DFA state comprises any of

the states of the slow path NFA, then the implication is that the

slow path processing will continue; else the slow path will be put

to sleep. For example, in the Figure 3, unless the final state upon a

packet parsing is either (0,1,3) or (0,5), the subsequent packets of

the flow will not be parsed by this automaton; in other words this

automaton will no longer remain active.

Let us now consider the parsing of a packet payload ”gdgdgh”.

The fast path state traversal is illustrated below; the slow path will

be triggered twice, but the second trigger will be ignored.

11

1,03,1,02,03,1,02,01,00

rr

hgdgdg

↑↑
→→→→→→

Upon the first trigger, the slow path DFA (shown in Figure 3) for

the signature r1 will begin its execution at the state (0,1,3) and

will parse the remaining packet payload ”dgh”. The parsing will

finish at the DFA state (0, 1). Since this state does not contain any

of the states of the slow path NFA, this slow path automaton will

be put to sleep. On the other hand if the remaining packet payload

were ”dge”, the packet would leave the slow path in the state

(0,5). Thus, in this case, the slow path processing will remain

active for the subsequent packets of the flow.

1 2 5d g

^g

0 g-h

*

3 e

6 7 10a g

^i

f 8 j9i

11 12 15g-h ia 13 c14a-e

^l

^j1.0

0.25
0.2 0.01 0.001

0.1 0.01 0.008 0.006 0.0006

0.1 0.02 0.016 0.008 0.0008

CUT

0

1.0

0

1.0

*

*

slow path automatafast path automaton

Figure 2: NFA and the cut between prefix and suffix

0

0, 1

g,h

^g,h

d 0, 2 0, 1, 2

0, 1, 3

g g

0, 5 e

h

^d,g,h

^d,e,g,h
*

^g

"start state"

g,h

g,h d

Figure 3: DFA and start state for r1 in the slow path

In contrast with the previous byte based pattern matching

architecture, the proposed packetized architecture has a drawback

that it keeps the slow path automaton active until the packet is

completely parsed in the slow path. Thus, the slow path may end

up processing many more bytes, unlike in the byte level

architecture. This drawback arises due to the difference in the

processing granularity; the byte based pattern matcher will halt

the slow path as soon as the next input character leads to a suffix

mismatch, whereas the packetized pattern matcher will retain the

slow path active till the last byte of the packet is parsed.

Nevertheless, the packetized architecture maintains the triggering

probability at a much lower value, since the recurrent signaling of

prefixes belonging to the same signature is suppressed.

Let us experimentally evaluate the performance of the packetized

pattern matching architecture against the byte level architecture.

Both architectures are likely to operate well when the input traffic

is benign and the slow path is triggered with very low probability,

say 0.01%. Therefore, we consider an extreme situation where the

1% of the contents of the input data stream consists of the entire

signatures. Thus, the triggering probability of the slow path will

be around 1%. We use 36 Cisco signatures whose average length

is 33 characters, and assume that packets are 200 bytes long. In

Figure 4, we plot a snapshot of the timeline of the triggering

events, and the time intervals during which the slow path is active.

It is apparent that slow path in the packetized architecture remains

active for relatively longer durations. Consequently, the signatures

have to be split accordingly in the packetized architecture, so that

the slow path will handle such loads.

4.4 Protection against DoS attacks
In bifurcated packet processing architecture, a small fraction of

packets from the normal flows might be diverted to the slow path,

even though a normal data stream is not likely to match any

signature. The slow path processing is provisioned in a way that it

can sustain the rate at which such false packet diversions from

normal flows occur. Therefore, it is highly unlikely, that these

packets from the normal flows will overload the slow path.

However, there may exist flows whose profile will be different

from the typical normal traffic. In other words, these data streams

may frequently match the prefixes, but not the corresponding

suffix. Such flows are likely to overload the slow path by

triggering it more often than desired. Additionally, there can be

malicious flows, which will match the entire signature. These

flows are also likely to trigger the slow path very frequently.

The key inference here is that, an attacker can mimic either of

these two classes of flows, and send large volumes of data, which

the slow path might not be provisioned to handle. This opens up a

possibility to overload the slow path, and deny service to those

normal flows, which accidentally divert some packets to the slow

path. Such denial of service scenarios will also appear under

anomalous traffic conditions, like worm/virus outbreak, wherein a

large number of packets may again be diverted to the slow path.

A denial of service attack, in fact is much more threatening to the

end-to-end data transfer. Consider a packet from a normal flow

getting diverted to the slow path. If the slow path is overloaded,

then this packet will either get discarded or encounter enormous

processing delays. If the sending application retransmits this

packet, it will further exacerbate the overload condition in the

slow path. The implication on the end-to-end data transfer is that

it may never be able to deliver this packet, and complete the data

transmission. This clearly signals a need to protect these normal

flows from such repeated packet discards. To accomplish this

objective, we need some mechanism in the slow path to

distinguish such packets of normal flows from the packets of the

anomalous or attack flows, which are overloading the slow path.

We now propose a lightweight algorithm which performs such

classification at very high speed and with high accuracy.

Our algorithm is based upon statistical sampling of packets from

each flow. For each flow, we compute an anomaly index which is

a “moving average” of the number of its packets which matches

one of the prefixes in the fast path. The moving average can either

be a “simple moving average (SMA)” or an “exponential moving

average (EMA)”. For simplicity we only consider the SMA,

wherein we compute the average number of packets which

matches some prefix over a window of n previous packets. We

call a flow well-behaving, if less than ε fraction of its packets

finds a match, simply because such a flow will not overload the

slow path. Flows which find more matches are referred to as

anomalous. If the sampling window n is sufficiently large, then

the anomaly indices of the well-behaving flows are expected to be

much smaller than those of the anomalous/attack flows. However,

longer sampling windows will require more bits per flow to

compute the anomaly index. Consequently there is a trade-off

between the accuracy of the anomaly indices and the “per flow”

memory needed to maintain them. We attempt to strike a balance

between this accuracy and the cost of implementation.

Let us say that we are given with at most k-bits for every flow to

represent its anomaly index. Since a flow is declared anomalous

as soon as its anomaly index exceeds ε, we set ε as the upper

bound of the anomaly index. Thus, when all k-bits are set, it

represents an anomaly index of ε. Consequently, the per flow

sampling window, n comprises of 2k/ε packets; for every packet

which matches a prefix, the k-bit counter is incremented by 1/ε
and for other packets it is decremented by 1 (note that a flow is a

threat only if more than ε fraction of its packets are diverted to the

slow path, or the mean distance between packets which are

diverted is smaller than 1/ε packets). Thus, the probability that a

1 101 201 301 401 501 601 1 101 201 301 401 501 601

packetized architecture byte-based architecture
slow path triggering

slow path being active

Figure 4: Fast path and slow path processing in a bifurcated packet and byte based processing architectures.

flow which indeed is anomalous is not detected will be O(e–n). If ε
is 0.01, then 8-bit anomaly counter will result in a false detection

probability of well below 10–6. This analysis assumes that the

events of packet diverts to the slow path is uniformly distributed.

In case of any other distribution, the accuracy of the detection of

anomalous flows is likely to improve while the probability that a

normal flow is falsely detected as anomalous may also increase.

The anomaly counters in fact, indicates the degree to which a flow

loads the slow path. Consequently, they can be used to classify

not just the anomalous flows but also the well behaving flows.

The flows can be prioritized in the slow path according to the

degree of their anomaly; the implication being that the slow path

will first process the flows with smaller anomaly indices. The

slow path thus consists of multiple queues which will store the

requests from various flows according to their anomaly indices.

Queues associated with smaller anomaly indices are serviced with

higher priority. Hence, even if a well behaving flow accidentally

diverts its packets to the slow path, it will be serviced quickly in

spite of the presence of large volumes of anomalous packets.

4.5 Binding things together
Having described the procedure to split the reg-ex signatures into

simple prefixes and relatively complex suffixes as well as

mechanisms needed to put the suffix portions to sleep, we are now

ready to discuss some further issues. In these pattern matching

architectures, the first issue is that it often becomes critical to

prevent a receiver from receiving a complete signature. This has

an interesting implication on the bifurcated architecture.

Whenever a packet is diverted to the slow path, no subsequent

packets of the same flow can be forwarded in the fast path, until

the slow path packet is completely processed. If this policy is not

adhered to, then signatures that span across multiple packets

might not be detected. This indicates that in any flow, if a packet

is accidentally diverted to the slow path, subsequent packets of the

flow can create a head of line (HoL) blocking in the fast path.

Thus, in order to avoid such HoL blockings, a HoL buffer is

maintained (shown in Figure 5), which stores the packets that can

not be processed currently.

The above discussion again bolsters the premise that the normal

flows must be guarded against anomalous/attack flows which may

overload the slow path. Without such protection, whenever a

diverted packet of a normal flow gets either delayed or discarded

in the heavily loaded slow path, subsequent packets of the flow

cannot be forwarded; thus the flow will essentially become dead.

In case of TCP, the discarded packet will get retransmitted after

the time-out; nevertheless, it will again get diverted to the slow

path, and congestion will ensue.

Since DoS protection is so crucial, we have performed a thorough

evaluation of our DoS protection mechanism, and found that it is

indeed effective in guarding normal flows against attacks from

anomalous traffic. In Figure 6, we summarize the results from a

simulation consisting of 50 flows parsed by a packetized engine

running at 500 Mbps. The simulation begins with none of the

flows exhibiting an anomalous behavior; afterwards 10 flows turn

Slow path

automata

per-flow
anomaly

counter

C

εB pkts/sec
:

:

k

Fast path
automaton

B pkts/sec

HoL buffer

slow path
sleep status

Figure 5: Fast path and slow path processing in a

bifurcated packet processing architecture.

0

5

10

15

20

25

1 26 51 76 101 126 151 176 201 226 251

T
h

ro
u

g
h

p
u

t,
 n

o
 D

o
S

 p
ro

te
c

tio
n

0

1

2

3

4

5

1 26 51 76 101 126 151 176 201 226 251

S
lo

w
 p

a
th

 lo
a

d

0

5

10

15

20

25

1 26 51 76 101 126 151 176 201 226 251

F
lo

w
 t

h
ro

u
g

h
p

u
t.

 D
o

S
 p

ro
te

c
tio

n

slow path's ε threshold

No overloading Moderate overloading Extreme overloading

time (seconds)

Figure 6: Simulation results illustrating the effect of DoS protection mechanism on the throughput of four normal flows.

anomalous and send enough traffic to increase the load to the

slow path’s ε threshold (0.01), thereby saturating it. Eventually,

25 flows become anomalous, completely overwhelming the slow

path. As shown in Figure 6(b), due to such flooding, normal flows

experience packet losses which disrupts their data transfers. In the

next set of experiments, we repeated the simulations with our DoS

protection mechanism enabled. The results highlighted in Figure

6(c) illustrates the effectiveness of the DoS protection; normal

flows experience no packet losses and are able to seamlessly

transfer data even in the presence of heavy anomalous traffic.

Our cure from Insomnia appears attractive since it ensures high

average parsing rates, and also guarantees accurate diversion of

anomalous flows to the slow path; thereby, preventing them from

posing a threat to the service received by the well behaving flows.

Additionally, splitting reg-exes into suffix and prefix portions

avoids the state explosions to a large extent. However, since the

prefix portions are compiled into a composite DFA, if a

moderately large number of prefixes contain Kleene closures, then

there may still be a state explosion. As a matter of fact, a few tens

of closures are sufficient to make a composite DFA construction

impractical. These state explosions occur due to Amnesia;

therefore we now proceed with an effective cure to Amnesia.

5. H-FA: Curing DFAs from Amnesia
DFA state explosion occurs primarily due amnesia, or the

incompetence of the DFA to follow multiple partial matches with

a single state of execution. Before proceeding with the cure to

amnesia, we re-examine the connection between amnesia and the

state explosion. As suggested previously, DFA state explosions

usually occur due to those signatures which comprise of simple

patterns followed by closures over characters classes (e.g. .* or [a-

z]*). The simple pattern in these signatures can be matched with a

stream of suitable characters and the subsequent characters can be

consumed without moving away from the closure. These

characters can begin to match either the same or some other reg-

ex, and such situations of multiple partial matches have to be

followed. In fact, every permutation of multiple partial matches

has to be followed. A DFA represents each such permutation with

a separate state due to its inability to remember anything other

than its current state (amnesia). With multiple closures, the

number of permutations of the partial matches can be exponential,

thus the number of DFA states can also explode exponentially.

An intuitive solution to avoid such exponential explosions is to

construct a machine, which can remember more information than

just a single state of execution. NFAs fall in this genre; they are

able to remember multiple execution states, thus they avoid state

explosion. NFAs, however, are slow; they may require O(n2) state

traversals to consume a character. In order to preserve the fast

execution, we would like to ensure that the machine maintains a

single state of execution. One way to enable single execution state

and yet avoid state explosion is to equip the machine with a small

and fast cache, which will act as a history buffer and register key

events which may occur during the parse, such as encountering a

closure. Recall that the state explosion occurs because the parsing

get stuck at a single or multiple closures; thus if the history buffer

will register these events then the automaton may avoid using

several states. We call this class of machines History based Finite

Automaton (H-FA).

The execution of the H-FA is augmented with the history buffer.

Its automaton is similar to a traditional DFA and consists of a set

of states and transitions. However, multiple transitions on a single

character may leave from a state (like in a NFA). Nevertheless,

only one of these transitions is taken during the execution, which

is determined after examining the contents of the history buffer;

thus certain transitions have an associated condition. The contents

of the history buffer are updated during the machine execution.

The size of the H-FA automaton (number of states and transitions)

depends upon those partial matches, which are registered in the

history buffer; if we judiciously choose these partial matches then

the H-FA can be kept extremely compact. The next obvious

questions are: i) how to determine these partial matches? ii)

Having determined these partial matches, how to construct the

automaton? iii) How to execute the automaton and update the

history buffer? We now proceed with comprehensive discussion

of H-FA which attempts to answer these questions.

5.1 Motivating example
We introduce the construction and executing of H-FA with a

simple example. Consider two reg-ex patterns listed below:

r1 = .*ab[^a]*c; r2 = .*def;

These patterns create a NFA with 7 states, which is shown below:

1 2 3b c

^a

4 5 6e f

0

d

a
*

NFA: ab[^a]*c; def

Let us examine the corresponding DFA, which is shown below

(some transitions are omitted to keep the figure readable):

0

0,4

d

0,1

a

0,2b

a

a
d

0,5e

0,2,4

d

a

e

0, 3c

d 0,2,5 f 0,2,6

0, 6f

a

d
d

^[ad]
c c c

The DFA has 10 states; each DFA state corresponds to a subset of

NFA states, as shown above. There is a small blowup in the

number of states, which occurs due to the presence of the Kleene

closure [^a]* in the expression r1. Once the parsing reaches the

Kleene closure (NFA state 2), subsequent input characters can

begin to match the expression r2, hence the DFA requires three

additional states (0,2,4), (0,2,5) and (0,2,6) to follow this multiple

match. There is a subtle difference between these states and the

states (0,4), (0,5) and (0,6), which corresponds to the matching of

the reg-ex r2 alone: DFA states (0,2,4), (0,2,5) and (0,2,6)

comprise of the same subset of the NFA states as the DFA states

(0,4), (0,5) and (0,6) plus they also contain the NFA state 2.

In general, those NFA states which represent a Kleene closure

appear in several DFA states. The situation becomes more serious

when there are multiple reg-exes containing closures. If a NFA

consists of n states, of which k states represents closures, then

during the parsing of the NFA, several permutations of these

closure states can become active; 2k permutations are possible in

the worst case. Thus the corresponding DFA, each of whose states

will be a set of the active NFA states, may require total n2k states.

These DFA state set will comprise of one of the n NFA states plus

one of the 2k possible permutations of the k closure states. Such an

exponential explosion clearly occurs due to amnesia, as the DFA

is unable to remember that it has reached these closure NFA states

during the parsing. Intuitively, the simplest way to avoid the

explosion is to enable the DFA to remember all closures which

has been reached during the parsing. In the above example, if the

machine can maintain an additional flag which will indicate if the

NFA state 2 has been reached or not, then the total number of

DFA states can be reduced. One such machine is shown below:

0

0,4

d

0,1

a

d

0,5
e

0, 3

d

0, 6f

a

d

d

b, flag<=1

a, flag<=0

c,if flag=1, flag<=0

a, flag<=0

c, flag=0

flag

This machine makes transitions like a DFA; besides it maintains a

flag, which is either set or reset (indicated by <=1, and <=0 in the

figure) when certain transitions are taken. For instance transition

on character a from state (0) to state (0,1) resets the flag, while

transition on character b from state (0,1) to state (0) sets the flag.

Some transitions also have an associated condition (flag is set or

reset); these transitions are taken only when the condition is met.

For instance the transition on character c from state (0) leads to

state (0,3) if the flag is set, else it leads to state (0). This machine

will accept the same language which is accepted by our original

NFA, however unlike the NFA, this machine will make only one

state traversal for an input character. Consider the parse of the

string “cdabc” starting at state (0), and with the flag reset.

() () () () () ()

 flagset flagreset

3,001,04,000

set is flag because reset is flag because

↑↑
→→→→→ cbadc

In the beginning the flag is reset; consequently the machine makes

a move from state (0) to state (0) on the input character c. On the

other hand, when the last input character c arrives, the machine

makes a move from state (0) to state (0,3) because the flag is set

this time. Since the state (0,3) is an accepting state, the string is

accepted by the machine.

Such a machine can be easily extended so that it will maintain

multiple flags, each indicating a Kleene closure. The transitions

will be made depending upon the state of all flags and the flags

will also be updated during certain transitions. As illustrated by

the above example, augmenting an automaton with these flags can

avoid state explosion. However, we need a more systematic way

to construct these H-FAs, which we propose now.

5.2 Formal Description of H-FA
History based Finite Automata (H-FA) comprises of an automaton

and a set called history buffer. The transition of the automaton has

i) an accompanied condition which turns out to be either true or

false depending upon the state of the history, and ii) an associated

action which are inserts into the history set, or removes from set,

or both. H-FA can thus be represented as a 6-tuple M = (Q, q0, Σ,

A, δ, H), where Q is the set of states, q0 is the start state, Σ is the

alphabet, A is the set of accepting states, δ is the transition

function, and H is the history set. The transition function δ takes
in a character, a state, and a history state as its input and returns a

new state and a new history state.

δ : Q × Σ × H → Q × H

H-FAs can be synthesized either directly from a NFA or from a

DFA. For clarity, we explain the construction from a combination

of NFA and DFA. To illustrate the construction, we consider our

previous example of the two reg-exes. First, we determine those

NFA states of the reg-exes, which are registered in the history

buffer (generally these are the closure NFA states). The first reg-

ex, r1 contains a closure represented by the NFA state 2; hence we

keep a single flag in the history for this state. Afterwards, we

identify those DFA states, which comprise of these closure NFA

states, in this instance the NFA state 2. We call these DFA states

(which are also highlight below) fading states:

0

0,4

d

0,1

a

0,2b

a

a
d

0,5e

0,2,4

d

a

e

0, 3c

d 0,2,5 f 0,2,6

0, 6f

a

d

d

In the next step, we attempt to remove the NFA state 2 from the

fading DFA states. Notice that, if we will make a note that the

NFA state 2 has been reached by setting the history flag, then we

can remove the NFA state 2 from the fading states subset. The

consequence of removing the NFA state 2 from the fading states is

that these fading states may overlap with some DFA states in the

non-fading region, thus they can be removed. Transitions which

originated from a non-fading state and led to a fading state and

vice-versa will now set and reset the history flag, respectively.

Furthermore, all transitions that remain in the fading region will

have an associated condition that the flag is set. Let us illustrate

the removal of the NFA state 2 from the fading state (0, 2). After

removal, this state will overlap with the DFA state (0); the

resulting conditional transitions are shown below:

0

0,4

d

0,1

a

a

a d

0,5e

0,2,4 e

0, 3

c,|2,-2

d
0,2,5 f 0,2,6

0, 6f

a

d

d

b,+
2

d,|2

a,|2,-2

Here a transition with “|s” means that the transition is taken when

history flag for the state s is set; “+s” implies that, when this

transition is taken, the flag for s is set, and “-s” implies that, with

this transition, the flag for s is reset. Notice that all outgoing

transitions of the fading state (0,2) now originates from the state

(0) and has the associated condition that the flag is set. Also those

transitions which led to a non-fading state resets the flag and

incoming transitions into state (0,2) originating from a non-fading

state now has an action to set the flag. Once we remove all states

in the fading region, we will have the following H-FA:

0

0,4

0,1

a

a

a

d

0,5e

0, 3

d

0, 6f

a

d

d

b,+2

a,|2,-2

c,|2,-2

a,|2,-2

d,|2
d

e,|2 f,|2

Notice that several transitions in this machine can be pruned. For

example the transitions on character d from state (0) to state (0,4)

can be reduced to a single unconditional transition (the pruning

process is later described in greater detail). Once we completely

prune the transitions, the H-FA will have a total of 4 conditional

transitions; remaining transitions will be unconditional. When

there are multiple closures, then multiple flags can be employed in

the history buffer and the above procedure can be repeatedly

applied to synthesize an H-FA.

The above example demonstrates a general method of the H-FA

construction from a DFA. In order to achieve the maximum space

reduction, the algorithm should only register those NFA states in

the history buffer which appears the maximum number of times in

the DFA states. Thus, if the history buffer has room for say 16

flags, then those 16 NFA states should be identified which appear

most of the times in the DFA states. Afterwards, the above

procedure can be repeatedly applied. With multiple flags in the

history buffer, some transitions may have conditions that multiple

history flags are set. Moreover, some transitions may either set or

reset multiple flags. If there are n flags in the history buffer and h

represents this k-bit vector, then a condition C will be a k-bit

vector, which becomes true whenever all those bits of h are set

whose corresponding bits in C are also set.

The representation of conditions as vectors eases out the pruning

process, which is carried out immediately after the construction.

The pruning process eliminates any transition with condition C1,

if another transition on condition C2 exists between the same pair

of states, over the same character such that the condition C1 is a

subset of the condition C2 (i.e. C2 is true whenever C1 is true) and

the actions associated with both the transitions are the same. In

general, pruning process eliminates a large number of transitions,

and it is essential in reducing the memory requirements of H-FAs.

However, even after pruning, there can be a blowup in the number

of transitions. In the worst-case, if we eliminate k NFA states from

the DFA by employing k history flags then there can be up to 2k

additional conditional transitions in the resulting H-FA, thus there

will be little memory reduction. However, such worst-cases are

rare; normally there is only a small blowup in the number of

transitions. We now present a brief analysis of these blowups.

5.3 Analysis of the transition blowup
Consider a set k of regular expressions each containing a closure.

Let the ith expression is denoted by
iiiii rcccr 22

*

101][, where r1c0

and c2r2 are prefix and suffix parts of the expression; here the

closure is over set of characters denoted by c1, c0 denotes the set

of character preceding the closure and c2 denotes the set of

characters following the closure. For such expression, if c1

contains a large number of characters, then there is likely to be a

state blowup in the DFA. On the other hand, if we construct an H-

FA, and allow each of the k closures to be represented by flags in

the history buffer, then the blowup in the number of conditional

transitions will depend directly upon c2.

First, if none of the c2’s overlaps with each other, then there will

be at most one conditional transition per character per state and in

total there will be up to k conditional transitions per state. On the

other hand, when there c2’s are overlapping then there may be an

exponential blowup in the number of conditional transitions.

To better understand the nature of the transition blowup, let us

consider the transitions leaving DFA state (i,j,k), which comprises

of three NFA states. We assume that the NFA states i corresponds

to a closure and needs to be represented by a history flag. Let the

closure is over a character set c1, and the character set which

progresses the parsing ahead of the closure is c2. If we remove the

NFA state i from all DFA states then the state (i,j,k) may be

merged with a pre-existing DFA state (j,k). Let the transition on

character c from state (i,j,k) leads to state (p,q,r). For c ∈ c1, p
must be i; p may differ from i only when c ∈ c2 or c ∉ c1. Hence,

after i is removed from the DFA states, the newly added

conditional transitions from the state (i,j) over characters c ∈ c1
will be identical to the original transitions from state (i,j); hence

they will be removed during the pruning process. Only those

conditional transitions will remain, which are over the characters

c ∈ c2 or c ∉ c1. In situations when there are multiple closures,

and character sets
ic2 , over which parsing progresses ahead of the

closure are overlapping, then we may have to consider multiple

permutations of the conditional transitions. For instance, if each
ic2 is {a} then there can be up to 2k conditional transitions over

the character a, and the conditions will be the status of each

possible combination of the k closure flags in the history buffer.

The actions (insert/remove from history) associated with the

conditional transitions will depend upon the characteristics of c0

and c1. Flags will be set by the transitions over character c0, while

they will be reset by transitions on characters not from the set c1.

Thus, if c0 and c1 are small, then only a few transitions will have

an associated action. If we examine the regular expressions used

in practical signatures, the sets c0 and c2 are usually small, thus

the H-FA will be extremely effective is reducing the number of

state. On the other hand, the set c1 is large; hence, there will be

minimal blowup in the number of conditional transitions. We

present detailed results of the nature of H-FA constructed from

current reg-ex signatures in section 7; here we resume with the

discussion of certain concerns with the hardware implementations

of H-FA’s history buffer and conditional transitions.

5.4 Implementing history buffer and

conditional transitions
We have seen that, if there is no overlap between the sets of the

characters for which the parsing progresses ahead of the closure,

then a state will have at most two transitions on any character, one

unconditional, and another conditional. When certain characters

of these sets are overlapping, say t-times then there may be up to

2t conditional transitions per state over that character. In most of

our experiments, t remains smaller than 3. Thus, there are at most

8 conditional transitions per state. In rare situations, where t is

greater than 3, we split the reg-ex sets into multiple sets, so that t

becomes smaller than 3, thus keeping the number of conditional

transitions at 8.

With up to 8 transitions per state per character per state, they can

be stored at contiguous memory locations, and can be fetched in a

single memory access. For 16K states, 16-bits will represent a

transition, and for 16-bit history buffer, conditions and actions

can be represented with 32-bits, thus 6-bytes will represent a

conditional transition, and 48-byte wide logical memory will be

sufficient. With multiple embedded memories available in FPGA

devices, such logical bus widths can be easily achieved. In an

ASIC system, where memory bus width can be custom tailored,

such bus widths can be achieved effortlessly.

Once the conditional transitions are fetched from the memory, the

next step involves the selection of the appropriate transition. This

selection will depend upon the contents of the history buffer. First

those transitions are filtered out whose condition do not satisfy (a

condition is false if some flag bits which are set in the condition,

are not set in the history); notice that the unconditional transition

are never filtered. Afterwards, from among remaining transitions,

the one which has the maximum number of flags set, is selected.

Note that there will never be a tie (multiple conditional transitions

with equal number of flags set). In terms of the hardware cost, the

logic to compute if the conditions are met or not will require k

gates per condition, and the logic to decide among the chosen

transitions will require k adders, log2k priority encoders, and a few

gates to glue them together. In total, the circuitry will require less

than 1000 gates for a 16-bit history buffer; thus it will be able to

make decisions in a few nano-seconds (there will be roughly

2log2k+3 gates in the critical path).

5.5 Summarizing H-FAs
H-FAs appear to efficiently cure a DFA from amnesia so that the

state explosion can be avoided. In one way, H-FAs are similar to a

NFA, in that the total complexity of the machine is O(k), where k

is the maximum number Kleene closures. However, there is no

straightforward way to partition a NFA into two components such

that the processing complexity of the first component is O(1) but

requires a moderately large space (hence stored in memory), while

the second component has a processing complexity of O(k) but

can be stored more compactly (hence stored in on-chip logic). H-

FA achieves this objective and efficiently partitions the problem

into two such components: the automaton requires a single state

traversal per character, while the history buffer is extremely

compact (up to a few bytes). Additionally, H-FA also avoids state

explosions in the automaton; hence the entire machine can be

stored on-chip, which may yield very high parsing rates. While

the benefits of H-FA appear convincing, we will now show that, a

slightly modified version of the H-FA also cures the traditional

finite automata based reg-exes implementations from acalulia.

6. H-cFA: Curing DFAs from Acalulia
We now propose “History based counting finite Automata” or H-

cFA, which efficiently cures traditional FA from acalulia, due to

which a FA is unable to efficiently count the occurrences of

certain sub-expressions. We again introduce H-cFA with an

example; we consider the same set of two reg-exes with the

closure in the first reg-ex replaced with a length restriction of 4, as

shown below:

r1 = .*ab[^a]4c; r2 = .*def;

A DFA for these two reg-exes will require 20 states. The blowup

in the number of states in the presence of the length restriction

occurs due to acalulia or the inability of the DFA to keep track of

the length restriction. Let us now construct an H-cFA for these

reg-exes. The first step in this construction replaces the length

restriction with a closure, and constructs the H-FA, with the

closure represented by a flag in the history buffer. Subsequently

with every flag in the history buffer, a counter is appended. The

counter is set to the length restriction value by those conditional

transitions which set the flag, while it is reset by those transitions

which reset the flag. Furthermore, those transitions whose

condition is a set flag are attached with an additional condition

that the counter value is 0. During the executing of the machine,

all positive counters are decremented for every input character.

The resulting H-cFA is shown below:

0

0,4

d

0,1

a

d

0,5
e

0, 3

d

0, 6f

a

d

d

a; flag<=0

a; flag<=0

c; if flag=0

 or ctr≠0

ctr

d if (ctr >0)

decrement

b; flag<=1,

ctr<=4

c;if flag=1 & ctr=0; flag<=0

Consider the parse of the string “abdefdc” by this machine

starting at the state (0), and with the flag and counter reset.

() () () () () () () ()

0flag 0ctr 1ctr 2ctr 3ctr 4ctr1;flag

3,05,06,05,04,001,00
0ctr and 1 flag because

<=<=<=<=<=<=<=

↑↑↑↑↑↑
→→→→→→→

==

cdfedba

As the parsing reaches the state (0,1), and makes transition to the

state (0), the flag is set, and the counter is set to 4. Subsequent

transitions decrements the counter. Once the last character c of the

input string arrives, the machine makes a transition from state

(0,5) to state (0,3), because the flag is set and counter is 0; thus

the string is accepted. This example illustrates the straightforward

method to construct H-cFAs from H-FAs. Several kinds of length

restrictions including “greater than i”, “less than i” and “between i

and j” can be implemented. Each of these conditions will require

an appropriate condition with the transition. For example, “less

than i” length restriction will require that the conditional

transition becomes true when the history counter is greater than 0.

From the hardware implementation perspective, a greater than or

less than condition requires approximately equal number of gates

needed by an equality condition, hence different kinds of length

restrictions are likely to have identical implementation cost. In

fact, a reprogrammable logic can be devised equally efficiently,

which can check each of these conditions. Thus, the architecture

will remain flexible in face of the frequent signature updates. This

simple cure to acalulia is extremely effective is reducing the

number of states, specifically in the presence of long length

restrictions. Snort signatures comprises of several long length

restrictions, hence H-cFA is extremely valuable in implementing

these signatures. We now present our detailed experimental

results, where we highlight the effectiveness of our cures to the

three reg-ex problems.

7. Experimental Evaluation
We have carried out a comprehensive set of experiments in order

to evaluate the effectiveness of our proposed cure to the three

problems, insomnia, amnesia, and acalulia. Our primary signature

sets are the regular expressions used in the security appliances

from Cisco Systems [33]. These rule sets comprise of more than

750 moderately complex regular expressions. Cisco often uses

DFAs to implements these rules; consequently, due to the state

explosion, they employ more than a gigabyte of memory; still the

parsing rates remains sub-gigabits/s. We also considered the reg-

ex signatures used in the open source Snort and Bro NIDS, and in

the Linux layer-7 application protocol classifier. Linux layer-7

protocol classifier comprises of 70 rules, while Snort rules

consists of more than a thousand and half reg-exes. In Snort, these

reg-exes need not be matched simultaneously, because before a

packet is parsed, it is classified, and based upon the classification,

only a subset of the reg-exes are considered. Therefore, we only

group those Snort signatures which correspond to the overlapping

header rules, i.e. those header rules which a single packet can

match (we present results of three such groups). For the Bro

NIDS, we present results for the HTTP signatures, which contain

648 reg-exes.

Since Cisco rules comprise of a large number of patterns, our first

step in implementing them involves grouping these rules into two

sets: one consisting of all those signatures which do not contain a

closure, while the second containing all signatures with at least

one closure. Clearly, the first set can be compiled into a composite

DFA without any difficulty. It is the second set of reg-exes, which

are problematic and requires our cure mechanisms; therefore all

our results are over these signatures. First we present the result of

our splitting algorithm, which cures the rg-ex implementations

from insomnia.

7.1 Reg-ex splitting results
For reg-ex splitting, our representative experiment sets the slow

path packet diversion probability at 1%, and computes the cut in

the reg-exes. Our normal traffic traces were derived from the MIT

DARPA Intrusion Detection Data Sets [29], while the anomalous

traffic traces were provided to us by Cisco Systems. We have also

created synthetic anomalous traces, by inserting some signatures

into the normal traffic trace. With these traces, we have split the

reg-exes into prefixes and suffixes. Afterwards the prefixes are

extended by one or two more characters to ensure that slow path

remains substantially less loaded. We summarize the result of the

splitting process on the reg-exes in Table 1.

In this table, we first list the properties of the original reg-exes

and the memory needed to implement them. Notice that most of

these reg-ex sets are sub-divided into multiple sets. Each set is

compiled into a separate DFA, because it is difficult to compile all

reg-exes into as a single composite DFA (due to state explosion).

The implication of this sub-division is that since each DFA is

executed simultaneously, the parsing rate for a given memory

bandwidth will reduce. In the same table, on the right hand side,

we list the properties of the prefixes after the splitting. Notice that

these prefixes can be compiled into fewer DFAs, which will yield

higher parsing rates and less per flow state. Additionally, these

DFAs are relatively compact however their memory requirements

are still much higher compared to the current embedded memory

densities. The prime reason is that the prefixes still contain a small

number of closures which lead to a moderate state explosion. We

now present the results of our cure to amnesia, which avoids such

state explosion in the prefix automaton.

7.2 H-FA and H-cFA construction results
For the prefixes of the reg-exes, we construct H-FAs, which

dramatically reduces the total memory requirement. Snort rules

comprise of several long length restrictions therefore we construct

H-cFAs for these prefixes. We find that H-cFA is extremely

effective in keeping the memory small; without employing the

counting capability of H-cFA, the composite automaton for Snort

prefixes explodes in size. In Table 2, we present the results from

our representative set of experiments. Here, we explicitly

highlight the number of flags and counters that we employ in the

history buffer. For Cisco rules, we also show how varying the

number of flags affects the H-FA size. In general, with more

history flags, the H-FA is much more compact. Notice that the

traditional DFA compression techniques including the D2FA [34]

can also be applied to H-FA, thereby further reducing the

memory. The results also show that H-FAs always requires a

single composite automaton as opposed to the DFA approach,

which may require multiple automaton. This not only improves

the parsing speed of H-FA, but also reduces the “per flow state”.

Table 1. Splitting results: Left columns show the properties of complete reg-ex, while right columns show the properties of prefixes

Regular expressions implementation before split Regular expressions prefix features after split Source # of rules

Avg.

ASCII

length

of

closures

of length

restrictions

Number

of DFA

Total

memory

Avg.

ASCII

length

of

closures

of length

restrictions

Number of

DFA

Total

memory

Cisco 68 44.1 70 15 6 973 MB 19.8 19 1 1 152 MB

Linux 70 67.2 31 0 4 30.7 MB 21.4 11 0 2 15.8 MB

Bro 648 23.64 0 0 1 3.77 MB 16.1 0 0 1 1.23 MB

Snort rule 1 22 59.4 9 11 5 114.6 MB 36.9 6 6 3 32.1 MB

Snort rule 2 10 43.72 11 10 2 64.2 MB 16 1 2 1 6.5 MB

Snort rule 3 19 30.72 8 6 N/A N/A 13.8 5 1 2 2.42 MB

The table also highlights an important result: the blowup in the

number of conditional transitions in the H-FA generally remains

very small. In a DFA there are 256 outgoing transitions, while in

most of the H-FAs there are less than 500. Thus, there is less than

2x blowup in the number of transitions; on the other hand

reduction in the number of states is generally a few orders of

magnitude, thus the net effect is significant memory reduction.

Due to space restrictions, we are currently unable to present

further details of the H-FA and H-cFA construction.

8. CONCLUDING REMARKS
In this paper, we have proposed several mechanisms to enhance

the performance of regular expressions parsers. First we have

identified three key limitations of the traditional finite automata

based approach, which have been categorized as insomnia,

amnesia and acalulia. Afterwards, we have proposed solutions to

cure each of these limitations. Our solutions are orthogonal with

respect to each other; hence they can be employed in unison.

Based upon experiments which were carried out on real signatures

drawn from a collection of widely used networking systems, we

have shown that our solutions are indeed very effective. More

specifically, our solutions can reduce the memory requirements of

today’s state-of-the-art regular expressions implementations by up

to 100 times, while simultaneously enabling a two to three fold

increase in the packet throughput. To conclude, we have paid

adequate attention to several complications which appears in real

networking systems and links. We believe that our proposed

bifurcated architecture with DoS protection can implement

network intrusion detection and prevention systems much more

securely and economically and improve throughput and scalability

in the number of signatures.

9. REFERENCES
[1] R. Sommer, V. Paxson, “Enhancing Byte-Level Network Intrusion

Detection Signatures with Context,” ACM conf. on Computer and
Communication Security, 2003, pp. 262--271.

[2] J. E. Hopcroft and J. D. Ullman, “Introduction to Automata Theory,
Languages, and Computation,” Addison Wesley, 1979.

[3] J. Hopcroft, “An nlogn algorithm for minimizing states in a finite
automaton,” in Theory of Machines and Computation, J. Kohavi,
Ed. New York: Academic, 1971, pp. 189--196.

[4] Bro: A System for Detecting Network Intruders in Real-Time.
http://www.icir.org/vern/bro-info.html

[5] M. Roesch, “Snort: Lightweight intrusion detection for networks,”
In Proc. 13th Systems Administration Conference (LISA), USENIX
Association, November 1999, pp 229–238.

[6] S. Antonatos, et. al, “Generating realistic workloads for network
intrusion detection systems,” In ACM Workshop on Software and
Performance, 2004.

[7] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Comm. of the ACM, 18(6):333–340, 1975.

[8] B. Commentz-Walter, “A string matching algorithm fast on the
average,” Proc. of ICALP, pages 118–132, July 1979.

[9] S. Wu, U. Manber,” A fast algorithm for multi-pattern searching,”
Tech. R. TR-94-17, Dept. of Comp. Science, Univ of Arizona, 1994.

[10] Fang Yu, et al., “Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection”, UCB tech. report, EECS-
2005-8.

[11] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion
detection,” IEEE Infocom 2004, pp. 333--340.

[12] L. Tan, and T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection and Prevention,” ISCA 2005.

[13] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for Efficient
and High-Speed NIDS Pattern Matching,” Proc. IEEE Symp. on
Field-Prog. Custom Computing Machines, Apr. 2004, pp. 258–267.

[14] S. Yusuf and W. Luk, “Bitwise Optimised CAM for Network
Intrusion Detection Systems,” IEEE FPL 2005.

[15] R. Sidhu and V. K. Prasanna, “Fast regular expression matching
using FPGAs,” In IEEE Symposium on Field- Programmable
Custom Computing Machines, Rohnert Park, CA, USA, April 2001.

[16] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic
circuit for matching complex network intrusion detection patterns,”
In Proceedings of 13th International Conference on Field Program.

[17] J. Moscola, et. al, “Implementation of a content-scanning module for
an internet firewall,” IEEE Workshop on FPGAs for Custom Comp.
Machines, Napa, USA, April 2003.

[18] R. W. Floyd, and J. D. Ullman, “The Compilation of Regular
Expressions into Integrated Circuits”, Journal of ACM, vol. 29, no.
3, pp 603-622, July 1982.

[19] Scott Tyler Shafer, Mark Jones, “Network edge courts apps,”
http://infoworld.com/article/02/05/27/020527newebdev_1.html

[20] TippingPoint X505, www.tippingpoint.com/products_ips.html

[21] Cisco IOS IPS Deployment Guide, www.cisco.com

[22] Tarari RegEx, www. tarari.com/PDF/RegEx_FACT_SHEET.pdf

[23] N.J. Larsson, “Structures of string matching and data compression,”
PhD thesis, Dept. of Computer Science, Lund University, 1999 .

Table 2. Results of the H-FA and H-cFA construction, there results are for the prefix portions of the reg-exes

DFA Composite H-FA / H-cFA Source # of

closures, #

of length

restriction

of

automata

total # of

states

of

flags in

history

of

counters

in history

Total #

of states

Max # of

transitions /

character

Total # of

transitions

% space

reduction

with H-FA

H-FA parsing

rate speedup

Cisco64 14, 1 1 132784 6 0 3597 2 1215450 94.69 -

Cisco64 14, 1 1 132784 13 0 1861 8 682718 96.77 -

Cisco68 19, 1 1 328664 17 0 2956 8 1337293 97.03 -

Snort rule 1 6, 6 3 62589 5 6 583 8 238107 97.40 3x

Snort rule 2 1, 2 1 12703 1 2 71 2 27498 98.58 -

Snort rule 3 5, 1 2 4737 5 1 116 4 46124 93.48 2x

Linux70 11, 0 2 20662 9 0 1304 8 546378 81.63 2x

[24] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Deep Packet Inspection using Parallel Bloom Filters,” IEEE Hot
Interconnects 12, August 2003. IEEE Computer Society Press.

[25] Z. K. Baker, V. K. Prasanna, “Automatic Synthesis of Efficient
Intrusion Detection Systems on FPGAs,” in Field Prog. Logic and
Applications, Aug. 2004, pp. 311–321.

[26] Y. H. Cho, W. H. Mangione-Smith, “Deep Packet Filter with
Dedicated Logic and Read Only Memories,” Field Prog. Logic and
Applications, Aug. 2004, pp. 125–134.

[27] M. Gokhale, et al., “Granidt: Towards Gigabit Rate Network
Intrusion Detection Technology,” Field Programmable Logic and
Applications, Sept. 2002, pp. 404–413.

[28] J. Levandoski, E. Sommer, and M. Strait, “Application Layer Packet
Classifier for Linux”. http://l7-filter.sourceforge.net/.

[29] “MIT DARPA Intrusion Detection Data Sets,” http://www.
ll.mit.edu/IST/ideval/data/2000/2000_data_index.html.

[30] Vern Paxson et al., “Flex: A fast scanner generator,”
http://www.gnu.org/software/flex/

[31] SafeXcel Content Inspection Engine, hardware regex acceleration IP.

[32] Network Services Processor, OCTEON CN31XX, CN30XX Family.

[33] Will Eatherton, John Williams, “An encoded version of reg-ex
database from cisco systems provided for research purposes”.

[34] S. Kumar et al, "Algorithms to Accelerate Multiple Regular
Expressions Matching for Deep Packet Inspection", in ACM
SIGCOMM'06, Pisa, Italy, September 12-15, 2006.

